151
|
Hassman LM, DiLoreto DA. Immunologic factors may play a role in herpes simplex virus 1 reactivation in the brain and retina after influenza vaccination. IDCases 2016; 6:47-51. [PMID: 27699152 PMCID: PMC5045948 DOI: 10.1016/j.idcr.2016.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 09/20/2016] [Indexed: 10/26/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a nearly ubiquitous human pathogen, remaining dormant in its human host the majority of the time. The interaction between HSV-1 and the immune system represents a complicated balance of power that allows the virus to persist in the host for a lifetime. However, disruptions in the immune system can activate the virus with the potential to cause devastating infections in the central nervous system (CNS). We present a patient who suffered three consecutive yearly HSV-1 CNS episodes (encephalitis, seizure, and retinitis), each within days of his influenza vaccination. We highlight subtle immunologic defects in this patient that may have allowed unchecked viral replication and resultant disease manifestations, as well as the potential role of influenza vaccine in tipping this balance in favor of HSV-1.
Collapse
Affiliation(s)
- Lynn M Hassman
- University of Rochester Medical Center, Flaum Eye Institute; 601 Elmwood Ave., Box 659; Rochester, NY 14642 United States
| | - David A DiLoreto
- University of Rochester Medical Center, Flaum Eye Institute; 601 Elmwood Ave., Box 659; Rochester, NY 14642 United States
| |
Collapse
|
152
|
Wnęk M, Ressel L, Ricci E, Rodriguez-Martinez C, Guerrero JCV, Ismail Z, Smith C, Kipar A, Sodeik B, Chinnery PF, Solomon T, Griffiths MJ. Herpes simplex encephalitis is linked with selective mitochondrial damage; a post-mortem and in vitro study. Acta Neuropathol 2016; 132:433-51. [PMID: 27457581 PMCID: PMC4992034 DOI: 10.1007/s00401-016-1597-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/25/2022]
Abstract
Herpes simplex virus type-1 (HSV-1) encephalitis (HSE) is the most commonly diagnosed cause of viral encephalitis in western countries. Despite antiviral treatment, HSE remains a devastating disease with high morbidity and mortality. Improved understanding of pathogenesis may lead to more effective therapies. Mitochondrial damage has been reported during HSV infection in vitro. However, whether it occurs in the human brain and whether this contributes to the pathogenesis has not been fully explored. Minocycline, an antibiotic, has been reported to protect mitochondria and limit brain damage. Minocycline has not been studied in HSV infection. In the first genome-wide transcriptomic study of post-mortem human HSE brain tissue, we demonstrated a highly preferential reduction in mitochondrial genome (MtDNA) encoded transcripts in HSE cases (n = 3) compared to controls (n = 5). Brain tissue exhibited a significant inverse correlation for immunostaining between cytochrome c oxidase subunit 1 (CO1), a MtDNA encoded enzyme subunit, and HSV-1; with lower abundance for mitochondrial protein in regions where HSV-1 was abundant. Preferential loss of mitochondrial function, among MtDNA encoded components, was confirmed using an in vitro primary human astrocyte HSV-1 infection model. Dysfunction of cytochrome c oxidase (CO), a mitochondrial enzyme composed predominantly of MtDNA encoded subunits, preceded that of succinate dehydrogenase (composed entirely of nuclear encoded subunits). Minocycline treated astrocytes exhibited higher CO1 transcript abundance, sustained CO activity and cell viability compared to non-treated astrocytes. Based on observations from HSE patient tissue, this study highlights mitochondrial damage as a critical and early event during HSV-1 infection. We demonstrate minocycline preserves mitochondrial function and cell viability during HSV-1 infection. Minocycline, and mitochondrial protection, offers a novel adjunctive therapeutic approach for limiting brain cell damage and potentially improving outcome among HSE patients.
Collapse
Affiliation(s)
- Małgorzata Wnęk
- Brain Infections Group, Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Lorenzo Ressel
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park IC2, Liverpool, L3 5RF, UK
- Veterinary Pathology, School of Veterinary Science, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Emanuele Ricci
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park IC2, Liverpool, L3 5RF, UK
- Veterinary Pathology, School of Veterinary Science, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Carmen Rodriguez-Martinez
- Brain Infections Group, Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Julio Cesar Villalvazo Guerrero
- Institute of Virology, Hannover Medical School, 30625, Hannover, Germany
- German Centre for Infection Research (DZIF), Hannover, Germany
| | - Zarini Ismail
- Brain Infections Group, Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Colin Smith
- Academic Neuropathology, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Anja Kipar
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park IC2, Liverpool, L3 5RF, UK
- Veterinary Pathology, School of Veterinary Science, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, 30625, Hannover, Germany
- German Centre for Infection Research (DZIF), Hannover, Germany
| | - Patrick F Chinnery
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Tom Solomon
- Brain Infections Group, Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
- Department of Neurology, The Walton Centre NHS Foundation Trust, Fazakerley, Liverpool, L9 7LJ, UK
- National Institute for Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, L69 7BE, UK
| | - Michael J Griffiths
- Brain Infections Group, Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK.
- National Institute for Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, L69 7BE, UK.
- Department of Neurology, Alder-Hey Children's NHS Foundation Trust, West Derby, Liverpool, L12 2AP, UK.
| |
Collapse
|
153
|
Croll BJ, Dillon ZM, Weaver KR, Greenberg MR. Subtle presentation of herpes simplex encephalitis. Am J Emerg Med 2016; 35:200.e1-200.e2. [PMID: 27510472 DOI: 10.1016/j.ajem.2016.07.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 07/23/2016] [Indexed: 11/19/2022] Open
Affiliation(s)
- Benjamin J Croll
- Department of Emergency Medicine, Lehigh Valley Hospital/USF Morsani College of Medicine, CC & I-78, Allentown, PA 18103.
| | - Zachary M Dillon
- Department of Emergency Medicine, Lehigh Valley Hospital/USF Morsani College of Medicine, CC & I-78, Allentown, PA 18103
| | - Kevin R Weaver
- Department of Emergency Medicine, Lehigh Valley Hospital/USF Morsani College of Medicine, CC & I-78, Allentown, PA 18103
| | - Marna Rayl Greenberg
- Department of Emergency Medicine, Lehigh Valley Hospital/USF Morsani College of Medicine, CC & I-78, Allentown, PA 18103
| |
Collapse
|
154
|
Ding JJ, Lee CM, Chen SJ, Wang CC, Juan CJ, Fan HC. Herpes Simplex Virus-related Transverse Myelitis and Polyneuritis. Pediatr Neonatol 2016; 57:355-6. [PMID: 26747619 DOI: 10.1016/j.pedneo.2015.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/02/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022] Open
Affiliation(s)
- Jhao-Jhuang Ding
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chuen-Ming Lee
- Department of Pediatrics, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Shyi-Jou Chen
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Chien Wang
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Jung Juan
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hueng-Chuen Fan
- Department of Pediatrics, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan.
| |
Collapse
|
155
|
Bradshaw MJ, Venkatesan A. Herpes Simplex Virus-1 Encephalitis in Adults: Pathophysiology, Diagnosis, and Management. Neurotherapeutics 2016; 13:493-508. [PMID: 27106239 PMCID: PMC4965403 DOI: 10.1007/s13311-016-0433-7] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Herpetic infections have plagued humanity for thousands of years, but only recently have advances in antiviral medications and supportive treatments equipped physicians to combat the most severe manifestations of disease. Prompt recognition and treatment can be life-saving in the care of patients with herpes simplex-1 virus encephalitis, the most commonly identified cause of sporadic encephalitis worldwide. Clinicians should be able to recognize the clinical signs and symptoms of the infection and familiarize themselves with a rational diagnostic approach and therapeutic modalities, as early recognition and treatment are key to improving outcomes. Clinicians should also be vigilant for the development of acute complications, including cerebral edema and status epilepticus, as well as chronic complications, including the development of autoimmune encephalitis associated with antibodies to the N-methyl-D-aspartate receptor and other neuronal cell surface and synaptic epitopes. Herein, we review the pathophysiology, differential diagnosis, and clinical and radiological features of herpes simplex virus-1 encephalitis in adults, including a discussion of the most common complications and their treatment. While great progress has been made in the treatment of this life-threatening infection, a majority of patients will not return to their previous neurologic baseline, indicating the need for further research efforts aimed at improving the long-term sequelae.
