151
|
Rojas A, Jiang J, Ganesh T, Yang MS, Lelutiu N, Gueorguieva P, Dingledine R. Cyclooxygenase-2 in epilepsy. Epilepsia 2013; 55:17-25. [PMID: 24446952 DOI: 10.1111/epi.12461] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2013] [Indexed: 12/14/2022]
Abstract
Epilepsy is one of the more prevalent neurologic disorders in the world, affecting approximately 50 million people of different ages and backgrounds. Epileptic seizures propagating through both lobes of the forebrain can have permanent debilitating effects on a patient's cognitive and somatosensory brain functions. Epilepsy, defined by the sporadic occurrence of spontaneous recurrent seizures (SRS), is often accompanied by inflammation of the brain. Pronounced increases in the expression of key inflammatory mediators (e.g., interleukin -1β [IL-1β], tumor necrosis factor alpha [TNFα], cyclooxygenase-2 [COX-2], and C-X-C motif chemokine 10 [CXCL10]) after seizures may cause secondary damage in the brain and increase the likelihood of repetitive seizures. The COX-2 enzyme is induced rapidly during seizures. The increased level of COX-2 in specific areas of the epileptic brain can help to identify regions of seizure-induced brain inflammation. A good deal of effort has been expended to determine whether COX-2 inhibition might be neuroprotective and represent an adjunct therapeutic strategy along with antiepileptic drugs used to treat epilepsy. However, the effectiveness of COX-2 inhibitors on epilepsy animal models appears to depend on the timing of administration. With all of the effort placed on making use of COX-2 inhibitors as therapeutic agents for the treatment of epilepsy, inflammation, and neurodegenerative diseases there has yet to be a selective and potent COX-2 inhibitor that has shown a clear therapeutic outcome with acceptable side effects.
Collapse
Affiliation(s)
- Asheebo Rojas
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, U.S.A
| | | | | | | | | | | | | |
Collapse
|
152
|
van Leyen K. Lipoxygenase: an emerging target for stroke therapy. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2013; 12:191-9. [PMID: 23394536 DOI: 10.2174/18715273112119990053] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 08/08/2012] [Accepted: 08/21/2012] [Indexed: 02/06/2023]
Abstract
Neuroprotection as approach to stroke therapy has recently seen a revival of sorts, fueled in part by the continuing necessity to improve acute stroke care, and in part by the identification of novel drug targets. 12/15- Lipoxygenase (12/15-LOX), one of the key enzymes of the arachidonic acid cascade, contributes to both neuronal cell death and vascular injury. Inhibition of 12/15-LOX may thus provide multifactorial protection against ischemic injury. Targeting 12/15-LOX and related eicosanoid pathways is the subject of this brief review.
Collapse
Affiliation(s)
- Klaus van Leyen
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital, 149 13th St., R. 2401, Charlestown, MA 02129, USA.
