151
|
Turner SR, MacDonald JA. Novel Contributions of the Smoothelin-like 1 Protein in Vascular Smooth Muscle Contraction and its Potential Involvement in Myogenic Tone. Microcirculation 2014; 21:249-58. [DOI: 10.1111/micc.12108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/04/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Sara R. Turner
- The Smooth Muscle Research Group at the Libin Cardiovascular Institute of Alberta; Department of Biochemistry & Molecular Biology; University of Calgary; Calgary Alberta Canada
| | - Justin A. MacDonald
- The Smooth Muscle Research Group at the Libin Cardiovascular Institute of Alberta; Department of Biochemistry & Molecular Biology; University of Calgary; Calgary Alberta Canada
| |
Collapse
|
152
|
McDonald DA, Shi C, Shenkar R, Gallione CJ, Akers AL, Li S, De Castro N, Berg MJ, Corcoran DL, Awad IA, Marchuk DA. Lesions from patients with sporadic cerebral cavernous malformations harbor somatic mutations in the CCM genes: evidence for a common biochemical pathway for CCM pathogenesis. Hum Mol Genet 2014; 23:4357-70. [PMID: 24698976 DOI: 10.1093/hmg/ddu153] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are vascular lesions affecting the central nervous system. CCM occurs either sporadically or in an inherited, autosomal dominant manner. Constitutional (germline) mutations in any of three genes, KRIT1, CCM2 and PDCD10, can cause the inherited form. Analysis of CCM lesions from inherited cases revealed biallelic somatic mutations, indicating that CCM follows a Knudsonian two-hit mutation mechanism. It is still unknown, however, if the sporadic cases of CCM also follow this genetic mechanism. We extracted DNA from 11 surgically excised lesions from sporadic CCM patients, and sequenced the three CCM genes in each specimen using a next-generation sequencing approach. Four sporadic CCM lesion samples (36%) were found to contain novel somatic mutations. Three of the lesions contained a single somatic mutation, and one lesion contained two biallelic somatic mutations. Herein, we also describe evidence of somatic mosaicism in a patient presenting with over 130 CCM lesions localized to one hemisphere of the brain. Finally, in a lesion regrowth sample, we found that the regrown CCM lesion contained the same somatic mutation as the original lesion. Together, these data bolster the idea that all forms of CCM have a genetic underpinning of the two-hit mutation mechanism in the known CCM genes. Recent studies have found aberrant Rho kinase activation in inherited CCM pathogenesis, and we present evidence that this pathway is activated in sporadic CCM patients. These results suggest that all CCM patients, including those with the more common sporadic form, are potentially amenable to the same therapy.
Collapse
Affiliation(s)
- David A McDonald
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC 27710, USA
| | - Changbin Shi
- Section of Neurosurgery, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Robert Shenkar
- Section of Neurosurgery, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Carol J Gallione
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC 27710, USA
| | - Amy L Akers
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC 27710, USA Angioma Alliance, Norfolk, VA 23517, USA
| | - Stephanie Li
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC 27710, USA
| | - Nicholas De Castro
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC 27710, USA
| | - Michel J Berg
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA and
| | - David L Corcoran
- Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710, USA
| | - Issam A Awad
- Section of Neurosurgery, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Douglas A Marchuk
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
153
|
Andreeva A, Lee J, Lohia M, Wu X, Macara IG, Lu X. PTK7-Src signaling at epithelial cell contacts mediates spatial organization of actomyosin and planar cell polarity. Dev Cell 2014; 29:20-33. [PMID: 24703874 DOI: 10.1016/j.devcel.2014.02.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 01/15/2014] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
Abstract
Actomyosin contractility plays a key role in tissue morphogenesis. During mammalian development, PTK7 regulates epithelial morphogenesis and planar cell polarity (PCP) through modulation of actomyosin contractility, but the underlying mechanism is unknown. Here, we show that PTK7 interacts with the tyrosine kinase Src and stimulates Src signaling along cell-cell contacts. We further identify ROCK2 as a target of junctional PTK7-Src signaling. PTK7 knockdown in cultured epithelial cells reduced the level of active Src at cell-cell contacts, resulting in delocalization of ROCK2 from cell-cell contacts and decreased junctional contractility, with a concomitant increase in actomyosin on the basal surface. Moreover, we present in vivo evidence that Src family kinase (SFK) activity is critical for PCP regulation in the auditory sensory epithelium and that PTK7-SFK signaling regulates tyrosine phosphorylation of junctional ROCK2. Together, these results delineate a PTK7-Src signaling module for spatial regulation of ROCK activity, actomyosin contractility, and epithelial PCP.
Collapse
Affiliation(s)
- Anna Andreeva
- Department of Cell Biology, P.O. Box 800732, University of Virginia, Charlottesville, VA 22908, USA
| | - Jianyi Lee
- Department of Cell Biology, P.O. Box 800732, University of Virginia, Charlottesville, VA 22908, USA
| | - Madhura Lohia
- Department of Microbiology, Center for Cell Signaling, University of Virginia, Charlottesville, VA 22908, USA
| | - Xiaoji Wu
- School of Life Sciences, Peking University, Beijing, China, 100871
| | - Ian G Macara
- Department of Microbiology, Center for Cell Signaling, University of Virginia, Charlottesville, VA 22908, USA
| | - Xiaowei Lu
- Department of Cell Biology, P.O. Box 800732, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
154
|
Zheng X, Heaps CL, Fisher SA. Myosin phosphatase isoforms and related transcripts in the pig coronary circulation and effects of exercise and chronic occlusion. Microvasc Res 2014; 98:166-71. [PMID: 24534069 DOI: 10.1016/j.mvr.2014.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/19/2013] [Accepted: 02/03/2014] [Indexed: 10/25/2022]
Abstract
Myosin phosphatase (MP) is a key target of signaling pathways that regulate smooth muscle tone and blood flow. Alternative splicing of MP targeting subunit (MYPT1) exon 24 (E24) generates isoforms with variable presence of a C-terminal leucine zipper (LZ) required for activation of MP by NO/cGMP. Here we examined the expression of MP and associated genes in a disease model in the coronary circulation. Female Yucatan miniature swine remained sedentary or were exercise-trained beginning eight weeks after placement of an ameroid constrictor around the left circumflex (LCX) artery. Fourteen weeks later epicardial arteries (~1mm) and resistance arterioles (~125 μm) were harvested and assayed for gene expression. MYPT1 isoforms were distinct in the epicardial arteries (E24-/LZ+) and resistance arterioles (E24+/LZ-) and unchanged by exercise training or coronary occlusion. MYPT1, CPI-17 and PDE5 mRNA levels were not different between arteries and arterioles while Kir2.1 and eNOS were 6.6-fold and 3.9-fold higher in the arterioles. There were no significant changes in transcript abundance in epicardial arteries of the collateralized (LCX) vs. non-occluded left anterior descending (LAD) territories, or in exercise-trained vs. sedentary pigs. There was a significant 1.2 fold increase in CPI-17 in collateral-dependent arterioles, independent of exercise, and a significant 1.7 fold increase in PDE5 in arterioles from exercise-trained pigs, independent of occlusion. We conclude that differences in MYPT1 E24 (LZ) isoforms, eNOS, and Kir2.1 distinguish epicardial arteries and resistance coronary arterioles. Up-regulation of coronary arteriolar PDE5 by exercise and CPI-17 by chronic occlusion could contribute to altered vasomotor responses and requires further study.