Collapse
Affiliation(s)
- Michael J Bradshaw
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Arun Venkatesan
- Division of Neuroimmunology & Neuroinfectious Diseases, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
156
|
De Novo Assembly of Human Herpes Virus Type 1 (HHV-1) Genome, Mining of Non-Canonical Structures and Detection of Novel Drug-Resistance Mutations Using Short- and Long-Read Next Generation Sequencing Technologies. PLoS One 2016; 11:e0157600. [PMID: 27309375 PMCID: PMC4910999 DOI: 10.1371/journal.pone.0157600] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 05/31/2016] [Indexed: 02/01/2023] Open
Abstract
Human herpesvirus type 1 (HHV-1) has a large double-stranded DNA genome of approximately 152 kbp that is structurally complex and GC-rich. This makes the assembly of HHV-1 whole genomes from short-read sequencing data technically challenging. To improve the assembly of HHV-1 genomes we have employed a hybrid genome assembly protocol using data from two sequencing technologies: the short-read Roche 454 and the long-read Oxford Nanopore MinION sequencers. We sequenced 18 HHV-1 cell culture-isolated clinical specimens collected from immunocompromised patients undergoing antiviral therapy. The susceptibility of the samples to several antivirals was determined by plaque reduction assay. Hybrid genome assembly resulted in a decrease in the number of contigs in 6 out of 7 samples and an increase in N(G)50 and N(G)75 of all 7 samples sequenced by both technologies. The approach also enhanced the detection of non-canonical contigs including a rearrangement between the unique (UL) and repeat (T/IRL) sequence regions of one sample that was not detectable by assembly of 454 reads alone. We detected several known and novel resistance-associated mutations in UL23 and UL30 genes. Genome-wide genetic variability ranged from <1% to 53% of amino acids in each gene exhibiting at least one substitution within the pool of samples. The UL23 gene had one of the highest genetic variabilities at 35.2% in keeping with its role in development of drug resistance. The assembly of accurate, full-length HHV-1 genomes will be useful in determining genetic determinants of drug resistance, virulence, pathogenesis and viral evolution. The numerous, complex repeat regions of the HHV-1 genome currently remain a barrier towards this goal.
Collapse
|
157
|
Barón J, Mulero P, Pedraza M, Gamazo C, de la Cruz C, Ruiz M, Ayuso M, Cebrián M, García-Talavera P, Marco J, Guerrero A. HaNDL syndrome: Correlation between focal deficits topography and EEG or SPECT abnormalities in a series of 5 new cases. NEUROLOGÍA (ENGLISH EDITION) 2016. [DOI: 10.1016/j.nrleng.2015.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
158
|
Wittstock M, Walter U. Akute neurologische Erkrankungen mit Leitsymptom Fieber. Notf Rett Med 2016. [DOI: 10.1007/s10049-016-0175-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
159
|
Jørgensen LK, Dalgaard LS, Østergaard LJ, Andersen NS, Nørgaard M, Mogensen TH. Validity of the coding for herpes simplex encephalitis in the Danish National Patient Registry. Clin Epidemiol 2016; 8:133-40. [PMID: 27330328 PMCID: PMC4896464 DOI: 10.2147/clep.s104379] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background Large health care databases are a valuable source of infectious disease epidemiology if diagnoses are valid. The aim of this study was to investigate the accuracy of the recorded diagnosis coding of herpes simplex encephalitis (HSE) in the Danish National Patient Registry (DNPR). Methods The DNPR was used to identify all hospitalized patients, aged ≥15 years, with a first-time diagnosis of HSE according to the International Classification of Diseases, tenth revision (ICD-10), from 2004 to 2014. To validate the coding of HSE, we collected data from the Danish Microbiology Database, from departments of clinical microbiology, and from patient medical records. Cases were classified as confirmed, probable, or no evidence of HSE. We estimated the positive predictive value (PPV) of the HSE diagnosis coding stratified by diagnosis type, study period, and department type. Furthermore, we estimated the proportion of HSE cases coded with nonspecific ICD-10 codes of viral encephalitis and also the sensitivity of the HSE diagnosis coding. Results We were able to validate 398 (94.3%) of the 422 HSE diagnoses identified via the DNPR. Hereof, 202 (50.8%) were classified as confirmed cases and 29 (7.3%) as probable cases providing an overall PPV of 58.0% (95% confidence interval [CI]: 53.0–62.9). For “Encephalitis due to herpes simplex virus” (ICD-10 code B00.4), the PPV was 56.6% (95% CI: 51.1–62.0). Similarly, the PPV for “Meningoencephalitis due to herpes simplex virus” (ICD-10 code B00.4A) was 56.8% (95% CI: 39.5–72.9). “Herpes viral encephalitis” (ICD-10 code G05.1E) had a PPV of 75.9% (95% CI: 56.5–89.7), thereby representing the highest PPV. The estimated sensitivity was 95.5%. Conclusion The PPVs of the ICD-10 diagnosis coding for adult HSE in the DNPR were relatively low. Hence, the DNPR should be used with caution when studying patients with encephalitis caused by herpes simplex virus.
Collapse
Affiliation(s)
| | - Lars Skov Dalgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Mette Nørgaard
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
160
|
Sanchez MD, Ochoa AC, Foster TP. Development and evaluation of a host-targeted antiviral that abrogates herpes simplex virus replication through modulation of arginine-associated metabolic pathways. Antiviral Res 2016; 132:13-25. [PMID: 27192555 DOI: 10.1016/j.antiviral.2016.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 04/21/2016] [Accepted: 05/13/2016] [Indexed: 11/16/2022]
Abstract
Since their inception five decades ago, most antivirals have been engineered to disrupt a single viral protein or process that is essential for viral replication. This approach has limited the overall therapeutic effectiveness and applicability of current antivirals due to restricted viral specificity, a propensity for development of drug resistance, and an inability to control deleterious host-mediated inflammation. As obligate intracellular parasites, viruses are reliant on host metabolism and macromolecular synthesis pathways. Of these biosynthetic processes, many viruses, including Herpes simplex viruses (HSV), are absolutely dependent on the bioavailability of arginine, a non-essential amino acid that is critical for many physiological and pathophysiological processes associated with either facilitating viral replication or progression of disease. To assess if targeting host arginine-associated metabolic pathways would inhibit HSV replication, a pegylated recombinant human Arginase I (peg-ArgI) was generated and its in vitro anti-herpetic activity was evaluated. Cells continuously treated with peg-ArgI for over 48 h exhibited no signs of cytotoxicity or loss of cell viability. The antiviral activity of peg-ArgI displayed a classical dose-response curve with IC50's in the sub-nanomolar range. peg-ArgI potently inhibited HSV-1 and HSV-2 viral replication, infectious virus production, cell-to-cell spread/transmission and virus-mediated cytopathic effects. Not unexpectedly given its host-targeted mechanism of action, peg-ArgI showed similar effectiveness at controlling replication of single and multidrug resistant HSV-1 mutants. These findings illustrate that targeting host arginine-associated metabolic pathways is an effective means of controlling viral replicative processes. Further exploration into the breadth of viruses inhibited by peg-ArgI, as well as the ability of peg-ArgI to suppress arginine-associated virus-mediated pathophysiological disease processes is warranted.
Collapse
Affiliation(s)
- Maria Dulfary Sanchez
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, USA; Department of Pediatrics, School of Medicine, Louisiana State University Health Sciences Center, USA; The Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, USA
| | - Augusto C Ochoa
- Department of Pediatrics, School of Medicine, Louisiana State University Health Sciences Center, USA; The Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, USA; The Louisiana Vaccine Center, New Orleans, LA, 70112, USA
| | - Timothy P Foster
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, USA; Department of Ophthalmology, School of Medicine, Louisiana State University Health Sciences Center, USA; The Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, USA; The Louisiana Vaccine Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
161
|
Abstract
More than 50% of the U.S. population is infected with herpes simplex virus type-I (HSV-1) and global infectious estimates are nearly 90%. HSV-1 is normally seen as a harmless virus but debilitating diseases can arise, including encephalitis and ocular diseases. HSV-1 is unique in that it can undermine host defenses and establish lifelong infection in neurons. Viral reactivation from latency may allow HSV-1 to lay siege to the brain (Herpes encephalitis). Recent advances maintain that HSV-1 proteins act to suppress and/or control the lysosome-dependent degradation pathway of macroautophagy (hereafter autophagy) and consequently, in neurons, may be coupled with the advancement of HSV-1-associated pathogenesis. Furthermore, increasing evidence suggests that HSV-1 infection may constitute a gradual risk factor for neurodegenerative disorders. The relationship between HSV-1 infection and autophagy manipulation combined with neuropathogenesis may be intimately intertwined demanding further investigation.