| |
Collapse
|
153
|
7b, a novel naphthalimide derivative, exhibited anti-inflammatory effects via targeted-inhibiting TAK1 following down-regulation of ERK1/2- and p38 MAPK-mediated activation of NF-κB in LPS-stimulated RAW264.7 macrophages. Int Immunopharmacol 2013; 17:216-28. [DOI: 10.1016/j.intimp.2013.06.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 05/24/2013] [Accepted: 06/04/2013] [Indexed: 01/05/2023]
|
154
|
Orr SK, Palumbo S, Bosetti F, Mount HT, Kang JX, Greenwood CE, Ma DWL, Serhan CN, Bazinet RP. Unesterified docosahexaenoic acid is protective in neuroinflammation. J Neurochem 2013; 127:378-93. [PMID: 23919613 DOI: 10.1111/jnc.12392] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/03/2013] [Accepted: 07/08/2013] [Indexed: 12/14/2022]
Abstract
Docosahexaenoic acid (22:6n-3) is the major brain n-3 polyunsaturated fatty acid and it is possible that docosahexaenoic acid is anti-inflammatory in the brain as it is known to be in other tissues. Using a combination of models including the fat-1 transgenic mouse, chronic dietary n-3 polyunsaturated fatty acid modulation in transgenic and wild-type mice, and acute direct brain infusion, we demonstrated that unesterified docosahexaenoic acid attenuates neuroinflammation initiated by intracerebroventricular lipopolysaccharide. Hippocampal neuroinflammation was assessed by gene expression and immunohistochemistry. Furthermore, docosahexaenoic acid protected against lipopolysaccharide-induced neuronal loss. Acute intracerebroventricular infusion of unesterified docosahexaenoic acid or its 12/15-lipoxygenase product and precursor to protectins and resolvins, 17S-hydroperoxy-docosahexaenoic acid, mimics anti-neuroinflammatory aspects of chronically increased unesterified docosahexaenoic acid. LC-MS/MS revealed that neuroprotectin D1 and several other docosahexaenoic acid-derived specialized pro-resolving mediators are present in the hippocampus. Acute intracerebroventricular infusion of 17S-hydroperoxy-docosahexaenoic acid increases hippocampal neuroprotectin D1 levels concomitant to attenuating neuroinflammation. These results show that unesterified docosahexaenoic acid is protective in a lipopolysaccharide-initiated mouse model of acute neuroinflammation, at least in part, via its conversion to specialized pro-resolving mediators; these docosahexaenoic acid stores may provide novel targets for the prevention and treatment(s) of neurological disorders with a neuroinflammatory component. Our study shows that chronically increased brain unesterified DHA levels, but not solely phospholipid DHA levels, attenuate neuroinflammation. Similar attenuations occur with acute increases in brain unesterified DHA or 17S-HpDHA levels, highlighting the importance of an available pool of precursor unesterified DHA for the production of enzymatically derived specialized pro-resolving mediators that are critical in the regulation of neuroinflammation.
Collapse
Affiliation(s)
- Sarah K Orr
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Hermann PM, Park D, Beaulieu E, Wildering WC. Evidence for inflammation-mediated memory dysfunction in gastropods: putative PLA2 and COX inhibitors abolish long-term memory failure induced by systemic immune challenges. BMC Neurosci 2013; 14:83. [PMID: 23915010 PMCID: PMC3750374 DOI: 10.1186/1471-2202-14-83] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/02/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Previous studies associate lipid peroxidation with long-term memory (LTM) failure in a gastropod model (Lymnaea stagnalis) of associative learning and memory. This process involves activation of Phospholipase A2 (PLA2), an enzyme mediating the release of fatty acids such as arachidonic acid that form the precursor for a variety of pro-inflammatory lipid metabolites. This study investigated the effect of biologically realistic challenges of L. stagnalis host defense response system on LTM function and potential involvement of PLA2, COX and LOX therein. RESULTS Systemic immune challenges by means of β-glucan laminarin injections induced elevated H2O2 release from L. stagnalis circulatory immune cells within 3 hrs of treatment. This effect dissipated within 24 hrs after treatment. Laminarin exposure has no direct effect on neuronal activity. Laminarin injections disrupted LTM formation if training followed within 1 hr after injection but had no behavioural impact if training started 24 hrs after treatment. Intermediate term memory was not affected by laminarin injection. Chemosensory and motor functions underpinning the feeding response involved in this learning model were not affected by laminarin injection. Laminarin's suppression of LTM induction was reversed by treatment with aristolochic acid, a PLA2 inhibitor, or indomethacin, a putative COX inhibitor, but not by treatment with nordihydro-guaiaretic acid, a putative LOX inhibitor. CONCLUSIONS A systemic immune challenge administered shortly before behavioural training impairs associative LTM function in our model that can be countered with putative inhibitors of PLA2 and COX, but not LOX. As such, this study establishes a mechanistic link between the state of activity of this gastropod's innate immune system and higher order nervous system function. Our findings underwrite the rapidly expanding view of neuroinflammatory processes as a fundamental, evolutionary conserved cause of cognitive and other nervous system disorders.
