151
|
Shiota M, Yokomizo A, Eto M. Taxane Chemotherapy for Hormone-Naïve Prostate Cancer with Its Expanding Role as Breakthrough Strategy. Front Oncol 2016; 5:304. [PMID: 26793621 PMCID: PMC4707543 DOI: 10.3389/fonc.2015.00304] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/18/2015] [Indexed: 01/29/2023] Open
Abstract
Historically, androgen-deprivation therapy (ADT) was the only primary treatment for metastatic prostate cancer. After prostate cancer develops into castration-resistant prostate cancer (CRPC), there are a few life-prolonging drugs, including taxanes, such as docetaxel and cabazitaxel, as well as novel androgen receptor-targeting agents, such as abiraterone acetate and enzalutamide, which have been proved in clinical trials. However, the prognosis of men with CRPC is still poor. The duration from initiation of ADT to CRPC has not improved in recent decades because no novel therapeutic options have emerged. However, recently, up-front docetaxel chemotherapy has been shown to prolong progression-free as well as overall survival in men with metastatic hormone-naïve prostate cancer. This offers a new way to expand the role of chemotherapy for hormone-naïve prostate cancer. In this review, we summarize the proof-of-concept as well as the current status of taxane chemotherapy for hormone-naïve prostate cancer, focusing on phase 3 clinical trials investigating oncological outcome, and discuss the future direction in this field.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Akira Yokomizo
- Department of Urology, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| |
Collapse
|
152
|
Kroon J, Puhr M, Buijs JT, van der Horst G, Hemmer DM, Marijt KA, Hwang MS, Masood M, Grimm S, Storm G, Metselaar JM, Meijer OC, Culig Z, van der Pluijm G. Glucocorticoid receptor antagonism reverts docetaxel resistance in human prostate cancer. Endocr Relat Cancer 2016; 23:35-45. [PMID: 26483423 PMCID: PMC4657186 DOI: 10.1530/erc-15-0343] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2015] [Indexed: 12/17/2022]
Abstract
Resistance to docetaxel is a major clinical problem in advanced prostate cancer (PCa). Although glucocorticoids (GCs) are frequently used in combination with docetaxel, it is unclear to what extent GCs and their receptor, the glucocorticoid receptor (GR), contribute to the chemotherapy resistance. In this study, we aim to elucidate the role of the GR in docetaxel-resistant PCa in order to improve the current PCa therapies. GR expression was analyzed in a tissue microarray of primary PCa specimens from chemonaive and docetaxel-treated patients, and in cultured PCa cell lines with an acquired docetaxel resistance (PC3-DR, DU145-DR, and 22Rv1-DR). We found a robust overexpression of the GR in primary PCa from docetaxel-treated patients and enhanced GR levels in cultured docetaxel-resistant human PCa cells, indicating a key role of the GR in docetaxel resistance. The capability of the GR antagonists (RU-486 and cyproterone acetate) to revert docetaxel resistance was investigated and revealed significant resensitization of docetaxel-resistant PCa cells for docetaxel treatment in a dose- and time-dependent manner, in which a complete restoration of docetaxel sensitivity was achieved in both androgen receptor (AR)-negative and AR-positive cell lines. Mechanistically, we demonstrated down-regulation of Bcl-xL and Bcl-2 upon GR antagonism, thereby defining potential treatment targets. In conclusion, we describe the involvement of the GR in the acquisition of docetaxel resistance in human PCa. Therapeutic targeting of the GR effectively resensitizes docetaxel-resistant PCa cells. These findings warrant further investigation of the clinical utility of the GR antagonists in the management of patients with advanced and docetaxel-resistant PCa.
Collapse
Affiliation(s)
- Jan Kroon
- Department of UrologyLeiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The NetherlandsDepartment of Targeted TherapeuticsMIRA Institute for Biological Technology and Technical Medicine, University of Twente, Enschede, The NetherlandsDepartment of UrologyMedical University of Innsbruck, Innsbruck, AustriaDepartment of Clinical OncologyLeiden University Medical Center, Leiden, The NetherlandsDivision of Experimental MedicineImperial College London, London, UKDepartment of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The NetherlandsDepartment of EndocrinologyLeiden University Medical Center, Leiden, The Netherlands Department of UrologyLeiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The NetherlandsDepartment of Targeted TherapeuticsMIRA Institute for Biological Technology and Technical Medicine, University of Twente, Enschede, The NetherlandsDepartment of UrologyMedical University of Innsbruck, Innsbruck, AustriaDepartment of Clinical OncologyLeiden University Medical Center, Leiden, The NetherlandsDivision of Experimental MedicineImperial College London, London, UKDepartment of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The NetherlandsDepartment of EndocrinologyLeiden University Medical Center, Leiden, The Netherlands
| | - Martin Puhr
- Department of UrologyLeiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The NetherlandsDepartment of Targeted TherapeuticsMIRA Institute for Biological Technology and Technical Medicine, University of Twente, Enschede, The NetherlandsDepartment of UrologyMedical University of Innsbruck, Innsbruck, AustriaDepartment of Clinical OncologyLeiden University Medical Center, Leiden, The NetherlandsDivision of Experimental MedicineImperial College London, London, UKDepartment of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The NetherlandsDepartment of EndocrinologyLeiden University Medical Center, Leiden, The Netherlands
| | - Jeroen T Buijs
- Department of UrologyLeiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The NetherlandsDepartment of Targeted TherapeuticsMIRA Institute for Biological Technology and Technical Medicine, University of Twente, Enschede, The NetherlandsDepartment of UrologyMedical University of Innsbruck, Innsbruck, AustriaDepartment of Clinical OncologyLeiden University Medical Center, Leiden, The NetherlandsDivision of Experimental MedicineImperial College London, London, UKDepartment of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The NetherlandsDepartment of EndocrinologyLeiden University Medical Center, Leiden, The Netherlands
| | - Geertje van der Horst
- Department of UrologyLeiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The NetherlandsDepartment of Targeted TherapeuticsMIRA Institute for Biological Technology and Technical Medicine, University of Twente, Enschede, The NetherlandsDepartment of UrologyMedical University of Innsbruck, Innsbruck, AustriaDepartment of Clinical OncologyLeiden University Medical Center, Leiden, The NetherlandsDivision of Experimental MedicineImperial College London, London, UKDepartment of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The NetherlandsDepartment of EndocrinologyLeiden University Medical Center, Leiden, The Netherlands
| | - Daniëlle M Hemmer
- Department of UrologyLeiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The NetherlandsDepartment of Targeted TherapeuticsMIRA Institute for Biological Technology and Technical Medicine, University of Twente, Enschede, The NetherlandsDepartment of UrologyMedical University of Innsbruck, Innsbruck, AustriaDepartment of Clinical OncologyLeiden University Medical Center, Leiden, The NetherlandsDivision of Experimental MedicineImperial College London, London, UKDepartment of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The NetherlandsDepartment of EndocrinologyLeiden University Medical Center, Leiden, The Netherlands
| | - Koen A Marijt
- Department of UrologyLeiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The NetherlandsDepartment of Targeted TherapeuticsMIRA Institute for Biological Technology and Technical Medicine, University of Twente, Enschede, The NetherlandsDepartment of UrologyMedical University of Innsbruck, Innsbruck, AustriaDepartment of Clinical OncologyLeiden University Medical Center, Leiden, The NetherlandsDivision of Experimental MedicineImperial College London, London, UKDepartment of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The NetherlandsDepartment of EndocrinologyLeiden University Medical Center, Leiden, The Netherlands
| | - Ming S Hwang
- Department of UrologyLeiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The NetherlandsDepartment of Targeted TherapeuticsMIRA Institute for Biological Technology and Technical Medicine, University of Twente, Enschede, The NetherlandsDepartment of UrologyMedical University of Innsbruck, Innsbruck, AustriaDepartment of Clinical OncologyLeiden University Medical Center, Leiden, The NetherlandsDivision of Experimental MedicineImperial College London, London, UKDepartment of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The NetherlandsDepartment of EndocrinologyLeiden University Medical Center, Leiden, The Netherlands
| | - Motasim Masood
- Department of UrologyLeiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The NetherlandsDepartment of Targeted TherapeuticsMIRA Institute for Biological Technology and Technical Medicine, University of Twente, Enschede, The NetherlandsDepartment of UrologyMedical University of Innsbruck, Innsbruck, AustriaDepartment of Clinical OncologyLeiden University Medical Center, Leiden, The NetherlandsDivision of Experimental MedicineImperial College London, London, UKDepartment of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The NetherlandsDepartment of EndocrinologyLeiden University Medical Center, Leiden, The Netherlands
| | - Stefan Grimm
- Department of UrologyLeiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The NetherlandsDepartment of Targeted TherapeuticsMIRA Institute for Biological Technology and Technical Medicine, University of Twente, Enschede, The NetherlandsDepartment of UrologyMedical University of Innsbruck, Innsbruck, AustriaDepartment of Clinical OncologyLeiden University Medical Center, Leiden, The NetherlandsDivision of Experimental MedicineImperial College London, London, UKDepartment of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The NetherlandsDepartment of EndocrinologyLeiden University Medical Center, Leiden, The Netherlands
| | - Gert Storm
- Department of UrologyLeiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The NetherlandsDepartment of Targeted TherapeuticsMIRA Institute for Biological Technology and Technical Medicine, University of Twente, Enschede, The NetherlandsDepartment of UrologyMedical University of Innsbruck, Innsbruck, AustriaDepartment of Clinical OncologyLeiden University Medical Center, Leiden, The NetherlandsDivision of Experimental MedicineImperial College London, London, UKDepartment of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The NetherlandsDepartment of EndocrinologyLeiden University Medical Center, Leiden, The Netherlands Department of UrologyLeiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The NetherlandsDepartment of Targeted TherapeuticsMIRA Institute for Biological Technology and Technical Medicine, University of Twente, Enschede, The NetherlandsDepartment of UrologyMedical University of Innsbruck, Innsbruck, AustriaDepartment of Clinical OncologyLeiden University Medical Center, Leiden, The NetherlandsDivision of Experimental MedicineImperial College London, London, UKDepartment of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The NetherlandsDepartment of EndocrinologyLeiden University Medical Center, Leiden, The Netherlands
| | - Josbert M Metselaar
- Department of UrologyLeiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The NetherlandsDepartment of Targeted TherapeuticsMIRA Institute for Biological Technology and Technical Medicine, University of Twente, Enschede, The NetherlandsDepartment of UrologyMedical University of Innsbruck, Innsbruck, AustriaDepartment of Clinical OncologyLeiden University Medical Center, Leiden, The NetherlandsDivision of Experimental MedicineImperial College London, London, UKDepartment of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The NetherlandsDepartment of EndocrinologyLeiden University Medical Center, Leiden, The Netherlands
| | - Onno C Meijer
- Department of UrologyLeiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The NetherlandsDepartment of Targeted TherapeuticsMIRA Institute for Biological Technology and Technical Medicine, University of Twente, Enschede, The NetherlandsDepartment of UrologyMedical University of Innsbruck, Innsbruck, AustriaDepartment of Clinical OncologyLeiden University Medical Center, Leiden, The NetherlandsDivision of Experimental MedicineImperial College London, London, UKDepartment of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The NetherlandsDepartment of EndocrinologyLeiden University Medical Center, Leiden, The Netherlands
| | - Zoran Culig
- Department of UrologyLeiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The NetherlandsDepartment of Targeted TherapeuticsMIRA Institute for Biological Technology and Technical Medicine, University of Twente, Enschede, The NetherlandsDepartment of UrologyMedical University of Innsbruck, Innsbruck, AustriaDepartment of Clinical OncologyLeiden University Medical Center, Leiden, The NetherlandsDivision of Experimental MedicineImperial College London, London, UKDepartment of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The NetherlandsDepartment of EndocrinologyLeiden University Medical Center, Leiden, The Netherlands
| | - Gabri van der Pluijm
- Department of UrologyLeiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The NetherlandsDepartment of Targeted TherapeuticsMIRA Institute for Biological Technology and Technical Medicine, University of Twente, Enschede, The NetherlandsDepartment of UrologyMedical University of Innsbruck, Innsbruck, AustriaDepartment of Clinical OncologyLeiden University Medical Center, Leiden, The NetherlandsDivision of Experimental MedicineImperial College London, London, UKDepartment of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The NetherlandsDepartment of EndocrinologyLeiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
153
|
Ceder Y. Non-coding RNAs in Prostate Cancer: From Discovery to Clinical Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 886:155-170. [PMID: 26659491 DOI: 10.1007/978-94-017-7417-8_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Prostate cancer is a heterogeneous disease for which the molecular mechanisms are still not fully elucidated. Prostate cancer research has traditionally focused on genomic and epigenetic alterations affecting the proteome, but over the last decade non-coding RNAs, especially microRNAs, have been recognized to play a key role in prostate cancer progression. A considerable number of individual microRNAs have been found to be deregulated in prostate cancer and their biological significance elucidated in functional studies. This review will delineate the current advances regarding the involvement of microRNAs and their targets in prostate cancer biology as well as their potential usage in the clinical management of the disease. The main focus will be on microRNAs contributing to initiation and progression of prostate cancer, including androgen signalling, cellular plasticity, stem cells biology and metastatic processes. To conclude, implications on potential future microRNA-based therapeutics based on the recent advances regarding the interplay between microRNAs and their targets are discussed.
