151
|
Cardoso ACF, Andrade LNDS, Bustos SO, Chammas R. Galectin-3 Determines Tumor Cell Adaptive Strategies in Stressed Tumor Microenvironments. Front Oncol 2016; 6:127. [PMID: 27242966 PMCID: PMC4876484 DOI: 10.3389/fonc.2016.00127] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/10/2016] [Indexed: 01/25/2023] Open
Abstract
Galectin-3 is a member of the β-galactoside-binding lectin family, whose expression is often dysregulated in cancers. While galectin-3 is usually an intracellular protein found in the nucleus and in the cytoplasm, under certain conditions, galectin-3 can be secreted by an yet unknown mechanism. Under stressing conditions (e.g., hypoxia and nutrient deprivation) galectin-3 is upregulated, through the activity of transcription factors, such as HIF-1α and NF-κB. Here, we review evidence that indicates a positive role for galectin-3 in MAPK family signal transduction, leading to cell proliferation and cell survival. Galectin-3 serves as a scaffold protein, which favors the spatial organization of signaling proteins as K-RAS. Upon secretion, extracellular galectin-3 interacts with a variety of cell surface glycoproteins, such as growth factor receptors, integrins, cadherins, and members of the Notch family, among other glycoproteins, besides different extracellular matrix molecules. Through its ability to oligomerize, galectin-3 forms lectin lattices that act as scaffolds that sustain the spatial organization of signaling receptors on the cell surface, dictating its maintenance on the plasma membrane or their endocytosis. Galectin-3 induces tumor cell, endothelial cell, and leukocyte migration, favoring either the exit of tumor cells from a stressed microenvironment or the entry of endothelial cells and leukocytes, such as monocytes/macrophages into the tumor organoid. Therefore, galectin-3 plays homeostatic roles in tumors, as (i) it favors tumor cell adaptation for survival in stressed conditions; (ii) upon secretion, galectin-3 induces tumor cell detachment and migration; and (iii) it attracts monocyte/macrophage and endothelial cells to the tumor mass, inducing both directly and indirectly the process of angiogenesis. The two latter activities are potentially targetable, and specific interventions may be designed to counteract the protumoral role of extracellular galectin-3.
Collapse
Affiliation(s)
- Ana Carolina Ferreira Cardoso
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Universidade de São Paulo , São Paulo , Brasil
| | - Luciana Nogueira de Sousa Andrade
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Universidade de São Paulo , São Paulo , Brasil
| | - Silvina Odete Bustos
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Universidade de São Paulo , São Paulo , Brasil
| | - Roger Chammas
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Universidade de São Paulo , São Paulo , Brasil
| |
Collapse
|
152
|
Lambropoulou M, Deftereou TE, Kynigopoulos S, Patsias A, Anagnostopoulos C, Alexiadis G, Kotini A, Tsaroucha A, Nikolaidou C, Kiziridou A, Papadopoulos N, Chatzaki E. Co-expression of galectin-3 and CRIP-1 in endometrial cancer: prognostic value and patient survival. Med Oncol 2015; 33:8. [PMID: 26708131 DOI: 10.1007/s12032-015-0723-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 12/29/2022]
Abstract
Endometrial cancer is the sixth most common cancer in women. Galectin-3 (GAL-3) and CRIP-1 are multifunctional proteins which seem to be involved in many neoplasias. This study aims to point out correlations between clinicopathological findings and endometrial cancer patient survival to GAL-3 and CRIP-1 expression in order to enfold their diagnostic/prognostic potential. Tissues from 46 patients diagnosed with endometrial cancer were studied by immunohistochemistry, using monoclonal antibodies for GAL-3 and CRIP-1, and expression levels were correlated with clinicopathological findings and survival. Analysis was performed at single protein level or as co-expression. High expression of GAL-3 and CRIP-1 was independently associated with tumor depth and histological grade, respectively. Also, there was a significant correlation between high co-expression of the two proteins and the histological grade (aOR 2.66), the tumor depth (aOR 0.32) and the histological type (aOR 1.32), but not with the patients' age. Moreover, high expression of both proteins was observed in patients with shorter survival times. Interestingly, the co-expression of the two proteins exhibited some degree of monotony (Spearman's ρ = 0.768), indicating a common molecular pathway. This study provides evidence for a prognostic clinical potential of the combined study of GAL-3 and CRIP-1 in endometrial cancer. These factors are poorly studied in endometrium, and their role in the carcinogenetic process and on effective therapy awaits further elucidation.
Collapse
Affiliation(s)
- Maria Lambropoulou
- Laboratories of Histology-Embryology, School of Medicine, Democritus University of Thrace, Dragana, 68 100, Alexandroupolis, Greece.
| | - Theodora-Eleftheria Deftereou
- Laboratories of Histology-Embryology, School of Medicine, Democritus University of Thrace, Dragana, 68 100, Alexandroupolis, Greece
| | - Sryridon Kynigopoulos
- Laboratories of Histology-Embryology, School of Medicine, Democritus University of Thrace, Dragana, 68 100, Alexandroupolis, Greece
| | - Anargyros Patsias
- Laboratories of Histology-Embryology, School of Medicine, Democritus University of Thrace, Dragana, 68 100, Alexandroupolis, Greece
| | - Constantinos Anagnostopoulos
- Laboratories of Biochemistry, School of Medicine, Democritus University of Thrace, 68 100, Alexandroupolis, Greece
| | - Georgios Alexiadis
- Private Radiodiagnostic Center of Alexandroupolis, Theagenio Anticancer Hospital, Thessaloniki, Greece
| | - Athanasia Kotini
- Laboratories of Medical Physics, School of Medicine, Democritus University of Thrace, 68 100, Alexandroupolis, Greece
| | - Alexandra Tsaroucha
- Laboratories of Department of Surgery, School of Medicine, Democritus University of Thrace, 68 100, Alexandroupolis, Greece
| | - Christina Nikolaidou
- Laboratories of Histology-Embryology, School of Medicine, Democritus University of Thrace, Dragana, 68 100, Alexandroupolis, Greece
| | | | - Nikolaos Papadopoulos
- Laboratories of Histology-Embryology, School of Medicine, Democritus University of Thrace, Dragana, 68 100, Alexandroupolis, Greece
| | - Ekaterini Chatzaki
- Laboratories of Pharmacology, School of Medicine, Democritus University of Thrace, 68 100, Alexandroupolis, Greece
| |
Collapse
|