Collapse
Affiliation(s)
- Petra M Hermann
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | | | | |
Collapse
|
156
|
Keller WR, Kum LM, Wehring HJ, Koola MM, Buchanan RW, Kelly DL. A review of anti-inflammatory agents for symptoms of schizophrenia. J Psychopharmacol 2013; 27:337-42. [PMID: 23151612 PMCID: PMC3641824 DOI: 10.1177/0269881112467089] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Schizophrenia is a chronic debilitating mental disorder that affects about 1% of the US population. The pathophysiology and etiology remain unknown, thus new treatment targets have been challenging and few novel treatments with new mechanisms of action have come to market in the past few decades. Increasing attention has been paid to the role of inflammation in schizophrenia and new data suggests that decreasing inflammation and inflammatory biomarkers may play some role in schizophrenia treatment. This review summarizes the clinical trial literature regarding medications that possess anti-inflammatory properties that have been tested for schizophrenia symptoms and covers such medications as non-steroidal anti-inflammatory agents, such as the cyclo-oxygenase-2 (COX-2) inhibitors and aspirin, omega-3 fatty acids, neurosteroids and minocycline. Overall, there is accumulating evidence, albeit mostly adjunctive treatments, that agents working on inflammatory pathways have some benefits in people with schizophrenia. In the next few years the field will begin to see data on many treatments with anti-inflammatory properties that are currently under study. Hopefully advancements in understanding inflammation and effective treatments having anti-inflammatory properties may help revolutionize our understanding and provide new targets for prevention and treatment in schizophrenia.
Collapse
Affiliation(s)
- William R Keller
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | | | | | | | | | | |
Collapse
|
157
|
Jin ML, Park SY, Kim YH, Park G, Lee SJ. Acanthopanax senticosus exerts neuroprotective effects through HO-1 signaling in hippocampal and microglial cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 35:335-346. [PMID: 23395777 DOI: 10.1016/j.etap.2013.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 12/27/2012] [Accepted: 01/02/2013] [Indexed: 06/01/2023]
Abstract
Extracts of Acanthopanax senticosus, a traditional herb commonly found in Northeastern Asia, are used for treating neurodegenerative disorders such as ischemia and depression. However, the mechanisms of its neuroinflammatory and cytoprotective effects have not been investigated. We examined the mechanism of A. senticosus activity in anti-neuroinflammatory and neuroprotective processes. HO-1 is an inducible enzyme present in most cell lines. ASE increased HO-1 expression, which reduced LPS-induced nitric oxide/ROS production in BV2 cells. Moreover, the induction of HO-1 expression protected cells against glutamate-induced neuronal cell death. Activation of the p38-CREB pathway and translocation of Nrf2 are strongly involved in ASE-induced HO-1 expression. Our results showed that ASE-induced HO-1 expression through the p38-CREB pathway plays an important role in the generation of anti-neuroinflammatory and neuroprotective responses. ASE also increases the translocation of Nrf2 to regulate HO-1 expression. Furthermore, our results indicate that ASE serves as a potential therapeutic agent for neuronal disorders.