Collapse
Affiliation(s)
- Xiaoxu Zheng
- Division of Cardiology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Cristine L Heaps
- Department of Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Steven A Fisher
- Division of Cardiology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
155
|
He WQ, Stull JT, Zhu MS. Reply: To PMID 23499953. Gastroenterology 2013; 145:1495. [PMID: 24409499 DOI: 10.1053/j.gastro.2013.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
156
|
Reho JJ, Zheng X, Fisher SA. Smooth muscle contractile diversity in the control of regional circulations. Am J Physiol Heart Circ Physiol 2013; 306:H163-72. [PMID: 24186099 DOI: 10.1152/ajpheart.00493.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Each regional circulation has unique requirements for blood flow and thus unique mechanisms by which it is regulated. In this review we consider the role of smooth muscle contractile diversity in determining the unique properties of selected regional circulations and its potential influence on drug targeting in disease. Functionally smooth muscle diversity can be dichotomized into fast versus slow contractile gene programs, giving rise to phasic versus tonic smooth muscle phenotypes, respectively. Large conduit vessel smooth muscle is of the tonic phenotype; in contrast, there is great smooth muscle contractile diversity in the other parts of the vascular system. In the renal circulation, afferent and efferent arterioles are arranged in series and determine glomerular filtration rate. The afferent arteriole has features of phasic smooth muscle, whereas the efferent arteriole has features of tonic smooth muscle. In the splanchnic circulation, the portal vein and hepatic artery are arranged in parallel and supply blood for detoxification and metabolism to the liver. Unique features of this circulation include the hepatic-arterial buffer response to regulate blood flow and the phasic contractile properties of the portal vein. Unique features of the pulmonary circulation include the low vascular resistance and hypoxic pulmonary vasoconstriction, the latter attribute inherent to the smooth muscle cells but the mechanism uncertain. We consider how these unique properties may allow for selective drug targeting of regional circulations for therapeutic benefit and point out gaps in our knowledge and areas in need of further investigation.
Collapse
Affiliation(s)
- John J Reho
- Division of Cardiology, School of Medicine, University of Maryland, Baltimore, Maryland
| | | | | |
Collapse
|
157
|
Jayashankar V, Nguyen MJ, Carr BW, Zheng DC, Rosales JB, Rosales JB, Weiser DC. Protein phosphatase 1 β paralogs encode the zebrafish myosin phosphatase catalytic subunit. PLoS One 2013; 8:e75766. [PMID: 24040418 PMCID: PMC3770619 DOI: 10.1371/journal.pone.0075766] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 08/19/2013] [Indexed: 12/21/2022] Open
Abstract
Background The myosin phosphatase is a highly conserved regulator of actomyosin contractility. Zebrafish has emerged as an ideal model system to study the invivo role of myosin phosphatase in controlling cell contractility, cell movement and epithelial biology. Most work in zebrafish has focused on the regulatory subunit of the myosin phosphatase called Mypt1. In this work, we examined the critical role of Protein Phosphatase 1, PP1, the catalytic subunit of the myosin phosphatase. Methodology/Principal Findings We observed that in zebrafish two paralogous genes encoding PP1β, called ppp1cba and ppp1cbb, are both broadly expressed during early development. Furthermore, we found that both gene products interact with Mypt1 and assemble an active myosin phosphatase complex. In addition, expression of this complex results in dephosphorylation of the myosin regulatory light chain and large scale rearrangements of the actin cytoskeleton. Morpholino knock-down of ppp1cba and ppp1cbb results in severe defects in morphogenetic cell movements during gastrulation through loss of myosin phosphatase function. Conclusions/Significance Our work demonstrates that zebrafish have two genes encoding PP1β, both of which can interact with Mypt1 and assemble an active myosin phosphatase. In addition, both genes are required for convergence and extension during gastrulation and correct dosage of the protein products is required.
Collapse
Affiliation(s)
- Vaishali Jayashankar
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Michael J. Nguyen
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Brandon W. Carr
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Dale C. Zheng
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Joseph B. Rosales
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Joshua B. Rosales
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Douglas C. Weiser
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
- * E-mail:
| |
Collapse
|
158
|
Arf guanine nucleotide-exchange factors BIG1 and BIG2 regulate nonmuscle myosin IIA activity by anchoring myosin phosphatase complex. Proc Natl Acad Sci U S A 2013; 110:E3162-70. [PMID: 23918382 DOI: 10.1073/pnas.1312531110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Brefeldin A-inhibited guanine nucleotide-exchange factors BIG1 and BIG2 activate, through their Sec7 domains, ADP ribosylation factors (Arfs) by accelerating the replacement of Arf-bound GDP with GTP for initiation of vesicular transport or activation of specific enzymes that modify important phospholipids. They are also implicated in regulation of cell polarization and actin dynamics for directed migration. Reciprocal coimmunoprecipitation of endogenous HeLa cell BIG1 and BIG2 with myosin IIA was demonstrably independent of Arf guanine nucleotide-exchange factor activity, because effects of BIG1 and BIG2 depletion were reversed by overexpression of the cognate BIG molecule C-terminal sequence that follows the Arf activation site. Selective depletion of BIG1 or BIG2 enhanced specific phosphorylation of myosin regulatory light chain (T18/S19) and F-actin content, which impaired cell migration in Transwell assays. Our data are clear evidence of these newly recognized functions for BIG1 and BIG2 in transduction or integration of mechanical signals from integrin adhesions and myosin IIA-dependent actin dynamics. Thus, by anchoring or scaffolding the assembly, organization, and efficient operation of multimolecular myosin phosphatase complexes that include myosin IIA, protein phosphatase 1δ, and myosin phosphatase-targeting subunit 1, BIG1 and BIG2 serve to integrate diverse biophysical and biochemical events in cells.
Collapse
|
159
|
Yamamoto S, Bayat V, Bellen HJ, Tan C. Protein phosphatase 1ß limits ring canal constriction during Drosophila germline cyst formation. PLoS One 2013; 8:e70502. [PMID: 23936219 PMCID: PMC3723691 DOI: 10.1371/journal.pone.0070502] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 06/20/2013] [Indexed: 12/15/2022] Open
Abstract
Germline cyst formation is essential for the propagation of many organisms including humans and flies. The cytoplasm of germline cyst cells communicate with each other directly via large intercellular bridges called ring canals. Ring canals are often derived from arrested contractile rings during incomplete cytokinesis. However how ring canal formation, maintenance and growth are regulated remains unclear. To better understand this process, we carried out an unbiased genetic screen in Drosophila melanogaster germ cells and identified multiple alleles of flapwing (flw), a conserved serine/threonine-specific protein phosphatase. Flw had previously been reported to be unnecessary for early D. melanogaster oogenesis using a hypomorphic allele. We found that loss of Flw leads to over-constricted nascent ring canals and subsequently tiny mature ring canals, through which cytoplasmic transfer from nurse cells to the oocyte is impaired, resulting in small, non-functional eggs. Flw is expressed in germ cells undergoing incomplete cytokinesis, completely colocalized with the Drosophila myosin binding subunit of myosin phosphatase (DMYPT). This colocalization, together with genetic interaction studies, suggests that Flw functions together with DMYPT to negatively regulate myosin activity during ring canal formation. The identification of two subunits of the tripartite myosin phosphatase as the first two main players required for ring canal constriction indicates that tight regulation of myosin activity is essential for germline cyst formation and reproduction in D. melanogaster and probably other species as well.