Collapse
Affiliation(s)
- Douglas O'Connell
- a Department of Molecular Microbiology and Immunology , Keck Medical School, University of Southern California , Los Angeles , CA , USA
| | - Chengyu Liang
- a Department of Molecular Microbiology and Immunology , Keck Medical School, University of Southern California , Los Angeles , CA , USA
| |
Collapse
|
162
|
Toler J, Deputy S, Zakris E, Bégué RE. Cognitive Dysfunction After Cranial Radiation for a Brain Tumor. J Pediatric Infect Dis Soc 2016; 5:96-9. [PMID: 26759498 DOI: 10.1093/jpids/piv085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 11/22/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Jeremy Toler
- Department of Neurology Department of Pediatrics
| | | | - Ellen Zakris
- Department of Medicine, Louisiana State University Health Sciences Center, New Orleans
| | | |
Collapse
|
163
|
Ellwardt E, Walsh JT, Kipnis J, Zipp F. Understanding the Role of T Cells in CNS Homeostasis. Trends Immunol 2016; 37:154-165. [DOI: 10.1016/j.it.2015.12.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/14/2015] [Accepted: 12/14/2015] [Indexed: 01/16/2023]
|
164
|
Abstract
PURPOSE OF REVIEW This review seeks to describe recent advances in the epidemiology, outcomes, and prognostic factors in acute encephalitis. RECENT FINDINGS Infectious causes continue to account for the largest proportion of encephalitis cases in which a cause is identified, although autoimmune causes are increasingly recognized. Type-A gamma-aminobutyric acid (GABAa) receptor antibodies have been recently identified in encephalitis with refractory seizures, whereas the roles of antibodies to the glycine receptor and dipeptidyl peptidase-like protein 6 have been defined in progressive encephalomyelitis with rigidity and myoclonus. Recent findings in the US cases of encephalomyelitis presenting with acute flaccid paralysis raise the possibility that enterovirus D68, a common respiratory pathogen, may cause central nervous system disease. Mortality from acute encephalitis occurs in about 10% of cases, with a large proportion of survivors suffering from cognitive or physical disability. In addition to delay in institution of appropriate antiviral or immune therapy, several potentially reversible factors associated with poor prognosis have been identified, including cerebral edema, status epilepticus, and thrombocytopenia. SUMMARY Encephalitis imposes a significant worldwide health burden and is associated with poor outcomes. Supportive treatment and early institution of therapy may improve outcomes. Careful neurocognitive assessment of survivors of encephalitis is needed to better define long-term outcomes.
Collapse
|
165
|
|
166
|
Herpes Simplex Viral Encephalitis Masquerading as a Classic Left MCA Stroke. Case Rep Neurol Med 2015; 2015:673724. [PMID: 26770849 PMCID: PMC4681801 DOI: 10.1155/2015/673724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/10/2015] [Indexed: 12/20/2022] Open
Abstract
Objective. Stroke is a clinical diagnosis, with a history and physical examination significant for acute onset focal neurological symptoms and signs, often occurring in patients with known vascular risk factors and is frequently confirmed radiographically. Case Report. A 79-year-old right-handed woman, with a past medical history of hypertension, hyperlipidemia, and prior transient ischemic attack (TIA), presented with acute onset global aphasia and right hemiparesis, in the absence of fever or prodrome. This was initially diagnosed as a proximal left middle cerebral artery (MCA) stroke. However, CT perfusion failed to show evidence of reduced blood volume, and CT angiogram did not show evidence of a proximal vessel occlusion. Furthermore, MRI brain did not demonstrate any areas of restricted diffusion. EEG demonstrated left temporal periodic lateralized epileptiform discharges (PLEDs). The patient was empirically loaded with a bolus valproic acid and started on acyclovir, both intravenously. CSF examination demonstrated a pleocytosis and PCR confirmed the diagnosis of herpes simplex viral encephalitis (HSVE). Conclusions. HSVE classically presents in a nonspecific fashion with fever, headache, and altered mental status. However, acute focal neurological signs, mimicking stroke, are possible. A high degree of suspicion is required to institute appropriate therapy and decrease morbidity and mortality associated with HSVE.
Collapse
|
167
|
Albecka A, Laine RF, Janssen AFJ, Kaminski CF, Crump CM. HSV-1 Glycoproteins Are Delivered to Virus Assembly Sites Through Dynamin-Dependent Endocytosis. Traffic 2015; 17:21-39. [PMID: 26459807 PMCID: PMC4745000 DOI: 10.1111/tra.12340] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/07/2015] [Accepted: 10/07/2015] [Indexed: 11/29/2022]
Abstract
Herpes simplex virus‐1 (HSV‐1) is a large enveloped DNA virus that belongs to the family of Herpesviridae. It has been recently shown that the cytoplasmic membranes that wrap the newly assembled capsids are endocytic compartments derived from the plasma membrane. Here, we show that dynamin‐dependent endocytosis plays a major role in this process. Dominant‐negative dynamin and clathrin adaptor AP180 significantly decrease virus production. Moreover, inhibitors targeting dynamin and clathrin lead to a decreased transport of glycoproteins to cytoplasmic capsids, confirming that glycoproteins are delivered to assembly sites via endocytosis. We also show that certain combinations of glycoproteins colocalize with each other and with the components of clathrin‐dependent and ‐independent endocytosis pathways. Importantly, we demonstrate that the uptake of neutralizing antibodies that bind to glycoproteins when they become exposed on the cell surface during virus particle assembly leads to the production of non‐infectious HSV‐1. Our results demonstrate that transport of viral glycoproteins to the plasma membrane prior to endocytosis is the major route by which these proteins are localized to the cytoplasmic virus assembly compartments. This highlights the importance of endocytosis as a major protein‐sorting event during HSV‐1 envelopment.
Collapse
Affiliation(s)
- Anna Albecka
- Division of Virology, Department of Pathology, Cambridge University, Cambridge, CB2 1QP, UK
| | - Romain F Laine
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, Cambridge University, Cambridge, CB2 3RA, UK
| | - Anne F J Janssen
- Division of Virology, Department of Pathology, Cambridge University, Cambridge, CB2 1QP, UK
| | - Clemens F Kaminski
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, Cambridge University, Cambridge, CB2 3RA, UK
| | - Colin M Crump
- Division of Virology, Department of Pathology, Cambridge University, Cambridge, CB2 1QP, UK
| |
Collapse
|
168
|
Zis P, Stritsou P, Angelidakis P, Tavernarakis A. Herpes Simplex Virus Type 2 Encephalitis as a Cause of Ischemic Stroke: Case Report and Systematic Review of the Literature. J Stroke Cerebrovasc Dis 2015; 25:335-9. [PMID: 26542825 DOI: 10.1016/j.jstrokecerebrovasdis.2015.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 09/07/2015] [Accepted: 10/03/2015] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND AND AIM Our objective is to describe a patient who developed an ischemic stroke as a complication of herpes simplex virus type 2 (HSV-2) encephalitis and to review the literature. PATIENTS AND METHODS A 45-year-old immune-competent Caucasian man presented with a 24-hour history of confusion and fever, and following clinical and laboratory examination was diagnosed with HSV-2 encephalitis. However, the brain magnetic resonance imaging also showed an acute ischemic infarct in the left frontal lobe corresponding to vascular territories of middle cerebral artery branches. Further screening failed to identify any other cause of the stroke. A systematic literature search was conducted in February 2015 using the PubMed database. RESULTS Six more cases of herpes simplex virus (HSV) central nervous system (CNS) infection that developed a definite ischemic stroke as a complication of the infection were identified. CONCLUSIONS Ischemic stroke, although infrequent, can complicate the evolution of herpes simplex meningitis or encephalitis. Clinicians should include HSV CNS infection as a possible cause of ischemic stroke, especially in young patients with ischemic stroke of unknown etiology.
Collapse
Affiliation(s)
- Panagiotis Zis
- Department of Neurology, Evangelismos General Hospital, Athens, Greece.
| | | | | | | |
Collapse
|
169
|
Dávola ME, Mazaira GI, Galigniana MD, Alché LE, Ramírez JA, Barquero AA. Synthetic pregnenolone derivatives as antiviral agents against acyclovir-resistant isolates of Herpes Simplex Virus Type 1. Antiviral Res 2015; 122:55-63. [DOI: 10.1016/j.antiviral.2015.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 10/23/2022]
|
170
|
Hu K, Harris DL, Yamaguchi T, von Andrian UH, Hamrah P. A Dual Role for Corneal Dendritic Cells in Herpes Simplex Keratitis: Local Suppression of Corneal Damage and Promotion of Systemic Viral Dissemination. PLoS One 2015; 10:e0137123. [PMID: 26332302 PMCID: PMC4557979 DOI: 10.1371/journal.pone.0137123] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/12/2015] [Indexed: 12/20/2022] Open
Abstract
The cornea is the shield to the foreign world and thus, a primary site for peripheral infections. However, transparency and vision are incompatible with inflammation and scarring that may result from infections. Thus, the cornea is required to perform a delicate balance between fighting infections and preserving vision. To date, little is known about the specific role of antigen-presenting cells in viral keratitis. In this study, utilizing an established murine model of primary acute herpes simplex virus (HSV)-1 keratitis, we demonstrate that primary HSV keratitis results in increased conventional dendritic cells (cDCs) and macrophages within 24 hours after infection. Local depletion of cDCs in CD11c-DTR mice by subconjuntival diphtheria toxin injections, led to increased viral proliferation, and influx of inflammatory cells, resulting in increased scarring and clinical keratitis. In addition, while HSV infection resulted in significant corneal nerve destruction, local depletion of cDCs resulted in a much more severe loss of corneal nerves. Further, local cDC depletion resulted in decreased corneal nerve infection, and subsequently decreased and delayed systemic viral transmission in the trigeminal ganglion and draining lymph node, resulting in decreased mortality of mice. In contrast, sham depletion or depletion of macrophages through local injection of clodronate liposomes had neither a significant impact on the cornea, nor an effect on systemic viral transmission. In conclusion, we demonstrate that corneal cDCs may play a primary role in local corneal defense during viral keratitis and preserve vision, at the cost of inducing systemic viral dissemination, leading to increased mortality.