Collapse
Affiliation(s)
- Mei Ling Jin
- Department of Microbiology, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | |
Collapse
|
158
|
Orr SK, Trépanier MO, Bazinet RP. n-3 Polyunsaturated fatty acids in animal models with neuroinflammation. Prostaglandins Leukot Essent Fatty Acids 2013; 88:97-103. [PMID: 22770766 DOI: 10.1016/j.plefa.2012.05.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/16/2012] [Accepted: 05/18/2012] [Indexed: 11/24/2022]
Abstract
Neuroinflammation is present in the majority of acute and chronic neurological disorders. Excess or prolonged inflammation in the brain is thought to exacerbate neuronal damage and loss. Identifying modulators of neuroinflammation is an active area of study since it may lead to novel therapies. Omega-3 polyunsaturated fatty acids (n-3 PUFA) are anti-inflammatory in many non-neural tissues; their role in neuroinflammation is less studied. This review summarizes the relationship between n-3 PUFA and brain inflammation in animal models of brain injury and aging. Evidence by and large shows protective effects of n-3 PUFA in models of sickness behavior, stroke, aging, depression, Parkinson's disease, diabetes, and cytokine- and irradiation-induced cognitive impairments. However, rigorous studies that test the direct effects of n-3 PUFA in neuroinflammation in vivo are lacking. Future research in this area is necessary to determine if, and if so which, n-3 PUFA directly target brain inflammatory pathways. n-3 PUFA bioactive metabolites may provide novel therapeutic targets for neurological disorders with a neuroinflammatory component.
Collapse
Affiliation(s)
- Sarah K Orr
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2
| | | | | |
Collapse
|
159
|
Maes M. Targeting cyclooxygenase-2 in depression is not a viable therapeutic approach and may even aggravate the pathophysiology underpinning depression. Metab Brain Dis 2012; 27:405-13. [PMID: 22773310 DOI: 10.1007/s11011-012-9326-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/26/2012] [Indexed: 01/25/2023]
Abstract
Depression is a complex progressive disorder accompanied by activation of inflammatory and Th-1 driven pathways, oxidative and nitrosative stress (O&NS), lowered antioxidant levels, mitochondrial dysfunctions, neuroprogression and increased bacterial translocation. In depression, activation of immuno-inflammatory pathways is associated with an increased risk for cardio-vascular disorder (CVD). Because of the inflammatory component, the use of cyclooxygenase 2 (COX-2) inhibitors, such as celecoxib, has been advocated to treat depression. Electronic databases, i.e. PUBMED, Scopus and Google Scholar were used as sources for this selective review on the effects of COX-2 inhibitors aggravating the abovementioned pathways. COX-2 inhibitors may induce neuroinflammation, exacerbate Th1 driven responses, increase lipid peroxidation, decrease the levels of key antioxidants, damage mitochondria and aggravate neuroprogression. COX-2 inhibitors may aggravate bacterial translocation and CVD through Th1-driven mechanisms. COX-2 inhibitors may aggravate the pathophysiology of depression. Since Th1 and O&NS pathways are risk factors for CVD, the use of COX-2 inhibitors may further aggravate the increased risk for CVD in depression. Selectively targeting COX-2 may not be a viable therapeutic approach to treat depression. Multi-targeting of the different pathways that play a role in depression is more likely to yield good treatment results.
Collapse
Affiliation(s)
- Michael Maes
- Maes Clinics @ TRIA, Piyavate Hospital 998 Rimklongsamsen Road, Bangkok, 10310, Thailand.