Collapse
Affiliation(s)
- Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, United States of America
| | - Vafa Bayat
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hugo J. Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, United States of America
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Change Tan
- Division of Biological Sciences, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
160
|
He W, Qiao Y, Peng Y, Zha J, Zhang C, Chen C, Chen C, Wang P, Yang X, Li C, Kamm KE, Stull JT, Zhu M. Altered contractile phenotypes of intestinal smooth muscle in mice deficient in myosin phosphatase target subunit 1. Gastroenterology 2013; 144:1456-65, 1465.e1-5. [PMID: 23499953 PMCID: PMC3782749 DOI: 10.1053/j.gastro.2013.02.045] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 01/31/2013] [Accepted: 02/05/2013] [Indexed: 01/02/2023]
Abstract
BACKGROUND & AIMS The regulatory subunit of myosin light chain phosphatase, MYPT1, has been proposed to control smooth muscle contractility by regulating phosphorylation of the Ca(2+)-dependent myosin regulatory light chain. We generated mice with a smooth muscle-specific deletion of MYPT1 to investigate its physiologic role in intestinal smooth muscle contraction. METHODS We used the Cre-loxP system to establish Mypt1-floxed mice, with the promoter region and exon 1 of Mypt1 flanked by 2 loxP sites. These mice were crossed with SMA-Cre transgenic mice to generate mice with smooth muscle-specific deletion of MYPT1 (Mypt1(SMKO) mice). The phenotype was assessed by histologic, biochemical, molecular, and physiologic analyses. RESULTS Young adult Mypt1(SMKO) mice had normal intestinal motility in vivo, with no histologic abnormalities. On stimulation with KCl or acetylcholine, intestinal smooth muscles isolated from Mypt1(SMKO) mice produced robust and increased sustained force due to increased phosphorylation of the myosin regulatory light chain compared with muscle from control mice. Additional analyses of contractile properties showed reduced rates of force development and relaxation, and decreased shortening velocity, compared with muscle from control mice. Permeable smooth muscle fibers from Mypt1(SMKO) mice had increased sensitivity and contraction in response to Ca(2+). CONCLUSIONS MYPT1 is not essential for smooth muscle function in mice but regulates the Ca(2+) sensitivity of force development and contributes to intestinal phasic contractile phenotype. Altered contractile responses in isolated tissues could be compensated by adaptive physiologic responses in vivo, where gut motility is affected by lower intensities of smooth muscle stimulation for myosin phosphorylation and force development.
Collapse
Affiliation(s)
- Wei–Qi He
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Yan–Ning Qiao
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Ya–Jing Peng
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Juan–Min Zha
- Department of Gerontology, The First Hospital Affiliated with Nanjing Medical University, Nanjing, China
| | - Cheng–Hai Zhang
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Chen Chen
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Cai–Ping Chen
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Pei Wang
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing, China
| | - Chao–Jun Li
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China,School of Medicine, Nanjing University, Nanjing, China
| | - Kristine E. Kamm
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - James T. Stull
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Min–Sheng Zhu
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China,Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical College, Wenzhou, China
| |
Collapse
|
161
|
Shopik MJ, Li L, Luu HA, Obeidat M, Holmes CFB, Ballermann BJ. Multi-directional function of the protein phosphatase 1 regulatory subunit TIMAP. Biochem Biophys Res Commun 2013; 435:567-73. [PMID: 23685145 DOI: 10.1016/j.bbrc.2013.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/04/2013] [Indexed: 11/19/2022]
Abstract
TIMAP is an endothelial-cell predominant member of the MYPT family of PP1c regulatory subunits. This study explored the TIMAP-PP1c interaction and substrate specificity in vitro. TIMAP associated with all three PP1c isoforms, but endogenous endothelial cell TIMAP preferentially co-immunoprecipitated with PP1cβ. Structural modeling of the TIMAP/PP1c complex predicts that the PP1c C-terminus is buried in the TIMAP ankyrin cluster, and that the PP1c active site remains accessible. Consistent with this model, C-terminal PP1c phosphorylation by cdk2-cyclinA was masked by TIMAP, and PP1c bound TIMAP when the active site was occupied by the inhibitor microcystin. TIMAP inhibited PP1c activity toward phosphorylase a in a concentration-dependent manner, with half-maximal inhibition in the 0.4-1.2 nM range, an effect modulated by the length, and by Ser333/Ser337 phosphomimic mutations of the TIMAP C-terminus. TIMAP-bound PP1cβ effectively dephosphorylated MLC2 and TIMAP itself. By contrast, TIMAP inhibited the PP1cβ activity toward the putative substrate LAMR1, and instead masked LAMR1 PKA- and PKC-phosphorylation sites. This is direct evidence that MLC2 is a TIMAP/PP1c substrate. The data also indicate that TIMAP can modify protein phosphorylation independent of its function as a PP1c regulatory subunit, namely by masking phosphorylation sites of binding partners like PP1c and LAMR1.
Collapse
Affiliation(s)
- Micheal J Shopik
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | |
Collapse
|
162
|
Bhetwal BP, Sanders KM, An C, Trappanese DM, Moreland RS, Perrino BA. Ca2+ sensitization pathways accessed by cholinergic neurotransmission in the murine gastric fundus. J Physiol 2013; 591:2971-86. [PMID: 23613531 DOI: 10.1113/jphysiol.2013.255745] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ca(2+) sensitization of contraction has typically been investigated by bathing muscles in solutions containing agonists. However, it is unknown whether bath-applied agonists and enteric neurotransmission activate similar Ca(2+) sensitization mechanisms. We investigated protein kinase C (PKC)-potentiated phosphatase inhibitor protein of 17 kDa (CPI-17) and myosin phosphatase targeting subunit 1 (MYPT1) phosphorylation in murine gastric fundus muscles stimulated by bath-applied carbachol (CCh) or cholinergic motor neurotransmission. CCh increased MYPT1 phosphorylation at Thr696 (pT696) and Thr853 (pT853), CPI-17 at Thr38 (pT38), and myosin light chain at Ser19 (pS19). Electrical field stimulation (EFS) only increased pT38. In the presence of neostigmine, EFS increased pT38, pT853 and pS19. In fundus muscles of W/W(v) mice, EFS alone increased pT38 and pT853. Atropine blocked all contractions and all increases in pT696, pT853, pT38 and pS19. The Rho kinase (ROCK) inhibitor SAR1x blocked increases in pT853 and pT696. The PKC inhibitors Go6976 and Gf109203x or nicardipine blocked increases in pT38 and pT696. These findings suggest that cholinergic motor neurotransmission activates PKC-dependent CPI-17 phosphorylation. Bath-applied CCh recruits additional ROCK-dependent MYPT1 phosphorylation due to exposure of the agonist to a wider population of muscarinic receptors. Intramuscular interstitial cells of Cajal (ICC-IMs) and cholinesterases restrict ACh accessibility to a select population of muscarinic receptors, possibly only those expressed by ICC-IMs. These results provide the first biochemical evidence for focalized (or synaptic-like) neurotransmission, rather than diffuse 'volume' neurotransmission in a smooth muscle tissue. Furthermore, these findings demonstrate that bath application of contractile agonists to gastrointestinal smooth muscles does not mimic physiological responses to cholinergic neurotransmission.
Collapse
Affiliation(s)
- Bhupal P Bhetwal
- University of Nevada School of Medicine, Physiology and Cell Biology, University of Nevada, Reno, CMM203E, Reno, NV 89557, USA
| | | | | | | | | | | |
Collapse
|
163
|
Gao N, Huang J, He W, Zhu M, Kamm KE, Stull JT. Signaling through myosin light chain kinase in smooth muscles. J Biol Chem 2013; 288:7596-7605. [PMID: 23362260 DOI: 10.1074/jbc.m112.427112] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK) phosphorylates smooth muscle myosin regulatory light chain (RLC) to initiate contraction. We used a tamoxifen-activated, smooth muscle-specific inactivation of MLCK expression in adult mice to determine whether MLCK was differentially limiting in distinct smooth muscles. A 50% decrease in MLCK in urinary bladder smooth muscle had no effect on RLC phosphorylation or on contractile responses, whereas an 80% decrease resulted in only a 20% decrease in RLC phosphorylation and contractile responses to the muscarinic agonist carbachol. Phosphorylation of the myosin light chain phosphatase regulatory subunit MYPT1 at Thr-696 and Thr-853 and the inhibitor protein CPI-17 were also stimulated with carbachol. These results are consistent with the previous findings that activation of a small fraction of MLCK by limiting amounts of free Ca(2+)/calmodulin combined with myosin light chain phosphatase inhibition is sufficient for robust RLC phosphorylation and contractile responses in bladder smooth muscle. In contrast, a 50% decrease in MLCK in aortic smooth muscle resulted in 40% inhibition of RLC phosphorylation and aorta contractile responses, whereas a 90% decrease profoundly inhibited both responses. Thus, MLCK content is limiting for contraction in aortic smooth muscle. Phosphorylation of CPI-17 and MYPT1 at Thr-696 and Thr-853 were also stimulated with phenylephrine but significantly less than in bladder tissue. These results indicate differential contributions of MLCK to signaling. Limiting MLCK activity combined with modest Ca(2+) sensitization responses provide insights into how haploinsufficiency of MLCK may result in contractile dysfunction in vivo, leading to dissections of human thoracic aorta.