Collapse
Affiliation(s)
- Kai Hu
- Schepens Eye Research Institute, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- Cornea Service, Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- Immune Disease Institute, Program in Cellular and Molecular Medicine at Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Deshea L. Harris
- Schepens Eye Research Institute, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- Immune Disease Institute, Program in Cellular and Molecular Medicine at Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Takefumi Yamaguchi
- Schepens Eye Research Institute, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- Cornea Service, Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- Immune Disease Institute, Program in Cellular and Molecular Medicine at Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ulrich H. von Andrian
- Immune Disease Institute, Program in Cellular and Molecular Medicine at Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Immunology, Department of Microbiology & Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pedram Hamrah
- Schepens Eye Research Institute, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- Cornea Service, Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- Immune Disease Institute, Program in Cellular and Molecular Medicine at Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
171
|
Slifer CM, Jennings SR. Battling the spread: Herpes simplex virus and encephalitis. Immunol Cell Biol 2015; 93:839-40. [PMID: 26259929 DOI: 10.1038/icb.2015.73] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christina M Slifer
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Stephen R Jennings
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
172
|
Buerger KJ, Zerr K, Salazar R. An unusual presentation of herpes simplex encephalitis with negative PCR. BMJ Case Rep 2015; 2015:bcr-2015-210522. [PMID: 26243746 DOI: 10.1136/bcr-2015-210522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A 74-year-old man presented with acute right-sided hemiparesis and epilepsia partialis continua in association with fever and confusion. Initial workup revealed possible cerebritis in the left medial frontal lobe without involvement of the temporal lobes. Cerebrospinal fluid (CSF) analysis revealed minimal lymphocytic pleocytosis but negative real-time herpes simplex virus (HSV) PCR. Acyclovir was discontinued on day 5 due to a negative infectious workup and clinical improvement. On day 9 his condition deteriorated and he was transferred to a higher level of acuity for advanced supportive care. Worsening encephalopathy and refractory status epilepticus ensued despite medical care. Repeat CSF analysis showed mild lymphocytic pleocytosis with negative real-time HSV PCR. Brain MRI revealed progression of cortical enhancement. Immunosuppressive therapy and plasma exchange were attempted without clinical response. On day 24, another lumbar puncture showed only mild lymphocytic pleocytosis. Brain MRI showed involvement of the right medial temporal lobe. Subsequently, acyclovir was resumed. The HSV-1 PCR result was positive on day 30. Unfortunately, the patient expired.
Collapse
Affiliation(s)
- Kelly J Buerger
- Department of Medical Education, Parkview Medical Center, Pueblo, Colorado, USA Parkview Medical Center, Pueblo, Colorado, USA
| | - Kayleigh Zerr
- Department of Medical Education, Parkview Medical Center, Pueblo, Colorado, USA Parkview Medical Center, Pueblo, Colorado, USA Department of Parkview Neurology Services, Parkview Medical Center, Pueblo, Colorado, USA
| | - Richard Salazar
- Department of Medical Education, Parkview Medical Center, Pueblo, Colorado, USA Department of Parkview Neurology Services, Parkview Medical Center, Pueblo, Colorado, USA
| |
Collapse
|
173
|
Sherwood JA, Brittain DC, Howard JJ, Oliver J. Antibody and Viral Nucleic Acid Testing of Serum and Cerebrospinal Fluid for Diagnosis of Eastern Equine Encephalitis. J Clin Microbiol 2015; 53:2768-72. [PMID: 26063852 PMCID: PMC4508444 DOI: 10.1128/jcm.00647-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/26/2015] [Indexed: 11/20/2022] Open
Abstract
Eastern equine encephalitis diagnostic serum antibody can appear 6 days after the onset of symptoms, and its numbers can increase 4-fold in 4 days, arguing for early and frequent serum testing. In populations where cerebrospinal fluid viral nucleic acid testing sensitivity and specificity remain undetermined, cerebrospinal antibody testing should also be performed.
Collapse
Affiliation(s)
- James A Sherwood
- Department of Health of the State of New York, Syracuse, New York, USA
| | - David C Brittain
- Department of Health of the State of New York, Syracuse, New York, USA
| | - John J Howard
- Department of Health of the State of New York, Syracuse, New York, USA
| | - JoAnne Oliver
- Department of Health of the State of New York, Syracuse, New York, USA
| |
Collapse
|
174
|
Piret J, Boivin G. Innate immune response during herpes simplex virus encephalitis and development of immunomodulatory strategies. Rev Med Virol 2015. [PMID: 26205506 DOI: 10.1002/rmv.1848] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herpes simplex viruses are large double-stranded DNA viruses. These viruses have the ability to establish a lifelong latency in sensory ganglia and to invade and replicate in the CNS. Apart from relatively benign mucosal infections, HSV is responsible for severe illnesses including HSV encephalitis (HSE). HSE is the most common cause of sporadic, potentially fatal viral encephalitis in Western countries. If left untreated, the mortality rate associated with HSE is approximately 70%. Despite antiviral therapy, the mortality is still higher than 30%, and almost 60% of surviving individuals develop neurological sequelae. It is suggested that direct virus-related and indirect immune-mediated mechanisms contribute to the damages occurring in the CNS during HSE. In this manuscript, we describe the innate immune response to HSV, the development of HSE in mice knock-out for proteins of the innate immune system as well as inherited deficiencies in key components of the signaling pathways involved in the production of type I interferon that could predispose individuals to develop HSE. Finally, we review several immunomodulatory strategies aimed at modulating the innate immune response at a critical time after infection that were evaluated in mouse models and could be combined with antiviral therapy to improve the prognosis of HSE. In conclusion, the cerebral innate immune response that develops during HSE is a "double-edged sword" as it is critical to control viral replication in the brain early after infection, but, if left uncontrolled, may also result in an exaggerated inflammatory response that could be detrimental to the host.
Collapse
Affiliation(s)
- Jocelyne Piret
- Research Center in Infectious Diseases, CHU de Québec and Laval University, Quebec City, Quebec, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases, CHU de Québec and Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
175
|
Stoeter DJ, Michael BD, Solomon T, Poole L. Managing acute central nervous system infections in the UK adult intensive care unit in the wake of UK encephalitis guidelines. J Intensive Care Soc 2015; 16:330-338. [PMID: 28979440 DOI: 10.1177/1751143715587927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The acute central nervous system infections meningitis and encephalitis commonly require management on intensive care units. The clinical features often overlap and in the acute phase-altered consciousness and seizures may also need to be managed. In April 2012, the first UK national guideline for the management of suspected viral encephalitis was published by the British Infection Association and Association of British Neurologists, and other key stakeholders, and included a simple management algorithm. The new guideline results from evidence demonstrating a number of common oversights in the standard management of suspected viral encephalitis in many settings. In combination with British Infection Association meningitis guidelines, evidence-based approaches now exist to facilitate the non-expert managing patients with suspected central nervous system infections. Here we bring together these guidelines and the supporting evidence applicable for intensivists into a single resource.
Collapse
Affiliation(s)
- D J Stoeter
- Department of Intensive Care, Royal Liverpool University Hospital, Liverpool, UK
| | - B D Michael
- Institute of Infection and Global Health, and NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, UK.,Walton Centre NHS Foundation Trust, Liverpool, UK
| | - T Solomon
- Institute of Infection and Global Health, and NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, UK.,Walton Centre NHS Foundation Trust, Liverpool, UK
| | - L Poole
- Department of Intensive Care, Royal Liverpool University Hospital, Liverpool, UK
| |
Collapse
|
176
|
Barón J, Mulero P, Pedraza MI, Gamazo C, de la Cruz C, Ruiz M, Ayuso M, Cebrián MC, García-Talavera P, Marco J, Guerrero AL. HaNDL syndrome: Correlation between focal deficits topography and EEG or SPECT abnormalities in a series of 5 new cases. Neurologia 2015; 31:305-10. [PMID: 25976938 DOI: 10.1016/j.nrl.2015.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 11/11/2014] [Accepted: 03/05/2015] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Transient headache and neurological deficits with cerebrospinal fluid lymphocytosis (HaNDL) is characterised by migraine-like headache episodes accompanied by neurological deficits consisting of motor, sensory, or aphasic symptoms. Electroencephalogram (EEG) and single photon emission computed tomography (SPECT) may show focal abnormalities that correspond to the neurological deficits. We aim to evaluate the correlation between focal deficit topography and EEG or SPECT abnormalities in 5 new cases. PATIENTS We retrospectively reviewed patients attended in a tertiary hospital (January 2010-May 2014) and identified 5 patients (3 men, 2 women) with a mean age of 30.6 ± 7.7 (21-39) years. They presented 3.4 ± 2.6 episodes of headache (range, 2-8) of moderate to severe intensity and transient neurological deficits over a maximum of 5 weeks. Pleocytosis was detected in CSF in all cases (70 to 312 cells/mm3, 96.5-100% lymphocytes) with negative results from aetiological studies. RESULTS At least one EEG was performed in 4 patients and SPECT in 3 patients. Patient 1: 8 episodes; 4 left hemisphere, 3 right hemisphere, and 1 brainstem; 2 EEGs showing left temporal and bilateral temporal slowing; normal SPECT. Patient 2: 2 episodes, left hemisphere and right hemisphere; SPECT showed decreased left temporal blood flow. Patient 3: 3 left hemisphere deficits; EEG with bilateral frontal and temporal slowing. Patient 4: 2 episodes with right parieto-occipital topography and right frontal slowing in EEG. Patient 5: 2 episodes, right hemisphere and left hemisphere, EEG with right temporal slowing; normal SPECT. CONCLUSION The neurological deficits accompanying headache in HaNDL demonstrate marked clinical heterogeneity. SPECT abnormalities and most of all EEG abnormalities were not uncommon in our series and they did not always correlate to the topography of focal déficits.