Collapse
Affiliation(s)
- Yvonne Ceder
- Translational Cancer Research, Lund University, Medicon Village, Building 404:A3, 223 81, Lund, Sweden.
| |
Collapse
|
154
|
Skowron MA, Niegisch G, Fritz G, Arent T, van Roermund JGH, Romano A, Albers P, Schulz WA, Hoffmann MJ. Phenotype plasticity rather than repopulation from CD90/CK14+ cancer stem cells leads to cisplatin resistance of urothelial carcinoma cell lines. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:144. [PMID: 26606927 PMCID: PMC4660687 DOI: 10.1186/s13046-015-0259-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/14/2015] [Indexed: 02/12/2023]
Abstract
BACKGROUND Tumour heterogeneity and resistance to systemic treatment in urothelial carcinoma (UC) may arise from cancer stem cells (CSC). A recent model describes cellular differentiation states within UC based on corresponding expression of surface markers (CD) and cytokeratins (CK) with CD90 and CK14 positive cells representing the least differentiated and most tumourigenic population. Based on the fact that this population is postulated to constitute CSCs and the origin of cisplatin resistance, we enriched urothelial carcinoma cell lines (UCCs) for CD90 and studied the tumour-initiating potential of these separated cells in vitro. METHODS Magnetic- and fluorescence-activated- cell sorting were used for separation of CD90(+) and CD90(-) UCCs. Distribution of cell surface markers CD90, CD44, and CD49f and cytokeratins CK14, CK5, and CK20 as well as the effects of short- and long-term treatment with cisplatin were assessed in vitro and measured by qRT-PCR, immunocytochemistry, reporter assay and flow cytometry in 11 UCCs. RESULTS We observed cell populations with surface markers according to those reported in tumour xenografts. However, expression of cytokeratins did not concord regularly with that of the surface markers. In particular, expression of CD90 and CK14 diverged during enrichment of CD90(+) cells by immunomagnetic sorting or following cisplatin treatment. Enriched CD90(+) cells did not exhibit CSC-like characteristics like enhanced clonogenicity and cisplatin resistance. Moreover, selection of cisplatin-resistant sublines by long-term drug treatment did not result in enrichment of CD90(+) cells. Rather, these sublines displayed significant phenotypic plasticity expressing EMT markers, an altered pattern of CKs, and WNT-pathway target genes. CONCLUSIONS Our findings indicate that the correspondence between CD surface markers and cytokeratins reported in xenografts is not maintained in commonly used UCCs and that CD90 may not be a stable marker of CSC in UC. Moreover, UCCs cells are capable of substantial phenotypic plasticity that may significantly contribute to the emergence of cisplatin resistance.
Collapse
Affiliation(s)
- Margaretha A Skowron
- Department of Urology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Universitaetsstrasse 1, 40225, Düsseldorf, Germany.
| | - Günter Niegisch
- Department of Urology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Universitaetsstrasse 1, 40225, Düsseldorf, Germany.
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Universitaetsstrasse 1, 40225, Düsseldorf, Germany.
| | - Tanja Arent
- Department of Forensic Medicine, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.
| | - Joep G H van Roermund
- Department of Urology, Maastricht University Medical Centre, P. Debyelaan 25, 6202, AZ, Maastricht, The Netherlands.
| | - Andrea Romano
- Department of Obstetrics and Gynaecology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, P. Debyelaan 25, 6202, AZ, Maastricht, The Netherlands.
| | - Peter Albers
- Department of Urology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Universitaetsstrasse 1, 40225, Düsseldorf, Germany.
| | - Wolfgang A Schulz
- Department of Urology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Universitaetsstrasse 1, 40225, Düsseldorf, Germany.
| | - Michèle J Hoffmann
- Department of Urology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Universitaetsstrasse 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
155
|
Prostate Cancer Stem-like Cells Contribute to the Development of Castration-Resistant Prostate Cancer. Cancers (Basel) 2015; 7:2290-308. [PMID: 26593949 PMCID: PMC4695890 DOI: 10.3390/cancers7040890] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/30/2015] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
Androgen deprivation therapy (ADT) has been the standard care for patients with advanced prostate cancer (PC) since the 1940s. Although ADT shows clear benefits for many patients, castration-resistant prostate cancer (CRPC) inevitably occurs. In fact, with the two recent FDA-approved second-generation anti-androgens abiraterone and enzalutamide, resistance develops rapidly in patients with CRPC, despite their initial effectiveness. The lack of effective therapeutic solutions towards CRPC largely reflects our limited understanding of the underlying mechanisms responsible for CRPC development. While persistent androgen receptor (AR) signaling under castration levels of serum testosterone (<50 ng/mL) contributes to resistance to ADT, it is also clear that CRPC evolves via complex mechanisms. Nevertheless, the physiological impact of individual mechanisms and whether these mechanisms function in a cohesive manner in promoting CRPC are elusive. In spite of these uncertainties, emerging evidence supports a critical role of prostate cancer stem-like cells (PCSLCs) in stimulating CRPC evolution and resistance to abiraterone and enzalutamide. In this review, we will discuss the recent evidence supporting the involvement of PCSLC in CRPC acquisition as well as the pathways and factors contributing to PCSLC expansion in response to ADT.
Collapse
|
156
|
Fujita Y, Kojima T, Kawakami K, Mizutani K, Kato T, Deguchi T, Ito M. miR-130a activates apoptotic signaling through activation of caspase-8 in taxane-resistant prostate cancer cells. Prostate 2015; 75:1568-78. [PMID: 26074357 DOI: 10.1002/pros.23031] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/12/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND The acquisition of drug resistance is one of the most malignant phenotypes of cancer and identification of its therapeutic target is a prerequisite for the development of novel therapy. MicroRNAs (miRNAs) have been implicated in various types of cancer and proposed as potential therapeutic targets for patients. In the present study, we aimed to identify miRNA that could serve as a therapeutic target for taxane-resistant prostate cancer. METHODS In order to identify miRNAs related to taxane-resistance, miRNA profiling was performed using prostate cancer PC-3 cells and paclitaxel-resistant PC-3 cell lines established from PC-3 cells. Microarray analysis of mRNA expression was also conducted to search for potential target genes of miRNA. Luciferase reporter assay was performed to examine miRNA binding to the 3'-UTR of target genes. The effects of ectopic expression of miRNA on cell growth, tubulin polymerization, drug sensitivity, and apoptotic signaling pathway were investigated in a paclitaxel-resistant PC-3 cell line. RESULTS The expression of miR-130a was down-regulated in all paclitaxel-resistant cell lines compared with parental PC-3 cells. Based on mRNA microarray analysis and luciferase reporter assay, we identified SLAIN1 as a direct target gene for miR-130a. Transfection of a miR-130a precursor into a paclitaxel-resistant cell line suppressed cell growth and increased the sensitivity to paclitaxel. Lastly, ectopic expression of miR-130a did not affect the polymerized tubulin level, but activated apoptotic signaling through activation of caspase-8. CONCLUSIONS Our results suggested that reduced expression of miR-130a may be involved in the paclitaxel-resistance and that miR-130a could be a therapeutic target for taxane-resistant prostate cancer patients.
Collapse
Affiliation(s)
- Yasunori Fujita
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Japan
| | - Toshio Kojima
- Health Care Center, Toyohashi University of Technology, Toyohashi, Japan
| | - Kyojiro Kawakami
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Japan
| | - Kosuke Mizutani
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Taku Kato
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takashi Deguchi
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masafumi Ito
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Japan
| |
Collapse
|
157
|
Puhr M, Hoefer J, Neuwirt H, Eder IE, Kern J, Schäfer G, Geley S, Heidegger I, Klocker H, Culig Z. PIAS1 is a crucial factor for prostate cancer cell survival and a valid target in docetaxel resistant cells. Oncotarget 2015; 5:12043-56. [PMID: 25474038 PMCID: PMC4322998 DOI: 10.18632/oncotarget.2658] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/27/2014] [Indexed: 11/25/2022] Open
Abstract
Occurrence of an inherent or acquired resistance to the chemotherapeutic drug docetaxel is a major burden for patients suffering from different kinds of malignancies, including castration resistant prostate cancer (PCa). In the present study we address the question whether PIAS1 targeting can be used to establish a basis for improved PCa treatment. The expression status and functional relevance of PIAS1 was evaluated in primary tumors, in metastatic lesions, in tissue of patients after docetaxel chemotherapy, and in docetaxel resistant cells. Patient data were complemented by functional studies on PIAS1 knockdown in vitro as well as in chicken chorioallantoic membrane and mouse xenograft in vivo models. PIAS1 was found to be overexpressed in local and metastatic PCa and its expression was further elevated in tumors after docetaxel treatment as well as in docetaxel resistant cells. Furthermore, PIAS1 knockdown experiments revealed an increased expression of tumor suppressor p21 and declined expression of anti-apoptotic protein Mcl1, which caused diminished cell proliferation and tumor growth in vitro and in vivo. In summary, the presented data indicate that PIAS1 is crucial for parental and docetaxel resistant PCa cell survival and is therefore a promising new target for treatment of primary, metastatic, and chemotherapy resistant PCa.