Collapse
Affiliation(s)
- Ning Gao
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Jian Huang
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Weiqi He
- Model Animal Research Center and Ministry of Education Key Laboratory of Model Animal for Disease Study, Nanjing University, 210061 Nanjing, China
| | - Minsheng Zhu
- Model Animal Research Center and Ministry of Education Key Laboratory of Model Animal for Disease Study, Nanjing University, 210061 Nanjing, China
| | - Kristine E Kamm
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - James T Stull
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390.
| |
Collapse
|
164
|
De Munter S, Köhn M, Bollen M. Challenges and opportunities in the development of protein phosphatase-directed therapeutics. ACS Chem Biol 2013; 8:36-45. [PMID: 23214403 DOI: 10.1021/cb300597g] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein phosphatases have both protective and promoting roles in the etiology of diseases. A prominent example is the existence of oncogenic as well as tumor-suppressing protein phosphatases. A few protein phosphatase activity modulators are already applied in therapies. These were however not developed in target-directed approaches, and the recent discovery of phosphatase involvement followed their application in therapy. Nevertheless, these examples demonstrate that small molecules can be generated that modulate the activity of protein phosphatases and are beneficial for the treatment of protein phosphorylation diseases. We describe here strategies for the development of activators and inhibitors of protein phosphatases and clarify some long-standing misconceptions concerning the druggability of these enzymes. Recent developments suggest that it is feasible to design potent and selective protein phosphatase modulators with a therapeutic potential.
Collapse
Affiliation(s)
- Sofie De Munter
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Maja Köhn
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg,
Germany
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| |
Collapse
|
165
|
Boens S, Szekér K, Van Eynde A, Bollen M. Interactor-guided dephosphorylation by protein phosphatase-1. Methods Mol Biol 2013; 1053:271-281. [PMID: 23860659 DOI: 10.1007/978-1-62703-562-0_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Protein phosphatase-1 (PP1) is an essential enzyme for every eukaryotic cell and catalyzes more than half of all protein dephosphorylations at serine and threonine residues. The free catalytic subunit of PP1 shows little substrate selectivity but is tightly regulated in vivo by a large variety of structurally unrelated PP1-interacting proteins (PIPs). PIPs form highly specific dimeric or trimeric PP1 holoenzymes by acting as substrates, inhibitors, and/or substrate-specifiers. The surface of PP1 contains many binding sites for short PP1-docking motifs that are combined by PIPs to create a PP1-binding code that is universal, specific, degenerate, nonexclusive, and dynamic. These properties of the PP1-binding code can be used for the rational design of small molecules that disrupt subsets of PP1 holoenzymes and have a therapeutic potential.
Collapse
Affiliation(s)
- Shannah Boens
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
166
|
Archavlis E, Carvi Y Nievas M. Cerebral vasospasm: a review of current developments in drug therapy and research. ACTA ACUST UNITED AC 2013. [DOI: 10.7243/2050-120x-2-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
167
|
Abstract
The myogenic response has a critical role in regulation of blood flow to the brain. Increased intraluminal pressure elicits vasoconstriction, whereas decreased intraluminal pressure induces vasodilatation, thereby maintaining flow constant over the normal physiologic blood pressure range. Improved understanding of the molecular mechanisms underlying the myogenic response is crucial to identify deficiencies with pathologic consequences, such as cerebral vasospasm, hypertension, and stroke, and to identify potential therapeutic targets. Three mechanisms have been suggested to be involved in the myogenic response: (1) membrane depolarization, which induces Ca(2+) entry, activation of myosin light chain kinase, phosphorylation of the myosin regulatory light chains (LC(20)), increased actomyosin MgATPase activity, cross-bridge cycling, and vasoconstriction; (2) activation of the RhoA/Rho-associated kinase (ROCK) pathway, leading to inhibition of myosin light chain phosphatase by phosphorylation of MYPT1, the myosin targeting regulatory subunit of the phosphatase, and increased LC(20) phosphorylation; and (3) activation of the ROCK and protein kinase C pathways, leading to actin polymerization and the formation of enhanced connections between the actin cytoskeleton, plasma membrane, and extracellular matrix to augment force transmission. This review describes these three mechanisms, emphasizing recent developments regarding the importance of dynamic actin polymerization in the myogenic response of the cerebral vasculature.
Collapse
|
168
|
MacDonald JA, Moffat LD, Al-Ghabkari A, Sutherland C, Walsh MP. Prostate-apoptosis response-4 phosphorylation in vascular smooth muscle. Arch Biochem Biophys 2012; 535:84-90. [PMID: 23219599 DOI: 10.1016/j.abb.2012.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/15/2012] [Accepted: 11/21/2012] [Indexed: 12/12/2022]
Abstract
The protein prostate-apoptosis response (Par)-4 has been implicated in the regulation of smooth muscle contraction, based largely on studies with the A7r5 cell line. A mechanism has been proposed whereby Par-4 binding to MYPT1 (the myosin-targeting subunit of myosin light chain phosphatase, MLCP) blocks access of zipper-interacting protein kinase (ZIPK) to Thr697 and Thr855 of MYPT1, whose phosphorylation is associated with MLCP inhibition. Phosphorylation of Par-4 at Thr155 disrupts its interaction with MYPT1, exposing the sites of phosphorylation in MYPT1 and leading to MLCP inhibition and contraction. We tested this "padlock" hypothesis in a well-characterized vascular smooth muscle system, the rat caudal artery. Par-4 was retained in Triton-skinned tissue, suggesting a tight association with the contractile machinery, and indeed Par-4 co-immunoprecipitated with MYPT1. Treatment of Triton-skinned tissue with the phosphatase inhibitor microcystin (MC) evoked phosphorylation of Par-4 at Thr155, but did not induce its dissociation from the contractile machinery. Furthermore, analysis of the time courses of MC-induced phosphorylation of MYPT1 and Par-4 revealed that MYPT1 phosphorylation at Thr697 or Thr855 preceded Par-4 phosphorylation. Par-4 phosphorylation was inhibited by the non-selective kinase inhibitor staurosporine, but not by inhibitors of ZIPK, Rho-associated kinase or protein kinase C. In addition, Par-4 phosphorylation did not occur upon addition of constitutively-active ZIPK to skinned tissue. We conclude that phosphorylation of Par-4 does not regulate contraction of this vascular smooth muscle tissue by inducing dissociation of Par-4 from MYPT1 to allow phosphorylation of MYPT1 and inhibition of MLCP.