Collapse
Affiliation(s)
- J Barón
- Servicio de Neurofisiología, Hospital Clínico Universitario de Valladolid
| | - P Mulero
- Servicio de Neurología, Hospital Clínico Universitario de Valladolid
| | - M I Pedraza
- Servicio de Neurología, Hospital Clínico Universitario de Valladolid
| | - C Gamazo
- Servicio de Medicina Nuclear, Hospital Clínico Universitario de Valladolid
| | - C de la Cruz
- Servicio de Neurología, Hospital Clínico Universitario de Valladolid
| | - M Ruiz
- Servicio de Neurología, Hospital Clínico Universitario de Valladolid
| | - M Ayuso
- Servicio de Neurofisiología, Hospital Clínico Universitario de Valladolid
| | - M C Cebrián
- Servicio de Neurofisiología, Hospital Clínico Universitario de Valladolid
| | - P García-Talavera
- Servicio de Medicina Nuclear, Hospital Clínico Universitario de Valladolid
| | - J Marco
- Servicio de Neurología, Hospital Clínico Universitario de Valladolid
| | - A L Guerrero
- Servicio de Neurología, Hospital Clínico Universitario de Valladolid.
| |
Collapse
|
177
|
Gnann JW, Sköldenberg B, Hart J, Aurelius E, Schliamser S, Studahl M, Eriksson BM, Hanley D, Aoki F, Jackson AC, Griffiths P, Miedzinski L, Hanfelt-Goade D, Hinthorn D, Ahlm C, Aksamit A, Cruz-Flores S, Dale I, Cloud G, Jester P, Whitley RJ. Herpes Simplex Encephalitis: Lack of Clinical Benefit of Long-term Valacyclovir Therapy. Clin Infect Dis 2015; 61:683-91. [PMID: 25956891 DOI: 10.1093/cid/civ369] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/12/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Despite the proven efficacy of acyclovir (ACV) therapy, herpes simplex encephalitis (HSE) continues to cause substantial morbidity and mortality. Among patients with HSE treated with ACV, the mortality rate is approximately 14%-19%. Among survivors, 45%-60% have neuropsychological sequelae at 1 year. Thus, improving therapeutic approaches to HSE remains a high priority. METHODS Following completion of a standard course of intravenous ACV, 87 adult patients with HSE (confirmed by positive polymerase chain reaction [PCR] for herpes simplex virus DNA in cerebrospinal fluid) were randomized to receive either valacyclovir (VACV) 2 g thrice daily (n = 40) or placebo tablets (n = 47) for 90 days (12 tablets of study medication daily). The primary endpoint was survival with no or mild neuropsychological impairment at 12 months, as measured by the Mattis Dementia Rating Scale (MDRS). Logistic regression was utilized to assess factors related to the primary endpoint. RESULTS The demographic characteristics of the 2 randomization groups were statistically similar with no significant differences in age, sex, or race. At 12 months, there was no significant difference in the MDRS scoring for VACV-treated vs placebo recipients, with 85.7% and 90.2%, respectively, of patients demonstrating no or mild neuropsychological impairment (P = .72). No significant study-related adverse events were encountered in either treatment group. CONCLUSIONS Following standard treatment with intravenous ACV for PCR-confirmed HSE, an additional 3-month course of oral VACV therapy did not provide added benefit as measured by neuropsychological testing 12 months later in a population of relatively high-functioning survivors. CLINICAL TRIALS REGISTRATION NCT00031486.
Collapse
|
178
|
Lafaille FG, Ciancanelli MJ, Studer L, Smith G, Notarangelo L, Casanova JL, Zhang SY. Deciphering Human Cell-Autonomous Anti-HSV-1 Immunity in the Central Nervous System. Front Immunol 2015; 6:208. [PMID: 26005444 PMCID: PMC4424875 DOI: 10.3389/fimmu.2015.00208] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/15/2015] [Indexed: 12/26/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a common virus that can rarely invade the human central nervous system (CNS), causing devastating encephalitis. The permissiveness to HSV-1 of the various relevant cell types of the CNS, neurons, astrocytes, oligodendrocytes, and microglia cells, as well as their response to viral infection, has been extensively studied in humans and other animals. Nevertheless, human CNS cell-based models of anti-HSV-1 immunity are of particular importance, as responses to any given neurotropic virus may differ between humans and other animals. Human CNS neuron cell lines as well as primary human CNS neurons, astrocytes, and microglia cells cultured/isolated from embryos or cadavers, have enabled the study of cell-autonomous anti-HSV-1 immunity in vitro. However, the paucity of biological samples and their lack of purity have hindered progress in the field, which furthermore suffers from the absence of testable primary human oligodendrocytes. Recently, the authors have established a human induced pluripotent stem cells (hiPSCs)-based model of anti-HSV-1 immunity in neurons, oligodendrocyte precursor cells, astrocytes, and neural stem cells, which has widened the scope of possible in vitro studies while permitting in-depth explorations. This mini-review summarizes the available data on human primary and iPSC-derived CNS cells for anti-HSV-1 immunity. The hiPSC-mediated study of anti-viral immunity in both healthy individuals and patients with viral encephalitis will be a powerful tool in dissecting the disease pathogenesis of CNS infections with HSV-1 and other neurotropic viruses.
Collapse
Affiliation(s)
- Fabien G Lafaille
- Rockefeller Branch, St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University , New York, NY , USA
| | - Michael J Ciancanelli
- Rockefeller Branch, St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University , New York, NY , USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan-Kettering Institute for Cancer Research , New York, NY , USA
| | - Gregory Smith
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine , Chicago, IL , USA
| | - Luigi Notarangelo
- Division of Immunology, Boston Children's Hospital and Harvard Medical School , Boston, MA , USA
| | - Jean-Laurent Casanova
- Rockefeller Branch, St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University , New York, NY , USA ; Howard Hughes Medical Institute , New York, NY , USA ; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children , Paris , France ; Imagine Institute, Paris Descartes University , Paris , France ; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children , Paris , France
| | - Shen-Ying Zhang
- Rockefeller Branch, St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University , New York, NY , USA ; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children , Paris , France ; Imagine Institute, Paris Descartes University , Paris , France
| |
Collapse
|
179
|
Houldcroft CJ, Breuer J. Tales from the crypt and coral reef: the successes and challenges of identifying new herpesviruses using metagenomics. Front Microbiol 2015; 6:188. [PMID: 25821447 PMCID: PMC4358218 DOI: 10.3389/fmicb.2015.00188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/20/2015] [Indexed: 12/14/2022] Open
Abstract
Herpesviruses are ubiquitous double-stranded DNA viruses infecting many animals, with the capacity to cause disease in both immunocompetent and immunocompromised hosts. Different herpesviruses have different cell tropisms, and have been detected in a diverse range of tissues and sample types. Metagenomics—encompassing viromics—analyses the nucleic acid of a tissue or other sample in an unbiased manner, making few or no prior assumptions about which viruses may be present in a sample. This approach has successfully discovered a number of novel herpesviruses. Furthermore, metagenomic analysis can identify herpesviruses with high degrees of sequence divergence from known herpesviruses and does not rely upon culturing large quantities of viral material. Metagenomics has had success in two areas of herpesvirus sequencing: firstly, the discovery of novel exogenous and endogenous herpesviruses in primates, bats and cnidarians; and secondly, in characterizing large areas of the genomes of herpesviruses previously only known from small fragments, revealing unexpected diversity. This review will discuss the successes and challenges of using metagenomics to identify novel herpesviruses, and future directions within the field.