Collapse
Affiliation(s)
- Martin Puhr
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Hoefer
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hannes Neuwirt
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University of Innsbruck, Innsbruck, Austria
| | - Iris E Eder
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johann Kern
- Oncotyrol Laboratory for Tumor Biology and Angiogenesis, Innsbruck, Austria
| | - Georg Schäfer
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stephan Geley
- Division of Molecular Pathophysiology, Innsbruck Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Isabel Heidegger
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Helmut Klocker
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoran Culig
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
158
|
Nakamura KDM, Tilli TM, Wanderley JL, Palumbo A, Mattos RM, Ferreira AC, Klumb CE, Nasciutti LE, Gimba ER. Osteopontin splice variants expression is involved on docetaxel resistance in PC3 prostate cancer cells. Tumour Biol 2015; 37:2655-63. [PMID: 26404131 DOI: 10.1007/s13277-015-4095-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/13/2015] [Indexed: 02/08/2023] Open
Abstract
Osteopontin (OPN) is a phosphoprotein that activates several aspects of tumor progression. Alternative splicing of the OPN primary transcript generates three splicing isoforms, OPNa, OPNb and OPNc. In this report, we investigated some cellular mechanisms by which OPN splice variants could mediate PC3 prostate cancer (PCa) cell survival and growth in response to docetaxel (DXT)-induced cell death. Cell survival before and after DXT treatment was analyzed by phase-contrast microscopy and crystal-violet staining assays. Quantitative real-time PCR and immunocytochemical staining assays were used to evaluate the putative involvement of epithelial-mesenchymal transition (EMT) and OPN isoforms on mediating PC3 cell survival. Upon DXT treatment, PC3 cells overexpressing OPNb or OPNc isoforms showed higher cell densities, compared to cells overexpressing OPNa and controls. Notably, cells overexpressing OPNb or OPNc isoforms showed a downregulated pattern of EMT epithelial cell markers, while mesenchymal markers were mostly upregulated in these experimental conditions. We concluded that OPNc or OPNb overexpression in PC3 cells can mediate resistance and cell survival features in response to DXT-induced cell death. Our data also provide evidence the EMT program could be one of the molecular mechanisms mediating survival in OPNb- or OPNc-overexpressing cells in response to DXT treatment. These data could further contribute to a better understanding of the mechanisms by which PCa cells acquire resistance to DXT treatment.
Collapse
Affiliation(s)
- K D M Nakamura
- Programa de Pós Graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - T M Tilli
- Programa de Pós Graduação Stricto Sensu em Oncologia, Coordenação Geral Técnico Científica do Instituto Nacional de Câncer (INCa), Rio de Janeiro, RJ, Brazil
| | - J L Wanderley
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil
| | - A Palumbo
- Programa de Pós Graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - R M Mattos
- Programa de Pós Graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - A C Ferreira
- Laboratório de Hemato-Oncologia Celular e Molecular. Programa de Pesquisa em Hemato-Oncologia Molecular-CGTC, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil
| | - C E Klumb
- Laboratório de Hemato-Oncologia Celular e Molecular. Programa de Pesquisa em Hemato-Oncologia Molecular-CGTC, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil
| | - L E Nasciutti
- Programa de Pós Graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - E R Gimba
- Programa de Pós Graduação Stricto Sensu em Oncologia, Coordenação Geral Técnico Científica do Instituto Nacional de Câncer (INCa), Rio de Janeiro, RJ, Brazil. .,Departamento de Ciências da Natureza (RCN), Instituto de Humanidades e Sáude IHS, Universidade Federal Fluminense, Rua Recife s/n-Bairro Bela Vista, Rio das Ostras, Rio de Janeiro, RJ, 28895-532, Brazil.
| |
Collapse
|
159
|
|
160
|
Regulation of microtubule dynamics by DIAPH3 influences amoeboid tumor cell mechanics and sensitivity to taxanes. Sci Rep 2015; 5:12136. [PMID: 26179371 PMCID: PMC4503992 DOI: 10.1038/srep12136] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/05/2015] [Indexed: 12/20/2022] Open
Abstract
Taxanes are widely employed chemotherapies for patients with metastatic prostate and breast cancer. Here, we show that loss of Diaphanous-related formin-3 (DIAPH3), frequently associated with metastatic breast and prostate cancers, correlates with increased sensitivity to taxanes. DIAPH3 interacted with microtubules (MT), and its loss altered several parameters of MT dynamics as well as decreased polarized force generation, contractility, and response to substrate stiffness. Silencing of DIAPH3 increased the cytotoxic response to taxanes in prostate and breast cancer cell lines. Analysis of drug activity for tubulin-targeted agents in the NCI-60 cell line panel revealed a uniform positive correlation between reduced DIAPH3 expression and drug sensitivity. Low DIAPH3 expression correlated with improved relapse-free survival in breast cancer patients treated with chemotherapeutic regimens containing taxanes. Our results suggest that inhibition of MT stability arising from DIAPH3 downregulation enhances susceptibility to MT poisons, and that the DIAPH3 network potentially reports taxane sensitivity in human tumors.
Collapse
|
161
|
Pasqualini L, Bu H, Puhr M, Narisu N, Rainer J, Schlick B, Schäfer G, Angelova M, Trajanoski Z, Börno ST, Schweiger MR, Fuchsberger C, Klocker H. miR-22 and miR-29a Are Members of the Androgen Receptor Cistrome Modulating LAMC1 and Mcl-1 in Prostate Cancer. Mol Endocrinol 2015; 29:1037-54. [PMID: 26052614 DOI: 10.1210/me.2014-1358] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The normal prostate as well as early stages and advanced prostate cancer (PCa) require a functional androgen receptor (AR) for growth and survival. The recent discovery of microRNAs (miRNAs) as novel effector molecules of AR disclosed the existence of an intricate network between AR, miRNAs and downstream target genes. In this study DUCaP cells, characterized by high content of wild-type AR and robust AR transcriptional activity, were chosen as the main experimental model. By integrative analysis of chromatin immunoprecipitation-sequencing (ChIP-seq) and microarray expression profiling data, miRNAs putatively bound and significantly regulated by AR were identified. A direct AR regulation of miR-22, miR-29a, and miR-17-92 cluster along with their host genes was confirmed. Interestingly, endogenous levels of miR-22 and miR-29a were found to be reduced in PCa cells expressing AR. In primary tumor samples, miR-22 and miR-29a were less abundant in the cancerous tissue compared with the benign counterpart. This specific expression pattern was associated with a differential DNA methylation of the genomic AR binding sites. The identification of laminin gamma 1 (LAMC1) and myeloid cell leukemia 1 (MCL1) as direct targets of miR-22 and miR-29a, respectively, suggested a tumor-suppressive role of these miRNAs. Indeed, transfection of miRNA mimics in PCa cells induced apoptosis and diminished cell migration and viability. Collectively, these data provide additional information regarding the complex regulatory machinery that guides miRNAs activity in PCa, highlighting an important contribution of miRNAs in the AR signaling.
Collapse
Affiliation(s)
- Lorenza Pasqualini
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Huajie Bu
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Martin Puhr
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Narisu Narisu
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Johannes Rainer
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Bettina Schlick
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Georg Schäfer
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Mihaela Angelova
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Zlatko Trajanoski
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Stefan T Börno
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Michal R Schweiger
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Christian Fuchsberger
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Helmut Klocker
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
162
|
Su W, Xu M, Chen X, Nie L, Chen N, Gong J, Zhang M, Su Z, Huang L, Zhou Q. MiR200c targets IRS1 and suppresses prostate cancer cell growth. Prostate 2015; 75:855-62. [PMID: 25683382 DOI: 10.1002/pros.22968] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 12/30/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND The downregulation of the tumor suppressor miR200c plays important roles in many malignant tumors. This study aims to show that miR200c is a posttranscriptional regulator of insulin receptor substrate 1 (IRS1) and over-expression of miR200c suppresses prostate cancer cell growth. METHODS Bioinformatics analysis was used to show potential post-translational regulation of IRS1 by miR200c. Dual reporter gene assays were chosen to test the binding of miR200c to the potential seed sequences in IRS1 3'UTR. RT-PCR, Q-PCR and western blot were applied to determine the regulation effect of miR200c on IRS1. CCK8 assay, soft agar assay, trypan blue exclusion assay and flow cytometric analysis were used to measure the biological effects of miR200c on prostate cancer cell proliferation and apoptosis. RESULTS The 449-455 nt, 3061-3067 nt, and 3096-3102 nt of the IRS1 3'-UTR were identified as three potential seed sequences for miR200c. MiR200c directly binds to IRS1 through the seed sequences in IRS1 3'-UTR. Artificial overexpression of miR200c significantly downregulated the mRNA and protein levels of IRS1, together with decreased cell proliferation and increased cell death of PC3 and DU145 cells. CONCLUSIONS Our results suggest that miR200c plays crucial roles in prostate cancer by post-transcriptional regulation of IRS1. The mir200c/IRS1 pathway may be a potential therapeutic target to prevent prostate cancer cell growth.
Collapse
Affiliation(s)
- Wenjing Su
- Department of Pathology and Laboratory of Pathology, State Key Laboratory of Biotherapy; West China Hospital, West China Medical School, Sichuan University, Chengdu, P.R. China; Department of Pathology, Shandong Provincial Hospital, Shandong University, Jinan, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Abstract
Prostate cancer is a frequently diagnosed cancer in males with high mortality in the world. As a heterogeneous tissue, the tumor mass contains a subpopulation that is called as cancer stem cells and displays stem-like properties such as self-renewal, epithelial-mesenchymal transition, metastasis, and drug resistance. Cancer stem cells have been identified in variant tumors and shown to be regulated by various molecules including microRNAs. MicroRNAs are a class of small non-coding RNAs, which can influence tumorigenesis via different mechanisms. In this review, we focus on the functions of microRNAs on regulating the stemness of prostate cancer stem cells with different mechanisms and propose the potential roles of microRNAs in prostate cancer therapy.
Collapse
Affiliation(s)
- Yu-Xiang Fang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yun-Li Chang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
164
|
Epithelial Plasticity in Cancer: Unmasking a MicroRNA Network for TGF-β-, Notch-, and Wnt-Mediated EMT. JOURNAL OF ONCOLOGY 2015; 2015:198967. [PMID: 25883651 PMCID: PMC4390187 DOI: 10.1155/2015/198967] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/23/2014] [Indexed: 01/23/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a reversible process by which cancer cells can switch from a sessile epithelial phenotype to an invasive mesenchymal state. EMT enables tumor cells to become invasive, intravasate, survive in the circulation, extravasate, and colonize distant sites. Paracrine heterotypic stroma-derived signals as well as paracrine homotypic or autocrine signals can mediate oncogenic EMT and contribute to the acquisition of stem/progenitor cell properties, expansion of cancer stem cells, development of therapy resistance, and often lethal metastatic disease. EMT is regulated by a variety of stimuli that trigger specific intracellular signalling pathways. Altered microRNA (miR) expression and perturbed signalling pathways have been associated with epithelial plasticity, including oncogenic EMT. In this review we analyse and describe the interaction between experimentally validated miRs and their target genes in TGF-β, Notch, and Wnt signalling pathways. Interestingly, in this process, we identified a “signature” of 30 experimentally validated miRs and a cluster of validated target genes that seem to mediate the cross talk between TGF-β, Notch, and Wnt signalling networks during EMT and reinforce their connection to the regulation of epithelial plasticity in health and disease.