Collapse
Affiliation(s)
- Justin A MacDonald
- Smooth Muscle Research Group and Department of Biochemistry & Molecular Biology, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, Canada T2N 4Z6.
| | | | | | | | | |
Collapse
|
169
|
Chu J, Pham NT, Olate N, Kislitsyna K, Day MC, LeTourneau PA, Kots A, Stewart RH, Laine GA, Cox CS, Uray K. Biphasic regulation of myosin light chain phosphorylation by p21-activated kinase modulates intestinal smooth muscle contractility. J Biol Chem 2012; 288:1200-13. [PMID: 23161543 DOI: 10.1074/jbc.m112.370718] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Supraphysiological mechanical stretching in smooth muscle results in decreased contractile activity. However, the mechanism is unclear. Previous studies indicated that intestinal motility dysfunction after edema development is associated with increased smooth muscle stress and decreased myosin light chain (MLC) phosphorylation in vivo, providing an ideal model for studying mechanical stress-mediated decrease in smooth muscle contraction. Primary human intestinal smooth muscle cells (hISMCs) were subjected to either control cyclical stretch (CCS) or edema (increasing) cyclical stretch (ECS), mimicking the biophysical forces in non-edematous and edematous intestinal smooth muscle in vivo. ECS induced significant decreases in phosphorylation of MLC and MLC phosphatase targeting subunit (MYPT1) and a significant increase in p21-activated kinase (PAK) activity compared with CCS. PAK regulated MLC phosphorylation in an activity-dependent biphasic manner. PAK activation increased MLC and MYPT1 phosphorylation in CCS but decreased MLC and MYPT1 phosphorylation in hISMCs subjected to ECS. PAK inhibition had the opposite results. siRNA studies showed that PAK1 plays a critical role in regulating MLC phosphorylation in hISMCs. PAK1 enhanced MLC phosphorylation via phosphorylating MYPT1 on Thr-696, whereas PAK1 inhibited MLC phosphorylation via decreasing MYPT1 on both Thr-696 and Thr-853. Importantly, in vivo data indicated that PAK activity increased in edematous tissue, and inhibition of PAK in edematous intestine improved intestinal motility. We conclude that PAK1 positively regulates MLC phosphorylation in intestinal smooth muscle through increasing inhibitory phosphorylation of MYPT1 under physiologic conditions, whereas PAK1 negatively regulates MLC phosphorylation via inhibiting MYPT1 phosphorylation when PAK activity is increased under pathologic conditions.
Collapse
Affiliation(s)
- Ji Chu
- Department of Pediatric Surgery, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Sanders KM, Koh SD, Ro S, Ward SM. Regulation of gastrointestinal motility--insights from smooth muscle biology. Nat Rev Gastroenterol Hepatol 2012; 9:633-45. [PMID: 22965426 PMCID: PMC4793911 DOI: 10.1038/nrgastro.2012.168] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastrointestinal motility results from coordinated contractions of the tunica muscularis, the muscular layers of the alimentary canal. Throughout most of the gastrointestinal tract, smooth muscles are organized into two layers of circularly or longitudinally oriented muscle bundles. Smooth muscle cells form electrical and mechanical junctions between cells that facilitate coordination of contractions. Excitation-contraction coupling occurs by Ca(2+) entry via ion channels in the plasma membrane, leading to a rise in intracellular Ca(2+). Ca(2+) binding to calmodulin activates myosin light chain kinase; subsequent phosphorylation of myosin initiates cross-bridge cycling. Myosin phosphatase dephosphorylates myosin to relax muscles, and a process known as Ca(2+) sensitization regulates the activity of the phosphatase. Gastrointestinal smooth muscles are 'autonomous' and generate spontaneous electrical activity (slow waves) that does not depend upon input from nerves. Intrinsic pacemaker activity comes from interstitial cells of Cajal, which are electrically coupled to smooth muscle cells. Patterns of contractile activity in gastrointestinal muscles are determined by inputs from enteric motor neurons that innervate smooth muscle cells and interstitial cells. Here we provide an overview of the cells and mechanisms that generate smooth muscle contractile behaviour and gastrointestinal motility.
Collapse
|
171
|
Codocedo JF, Allard C, Godoy JA, Varela-Nallar L, Inestrosa NC. SIRT1 regulates dendritic development in hippocampal neurons. PLoS One 2012; 7:e47073. [PMID: 23056585 PMCID: PMC3464248 DOI: 10.1371/journal.pone.0047073] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 09/12/2012] [Indexed: 12/05/2022] Open
Abstract
Dendritic arborization is required for proper neuronal connectivity. SIRT1, a NAD+ dependent histone deacetylase, has been associated to ageing and longevity, which in neurons is linked to neuronal differentiation and neuroprotection. In the present study, the role of SIRT1 in dendritic development was evaluated in cultured hippocampal neurons which were transfected at 3 days in vitro with a construct coding for SIRT1 or for the dominant negative SIRT1H363Y, which lacks the catalytic activity. Neurons overexpressing SIRT1 showed an increased dendritic arborization, while neurons overexpressing SIRT1H363Y showed a reduction in dendritic arbor complexity. The effect of SIRT1 was mimicked by treatment with resveratrol, a well known activator of SIRT1, which has no effect in neurons overexpressing SIRT1H363Y indicating that the effect of resveratrol was specifically mediated by SIRT1. Moreover, hippocampal neurons overexpressing SIRT1 were resistant to dendritic dystrophy induced by Aβ aggregates, an effect that was dependent on the deacetylase activity of SIRT1. Our findings indicate that SIRT1 plays a role in the development and maintenance of dendritic branching in hippocampal neurons, and suggest that these effects are mediated by the ROCK signaling pathway.
Collapse
Affiliation(s)
- Juan F. Codocedo
- Departamento de Biología Celular y Molecular, Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | - Claudio Allard
- Departamento de Biología Celular y Molecular, Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | - Juan A. Godoy
- Departamento de Biología Celular y Molecular, Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | - Lorena Varela-Nallar
- Departamento de Biología Celular y Molecular, Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C. Inestrosa
- Departamento de Biología Celular y Molecular, Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
172
|
Grassie ME, Sutherland C, Ulke-Lemée A, Chappellaz M, Kiss E, Walsh MP, MacDonald JA. Cross-talk between Rho-associated kinase and cyclic nucleotide-dependent kinase signaling pathways in the regulation of smooth muscle myosin light chain phosphatase. J Biol Chem 2012; 287:36356-69. [PMID: 22948155 DOI: 10.1074/jbc.m112.398479] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ca(2+) sensitization of smooth muscle contraction depends upon the activities of protein kinases, including Rho-associated kinase, that phosphorylate the myosin phosphatase targeting subunit (MYPT1) at Thr(697) and/or Thr(855) (rat sequence numbering) to inhibit phosphatase activity and increase contractile force. Both Thr residues are preceded by the sequence RRS, and it has been suggested that phosphorylation at Ser(696) prevents phosphorylation at Thr(697). However, the effects of Ser(854) and dual Ser(696)-Thr(697) and Ser(854)-Thr(855) phosphorylations on myosin phosphatase activity and contraction are unknown. We characterized a suite of MYPT1 proteins and phosphospecific antibodies for specificity toward monophosphorylation events (Ser(696), Thr(697), Ser(854), and Thr(855)), Ser phosphorylation events (Ser(696)/Ser(854)) and dual Ser/Thr phosphorylation events (Ser(696)-Thr(697) and Ser(854)-Thr(855)). Dual phosphorylation at Ser(696)-Thr(697) and Ser(854)-Thr(855) by cyclic nucleotide-dependent protein kinases had no effect on myosin phosphatase activity, whereas phosphorylation at Thr(697) and Thr(855) by Rho-associated kinase inhibited phosphatase activity and prevented phosphorylation by cAMP-dependent protein kinase at the neighboring Ser residues. Forskolin induced phosphorylation at Ser(696), Thr(697), Ser(854), and Thr(855) in rat caudal artery, whereas U46619 induced Thr(697) and Thr(855) phosphorylation and prevented the Ser phosphorylation induced by forskolin. Furthermore, pretreatment with forskolin prevented U46619-induced Thr phosphorylations. We conclude that cross-talk between cyclic nucleotide and RhoA signaling pathways dictates the phosphorylation status of the Ser(696)-Thr(697) and Ser(854)-Thr(855) inhibitory regions of MYPT1 in situ, thereby regulating the activity of myosin phosphatase and contraction.