Collapse
Affiliation(s)
- Charlotte J Houldcroft
- Infection, Inflammation and Rheumatology, Institute of Child Health, University College London , London, UK
| | - Judith Breuer
- Infection, Inflammation and Rheumatology, Institute of Child Health, University College London , London, UK ; Division of Infection and Immunity, University College London , London, UK
| |
Collapse
|
180
|
Ramakrishna C, Ferraioli A, Calle A, Nguyen TK, Openshaw H, Lundberg PS, Lomonte P, Cantin EM. Establishment of HSV1 latency in immunodeficient mice facilitates efficient in vivo reactivation. PLoS Pathog 2015; 11:e1004730. [PMID: 25760441 PMCID: PMC4356590 DOI: 10.1371/journal.ppat.1004730] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/05/2015] [Indexed: 12/19/2022] Open
Abstract
The establishment of latent infections in sensory neurons is a remarkably effective immune evasion strategy that accounts for the widespread dissemination of life long Herpes Simplex Virus type 1 (HSV1) infections in humans. Periodic reactivation of latent virus results in asymptomatic shedding and transmission of HSV1 or recurrent disease that is usually mild but can be severe. An in-depth understanding of the mechanisms regulating the maintenance of latency and reactivation are essential for developing new approaches to block reactivation. However, the lack of a reliable mouse model that supports efficient in vivo reactivation (IVR) resulting in production of infectious HSV1 and/or disease has hampered progress. Since HSV1 reactivation is enhanced in immunosuppressed hosts, we exploited the antiviral and immunomodulatory activities of IVIG (intravenous immunoglobulins) to promote survival of latently infected immunodeficient Rag mice. Latently infected Rag mice derived by high dose (HD), but not low dose (LD), HSV1 inoculation exhibited spontaneous reactivation. Following hyperthermia stress (HS), the majority of HD inoculated mice developed HSV1 encephalitis (HSE) rapidly and synchronously, whereas for LD inoculated mice reactivated HSV1 persisted only transiently in trigeminal ganglia (Tg). T cells, but not B cells, were required to suppress spontaneous reactivation in HD inoculated latently infected mice. Transfer of HSV1 memory but not OVA specific or naïve T cells prior to HS blocked IVR, revealing the utility of this powerful Rag latency model for studying immune mechanisms involved in control of reactivation. Crossing Rag mice to various knockout strains and infecting them with wild type or mutant HSV1 strains is expected to provide novel insights into the role of specific cellular and viral genes in reactivation, thereby facilitating identification of new targets with the potential to block reactivation. Although mouse models have been very useful in studies of HSV1 latency, the inability to efficiently reactivate latent HSV1 in vivo has impeded studies of reactivation. Reasoning that reactivation would be much more efficient in the absence of T cells, we exploited IVIG to promote survival of latently infected Rag mice lacking B and T cells. We established a threshold inoculum dose that was higher for B6- compared to 129-Rag mice, which determined whether HSV1 could be efficiently reactivated in vivo resulting in encephalitis. We showed directly that memory T cells are required to control spontaneous and induced reactivation in mice inoculated at high dose but are dispensable for maintaining latency in low dose inoculated mice. Incorporating different knockout strains into the Rag latency model by adoptive transfer of cells or crossbreeding will facilitate studying the role of various cellular genes involved in regulating neuronal gene expression and innate and adaptive immunity in the control of HSV1 reactivation. The potential of this powerful latency model to unravel the molecular and immune mechanisms regulating latency will be realized only after it is adopted and refined by researchers in the field.
Collapse
Affiliation(s)
- Chandran Ramakrishna
- Department of Virology, Beckman Research Institute of City of Hope; Duarte, California, United States of America
| | - Adrianna Ferraioli
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Aleth Calle
- Centre de Génétique et Physiologie Moléculaire et Cellulaire CNRS UMR5534, Université de Lyon 1, Lyon, France
- Université de Lyon 1, Lyon, France
- Laboratoire d’excellence, LabEX DEVweCAN, Lyon, France
| | - Thanh K. Nguyen
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Harry Openshaw
- Department of Neurology, Beckman Research Institute of City of Hope; Duarte, California, United States of America
| | - Patric S. Lundberg
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Patrick Lomonte
- Centre de Génétique et Physiologie Moléculaire et Cellulaire CNRS UMR5534, Université de Lyon 1, Lyon, France
- Université de Lyon 1, Lyon, France
- Laboratoire d’excellence, LabEX DEVweCAN, Lyon, France
| | - Edouard M. Cantin
- Department of Virology, Beckman Research Institute of City of Hope; Duarte, California, United States of America
- Department of Neurology, Beckman Research Institute of City of Hope; Duarte, California, United States of America
- Department of Immunology, Beckman Research Institute of City of Hope; Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
181
|
Aliabadi N, Jamalidoust M, Asaei S, Namayandeh M, Ziyaeyan M. Diagnosing of herpes simplex virus infections in suspected patients using real-time PCR. Jundishapur J Microbiol 2015; 8:e16727. [PMID: 25834711 PMCID: PMC4377177 DOI: 10.5812/jjm.16727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 06/14/2014] [Accepted: 06/16/2014] [Indexed: 11/18/2022] Open
Abstract
Background: Herpes simplex virus infections are very common worldwide. The virus can cause infection in various body parts, especially eyes and the nervous system. Therefore, an early diagnosis and highly sensitive method is very helpful. Objectives: The present study sought to investigate the efficiency of Real-time TaqMan probe PCR in the diagnosis of HSV infection in suspected patients. Patients and Methods: In this study, 1566 patients with suspected HSV infections were enrolled. They aged 17 days to 96 years. The collected specimens were classified into four groups; cerebrospinal fluid (CSF) from HSE suspected individuals, samples from eye epithelial scraping, tear fluid or aqueous humor from herpes simplex keratitis (HSK) suspected patients, plasma of immune compromised patients and mucocutaneous collected samples from different body parts. The samples were analyzed by Real-time PCR assays. Results: In total, 44 (5.6%), 118 (26.8%), 23 (11.7%), 13 (44.8%) and 65 (45.5%) of 791 HSE, 407 HSK, 29 skin HSV, 143 oropharyngeal suspected patients and 196 patients with systemic HSV infection HSV had positive results by Real-time PCR assays, respectively. Conclusions: Real-time PCR assay, due to its high sensitivity and specificity, can help in early diagnosis and more effective treatment for patients. Also, it requires shorter hospital stay and promotes patients' survival.
Collapse
Affiliation(s)
- Nasrin Aliabadi
- Department of Medical Virology, Prof. Alborzi Clinical Microbiology Research Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Marzieh Jamalidoust
- Department of Medical Virology, Prof. Alborzi Clinical Microbiology Research Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
- Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
| | - Sadaf Asaei
- Department of Medical Virology, Prof. Alborzi Clinical Microbiology Research Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Mandana Namayandeh
- Department of Medical Virology, Prof. Alborzi Clinical Microbiology Research Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Mazyar Ziyaeyan
- Department of Medical Virology, Prof. Alborzi Clinical Microbiology Research Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
- Corresponding author: Mazyar Ziyaeyan, Department of Medical Virology, Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran. Tel: +98-7116474304, Fax: +98-7116474303, E-mail:
| |
Collapse
|
182
|
Abstract
Viral infections are the commonest cause of encephalitis, and the purpose of this article is to inform UK clinicians of the presentation, diagnosis and management of viral encephalitis in travellers returning to the UK. The classical presentation is as a triad of fever, headache and altered mental state. There may be other findings either on examination or on imaging which, together with a travel history, may give clues as to the aetiology. It is important to note that in high- and middle-income countries the commonest cause of viral encephalitis is herpes simplex. This, coupled with the fact that untreated herpes simplex encephalitis (HSE) has a mortality of over 70%, means that aciclovir should always be included in the treatment of patients with suspected encephalitis, regardless of their history of travel. In the UK, the Rare and Imported Pathogens Laboratory (RIPL) at Public Health England can perform specific polymerase chain reaction (PCR) analyses on blood and CSF samples for many imported causes of viral encephalitis.
Collapse
Affiliation(s)
- Anna Aryee
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | |
Collapse
|
183
|
Jennische E, Eriksson CE, Lange S, Trybala E, Bergström T. The anterior commissure is a pathway for contralateral spread of herpes simplex virus type 1 after olfactory tract infection. J Neurovirol 2015; 21:129-47. [PMID: 25604497 DOI: 10.1007/s13365-014-0312-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/22/2014] [Accepted: 12/26/2014] [Indexed: 01/04/2023]
Abstract
Herpes simplex encephalitis (HSE), targeting the limbic system, is the most common cause of viral encephalitis in the Western world. Two pathways for viral entry to the central nervous system (CNS) in HSE have been suggested: either via the trigeminal nerve or via the olfactory tract. This question remains unsettled, and studies of viral spread between the two brain hemispheres are scarce. Here, we investigated the olfactory infection as a model of infection and tropism of herpes simplex virus 1 (HSV-1), the causative agent of HSE, in the CNS of rats. Rats were instilled with HSV-1 in the right nostril and sacrificed 1-6 days post-infection, and tissues were analysed for viral spread using immunohistochemistry and quantitative PCR (qPCR). After nasal instillation, HSV-1 infected mitral cells of the olfactory bulb (OB) on the right side only, followed by limbic encephalitis. As a novel finding, the anterior commissure (AC) conveyed a rapid transmission of virus between the right and the left OB, acting as a shortcut also between the olfactory cortices. The neuronal cell population that conveyed the viral infection via the AC was positive for the water channel protein aquaporin 9 (AQP9) by immunohistochemistry. Quantification of AQP9 in cerebrospinal fluid samples of HSE patients showed increment as compared to controls. We conclude that the olfactory route and the AC are important for the spread of HSV-1 within the olfactory/limbic system of rats and furthermore, we suggest that AQP9 is involved in viral tropism and pathogenesis of HSE.