Collapse
|
165
|
Oncogenic functions of IGF1R and INSR in prostate cancer include enhanced tumor growth, cell migration and angiogenesis. Oncotarget 2015; 5:2723-35. [PMID: 24809298 PMCID: PMC4058040 DOI: 10.18632/oncotarget.1884] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We scrutinized the effect of insulin receptor (INSR) in addition to IGF1R in PCa using in vitro and in vivo models. In-vitro overexpression of IGF1R and INSRA, but not INSRB increased cell proliferation, colony formation, migration, invasion and resistance to apoptosis in prostate cancer cells (DU145, LNCaP, PC3). Opposite effects were induced by downregulation of IGF1R and total INSR, but not INSRB. In contrast to tumor cells, non-cancerous epithelial cells of the prostate (EP156T, RWPE-1) were inhibited on overexpression and stimulated by knockdown of receptors. In-vivo analyses using the chicken allantoic membrane assay confirmed the tumorigenic effects of IGF1R and INSR. Apart of promoting tumor growth, IGF1R and INSR overexpression also enhanced angiogenesis indicated by higher vessel density and increased number of desmin-immunoreactive pericytes. Our study underscores the oncogenic impact of IGF1R including significant effects on tumor growth, cell migration, sensitivity to apoptotic/chemotherapeutic agents and angiogenesis, and characterizes the INSR, in particular the isoform INSRA, as additional cancer-promoting receptor in prostate cancer. Both, the insulin-like growth factor receptor 1 and the insulin receptor exert oncogenic functions, thus proposing that both receptors need to be considered in therapeutic settings.
Collapse
|
166
|
Mlcochova H, Hezova R, Meli AC, Slaby O. Urinary microRNAs as a new class of noninvasive biomarkers in oncology, nephrology, and cardiology. Methods Mol Biol 2015; 1218:439-463. [PMID: 25319667 DOI: 10.1007/978-1-4939-1538-5_26] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that posttranscriptionally regulate gene expression. In the last decade, number of evidences showing miRNAs contribution to the regulation of apoptosis, cellular proliferation, differentiation, and other important cellular processes is constantly growing. Specific miRNA expression signatures have been identified in variety of human cancers as well as pathologies of cardiovascular and urinary systems. Our chapter focuses on the potential of urinary miRNAs to serve as biomarkers in uro-oncology, nephrology, and cardiology. We discuss in detail recent knowledge about the origin of urinary miRNAs, their stability, quality control, and their utility as a potential new class of biomarkers in medicine. Finally, we summarize the studies focusing on detection and characterization of urinary miRNAs as potential biomarkers in urologic cancers, nephrology, and cardiology.
Collapse
Affiliation(s)
- Hana Mlcochova
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, Czech Republic
| | | | | | | |
Collapse
|
167
|
Tanaka S, Hosokawa M, Yonezawa T, Hayashi W, Ueda K, Iwakawa S. Induction of epithelial-mesenchymal transition and down-regulation of miR-200c and miR-141 in oxaliplatin-resistant colorectal cancer cells. Biol Pharm Bull 2014; 38:435-40. [PMID: 25757925 DOI: 10.1248/bpb.b14-00695] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Epithelial-mesenchymal transition (EMT) and changes in the expression of the microRNA-200 (miR-200) family were examined in the human colorectal cancer (CRC) cell line SW620 with acquired oxaliplatin (L-OHP) resistance. Two CRC cell lines, SW480, derived from primary CRC, and SW620, derived from lymph node metastasis, which were obtained from the same patient, were used in the present study. L-OHP-resistant SW620 cells were obtained by exposure to L-OHP for 155 d. The concentration of L-OHP was increased to 80 µM in a stepwise manner. The IC50 value of L-OHP was increased 16-fold in L-OHP-resistant SW620 cells, which also displayed mesenchymal cell-like characteristics, such as the down-regulation of E-cadherin and up-regulation of vimentin. However, L-OHP-resistant SW480 cells were not obtained when the concentration of L-OHP was increased in a similar stepwise manner. The expression levels of members of the miR-200 family (miR-200a, miR-200b, miR-429, miR-200c, and miR-141) were significantly higher in SW480 cells than in SW620 cells. The expression levels of miR-200c and miR-141 were significantly lower in L-OHP-resistant SW620 cells than in control SW620 cells. L-OHP-resistant SW620 cells did not exhibit cross-resistance to other anti-cancer drugs used to treat CRC, such as 5-fluorouracil, irinotecan, and the active metabolite of irinotecan (SN-38). These results suggest that the down-regulated expression of miR-200c and miR-141 plays a role in selective resistance to L-OHP and EMT in CRC cells during repeated treatments with L-OHP.
Collapse
Affiliation(s)
- Shota Tanaka
- Department of Pharmaceutics, Kobe Pharmaceutical University
| | | | | | | | | | | |
Collapse
|
168
|
Epithelial-to-mesenchymal transition in a virally induced cancer. J Urol 2014; 193:396-7. [PMID: 25447099 DOI: 10.1016/j.juro.2014.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2014] [Indexed: 11/23/2022]
|
169
|
Martin SK, Banuelos CA, Sadar MD, Kyprianou N. N-terminal targeting of androgen receptor variant enhances response of castration resistant prostate cancer to taxane chemotherapy. Mol Oncol 2014; 9:S1574-7891(14)00263-4. [PMID: 25432105 PMCID: PMC4433435 DOI: 10.1016/j.molonc.2014.10.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/03/2014] [Accepted: 10/29/2014] [Indexed: 01/23/2023] Open
Abstract
Taxane-based chemotherapy is an effective treatment for castration-resistant-prostate cancer (CRPC) via stabilization of microtubules. Previous studies identified that the inhibitory effect of microtubule-targeting chemotherapy on androgen receptor (AR) activity was conferred by interfering with AR intracellular trafficking. The N-terminal domain (NTD) of AR was identified as a tubulin-interacting domain that can be effectively targeted by the novel small molecule inhibitor, EPI. Taken together this evidence provided the rationale that targeting AR nuclear translocation and activity via a combination of an antagonist of the AR NTD and taxane-based chemotherapy may enhance the therapeutic response in CRPC. The present study investigated the anti-tumor efficacy of a combination of EPI with Docetaxel chemotherapy, in cell models of CRPC, harboring the AR splice variants in addition to the full length AR. Our findings demonstrate that there was no significant effect on the androgen-mediated nuclear transport of AR variants and AR transcriptional activity by Docetaxel. The therapeutic response to Docetaxel was enhanced by inhibition of the NTD of AR (by EPI) through cycling of epithelial-mesenchymal-transition (EMT) to mesenchymal-epithelial-transition (MET) among prostate cancer epithelial cells. These results support that transient "programming" of EMT by the AR NTD inhibitor, potentially drives the sensitivity of prostate tumors with differential distribution of AR variants to microtubule-targeting chemotherapy. This study is of major significance in dissecting mechanisms to overcome taxane resistance in advanced CRPC.
Collapse
Affiliation(s)
- Sarah K Martin
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Carmen A Banuelos
- Department of Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Marianne D Sadar
- Department of Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Natasha Kyprianou
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Urology, University of Kentucky, Lexington, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
170
|
MicroRNA-451 induces epithelial–mesenchymal transition in docetaxel-resistant lung adenocarcinoma cells by targeting proto-oncogene c-Myc. Eur J Cancer 2014; 50:3050-67. [DOI: 10.1016/j.ejca.2014.09.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/18/2014] [Accepted: 09/15/2014] [Indexed: 11/21/2022]
|
171
|
Mimeault M, Batra SK. Altered gene products involved in the malignant reprogramming of cancer stem/progenitor cells and multitargeted therapies. Mol Aspects Med 2014; 39:3-32. [PMID: 23994756 PMCID: PMC3938987 DOI: 10.1016/j.mam.2013.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/16/2013] [Accepted: 08/21/2013] [Indexed: 12/17/2022]
Abstract
Recent studies in the field of cancer stem cells have revealed that the alterations in key gene products involved in the epithelial-mesenchymal transition (EMT) program, altered metabolic pathways such as enhanced glycolysis, lipogenesis and/or autophagy and treatment resistance may occur in cancer stem/progenitor cells and their progenies during cancer progression. Particularly, the sustained activation of diverse developmental cascades such as hedgehog, epidermal growth factor receptor (EGFR), Wnt/β-catenin, Notch, transforming growth factor-β (TGF-β)/TGF-βR receptors and/or stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) can play critical functions for high self-renewal potential, survival, invasion and metastases of cancer stem/progenitor cells and their progenies. It has also been observed that cancer cells may be reprogrammed to re-express different pluripotency-associated stem cell-like markers such as Myc, Oct-3/4, Nanog and Sox-2 along the EMT process and under stressful and hypoxic conditions. Moreover, the enhanced expression and/or activities of some drug resistance-associated molecules such as Bcl-2, Akt/molecular target of rapamycin (mTOR), nuclear factor-kappaB (NF-κB), hypoxia-inducible factors (HIFs), macrophage inhibitory cytokine-1 (MIC-1) and ATP-binding cassette (ABC) multidrug transporters frequently occur in cancer cells during cancer progression and metastases. These molecular events may cooperate for the survival and acquisition of a more aggressive and migratory behavior by cancer stem/progenitor cells and their progenies during cancer transition to metastatic and recurrent disease states. Of therapeutic interest, these altered gene products may also be exploited as molecular biomarkers and therapeutic targets to develop novel multitargeted strategies for improving current cancer therapies and preventing disease relapse.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, College of Medicine, Fred & Pamela Buffett Cancer Center, Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, Fred & Pamela Buffett Cancer Center, Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| |
Collapse
|
172
|
Epithelial plasticity in prostate cancer: principles and clinical perspectives. Trends Mol Med 2014; 20:643-51. [PMID: 25262538 DOI: 10.1016/j.molmed.2014.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 01/23/2023]
Abstract
Over the past decade, the capacity of cancer cells to oscillate between epithelial and mesenchymal phenotypes, termed epithelial plasticity (EP), has been demonstrated to play a critical role in metastasis. This phenomenon may be particularly important for prostate cancer (PC) progression, since recent studies have revealed interplay between EP and signaling by the androgen receptor (AR) oncoprotein. Moreover, EP appears to play a role in dictating the response to therapies for metastatic PC. This review will evaluate preclinical and clinical evidence for the relevance of EP in PC progression and consider the potential of targeting and measuring EP as a means to treat and manage lethal forms of the disease.
Collapse
|
173
|
Cannistraci A, Di Pace AL, De Maria R, Bonci D. MicroRNA as new tools for prostate cancer risk assessment and therapeutic intervention: results from clinical data set and patients' samples. BIOMED RESEARCH INTERNATIONAL 2014; 2014:146170. [PMID: 25309903 PMCID: PMC4182080 DOI: 10.1155/2014/146170] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/18/2014] [Accepted: 08/21/2014] [Indexed: 12/11/2022]
Abstract
Prostate cancer (PCa) is one of the leading causes of cancer-related death in men. Despite considerable advances in prostate cancer early detection and clinical management, validation of new biomarkers able to predict the natural history of tumor progression is still necessary in order to reduce overtreatment and to guide therapeutic decisions. MicroRNAs are endogenous noncoding RNAs which offer a fast fine-tuning and energy-saving mechanism for posttranscriptional control of protein expression. Growing evidence indicate that these RNAs are able to regulate basic cell functions and their aberrant expression has been significantly correlated with cancer development. Therefore, detection of microRNAs in tumor tissues and body fluids represents a new tool for early diagnosis and patient prognosis prediction. In this review, we summarize current knowledge about microRNA deregulation in prostate cancer mainly focusing on the different clinical aspects of the disease. We also highlight the potential roles of microRNAs in PCa management, while also discussing several current challenges and needed future research.