Collapse
Affiliation(s)
- Michael E Grassie
- Smooth Muscle Research Group and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | | | | | | | | | | | | |
Collapse
|
173
|
Pham K, Langlais P, Zhang X, Chao A, Zingsheim M, Yi Z. Insulin-stimulated phosphorylation of protein phosphatase 1 regulatory subunit 12B revealed by HPLC-ESI-MS/MS. Proteome Sci 2012; 10:52. [PMID: 22937917 PMCID: PMC3546068 DOI: 10.1186/1477-5956-10-52] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 07/31/2012] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND Protein phosphatase 1 (PP1) is one of the major phosphatases responsible for protein dephosphorylation in eukaryotes. Protein phosphatase 1 regulatory subunit 12B (PPP1R12B), one of the regulatory subunits of PP1, can bind to PP1cδ, one of the catalytic subunits of PP1, and modulate the specificity and activity of PP1cδ against its substrates. Phosphorylation of PPP1R12B on threonine 646 by Rho kinase inhibits the activity of the PP1c-PPP1R12B complex. However, it is not currently known whether PPP1R12B phosphorylation at threonine 646 and other sites is regulated by insulin. We set out to identify phosphorylation sites in PPP1R12B and to quantify the effect of insulin on PPP1R12B phosphorylation by using high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. RESULTS 14 PPP1R12B phosphorylation sites were identified, 7 of which were previously unreported. Potential kinases were predicted for these sites. Furthermore, relative quantification of PPP1R12B phosphorylation sites for basal and insulin-treated samples was obtained by using peak area-based label-free mass spectrometry of fragment ions. The results indicate that insulin stimulates the phosphorylation of PPP1R12B significantly at serine 29 (3.02 ± 0.94 fold), serine 504 (11.67 ± 3.33 fold), and serine 645/threonine 646 (2.34 ± 0.58 fold). CONCLUSION PPP1R12B was identified as a phosphatase subunit that undergoes insulin-stimulated phosphorylation, suggesting that PPP1R12B might play a role in insulin signaling. This study also identified novel targets for future investigation of the regulation of PPP1R12B not only in insulin signaling in cell models, animal models, and in humans, but also in other signaling pathways.
Collapse
Affiliation(s)
- Kimberly Pham
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, AZ, USA
| | - Paul Langlais
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, AZ, USA
| | - Xiangmin Zhang
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, AZ, USA.,Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, 259 Mack Ave., Detroit, MI, USA
| | - Alex Chao
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, AZ, USA
| | - Morgan Zingsheim
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, AZ, USA
| | - Zhengping Yi
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, AZ, USA.,Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, 259 Mack Ave., Detroit, MI, USA
| |
Collapse
|
174
|
Geetha T, Langlais P, Caruso M, Yi Z. Protein phosphatase 1 regulatory subunit 12A and catalytic subunit δ, new members in the phosphatidylinositide 3 kinase insulin-signaling pathway. J Endocrinol 2012; 214:437-43. [PMID: 22728334 PMCID: PMC4445742 DOI: 10.1530/joe-12-0145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Skeletal muscle insulin resistance is an early abnormality in individuals with metabolic syndrome and type 2 diabetes (T2D). Insulin receptor substrate-1 (IRS1) plays a key role in insulin signaling, the function of which is regulated by both phosphorylation and dephosphorylation of tyrosine and serine/threonine residues. Numerous studies have focused on kinases in IRS1 phosphorylation and insulin resistance; however, the mechanism for serine/threonine phosphatase action in insulin signaling is largely unknown. Recently, we identified protein phosphatase 1 (PP1) regulatory subunit 12A (PPP1R12A) as a novel endogenous insulin-stimulated interaction partner of IRS1 in L6 myotubes. The current study was undertaken to better understand PPP1R12A's role in insulin signaling. Insulin stimulation promoted an interaction between the IRS1/p85 complex and PPP1R12A; however, p85 and PPP1R12A did not interact independent of IRS1. Moreover, kinase inhibition experiments indicated that insulin-induced interaction between IRS1 and PPP1R12A was reduced by treatment with inhibitors of phosphatidylinositide 3 kinase, PDK1, Akt, and mTOR/raptor but not MAPK. Furthermore, a novel insulin-stimulated IRS1 interaction partner, PP1 catalytic subunit (PP1cδ), was identified, and its interaction with IRS1 was also disrupted by inhibitors of Akt and mTOR/raptor. These results indicate that PPP1R12A and PP1cδ are new members of the insulin-stimulated IRS1 signaling complex, and the interaction of PPP1R12A and PP1cδ with IRS1 is dependent on Akt and mTOR/raptor activation. These findings provide evidence for the involvement of a particular PP1 complex, PPP1R12A/PP1cδ, in insulin signaling and may lead to a better understanding of dysregulated IRS1 phosphorylation in insulin resistance and T2D.
Collapse
Affiliation(s)
- Thangiah Geetha
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona 85287, USA
| | | | | | | |
Collapse
|
175
|
Singh DK, Sarkar J, Raghavan A, Reddy SP, Raj JU. Hypoxia modulates the expression of leucine zipper-positive MYPT1 and its interaction with protein kinase G and Rho kinases in pulmonary arterial smooth muscle cells. Pulm Circ 2012; 1:487-98. [PMID: 22530104 PMCID: PMC3329079 DOI: 10.4103/2045-8932.93548] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We have shown previously that acute hypoxia downregulates protein kinase G (PKG) expression and activity in ovine fetal pulmonary vessels and pulmonary arterial smooth muscle cells (SMC). Here, we report that acute hypoxia also reduces the expression of leucinezipper-positive MYPT1 (LZ+MYPT1), a subunit of myosin light chain (MLC) phosphatase, in ovine fetal pulmonary arterial SMC. We found that in hypoxia, there is greater interaction between LZ+ MYPT1 and RhoA and Rho kinase 1 (ROCK1)/Rho kinase 2 (ROCK2) and decreased interaction between LZ+ MYPT1 and PKG, resulting in increased MLC20 phosphorylation, a higher pMLC20/MLC20 ratio and SMC contraction. In normoxic SMC PKG overexpression, LZ+ MYPT1 expression is upregulated while PKG knockdown had an opposite effect. LZ+ MYPT1 overexpression enhanced the interaction between PKG and LZ+ MYPT1. Overexpression of a mutant LZ- MYPT1 isoform in SMC mimicked the effects of acute hypoxia and decreased pMLC20/MLC20 ratio. Collectively, our data suggest that hypoxia downregulates LZ+ MYPT1 expression by suppressing PKG levels, reduces the interaction of LZ+ MYPT1 with PKG and promotes LZ+ MYPT1 interaction with RhoA or ROCK1/ROCK2, thereby promoting pulmonary arterial SMC contraction.