Collapse
Affiliation(s)
- Eva Jennische
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
184
|
Saha D, Ahmed SS, Rabkin SD. EXPLORING THE ANTITUMOR EFFECT OF VIRUS IN MALIGNANT GLIOMA. DRUG FUTURE 2015; 40:739-749. [PMID: 26855472 DOI: 10.1358/dof.2015.040.11.2383070] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Malignant gliomas are the most common type of primary malignant brain tumor with no effective treatments. Current conventional therapies (surgical resection, radiation therapy, temozolomide (TMZ), and bevacizumab administration) typically fail to eradicate the tumors resulting in the recurrence of treatment-resistant tumors. Therefore, novel approaches are needed to improve therapeutic outcomes. Oncolytic viruses (OVs) are excellent candidates as a more effective therapeutic strategy for aggressive cancers like malignant gliomas since OVs have a natural preference or have been genetically engineered to selectively replicate in and kill cancer cells. OVs have been used in numerous preclinical studies in malignant glioma, and a large number of clinical trials using OVs have been completed or are underway that have demonstrated safety, as well as provided indications of effective antiglioma activity. In this review, we will focus on those OVs that have been used in clinical trials for the treatment of malignant gliomas (herpes simplex virus, adenovirus, parvovirus, reovirus, poliovirus, Newcastle disease virus, measles virus, and retrovirus) and OVs examined preclinically (vesicular stomatitis virus and myxoma virus), and describe how these agents are being used.
Collapse
Affiliation(s)
- Dipongkor Saha
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Seemin S Ahmed
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Samuel D Rabkin
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
185
|
Safain MG, Roguski M, Kryzanski JT, Weller SJ. A review of the combined medical and surgical management in patients with herpes simplex encephalitis. Clin Neurol Neurosurg 2015; 128:10-6. [DOI: 10.1016/j.clineuro.2014.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 09/29/2014] [Accepted: 10/26/2014] [Indexed: 12/30/2022]
|
186
|
Jeong H, Kim SK. Viral Encephalitis. JOURNAL OF NEUROCRITICAL CARE 2014. [DOI: 10.18700/jnc.2014.7.2.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
187
|
A hair-raising diagnosis: goose bumps as sign of herpes simplex encephalitis. Am J Emerg Med 2014; 33:742.e1-2. [PMID: 25530191 DOI: 10.1016/j.ajem.2014.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 11/18/2014] [Indexed: 11/23/2022] Open
|
188
|
Identifying neural correlates of memory and language disturbances in herpes simplex encephalitis: a voxel-based morphometry (VBM) study. J Neurol 2014; 262:563-9. [DOI: 10.1007/s00415-014-7604-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/23/2014] [Accepted: 12/01/2014] [Indexed: 11/26/2022]
|
189
|
|
190
|
Herpes simplex virus serotype and entry receptor availability alter CNS disease in a mouse model of neonatal HSV. Pediatr Res 2014; 76:528-34. [PMID: 25198371 PMCID: PMC4233006 DOI: 10.1038/pr.2014.135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/09/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Outcomes of neonates with herpes simplex virus (HSV) encephalitis are worse after infection with HSV-2 when compared with HSV-1. The proteins herpes virus entry mediator (HVEM) and nectin-1 mediate HSV entry into susceptible cells. Prior studies have shown receptor-dependent differences in pathogenesis that depend on route of inoculation and host developmental age. METHODS We investigated serotype-related differences in HSV disease and their relationship to entry receptor availability in a mouse model of encephalitis. RESULTS Mortality was attenuated in 7-d-old, wild-type (WT) mice inoculated with HSV-1(F) when compared with HSV-2(333). No serotype-specific differences were seen after inoculation of adult mice. HSV-1 pathogenesis was also attenuated relative to HSV-2 in newborn but not adult mice lacking HVEM or nectin-1. HSV-2 requires nectin-1 for encephalitis in adult but not newborn mice; in contrast, nectin-1 was important for HSV-1 pathogenesis in both age groups. Early viral replication was independent of age, viral serotype, or mouse genotype, suggesting host responses influence outcomes. In this regard, significantly greater amounts of inflammatory mediators were detected in brain homogenates from WT newborns 2 d after infection compared with adults and receptor-knockout newborns. CONCLUSION Dysregulation of inflammatory responses induced by infection may influence the severity of HSV encephalitis.
Collapse
|
191
|
Stupica D, Strle F, Avšič-Županc T, Logar M, Pečavar B, Bajrović FF. Tick borne encephalitis without cerebrospinal fluid pleocytosis. BMC Infect Dis 2014; 14:614. [PMID: 25403498 PMCID: PMC4240899 DOI: 10.1186/s12879-014-0614-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 11/05/2014] [Indexed: 12/11/2022] Open
Abstract
Background Tick borne encephalitis is the most frequent vector-transmitted infectious disease of the central nervous system in Europe and Asia. The disease caused by European subtype of tick borne encephalitis virus has typically a biphasic clinical course with the second phase presenting as meningitis, meningoencephalitis, or meningoencephalomyelitis. Cerebrospinal fluid pleocytosis is considered a condition sine qua non for the diagnosis of neurologic involvement in tick borne encephalitis, which in routine clinical practice is confirmed by demonstration of serum IgM and IgG antibodies to tick borne encephalitis virus. Case presentation Here we present a patient from Slovenia, an area highly endemic for tick borne encephalitis, with encephalitis but without cerebrospinal fluid pleocytosis in whom tick borne encephalitis virus infection of the central nervous system was demonstrated. Conclusion Cerebrospinal fluid pleocytosis is not mandatory in encephalitis caused by tick borne encephalitis virus. In daily clinical practice, in patients with neurologic symptoms/signs compatible with tick borne encephalitis and the risk of exposure to ticks in a tick borne encephalitis endemic region, the search for central nervous system infection with tick borne encephalitis virus is warranted despite the lack of cerebrospinal fluid pleocytosis.
Collapse
Affiliation(s)
- Daša Stupica
- Department of Infectious Diseases, University Medical Center Ljubljana, Japljeva 2, 1525, Ljubljana, Slovenia.
| | - Franc Strle
- Department of Infectious Diseases, University Medical Center Ljubljana, Japljeva 2, 1525, Ljubljana, Slovenia.
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine Ljubljana, Ljubljana, Slovenia.
| | - Mateja Logar
- Department of Infectious Diseases, University Medical Center Ljubljana, Japljeva 2, 1525, Ljubljana, Slovenia.
| | - Blaž Pečavar
- Department of Infectious Diseases, University Medical Center Ljubljana, Japljeva 2, 1525, Ljubljana, Slovenia.
| | - Fajko F Bajrović
- Institute of Pathophysiology, Faculty of Medicine Ljubljana, Zaloška 4, 2211, Ljubljana, Slovenia. .,Department of Neurology, University Medical Center Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
192
|
Animal models of herpes simplex virus immunity and pathogenesis. J Neurovirol 2014; 21:8-23. [PMID: 25388226 DOI: 10.1007/s13365-014-0302-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/07/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022]
Abstract
Herpes simplex viruses are ubiquitous human pathogens represented by two distinct serotypes: herpes simplex virus (HSV) type 1 (HSV-1); and HSV type 2 (HSV-2). In the general population, adult seropositivity rates approach 90% for HSV-1 and 20-25% for HSV-2. These viruses cause significant morbidity, primarily as mucosal membrane lesions in the form of facial cold sores and genital ulcers, with much less common but more severe manifestations causing death from encephalitis. HSV infections in humans are difficult to study in many cases because many primary infections are asymptomatic. Moreover, the neurotropic properties of HSV make it much more difficult to study the immune mechanisms controlling reactivation of latent infection within the corresponding sensory ganglia and crossover into the central nervous system of infected humans. This is because samples from the nervous system can only be routinely obtained at the time of autopsy. Thus, animal models have been developed whose use has led to a better understanding of multiple aspects of HSV biology, molecular biology, pathogenesis, disease, and immunity. The course of HSV infection in a spectrum of animal models depends on important experimental parameters including animal species, age, and genotype; route of infection; and viral serotype, strain, and dose. This review summarizes the animal models most commonly used to study HSV pathogenesis and its establishment, maintenance, and reactivation from latency. It focuses particularly on the immune response to HSV during acute primary infection and the initial invasion of the ganglion with comparisons to the events governing maintenance of viral latency.