Collapse
Affiliation(s)
- Alessio Cannistraci
- Departement of Hematology, Oncology and Molecular Medicine, Istituto Superiore Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Anna Laura Di Pace
- Departement of Hematology, Oncology and Molecular Medicine, Istituto Superiore Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Ruggero De Maria
- Regina Elena National Cancer Institute, Via Fermo Ognibene, 00144 Rome, Italy
| | - Désirée Bonci
- Departement of Hematology, Oncology and Molecular Medicine, Istituto Superiore Sanità, Viale Regina Elena 299, 00161 Rome, Italy
- Regina Elena National Cancer Institute, Via Fermo Ognibene, 00144 Rome, Italy
| |
Collapse
|
174
|
Pattabiraman DR, Weinberg RA. Tackling the cancer stem cells - what challenges do they pose? Nat Rev Drug Discov 2014; 13:497-512. [PMID: 24981363 DOI: 10.1038/nrd4253] [Citation(s) in RCA: 767] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since their identification in 1994, cancer stem cells (CSCs) have been objects of intensive study. Their properties and mechanisms of formation have become a major focus of current cancer research, in part because of their enhanced ability to initiate and drive tumour growth and their intrinsic resistance to conventional therapeutics. The discovery that activation of the epithelial-to-mesenchymal transition (EMT) programme in carcinoma cells can give rise to cells with stem-like properties has provided one possible mechanism explaining how CSCs arise and presents a possible avenue for their therapeutic manipulation. Here we address recent developments in CSC research, focusing on carcinomas that are able to undergo EMT. We discuss the signalling pathways that create these cells, cell-intrinsic mechanisms that could be exploited for selective elimination or induction of their differentiation, and the role of the tumour microenvironment in sustaining them. Finally, we propose ways to use our current knowledge of the complex biology of CSCs to design novel therapies to eliminate them.
Collapse
Affiliation(s)
- Diwakar R Pattabiraman
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | - Robert A Weinberg
- 1] Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA. [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA; and the MIT Ludwig Center for Molecular Oncology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
175
|
Bitting RL, Schaeffer D, Somarelli JA, Garcia-Blanco MA, Armstrong AJ. The role of epithelial plasticity in prostate cancer dissemination and treatment resistance. Cancer Metastasis Rev 2014; 33:441-68. [PMID: 24414193 PMCID: PMC4230790 DOI: 10.1007/s10555-013-9483-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nearly 30,000 men die annually in the USA of prostate cancer, nearly uniformly from metastatic dissemination. Despite recent advances in hormonal, immunologic, bone-targeted, and cytotoxic chemotherapies, treatment resistance and further dissemination are inevitable in men with metastatic disease. Emerging data suggests that the phenomenon of epithelial plasticity, encompassing both reversible mesenchymal transitions and acquisition of stemness traits, may underlie this lethal biology of dissemination and treatment resistance. Understanding the molecular underpinnings of this cellular plasticity from preclinical models of prostate cancer and from biomarker studies of human metastatic prostate cancer has provided clues to novel therapeutic approaches that may delay or prevent metastatic disease and lethality over time. This review will discuss the preclinical and clinical evidence for epithelial plasticity in this rapidly changing field and relate this to clinical phenotype and resistance in prostate cancer while suggesting novel therapeutic approaches.
Collapse
Affiliation(s)
- Rhonda L. Bitting
- Division of Medical Oncology, Duke Cancer Institute, Duke University, DUMC Box 102002, Durham, NC 27710, USA. Department of Medicine, Duke University, Durham, NC, USA. Center for RNA Biology, Duke University, Durham, NC, USA
| | - Daneen Schaeffer
- Center for RNA Biology, Duke University, Durham, NC, USA. Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Jason A. Somarelli
- Center for RNA Biology, Duke University, Durham, NC, USA. Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Mariano A. Garcia-Blanco
- Department of Medicine, Duke University, Durham, NC, USA. Center for RNA Biology, Duke University, Durham, NC, USA. Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Andrew J. Armstrong
- Division of Medical Oncology, Duke Cancer Institute, Duke University, DUMC Box 102002, Durham, NC 27710, USA. Department of Medicine, Duke University, Durham, NC, USA. Center for RNA Biology, Duke University, Durham, NC, USA. Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| |
Collapse
|
176
|
EpCAM is overexpressed in local and metastatic prostate cancer, suppressed by chemotherapy and modulated by MET-associated miRNA-200c/205. Br J Cancer 2014; 111:955-64. [PMID: 24992580 PMCID: PMC4150273 DOI: 10.1038/bjc.2014.366] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/07/2014] [Indexed: 12/14/2022] Open
Abstract
Background: Expression of epithelial cell adhesion molecule (EpCAM) is deregulated in epithelial malignancies. Beside its role in cell adhesion, EpCAM acts as signalling molecule with tumour-promoting functions. Thus, EpCAM is part of the molecular network of oncogenic receptors and considered an interesting therapeutic target. Methods: Here, we thoroughly characterised EpCAM expression on mRNA and protein level in comprehensive tissue studies including non-cancerous prostate specimens, primary tumours of different grades and stages, metastatic lesions, and therapy-treated tumour specimens, as well as in prostate cancer cell lines. Results: Epithelial cell adhesion molecule was overexpressed at mRNA and at protein level in prostate cancer tissues and cell lines. Altered EpCAM expression was an early event in prostate carcinogenesis with an upregulation in low-grade cancers and further induction in high-grade tumours and metastatic lesions. Interestingly, EpCAM was repressed upon induction of epithelial-to-mesenchymal transition (EMT) following chemotherapeutic treatment with docetaxel. Oppositely, re-induction of the epithelial phenotype through miRNAs miR-200c and miR-205, two inducers of mesenchymal-to-epithelial transition (MET), led to re-induction of EpCAM in chemoresistant cells. Furthermore, we prove that EpCAM cleavage, the first step of EpCAM signalling takes place in prostate cancer cells but in contrast to other cancer entities, EpCAM has no measurable impact on the proliferative behaviour of prostate cells, in vitro. Conclusions: In conclusion, our data confirm that EpCAM overexpression is an early event during prostate cancer progression. Epithelial cell adhesion molecule displays a dynamic, heterogeneous expression and associates with epithelial cells rather than mesenchymal, chemoresistant cells along with processes of EMT and MET.
Collapse
|
177
|
Kahn B, Collazo J, Kyprianou N. Androgen receptor as a driver of therapeutic resistance in advanced prostate cancer. Int J Biol Sci 2014; 10:588-95. [PMID: 24948871 PMCID: PMC4062951 DOI: 10.7150/ijbs.8671] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/01/2014] [Indexed: 12/21/2022] Open
Abstract
The role of the androgen receptor (AR) signaling axis in the progression of prostate cancer is a cornerstone to our understanding of the molecular mechanisms causing castration-resistant prostate cancer (CRPC). Resistance of advanced prostate cancer to available treatment options makes it a clinical challenge that results in approximately 30,000 deaths of American men every year. Since the historic discovery by Dr. Huggins more than 70 years ago, androgen deprivation therapy (ADT) has been the principal treatment for advanced prostate cancer. Initially, ADT induces apoptosis of androgen-dependent prostate cancer epithelial cells and regression of androgen-dependent tumors. However, the majority of patients with advanced prostate cancer progress and become refractory to ADT due to emergence of androgen-independent prostate cancer cells driven by aberrant AR activation. Microtubule-targeting agents such as taxanes, docetaxel and paclitaxel, have enjoyed success in the treatment of metastatic prostate cancer; although new, recently designed mitosis-specific agents, such as the polo-kinase and kinesin-inhibitors, have yielded clinically disappointing results. Docetaxel, as a first-line chemotherapy, improves prostate cancer patient survival by months, but tumor resistance to these therapeutic agents inevitably develops. On a molecular level, progression to CRPC is characterized by aberrant AR expression, de novo intraprostatic androgen production, and cross talk with other oncogenic pathways. Emerging evidence suggests that reactivation of epithelial-mesenchymal-transition (EMT) processes may facilitate the development of not only prostate cancer but also prostate cancer metastases. EMT is characterized by gain of mesenchymal characteristics and invasiveness accompanied by loss of cell polarity, with an increasing number of studies focusing on the direct involvement of androgen-AR signaling axis in EMT, tumor progression, and therapeutic resistance. In this article, we discuss the current knowledge of mechanisms via which the AR signaling drives therapeutic resistance in prostate cancer metastatic progression and the novel therapeutic interventions targeting AR in CRPC.
Collapse
Affiliation(s)
| | | | - Natasha Kyprianou
- Departments of Urology and Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| |
Collapse
|
178
|
Li S, Kennedy M, Payne S, Kennedy K, Seewaldt VL, Pizzo SV, Bachelder RE. Model of tumor dormancy/recurrence after short-term chemotherapy. PLoS One 2014; 9:e98021. [PMID: 24845582 PMCID: PMC4028269 DOI: 10.1371/journal.pone.0098021] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/28/2014] [Indexed: 12/13/2022] Open
Abstract
Although many tumors regress in response to neoadjuvant chemotherapy, residual tumor cells are detected in most cancer patients post-treatment. These residual tumor cells are thought to remain dormant for years before resuming growth, resulting in tumor recurrence. Considering that recurrent tumors are most often responsible for patient mortality, there exists an urgent need to study signaling pathways that drive tumor dormancy/recurrence. We have developed an in vitro model of tumor dormancy/recurrence. Short-term exposure of tumor cells (breast or prostate) to chemotherapy at clinically relevant doses enriches for a dormant tumor cell population. Several days after removing chemotherapy, dormant tumor cells regain proliferative ability and establish colonies, resembling tumor recurrence. Tumor cells from “recurrent” colonies exhibit increased chemotherapy resistance, similar to the therapy resistance of recurrent tumors in cancer patients. Previous studies using long-term chemotherapy selection models identified acquired mutations that drive tumor resistance. In contrast, our short term chemotherapy exposure model enriches for a slow-cycling, dormant, chemo-resistant tumor cell sub-population that can resume growth after drug removal. Studying unique signaling pathways in dormant tumor cells enriched by short-term chemotherapy treatment is expected to identify novel therapeutic targets for preventing tumor recurrence.
Collapse
Affiliation(s)
- Shenduo Li
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Margaret Kennedy
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sturgis Payne
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kelly Kennedy
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Victoria L. Seewaldt
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Salvatore V. Pizzo
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Robin E. Bachelder
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: robin.
| |
Collapse
|
179
|
|
180
|
Re: TMPRSS2-ERG Gene Fusions Induce Prostate Tumorigenesis by Modulating MicroRNA miR-200c. Eur Urol 2014; 65:1011. [DOI: 10.1016/j.eururo.2013.12.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
181
|
|
182
|
Marín-Aguilera M, Codony-Servat J, Reig Ò, Lozano JJ, Fernández PL, Pereira MV, Jiménez N, Donovan M, Puig P, Mengual L, Bermudo R, Font A, Gallardo E, Ribal MJ, Alcaraz A, Gascón P, Mellado B. Epithelial-to-mesenchymal transition mediates docetaxel resistance and high risk of relapse in prostate cancer. Mol Cancer Ther 2014; 13:1270-84. [PMID: 24659820 DOI: 10.1158/1535-7163.mct-13-0775] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Molecular characterization of radical prostatectomy specimens after systemic therapy may identify a gene expression profile for resistance to therapy. This study assessed tumor cells from patients with prostate cancer participating in a phase II neoadjuvant docetaxel and androgen deprivation trial to identify mediators of resistance. Transcriptional level of 93 genes from a docetaxel-resistant prostate cancer cell lines microarray study was analyzed by TaqMan low-density arrays in tumors from patients with high-risk localized prostate cancer (36 surgically treated, 28 with neoadjuvant docetaxel + androgen deprivation). Gene expression was compared between groups and correlated with clinical outcome. VIM, AR and RELA were validated by immunohistochemistry. CD44 and ZEB1 expression was tested by immunofluorescence in cells and tumor samples. Parental and docetaxel-resistant castration-resistant prostate cancer cell lines were tested for epithelial-to-mesenchymal transition (EMT) markers before and after docetaxel exposure. Reversion of EMT phenotype was investigated as a docetaxel resistance reversion strategy. Expression of 63 (67.7%) genes differed between groups (P < 0.05), including genes related to androgen receptor, NF-κB transcription factor, and EMT. Increased expression of EMT markers correlated with radiologic relapse. Docetaxel-resistant cells had increased EMT and stem-like cell markers expression. ZEB1 siRNA transfection reverted docetaxel resistance and reduced CD44 expression in DU-145R and PC-3R. Before docetaxel exposure, a selected CD44(+) subpopulation of PC-3 cells exhibited EMT phenotype and intrinsic docetaxel resistance; ZEB1/CD44(+) subpopulations were found in tumor cell lines and primary tumors; this correlated with aggressive clinical behavior. This study identifies genes potentially related to chemotherapy resistance and supports evidence of the EMT role in docetaxel resistance and adverse clinical behavior in early prostate cancer.