Collapse
Affiliation(s)
- Dev K Singh
- Department of Pediatrics, Division of Developmental Biology and Basic Research, University of Illinois at Chicago, Children's Hospital University of Illinois, Chicago, IL, USA, 1 & 2 Author contributed equally
| | | | | | | | | |
Collapse
|
176
|
Abstract
The hydrolysis of ATP drives virtually all of the energy-requiring processes in living cells. A prerequisite of living cells is that the concentration of ATP needs to be maintained at sufficiently high levels to sustain essential cellular functions. In eukaryotic cells, the AMPK (AMP-activated protein kinase) cascade is one of the systems that have evolved to ensure that energy homoeostasis is maintained. AMPK is activated in response to a fall in ATP, and recent studies have suggested that ADP plays an important role in regulating AMPK. Once activated, AMPK phosphorylates a broad range of downstream targets, resulting in the overall effect of increasing ATP-producing pathways whilst decreasing ATP-utilizing pathways. Disturbances in energy homoeostasis underlie a number of disease states in humans, e.g. Type 2 diabetes, obesity and cancer. Reflecting its key role in energy metabolism, AMPK has emerged as a potential therapeutic target. In the present review we examine the recent progress aimed at understanding the regulation of AMPK and discuss some of the latest developments that have emerged in key areas of human physiology where AMPK is thought to play an important role.
Collapse
|
177
|
Sutherland C, Walsh MP. Myosin regulatory light chain diphosphorylation slows relaxation of arterial smooth muscle. J Biol Chem 2012; 287:24064-76. [PMID: 22661704 DOI: 10.1074/jbc.m112.371609] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The principal signal to activate smooth muscle contraction is phosphorylation of the regulatory light chains of myosin (LC(20)) at Ser(19) by Ca(2+)/calmodulin-dependent myosin light chain kinase. Inhibition of myosin light chain phosphatase leads to Ca(2+)-independent phosphorylation at both Ser(19) and Thr(18) by integrin-linked kinase and/or zipper-interacting protein kinase. The functional effects of phosphorylation at Thr(18) on steady-state isometric force and relaxation rate were investigated in Triton-skinned rat caudal arterial smooth muscle strips. Sequential phosphorylation at Ser(19) and Thr(18) was achieved by treatment with adenosine 5'-O-(3-thiotriphosphate) in the presence of Ca(2+), which induced stoichiometric thiophosphorylation at Ser(19), followed by microcystin (phosphatase inhibitor) in the absence of Ca(2+), which induced phosphorylation at Thr(18). Phosphorylation at Thr(18) had no effect on steady-state force induced by Ser(19) thiophosphorylation. However, phosphorylation of Ser(19) or both Ser(19) and Thr(18) to comparable stoichiometries (0.5 mol of P(i)/mol of LC(20)) and similar levels of isometric force revealed differences in the rates of dephosphorylation and relaxation following removal of the stimulus: t(½) values for dephosphorylation were 83.3 and 560 s, and for relaxation were 560 and 1293 s, for monophosphorylated (Ser(19)) and diphosphorylated LC(20), respectively. We conclude that phosphorylation at Thr(18) decreases the rates of LC(20) dephosphorylation and smooth muscle relaxation compared with LC(20) phosphorylated exclusively at Ser(19). These effects of LC(20) diphosphorylation, combined with increased Ser(19) phosphorylation (Ca(2+)-independent), may underlie the hypercontractility that is observed in response to certain physiological contractile stimuli, and under pathological conditions such as cerebral and coronary arterial vasospasm, intimal hyperplasia, and hypertension.
Collapse
Affiliation(s)
- Cindy Sutherland
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | |
Collapse
|
178
|
Kim JI, Urban M, Young GD, Eto M. Reciprocal regulation controlling the expression of CPI-17, a specific inhibitor protein for the myosin light chain phosphatase in vascular smooth muscle cells. Am J Physiol Cell Physiol 2012; 303:C58-68. [PMID: 22538237 DOI: 10.1152/ajpcell.00118.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellular activity of the myosin light chain phosphatase (MLCP) determines agonist-induced force development of smooth muscle (SM). CPI-17 is an endogenous inhibitor protein for MLCP, responsible for mediating G-protein signaling into SM contraction. Fluctuations in CPI-17 expression occur in response to pathological stresses, altering excitation-contraction coupling in SM. Here, we determined the signaling pathways regulating CPI-17 expression in rat aorta tissues and the cell culture using a pharmacological approach. CPI-17 transcription was suppressed in response to the proliferative stimulus with platelet-derived growth factor (PDGF) through the ERK1/2 pathway, whereas it was elevated in response to inflammatory, stress-induced and excitatory stimuli with transforming growth factor-β, IL-1β, TNFα, sorbitol, and serotonin. CPI-17 transcription was repressed by inhibition of JNK, p38, PKC, and Rho-kinase (ROCK). The mouse and human CPI-17 gene promoters were governed by the proximal GC-boxes at the 5'-flanking region, where Sp1/Sp3 transcription factors bound. Sp1 binding to the region was more prominent in intact aorta tissues, compared with the SM cell culture, where the CPI-17 gene is repressed. The 173-bp proximal promoter activity was negatively and positively regulated through PDGF-induced ERK1/2 and sorbitol-induced p38/JNK pathways, respectively. By contrast, PKC and ROCK inhibitors failed to repress the 173-bp promoter activity, suggesting distal enhancer elements. CPI-17 transcription was insensitive to knockdown of myocardin/Kruppel-like factor 4 small interfering RNA or histone deacetylase inhibition. The reciprocal regulation of Sp1/Sp3-driven CPI-17 expression through multiple kinases may be responsible for the adaptation of MLCP signal and SM tone to environmental changes.
Collapse
Affiliation(s)
- Jee In Kim
- Department of Molecular Physiology and Biophysics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
179
|
Chao A, Zhang X, Ma D, Langlais P, Luo M, Mandarino LJ, Zingsheim M, Pham K, Dillon J, Yi Z. Site-specific phosphorylation of protein phosphatase 1 regulatory subunit 12A stimulated or suppressed by insulin. J Proteomics 2012; 75:3342-50. [PMID: 22516431 DOI: 10.1016/j.jprot.2012.03.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/08/2012] [Accepted: 03/26/2012] [Indexed: 10/28/2022]
Abstract
Protein phosphatase 1 (PP1) is one of the major phosphatases responsible for protein dephosphorylation in eukaryotes. So far, only few specific phosphorylation sites of PP1 regulatory subunit 12A (PPP1R12A) have been shown to regulate the PP1 activity. The effect of insulin on PPP1R12A phosphorylation is largely unknown. Utilizing a mass spectrometry based phosphorylation identification and quantification approach, we identified 21 PPP1R12A phosphorylation sites (7 novel sites, including Ser20, Thr22, Thr453, Ser478, Thr671, Ser678, and Ser680) and quantified 16 of them under basal and insulin stimulated conditions in hamster ovary cells overexpressing the insulin receptor (CHO/IR), an insulin sensitive cell model. Insulin stimulated the phosphorylation of PPP1R12A significantly at Ser477, Ser478, Ser507, Ser668, and Ser695, while simultaneously suppressing the phosphorylation of PPP1R12A at Ser509 (more than 2-fold increase or decrease compared to basal). Our data demonstrate that PPP1R12A undergoes insulin stimulated/suppressed phosphorylation, suggesting that PPP1R12A phosphorylation may play a role in insulin signal transduction. The novel PPP1R12A phosphorylation sites as well as the new insulin-responsive phosphorylation sites of PPP1R12A in CHO/IR cells provide targets for investigation of the regulation of PPP1R12A and the PPP1R12A-PP1cδ complex in insulin action and other signaling pathways in other cell models, animal models, and humans.