Collapse
|
193
|
Kadambari S, Okike I, Ribeiro S, Ramsay ME, Heath PT, Sharland M, Ladhani SN. Seven-fold increase in viral meningo-encephalitis reports in England and Wales during 2004–2013. J Infect 2014; 69:326-32. [DOI: 10.1016/j.jinf.2014.05.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 05/26/2014] [Indexed: 12/26/2022]
|
194
|
George BP, Schneider EB, Venkatesan A. Encephalitis hospitalization rates and inpatient mortality in the United States, 2000-2010. PLoS One 2014; 9:e104169. [PMID: 25192177 PMCID: PMC4156306 DOI: 10.1371/journal.pone.0104169] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/09/2014] [Indexed: 11/19/2022] Open
Abstract
Background Encephalitis rates by etiology and acute-phase outcomes for encephalitis in the 21st century are largely unknown. We sought to evaluate cause-specific rates of encephalitis hospitalizations and predictors of inpatient mortality in the United States. Methods Using the Nationwide Inpatient Sample (NIS) from 2000 to 2010, a retrospective observational study of 238,567 patients (mean [SD] age, 44.8 [24.0] years) hospitalized within non-federal, acute care hospitals in the U.S. with a diagnosis of encephalitis was conducted. Hospitalization rates were calculated using population-level estimates of disease from the NIS and population estimates from the United States Census Bureau. Adjusted odds of mortality were calculated for patients included in the study. Results In the U.S. from 2000–2010, there were 7.3±0.2 encephalitis hospitalizations per 100,000 population (95% CI: 7.1–7.6). Encephalitis hospitalization rates were highest among females (7.6±0.2 per 100,000) and those <1 year and >65 years of age with rates of 13.5±0.9 and 14.1±0.4 per 100,000, respectively. Etiology was unknown for approximately 50% of cases. Among patients with identified etiology, viral causes were most common (48.2%), followed by Other Specified causes (32.5%), which included predominantly autoimmune conditions. The most common infectious agents were herpes simplex virus, toxoplasma, and West Nile virus. Comorbid HIV infection was present in 7.7% of hospitalizations. Average length of stay was 11.2 days with mortality of 5.6%. In regression analysis, patients with comorbid HIV/AIDS or cancer had increased odds of mortality (odds ratio [OR] = 1.70; 95% CI: 1.30–2.22 and OR = 2.26; 95% CI: 1.88–2.71, respectively). Enteroviral, postinfectious, toxic, and Other Specified causes were associated with lower odds vs. herpes simplex encephalitis. Conclusions While encephalitis and encephalitis-related mortality impose a considerable burden in the U.S. in the 21st Century, the reported demographics of hospitalized encephalitis patients may be changing.
Collapse
Affiliation(s)
- Benjamin P. George
- Center for Surgical Trials and Outcomes Research, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Eric B. Schneider
- Center for Surgical Trials and Outcomes Research, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (ES); (AV)
| | - Arun Venkatesan
- Johns Hopkins Encephalitis Center, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (ES); (AV)
| |
Collapse
|
195
|
Synthesis and antiviral activity of new phenylimidazopyridines and N-benzylidenequinolinamines derived by molecular simplification of phenylimidazo[4,5-g]quinolines. Eur J Med Chem 2014; 84:8-16. [DOI: 10.1016/j.ejmech.2014.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/09/2014] [Accepted: 07/03/2014] [Indexed: 02/03/2023]
|
196
|
Herpes simplex virus encephalitis: Clinical manifestations, diagnosis and outcome in 106 adult patients. J Clin Virol 2014; 60:112-8. [DOI: 10.1016/j.jcv.2014.03.010] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/24/2014] [Accepted: 03/15/2014] [Indexed: 11/22/2022]
|
197
|
Boivin N, Menasria R, Piret J, Rivest S, Boivin G. The combination of valacyclovir with an anti-TNF alpha antibody increases survival rate compared to antiviral therapy alone in a murine model of herpes simplex virus encephalitis. Antiviral Res 2014; 100:649-53. [PMID: 24416771 DOI: 10.1016/j.antiviral.2013.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The added benefit of combining valacyclovir (VACV), an antiviral agent, with etanercept (ETA), an anti-tumor necrosis factor alpha (TNF-α) antibody, for the treatment of herpes simplex virus type 1 (HSV-1) encephalitis (HSE) was evaluated in a mouse model. BALB/c mice were infected intranasally with 1.85 × 104 plaque forming units of HSV-1. Groups of mice received a single intraperitoneal injection of vehicle or ETA (400 μg/mouse) on day 3 post-infection combined or not with VACV (1 mg/ml of drinking water) from days 3 to 21 post-infection. On day 5 post-infection, groups of mice were sacrificed for determination of viral DNA load, detection of ETA in brain homogenates and for in situ hybridization. The survival rate of mice was significantly increased when VACV was administered in combination with ETA (38.5% for VACV vs 78.6% for combined treatment; P = 0.04) although VACV or ETA alone had no significant effect compared to the vehicle. The benefit of combined therapy was still present when treatment was delayed until day 4 post-infection. The viral DNA load was significantly reduced in mice treated with VACV alone (P < 0.01) or combined with ETA (P < 0.05) compared to the uninfected group whereas ETA alone had no effect. These results reinforce the notion that both virus-induced and immune-related mechanisms participate in the pathogenesis of HSE and suggest that potent antiviral agent could be combined with immune-based therapy, such as a TNF-α inhibitor, to improve prognosis of HSE.
Collapse
Affiliation(s)
- Nicolas Boivin
- Research Centers in Infectious Diseases CHUQ-CHUL and Laval University, Quebec City, QC, Canada
| | - Rafik Menasria
- Research Centers in Infectious Diseases CHUQ-CHUL and Laval University, Quebec City, QC, Canada
| | - Jocelyne Piret
- Research Centers in Infectious Diseases CHUQ-CHUL and Laval University, Quebec City, QC, Canada
| | - Serge Rivest
- Research Centers in Infectious Diseases CHUQ-CHUL and Laval University, Quebec City, QC, Canada
| | - Guy Boivin
- Research Centers in Infectious Diseases CHUQ-CHUL and Laval University, Quebec City, QC, Canada.
| |
Collapse
|
198
|
Abstract
While systemic viral infections are exceptionally common, symptomatic viral infections of the brain parenchyma itself are very rare, but a serious neurologic condition. It is estimated that viral encephalitis occurs at a rate of 1.4 cases per 100.000 inhabitants. Geography is a major determinant of encephalitis caused by vector-borne pathogens. A diagnosis of viral encephalitis could be a challenge to the clinician, since almost 70% of viral encephalitis cases are left without an etiologic agent identified. In this review, the most common viral encephalitis will be discussed, with focus on ecology, diagnosis, and clinical management.
Collapse
|
199
|
Rabadi MH. Confusion secondary to herpes simplex infection. J Gen Intern Med 2014; 29:538-9. [PMID: 24022253 PMCID: PMC3930787 DOI: 10.1007/s11606-013-2601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/15/2013] [Accepted: 08/15/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Meheroz H Rabadi
- Veterans Affairs Medical Center, 921 NE 13th Street, Oklahoma City, OK, 73104, USA,
| |
Collapse
|
200
|
Bello-Morales R, Crespillo AJ, García B, Dorado LÁ, Martín B, Tabarés E, Krummenacher C, de Castro F, López-Guerrero JA. The effect of cellular differentiation on HSV-1 infection of oligodendrocytic cells. PLoS One 2014; 9:e89141. [PMID: 24551233 PMCID: PMC3923881 DOI: 10.1371/journal.pone.0089141] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/14/2014] [Indexed: 01/23/2023] Open
Abstract
Herpes simplex type 1 (HSV-1) is a neurotropic virus that infects many types of cells. Previous studies have demonstrated that oligodendrocytic cells are highly susceptible to HSV-1 infection. Here we analysed HSV-1 infection of a human oligodendrocytic cell line, HOG, and oligodendrocyte precursor cells (OPCs) cultured under growth or differentiation conditions. In addition to cell susceptibility, the role of the major cell receptors for viral entry was assessed. Our results revealed that OPCs and HOG cells cultured under differentiation conditions became more susceptible to HSV-1. On the other hand, viral infection induced morphological changes corresponding to differentiated cells, suggesting that HSV-1 might be inducing cell differentiation. We also observed colocalization of HVEM and nectin-1 with viral particles, suggesting that these two major HSV-1 receptors are functional in HOG cells. Finally, electron microscopy assays indicated that HSV-1 may be also entering OLs by macropinocytosis depending on their differentiation stage. In addition, vesicles containing intracellular enveloped virions observed in differentiated cells point to an endocytic mechanism of virus entry. All these data are indicative of diverse entry pathways dependent on the maturation stage of OLs.
Collapse
Affiliation(s)
- Raquel Bello-Morales
- Universidad Autónoma de Madrid, Departamento de Biología Molecular, Edificio de Biología, Darwin 2, Cantoblanco, Madrid, Spain
| | | | - Beatriz García
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Luis Ángel Dorado
- Universidad Autónoma de Madrid, Departamento de Biología Molecular, Edificio de Biología, Darwin 2, Cantoblanco, Madrid, Spain
| | - Beatriz Martín
- Universidad Autónoma de Madrid, Facultad de Medicina, Madrid, Spain
| | - Enrique Tabarés
- Universidad Autónoma de Madrid, Facultad de Medicina, Madrid, Spain
| | - Claude Krummenacher
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia Pennsylvania, United States of America
| | - Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Toledo, Spain
| | | |
Collapse
|