Collapse
Affiliation(s)
- Mercedes Marín-Aguilera
- Authors' Affiliations: Laboratory of Translational Oncology and Medical Oncology Department; Bioinformatics Platform Department, Centro de Investigación Biomédica en Red-Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Laboratory and Department of Urology, Hospital Clínic, Barcelona; Department of Pathology, Hospital Clínic, Universitat de Barcelona; Althia; Tumor Bank, Hospital Clínic-IDIBAPS Biobank, Barcelona; Medical Oncology Department, Hospital Germans Trias i Pujol, Catalan Institute of Oncology, Badalona; and Medical Oncology Department, Hospital Parc Taulí, Sabadell, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Abstract
Prostate cancer is the second leading cause of cancer related death in American men. Androgen deprivation therapy (ADT) is used to treat patients with aggressive prostate cancers. After androgen deprivation therapy, prostate cancers slowly progress to an androgen-independent status. Taxanes (e.g., docetaxel) are used as standard treatments for androgen-independent prostate cancers. However, these chemotherapeutic agents will eventually become ineffective due to the development of drug resistance. A microRNA (miRNA) is a small noncoding RNA molecule, which can regulate gene expression at the post-transcription level. miRNAs elicit their effects by binding to the 3'-untranslated region (3'-UTR) of their target mRNAs, leading to the inhibition of translation or the degradation of the mRNAs. miRNAs have received increasing attention as targets for cancer therapy, as they can target multiple signaling pathways related to tumor progression, metastasis, invasion, and chemoresistance. Emerging evidence suggests that aberrant expression of miRNAs can lead to the development of resistant prostate cancers. Here, we discuss the roles of miRNAs in the development of resistant prostate cancers and their involvement in various drug resistant mechanisms including androgen signaling, apoptosis avoidance, multiple drug resistance (MDR) transporters, epithelialmesenchymal transition (EMT), and cancer stem cells (CSCs). In addition, we also discuss strategies for treating resistant prostate cancers by targeting specific miRNAs. Different delivery strategies are also discussed with focus on those that have been successfully used in human clinical trials.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University , Hampton, Virginia 23668, United States
| | | |
Collapse
|
184
|
Culig Z. TMPRSS:ERG fusion in prostate cancer: from experimental approaches to prognostic studies. Eur Urol 2014; 66:861-2. [PMID: 24768276 DOI: 10.1016/j.eururo.2014.03.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 03/29/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Zoran Culig
- Experimental Urology, Department of Urology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria.
| |
Collapse
|
185
|
Lin HM, Castillo L, Mahon KL, Chiam K, Lee BY, Nguyen Q, Boyer MJ, Stockler MR, Pavlakis N, Marx G, Mallesara G, Gurney H, Clark SJ, Swarbrick A, Daly RJ, Horvath LG. Circulating microRNAs are associated with docetaxel chemotherapy outcome in castration-resistant prostate cancer. Br J Cancer 2014; 110:2462-71. [PMID: 24714754 PMCID: PMC4021524 DOI: 10.1038/bjc.2014.181] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/03/2014] [Accepted: 03/13/2014] [Indexed: 12/18/2022] Open
Abstract
Background: Docetaxel is the first-line chemotherapy for castration-resistant prostate cancer (CRPC). However, response rates are ∼50% and determined quite late in the treatment schedule, thus non-responders are subjected to unnecessary toxicity. The potential of circulating microRNAs as early biomarkers of docetaxel response in CRPC patients was investigated in this study. Methods: Global microRNA profiling was performed on docetaxel-resistant and sensitive cell lines to identify candidate circulating microRNA biomarkers. Custom Taqman Array MicroRNA cards were used to measure the levels of 46 candidate microRNAs in plasma/serum samples, collected before and after docetaxel treatment, from 97 CRPC patients. Results: Fourteen microRNAs were associated with serum prostate-specific antigen (PSA) response or overall survival, according to Mann–Whitney U or log-rank tests. Non-responders to docetaxel and patients with shorter survival generally had high pre-docetaxel levels of miR-200 family members or decreased/unchanged post-docetaxel levels of miR-17 family members. Multivariate Cox regression with bootstrapping validation showed that pre-docetaxel miR-200b levels, post-docetaxel change in miR-20a levels, pre-docetaxel haemoglobin levels and visceral metastasis were independent predictors of overall survival when modelled together. Conclusions: Our study suggests that circulating microRNAs are potential early predictors of docetaxel chemotherapy outcome, and warrant further investigation in clinical trials.
Collapse
Affiliation(s)
- H-M Lin
- Cancer Research Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - L Castillo
- Cancer Research Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - K L Mahon
- 1] Cancer Research Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia [2] Sydney Medical School, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - K Chiam
- Cancer Research Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - B Y Lee
- Cancer Research Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Q Nguyen
- 1] Cancer Research Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia [2] Pharmacogenomic Research for Individualised Medicine (PRIMe) consortium, New South Wales, Australia
| | - M J Boyer
- 1] Sydney Medical School, University of Sydney, Camperdown, New South Wales 2006, Australia [2] Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales 2050, Australia [3] Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia
| | - M R Stockler
- 1] Sydney Medical School, University of Sydney, Camperdown, New South Wales 2006, Australia [2] Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales 2050, Australia [3] Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia [4] Medical Oncology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia
| | - N Pavlakis
- 1] Sydney Medical School, University of Sydney, Camperdown, New South Wales 2006, Australia [2] Medical Oncology, Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| | - G Marx
- 1] Sydney Medical School, University of Sydney, Camperdown, New South Wales 2006, Australia [2] Northern Haematology and Oncology Group, Sydney Adventist Hospital, Wahroonga, New South Wales 2076, Australia
| | - G Mallesara
- 1] Pharmacogenomic Research for Individualised Medicine (PRIMe) consortium, New South Wales, Australia [2] Calvary Mater Newcastle Hospital, Waratah, New South Wales 2298, Australia
| | - H Gurney
- 1] Sydney Medical School, University of Sydney, Camperdown, New South Wales 2006, Australia [2] Pharmacogenomic Research for Individualised Medicine (PRIMe) consortium, New South Wales, Australia [3] Westmead Hospital, Westmead, New South Wales 2145, Australia
| | - S J Clark
- 1] Cancer Research Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia [2] St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia
| | - A Swarbrick
- 1] Cancer Research Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia [2] St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia
| | - R J Daly
- Signalling Network Laboratory, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - L G Horvath
- 1] Cancer Research Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia [2] Sydney Medical School, University of Sydney, Camperdown, New South Wales 2006, Australia [3] Pharmacogenomic Research for Individualised Medicine (PRIMe) consortium, New South Wales, Australia [4] Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales 2050, Australia [5] Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia
| |
Collapse
|
186
|
Abstract
IgA nephropathy is globally the most common primary glomerulonephritis, but the pathogenesis of this condition is still only partially understood. MicroRNAs (miRNAs) are short, noncoding RNA molecules that regulate gene expression. Genome-wide analysis of renal miRNA expression has identified a number of novel miRNAs related to immunological and pathological changes. Specifically, overexpression of miR-148b might explain the aberrant glycosylation of IgA1, which has a central pathogenetic role in the early phase of IgA nephropathy. By contrast, miR-29c is an antifibrotic miRNA that is probably important in the late stages of disease progression. In addition, urinary levels of several miRNAs are significantly changed in patients with IgA nephropathy compared with healthy individuals; some alterations seem to be disease-specific, whereas others are apparently damage-related. As miRNAs in urinary sediment are relatively stable and easily quantified, they have the potential to be used as biomarkers for the diagnosis and monitoring of disease. However, to date, limited data are available on the role of miRNAs in the pathogenesis of IgA nephropathy and their potential application as biomarkers. Consequently, further studies are urgently needed to address this shortfall. Here, we review the available literature on miRNAs in relation to IgA nephropathy.
Collapse
Affiliation(s)
- Cheuk-Chun Szeto
- Department of Medicine and Therapeutics, Prince of Wales Hospital, 9th Floor, Clinical Sciences Building, The Chinese University of Hong Kong, Shatin, N. T. Hong Kong, China
| | - Philip K-T Li
- Department of Medicine and Therapeutics, Prince of Wales Hospital, 9th Floor, Clinical Sciences Building, The Chinese University of Hong Kong, Shatin, N. T. Hong Kong, China
| |
Collapse
|
187
|
Al Nakouzi N, Cotteret S, Commo F, Gaudin C, Rajpar S, Dessen P, Vielh P, Fizazi K, Chauchereau A. Targeting CDC25C, PLK1 and CHEK1 to overcome Docetaxel resistance induced by loss of LZTS1 in prostate cancer. Oncotarget 2014; 5:667-78. [PMID: 24525428 PMCID: PMC3996665 DOI: 10.18632/oncotarget.1574] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/06/2014] [Indexed: 11/25/2022] Open
Abstract
Docetaxel is used as a standard treatment in patients with metastatic castration-resistant prostate cancer. However, a large subset of patients develops resistance. Understanding resistance mechanisms, which are largely unknown, will allow identification of predictive biomarkers and therapeutic targets. We established resistant IGR-CaP1 prostate cancer cell lines for different doses of Docetaxel. We investigated gene expression profiles by microarray analyses in these cell lines and generated a signature of 99 highly differentially expressed genes potentially implicated in chemoresistance. We focused on the role of the cell cycle regulator LZTS1, which was under-expressed in the Docetaxel-resistant cell lines, its inhibition resulting from the promoter methylation. Knockdown of LZTS1 in parental cells with siRNA showed that LZTS1 plays a role in the acquisition of the resistant phenotype. Furthermore, we observed that targeting CDC25C, a partner of LZTS1, with the NSC663284 inhibitor specifically killed the Docetaxel-resistant cells. To further investigate the role of CDC25C, we used inhibitors of the mitotic kinases that regulate CDC25C. Inhibition of CHEK1 and PLK1 induced growth arrest and cell death in the resistant cells. Our findings identify an important role of LZTS1 through its regulation of CDC25C in Docetaxel resistance in prostate cancer and suggest that CDC25C, or the mitotic kinases CHEK1 and PLK1, could be efficient therapeutic targets to overcome Docetaxel resistance.