Collapse
Affiliation(s)
- Alex Chao
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, MI, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Rattan S, Singh J. RhoA/ROCK pathway is the major molecular determinant of basal tone in intact human internal anal sphincter. Am J Physiol Gastrointest Liver Physiol 2012; 302:G664-75. [PMID: 22241857 PMCID: PMC3330775 DOI: 10.1152/ajpgi.00430.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The knowledge of molecular control mechanisms underlying the basal tone in the intact human internal anal sphincter (IAS) is critical for the pathophysiology and rational therapy for a number of debilitating rectoanal motility disorders. We determined the role of RhoA/ROCK and PKC pathways by comparing the effects of ROCK- and PKC-selective inhibitors Y 27632 and Gö 6850 (10(-8) to 10(-4) M), respectively, on the basal tone in the IAS vs. the rectal smooth muscle (RSM). Western blot studies were performed to determine the levels of RhoA/ROCK II, PKC-α, MYPT1, CPI-17, and MLC(20) in the unphosphorylated and phosphorylated forms, in the IAS vs. RSM. Confocal microscopic studies validated the membrane distribution of ROCK II. Finally, to confirm a direct relationship, we examined the enzymatic activities and changes in the basal IAS tone and p-MYPT1, p-CPI-17, and p-MLC(20), before and after Y 27632 and Gö 6850. Data show higher levels of RhoA/ROCK II and related downstream signal transduction proteins in the IAS vs. RSM. In addition, data show a significant correlation between the active RhoA/ROCK levels, ROCK enzymatic activity, downstream proteins, and basal IAS tone, before and after ROCK inhibitor. From these data we conclude 1) RhoA/ROCK and downstream signaling are constitutively active in the IAS, and this pathway (in contrast with PKC) is the critical determinant of the basal tone in intact human IAS; and 2) RhoA and ROCK are potential therapeutic targets for a number of rectoanal motility disorders for which currently there is no satisfactory treatment.
Collapse
Affiliation(s)
- Satish Rattan
- Dept. of Medicine, Division of Gastroenterology & Hepatology, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
181
|
Fu K, Mende Y, Bhetwal BP, Baker S, Perrino BA, Wirth B, Fisher SA. Tra2β protein is required for tissue-specific splicing of a smooth muscle myosin phosphatase targeting subunit alternative exon. J Biol Chem 2012; 287:16575-85. [PMID: 22437831 DOI: 10.1074/jbc.m111.325761] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Alternative splicing of the smooth muscle myosin phosphatase targeting subunit (Mypt1) exon 23 (E23) is tissue-specific and developmentally regulated and, thus, an attractive model for the study of smooth muscle phenotypic specification. We have proposed that Tra2β functions as a tissue-specific activator of Mypt1 E23 splicing on the basis of concordant expression patterns and Tra2β activation of Mypt1 E23 mini-gene splicing in vitro. In this study we examined the relationship between Tra2β and Mypt1 E23 splicing in vivo in the mouse. Tra2β was 2- to 5-fold more abundant in phasic smooth muscle tissues, such as the portal vein, small intestine, and small mesenteric artery, in which Mypt1 E23 is predominately included as compared with the tonic smooth muscle tissues, such as the aorta and inferior vena cava, in which Mypt1 E23 is predominately skipped. Tra2β was up-regulated in the small intestine postnatally, concordant with a switch to Mypt1 E23 splicing. Targeting of Tra2β in smooth muscle cells using SM22α-Cre caused a substantial reduction in Mypt1 E23 inclusion specifically in the intestinal smooth muscle of heterozygotes, indicating sensitivity to Tra2β gene dosage. The switch to the Mypt1 E23 skipped isoform coding for the C-terminal leucine zipper motif caused increased sensitivity of the muscle to the relaxant effects of 8-Br-cyclic guanosine monophosphate (cGMP). We conclude that Tra2β is necessary for the tissue-specific splicing of Mypt1 E23 in the phasic intestinal smooth muscle. Tra2β, by regulating the splicing of Mypt1 E23, sets the sensitivity of smooth muscle to cGMP-mediated relaxation.
Collapse
Affiliation(s)
- Kang Fu
- Department of Medicine (Cardiology), Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
182
|
Majumder P, Aranjuez G, Amick J, McDonald JA. Par-1 controls myosin-II activity through myosin phosphatase to regulate border cell migration. Curr Biol 2012; 22:363-72. [PMID: 22326025 DOI: 10.1016/j.cub.2012.01.037] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 12/23/2011] [Accepted: 01/19/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND Localized actomyosin contraction couples with actin polymerization and cell-matrix adhesion to regulate cell protrusions and retract trailing edges of migrating cells. Although many cells migrate in collective groups during tissue morphogenesis, mechanisms that coordinate actomyosin dynamics in collective cell migration are poorly understood. Migration of Drosophila border cells, a genetically tractable model for collective cell migration, requires nonmuscle myosin-II (Myo-II). How Myo-II specifically controls border cell migration and how Myo-II is itself regulated is largely unknown. RESULTS We show that Myo-II regulates two essential features of border cell migration: (1) initial detachment of the border cell cluster from the follicular epithelium and (2) the dynamics of cellular protrusions. We further demonstrate that the cell polarity protein Par-1 (MARK), a serine-threonine kinase, regulates the localization and activation of Myo-II in border cells. Par-1 binds to myosin phosphatase and phosphorylates it at a known inactivating site. Par-1 thus promotes phosphorylated myosin regulatory light chain, thereby increasing Myo-II activity. Furthermore, Par-1 localizes to and increases active Myo-II at the cluster rear to promote detachment; in the absence of Par-1, spatially distinct active Myo-II is lost. CONCLUSIONS We identify a critical new role for Par-1 kinase: spatiotemporal regulation of Myo-II activity within the border cell cluster through localized inhibition of myosin phosphatase. Polarity proteins such as Par-1, which intrinsically localize, can thus directly modulate the actomyosin dynamics required for border cell detachment and migration. Such a link between polarity proteins and cytoskeletal dynamics may also occur in other collective cell migrations.
Collapse
Affiliation(s)
- Pralay Majumder
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
183
|
Kunda P, Rodrigues N, Moeendarbary E, Liu T, Ivetic A, Charras G, Baum B. PP1-Mediated Moesin Dephosphorylation Couples Polar Relaxation to Mitotic Exit. Curr Biol 2012; 22:231-6. [DOI: 10.1016/j.cub.2011.12.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/23/2011] [Accepted: 12/06/2011] [Indexed: 11/28/2022]
|
184
|
Poirier C, Gorshkov BA, Zemskova MA, Bogatcheva NV, Verin AD. TIMAP protects endothelial barrier from LPS-induced vascular leakage and is down-regulated by LPS. Respir Physiol Neurobiol 2011; 179:334-7. [PMID: 21907835 DOI: 10.1016/j.resp.2011.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
Abstract
TIMAP is a regulatory subunit of protein phosphatase 1, whose role remains largely unknown. Our recent data suggested that TIMAP is involved in the regulation of barrier function in cultured pulmonary endothelial monolayers [Csortos et al., 2008. Am. J. Physiol. Lung Cell. Mol. Physiol. 295, L440-L450]. Here we showed that TIMAP depletion exacerbates lipopolysaccharide (LPS)-induced vascular leakage in murine lung, suggesting that TIMAP has a barrier-protective role in vivo. Real-Time RT PCR analysis revealed that treatment with LPS significantly suppressed Timap mRNA level. This suppression was not achieved via the down-regulation of Timap promoter activity, suggesting that LPS decreased Timap mRNA stability. Pretreatment with protein kinase A (PKA) inhibitor H-89 reduced TIMAP mRNA level, whereas pretreatment with PKA activator, bnz-cAMP, increased this level and attenuated LPS-induced decrease in TIMAP mRNA. Altogether, these data confirmed the barrier-protective role of TIMAP and suggested that barrier-disruptive and barrier-protective agents may employ modulation of TIMAP expression as a mechanism affecting barrier permeability.
Collapse
Affiliation(s)
- Christophe Poirier
- Vascular Biology Center, Georgia Health Sciences University, Augusta, GA 30912, USA.
| | | | | | | | | |
Collapse
|
185
|
|