Collapse
Affiliation(s)
- Nader Al Nakouzi
- Prostate Cancer Group, INSERM U981, Gustave Roussy, Villejuif, F-94805, France
- INSERM U981, LabEx LERMIT, Gustave Roussy
- University Paris-Sud 11, France
| | - Sophie Cotteret
- Prostate Cancer Group, INSERM U981, Gustave Roussy, Villejuif, F-94805, France
- INSERM U981, LabEx LERMIT, Gustave Roussy
- University Paris-Sud 11, France
| | - Frédéric Commo
- INSERM U981, LabEx LERMIT, Gustave Roussy
- University Paris-Sud 11, France
| | - Catherine Gaudin
- Prostate Cancer Group, INSERM U981, Gustave Roussy, Villejuif, F-94805, France
- INSERM U981, LabEx LERMIT, Gustave Roussy
- University Paris-Sud 11, France
| | - Shanna Rajpar
- Prostate Cancer Group, INSERM U981, Gustave Roussy, Villejuif, F-94805, France
- INSERM U981, LabEx LERMIT, Gustave Roussy
- University Paris-Sud 11, France
| | | | - Philippe Vielh
- INSERM U981, LabEx LERMIT, Gustave Roussy
- Department of Pathology, HistoCytoPathology Unit, Translational Research Laboratory and Biobank, Gustave Roussy
- University Paris-Sud 11, France
| | - Karim Fizazi
- Prostate Cancer Group, INSERM U981, Gustave Roussy, Villejuif, F-94805, France
- INSERM U981, LabEx LERMIT, Gustave Roussy
- Department of Medicine, Gustave Roussy
- University Paris-Sud 11, France
| | - Anne Chauchereau
- Prostate Cancer Group, INSERM U981, Gustave Roussy, Villejuif, F-94805, France
- INSERM U981, LabEx LERMIT, Gustave Roussy
- University Paris-Sud 11, France
| |
Collapse
|
188
|
Mimeault M, Batra SK. Molecular biomarkers of cancer stem/progenitor cells associated with progression, metastases, and treatment resistance of aggressive cancers. Cancer Epidemiol Biomarkers Prev 2014; 23:234-54. [PMID: 24273063 PMCID: PMC3977531 DOI: 10.1158/1055-9965.epi-13-0785] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The validation of novel diagnostic, prognostic, and predictive biomarkers and therapeutic targets in tumor cells is of critical importance for optimizing the choice and efficacy of personalized therapies. Importantly, recent advances have led to the identification of gene-expression signatures in cancer cells, including cancer stem/progenitor cells, in the primary tumors, exosomes, circulating tumor cells (CTC), and disseminated cancer cells at distant metastatic sites. The gene-expression signatures may help to improve the accuracy of diagnosis and predict the therapeutic responses and overall survival of patients with cancer. Potential biomarkers in cancer cells include stem cell-like markers [CD133, aldehyde dehydrogenase (ALDH), CD44, and CD24], growth factors, and their cognate receptors [epidermal growth factor receptor (EGFR), EGFRvIII, and HER2], molecules associated with epithelial-mesenchymal transition (EMT; vimentin, N-cadherin, snail, twist, and Zeb1), regulators of altered metabolism (phosphatidylinositol-3' kinase/Akt/mTOR), and drug resistance (multidrug transporters and macrophage inhibitory cytokine-1). Moreover, different pluripotency-associated transcription factors (Oct3/4, Nanog, Sox2, and Myc) and microRNAs that are involved in the epigenetic reprogramming and acquisition of stem cell-like properties by cancer cells during cancer progression may also be exploited as molecular biomarkers to predict the risk of metastases, systemic treatment resistance, and disease relapse of patients with cancer.
Collapse
Affiliation(s)
- Murielle Mimeault
- Authors' Affiliation: Department of Biochemistry and Molecular Biology, Fred & Pamela Buffet Cancer Center, Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | | |
Collapse
|
189
|
Abstract
Prostate cancer natural course is variable and it is difficult to determine prognosis on the basis of limited clinical information. In order to distinguish between aggressive and indolent tumors, genomic analysis, proteomic studies, and biomarker measurement were applied. Identification of single nucleotide polymorphisms may help to assess prostate cancer risk, however, it is questionable whether single nucleotide polymorphisms may predict a good or bad prognosis. Results of genomic and proteomic analyses between different laboratories may be difficult to compare because of non-standardized procedures which may be responsible for variant results. One of the early changes in prostate tumor tissues which may indicate a bad prognosis is high phosphorylation of Akt. A biomarker which is specific for prostate cancer is the TMPRSS2-ERG fusion which occurs in about 50% of tumors. Experimental studies indicate that this gene fusion may promote malignant phenotype. Biomarkers which could distinguish between latent and aggressive tumors may be detected in prostate tissue, serum, and urine. In summary, there is a limited progress in the field of prognostic biomarkers because of prostate cancer heterogeneity and missing unification of diagnostic procedures.
Collapse
Affiliation(s)
- Zoran Culig
- Experimental Urology, Department of Urology, Innsbruck Medical University, Anichstrasse 35, A-6020, Innsbruck, Austria,
| |
Collapse
|
190
|
To KKW. MicroRNA: a prognostic biomarker and a possible druggable target for circumventing multidrug resistance in cancer chemotherapy. J Biomed Sci 2013; 20:99. [PMID: 24358977 PMCID: PMC3878201 DOI: 10.1186/1423-0127-20-99] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 12/16/2013] [Indexed: 12/27/2022] Open
Abstract
Multidrug resistance (MDR) is a major obstacle to successful cancer treatment. It is often associated with an increased efflux of a variety of structurally unrelated anticancer drugs by ATP-binding cassette (ABC) transporters including P-gp, ABCG2 and MRP1. MicroRNAs (miRNAs) are small non-coding RNAs that govern posttranscriptional regulation of target genes by interacting with specific sequences in their 3′ untranslated region (3′UTR), thereby promoting mRNA degradation or suppressing translation. Accumulating evidence suggests that alterations in miRNAs contribute to resistance to anticancer drugs. While miRNAs are well-known to be dysregulated in cancer, recent literature revealed that miRNA levels in biological samples may be correlated with chemotherapy response. This review summarized the coordinated network by which miRNA regulated MDR transporters. The usefulness of miRNAs as prognostic biomarkers for predicting chemotherapeutic outcome is discussed. MiRNAs may also represent druggable targets for circumvention of MDR.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Room 801 N, Lo Kwee-Seong Integrated Biomedical Sciences Building, Faculty of Medicine, The Chinese University of Hong Kong, Area 39, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
191
|
Cheng Q, Yi B, Wang A, Jiang X. Exploring and exploiting the fundamental role of microRNAs in tumor pathogenesis. Onco Targets Ther 2013; 6:1675-84. [PMID: 24273410 PMCID: PMC3836659 DOI: 10.2147/ott.s52730] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
miRNAs (miRs) are short RNA molecules that are involved in the posttranscriptional regulation of mRNA. The roles of miRs in tumor pathogenesis have only recently become a focus of research. It is becoming increasingly clear that miRs are important regulators of apoptosis, proliferation, invasion, and metastasis in cancer cells during cancer genesis and progression, furthering our understanding of cancer. In the present review, we summarize and evaluate the recent advances in our understanding of the characteristics of miRs as well as their regulated functions in cancer stem cells (CSCs), the epithelial-mesenchymal transition (EMT), and the tumor microenvironment (TM), describing their roles in tumor pathogenesis and their possible use as new therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Qingbao Cheng
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | | | | | | |
Collapse
|
192
|
TMPRSS2-ERG gene fusions induce prostate tumorigenesis by modulating microRNA miR-200c. Oncogene 2013; 33:5183-92. [PMID: 24186205 PMCID: PMC4009393 DOI: 10.1038/onc.2013.461] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/18/2013] [Accepted: 09/13/2013] [Indexed: 12/17/2022]
Abstract
Chromosomal translocations that juxtapose the androgen-sensitive TMPRSS2 gene promoter to the oncogenic ETS-family transcription factor ERG result in excessive ERG overexpression in approximately 50% of prostate cancer (PCa) patients. Although numerous studies have investigated ERG-downstream genes, such studies have not attempted to examine miRNAs, which however are emerging to be important regulators of cancer. Through bioinformatics analysis of ChIP-Seq ERG data and miRNA expression profiling data we nominated miR-200c as a direct target of ERG. Experimentation of PCa cells with ERG overexpression or knockdown demonstrated that ERG directly repressed miR-200c expression by physically binding to the ETS motif within its promoter. Consequently, miR-200c was down-regulated in ERG-positive PCa and miR-200c target gene expression was restored. In addition, the expression pattern of miR-200c target genes predicted ERG status in clinical PCa specimens. Furthermore, miR-200c was found important in modulating ZEB1 up-regulation by ERG. Most importantly, miR-200c reconstitution fully reversed ERG-induced epithelial-to-mesenchymal transition, cell migration and invasion. Therefore, our study report miR-200c as a first miRNA target of ERG and a critical inhibitor of PCa cell motility. Therapeutic delivery of miR-200c may provide personalized treatment for patients with the molecular subtype of PCa that harbors TMPRSS2-ERG gene fusions.
Collapse
|
193
|
MiR-205 is progressively down-regulated in lymph node metastasis but fails as a prognostic biomarker in high-risk prostate cancer. Int J Mol Sci 2013; 14:21414-34. [PMID: 24173237 PMCID: PMC3856012 DOI: 10.3390/ijms141121414] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/01/2013] [Accepted: 10/09/2013] [Indexed: 01/07/2023] Open
Abstract
The treatment of high-risk prostate cancer (HRPCa) is a tremendous challenge for uro-oncologists. The identification of predictive moleculobiological markers allowing risk assessment of lymph node metastasis and systemic progression is essential in establishing effective treatment. In the current study, we investigate the prognostic potential of miR-205 in HRPCa study and validation cohorts, setting defined clinical endpoints for both. We demonstrate miR-205 to be significantly down-regulated in over 70% of the HRPCa samples analysed and that reconstitution of miR-205 causes inhibition of proliferation and invasiveness in prostate cancer (PCa) cell lines. Additionally, miR-205 is increasingly down-regulated in lymph node metastases compared to the primary tumour indicating that miR-205 plays a role in migration of PCa cells from the original location into extraprostatic tissue. Nevertheless, down-regulation of miR-205 in primary PCa was not correlated to the synchronous presence of metastasis and failed to predict the outcome for HRPCa patients. Moreover, we found a tendency for miR-205 up-regulation to correlate with an adverse outcome of PCa patients suggesting a pivotal role of miR-205 in tumourigenesis. Overall, we showed that miR-205 is involved in the development and metastasis of PCa, but failed to work as a useful clinical biomarker in HRPCa. These findings might have implications for the use of miR-205 as a prognostic or therapeutic target in HRPCa.
Collapse
|
194
|
Srivastava A, Goldberger H, Dimtchev A, Ramalinga M, Chijioke J, Marian C, Oermann EK, Uhm S, Kim JS, Chen LN, Li X, Berry DL, Kallakury BVS, Chauhan SC, Collins SP, Suy S, Kumar D. MicroRNA profiling in prostate cancer--the diagnostic potential of urinary miR-205 and miR-214. PLoS One 2013; 8:e76994. [PMID: 24167554 PMCID: PMC3805541 DOI: 10.1371/journal.pone.0076994] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/04/2013] [Indexed: 11/18/2022] Open
Abstract
Prostate cancer (PCa) is the most common type of cancer in men in the United States, which disproportionately affects African American descents. While metastasis is the most common cause of death among PCa patients, no specific markers have been assigned to severity and ethnic biasness of the disease. MicroRNAs represent a promising new class of biomarkers owing to their inherent stability and resilience. In the present study, we investigated potential miRNAs that can be used as biomarkers and/or therapeutic targets and can provide insight into the severity and ethnic biasness of PCa. PCR array was performed in FFPE PCa tissues (5 Caucasian American and 5 African American) and selected differentially expressed miRNAs were validated by qRT-PCR, in 40 (15 CA and 25 AA) paired PCa and adjacent normal tissues. Significantly deregulated miRNAs were also analyzed in urine samples to explore their potential as non-invasive biomarker for PCa. Out of 8 miRNAs selected for validation from PCR array data, miR-205 (p<0.0001), mir-214 (p<0.0001), miR-221(p<0.001) and miR-99b (p<0.0001) were significantly downregulated in PCa tissues. ROC curve shows that all four miRNAs successfully discriminated between PCa and adjacent normal tissues. MiR-99b showed significant down regulation (p<0.01) in AA PCa tissues as compared to CA PCa tissues and might be related to the aggressiveness associated with AA population. In urine, miR-205 (p<0.05) and miR-214 (p<0.05) were significantly downregulated in PCa patients and can discriminate PCa patients from healthy individuals with 89% sensitivity and 80% specificity. In conclusion, present study showed that miR-205 and miR-214 are downregulated in PCa and may serve as potential non-invasive molecular biomarker for PCa.
Collapse
Affiliation(s)
- Anvesha Srivastava
- Cancer Research Laboratory, Department of Biology, Chemistry and Physics, University of the District of Columbia, Washington, D. C., United States of America
| | - Helle Goldberger
- Cancer Research Laboratory, Department of Biology, Chemistry and Physics, University of the District of Columbia, Washington, D. C., United States of America
| | - Alexander Dimtchev
- Cancer Research Laboratory, Department of Biology, Chemistry and Physics, University of the District of Columbia, Washington, D. C., United States of America
| | - Malathi Ramalinga
- Cancer Research Laboratory, Department of Biology, Chemistry and Physics, University of the District of Columbia, Washington, D. C., United States of America
| | - Juliet Chijioke
- Cancer Research Laboratory, Department of Biology, Chemistry and Physics, University of the District of Columbia, Washington, D. C., United States of America
| | - Catalin Marian
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy Timisoara, Romania
| | - Eric K. Oermann
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D. C., United States of America
| | - Sunghae Uhm
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D. C., United States of America
| | - Joy S. Kim
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D. C., United States of America
| | - Leonard N. Chen
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D. C., United States of America
| | - Xin Li
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D. C., United States of America
| | - Deborah L. Berry
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D. C., United States of America
| | - Bhaskar V. S. Kallakury
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D. C., United States of America
| | - Subhash C. Chauhan
- University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Sean P. Collins
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D. C., United States of America
| | - Simeng Suy
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D. C., United States of America
| | - Deepak Kumar
- Cancer Research Laboratory, Department of Biology, Chemistry and Physics, University of the District of Columbia, Washington, D. C., United States of America
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D. C., United States of America
- * E-mail:
| |
Collapse
|
195
|
Cui SY, Wang R, Chen LB. MicroRNAs: key players of taxane resistance and their therapeutic potential in human cancers. J Cell Mol Med 2013; 17:1207-17. [PMID: 24106980 PMCID: PMC4159023 DOI: 10.1111/jcmm.12131] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 08/15/2013] [Indexed: 01/01/2023] Open
Abstract
The successful long-term use of taxane for cancer therapy is often prevented by the development of drug resistance in clinic. Thus, exploring the mechanisms involved is a first step towards rational strategies to overcome taxane resistance. Taxane resistance-related microRNA (miRNAs) are under investigation and miRNAs could induce the taxane resistance of tumour cells by regulating cell cycle distribution, survival and/or apoptosis pathways, drug transports, epithelial–mesenchymal transition and cancer stem cell. This article summarizes current research involving miRNAs as regulators of key target genes for tanxanxe chemoresistance and discusses the complex regulatory networks of miRNAs. Also, the authors will envisage future developments towards the potential use of targeting miRNAs as a novel strategy for improving response of tumour patients to taxane. miRNAs play critical roles in taxane chemoresistance and the miRNA-based therapies will be helpful for overcoming drug resistance and developing more effective personalized anti-cancer treatment strategies. Further research studies should be performed to promote therapeutic–clinical use of taxane resistance-related miRNAs in cancer patients, especially in those patients with taxane-resistant cancers.
Collapse
Affiliation(s)
- Shi-Yun Cui
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, Jiangsu, China
| | | | | |
Collapse
|
196
|
Morello M, Minciacchi VR, de Candia P, Yang J, Posadas E, Kim H, Griffiths D, Bhowmick N, Chung LWK, Gandellini P, Freeman MR, Demichelis F, Di Vizio D. Large oncosomes mediate intercellular transfer of functional microRNA. Cell Cycle 2013; 12:3526-36. [PMID: 24091630 PMCID: PMC3906338 DOI: 10.4161/cc.26539] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer cells release atypically large extracellular vesicles (EVs), termed large oncosomes, which may play a role in the tumor microenvironment by transporting bioactive molecules across tissue spaces and through the blood stream. In this study, we applied a novel method for selective isolation of large oncosomes applicable to human platelet-poor plasma, where the presence of caveolin-1-positive large oncosomes identified patients with metastatic disease. This procedure was also used to validate results of a miRNA array performed on heterogeneous populations of EVs isolated from tumorigenic RWPE-2 prostate cells and from isogenic non-tumorigenic RWPE-1 cells. The results showed that distinct classes of miRNAs are expressed at higher levels in EVs derived from the tumorigenic cells in comparison to their non-tumorigenic counterpart. Large oncosomes enhanced migration of cancer-associated fibroblasts (CAFs), an effect that was increased by miR-1227, a miRNA abundant in large oncosomes produced by RWPE-2 cells. Our findings suggest that large oncosomes in the circulation report metastatic disease in patients with prostate cancer, and that this class of EV harbors functional molecules that may play a role in conditioning the tumor microenvironment.
Collapse
Affiliation(s)
- Matteo Morello
- Cancer Biology Program; Samuel Oschin Comprehensive Cancer Institute; Cedars-Sinai Medical Center; Los Angeles, CA USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Fitzpatrick JM, de Wit R. Taxane mechanisms of action: potential implications for treatment sequencing in metastatic castration-resistant prostate cancer. Eur Urol 2013; 65:1198-204. [PMID: 23910941 DOI: 10.1016/j.eururo.2013.07.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/15/2013] [Indexed: 01/07/2023]
Abstract
CONTEXT In the past few years, there has been a rapid increase in the number of therapies available to treat metastatic castration-resistant prostate cancer (mCRPC). Currently, approved treatments consist of the taxane class of cytotoxic drugs and androgen-targeted therapies. The challenge for clinicians is to decide the best sequence in which to give these therapies to provide the greatest benefit to their patients. OBJECTIVE To review recent research into the mechanism of action of taxanes in prostate cancer (PCa) cells and the clinical evidence for an interaction between taxanes and androgen-targeted therapies. The implications of these findings for clinical practice are discussed. EVIDENCE ACQUISITION A nonsystematic review of the relevant medical literature between 2004 and the present, in combination with clinical trial data reported at oncology meetings during 2012, was undertaken. Our perspective, focussing on the potential implications for sequencing of therapies for mCRPC, is provided. EVIDENCE SYNTHESIS Taxanes are shown to interact with androgen signalling in PCa cells at both the cytoplasmic level (via microtubules) and the nuclear level, affecting transcriptional regulators of androgen-responsive gene expression. Data from clinical trials suggest that androgen deprivation can potentially decrease the efficacy of taxanes in treating PCa. CONCLUSIONS These findings have important implications for clinical practice, and there is an urgent need for strong clinical data to support a recommendation for an optimal sequence of therapies.
Collapse
Affiliation(s)
- John M Fitzpatrick
- Irish Cancer Society and University College Dublin School of Medicine and Medical Science, Dublin, Ireland.
| | - Ronald de Wit
- Erasmus University Medical Center and Rotterdam Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
198
|
Tanaka K, Miyata H, Yamasaki M, Sugimura K, Takahashi T, Kurokawa Y, Nakajima K, Takiguchi S, Mori M, Doki Y. Circulating miR-200c Levels Significantly Predict Response to Chemotherapy and Prognosis of Patients Undergoing Neoadjuvant Chemotherapy for Esophageal Cancer. Ann Surg Oncol 2013; 20 Suppl 3:S607-15. [DOI: 10.1245/s10434-013-3093-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Indexed: 01/28/2023]
|
199
|
Verdoodt B, Neid M, Vogt M, Kuhn V, Liffers ST, Palisaar RJ, Noldus J, Tannapfel A, Mirmohammadsadegh A. MicroRNA-205, a novel regulator of the anti-apoptotic protein Bcl2, is downregulated in prostate cancer. Int J Oncol 2013; 43:307-14. [PMID: 23612742 DOI: 10.3892/ijo.2013.1915] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/21/2013] [Indexed: 11/06/2022] Open
Abstract
Decreased expression of the microRNA miR-205 has been observed in multiple tumour types due to its role in the epithelial to mesenchymal transition, which promotes metastasis. We determined the expression of miR-205 in 111 archival samples of prostate carcinoma and found it to be strongly reduced in most samples, with a median expression level of 16% in comparison to benign tissue from the same patient. Lower miR-205 expression correlated significantly with tumour size and miR-205 levels decreased with increasing Gleason score from 7a=3+4 to 8=4+4. In addition, we describe the anti-apoptotic protein BCL2 as a target of miR-205, relevant for prostate cancer due to its role in prognosis of primary tumours and in the appearance of androgen independence. The repression of BCL2 by miR-205 was confirmed using reporter assays and western blotting. BCL2 mRNA expression in the same collective of prostate cancer tissue samples was associated with higher Gleason score and extracapsular extension of the tumour (pT3). Consistent with its anti-apoptotic target BCL2, miR-205 promoted apoptosis in prostate cancer cells in response to DNA damage by cisplatin and doxorubicin in the prostate cancer cell lines PC3 and LnCap. MiR-205 also inhibited proliferation in these cell lines.
Collapse
Affiliation(s)
- Berlinda Verdoodt
- Institute of Pathology, Ruhr-University Bochum, D-44789 Bochum, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
200
|
MicroRNAs regulate both epithelial-to-mesenchymal transition and cancer stem cells. Oncogene 2013; 33:269-78. [PMID: 23455327 DOI: 10.1038/onc.2013.55] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/18/2013] [Accepted: 01/21/2013] [Indexed: 02/07/2023]
Abstract
Concepts and experimental models derived from basic research have been successfully applied to the field of molecular oncology, tremendously increasing our knowledge of the nature and the progression of tumors. The process of epithelial-to-mesenchymal transition, the cancer stem cell hypothesis, and their functional association and interdependence represent some of the most significant examples. The molecular determinants underlying the plasticity of cancers are currently the object of extensive research efforts, and a substantial body of evidence suggests that these models can be connected by the regulatory role of microRNAs, small noncoding RNA molecules with a fundamental role in many cellular functions. This review will highlight and discuss this link and its possible implications for the fight against cancer.
Collapse
|