| |
Collapse
|
160
|
Mulvihill MM, Nomura DK. Therapeutic potential of monoacylglycerol lipase inhibitors. Life Sci 2012; 92:492-7. [PMID: 23142242 DOI: 10.1016/j.lfs.2012.10.025] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 10/17/2012] [Accepted: 10/23/2012] [Indexed: 01/12/2023]
Abstract
Marijuana and aspirin have been used for millennia to treat a wide range of maladies including pain and inflammation. Both cannabinoids, like marijuana, that exert anti-inflammatory action through stimulating cannabinoid receptors, and cyclooxygenase (COX) inhibitors, like aspirin, that suppress pro-inflammatory eicosanoid production have shown beneficial outcomes in mouse models of neurodegenerative diseases and cancer. Both cannabinoids and COX inhibitors, however, have untoward effects that discourage their chronic usage, including cognitive deficits and gastrointestinal toxicity, respectively. Recent studies have uncovered that the serine hydrolase monoacylglycerol lipase (MAGL) links the endocannabinoid and eicosanoid systems together through hydrolysis of the endocannabinoid 2-arachidonoylglycerol (2-AG) to provide the major arachidonic acid (AA) precursor pools for pro-inflammatory eicosanoid synthesis in specific tissues. Studies in recent years have shown that MAGL inhibitors elicit anti-nociceptive, anxiolytic, and anti-emetic responses and attenuate precipitated withdrawal symptoms in addiction paradigms through enhancing endocannabinoid signaling. MAGL inhibitors have also been shown to exert anti-inflammatory action in the brain and protect against neurodegeneration through lowering eicosanoid production. In cancer, MAGL inhibitors have been shown to have anti-cancer properties not only through modulating the endocannabinoid-eicosanoid network, but also by controlling fatty acid release for the synthesis of protumorigenic signaling lipids. Thus, MAGL serves as a critical node in simultaneously coordinating multiple lipid signaling pathways in both physiological and disease contexts. This review will discuss the diverse (patho)physiological roles of MAGL and the therapeutic potential of MAGL inhibitors in treating a vast array of complex human diseases.
Collapse
Affiliation(s)
- Melinda M Mulvihill
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, 127 Morgan Hall, Berkeley, CA 94720, USA
| | | |
Collapse
|
161
|
Lee JS, Song JH, Sohn NW, Shin JW. Inhibitory Effects of Ginsenoside Rb1 on Neuroinflammation Following Systemic Lipopolysaccharide Treatment in Mice. Phytother Res 2012; 27:1270-6. [DOI: 10.1002/ptr.4852] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/29/2012] [Accepted: 09/02/2012] [Indexed: 12/26/2022]
Affiliation(s)
- Joon-Suk Lee
- Department of Oriental Medical Science, Graduate School of East-west Medical Science; Kyung Hee University; Yongin; 446-701; South Korea
| | | | | | | |
Collapse
|
162
|
Celecoxib enhances the effect of reboxetine and fluoxetine on cortical noradrenaline and serotonin output in the rat. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39:143-8. [PMID: 22691715 DOI: 10.1016/j.pnpbp.2012.06.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/24/2012] [Accepted: 06/03/2012] [Indexed: 12/21/2022]
Abstract
A substantial number of patients with major depressive disorder (MDD) do not respond adequately to current antidepressant pharmacological treatments, which are all more or less based on a gradually increased enhancement of monoaminergic neurotransmission. Although a functional deficiency in monoaminergic neurotransmission may contribute to MDD, the etiology and pathophysiology are far from clarified. Recent studies suggest that inflammatory processes may contribute, since increased levels of pro-inflammatory cytokines and prostaglandin E(2) (PGE(2)) have repeatedly been observed in a subset of patients suffering from MDD. Interestingly, adjunct treatment with the anti-inflammatory drug celecoxib, a cyclo-oxygenase-2 (COX-2) inhibitor which blocks the PGE(2)-production, has shown to enhance the efficacy of both reboxetine, a selective noradrenaline reuptake inhibitor, as well as fluoxetine, a selective serotonin reuptake inhibitor, in treatment-resistant depression. To examine the neurobiological underpinnings to the clinical observations, we here studied the acute effects of a combined treatment with celecoxib and reboxetine on noradrenaline and dopamine output, as well as celecoxib and fluoxetine on 5-HT output in the medial prefrontal cortex, using in vivo microdialysis in awake freely moving rats. Celecoxib significantly potentiated the effects of reboxetine and fluoxetine on cortical noradrenaline and 5-HT output, respectively, but not the reboxetine-induced dopamine output. Moreover, celecoxib, when given alone, enhanced 5-HT output. These findings provide, in principle, novel experimental support for the clinical utility of combined treatment with antidepressant and anti-inflammatory drugs, such as COX-2 inhibitors, in MDD.
Collapse
|
163
|
Piro JR, Benjamin DI, Duerr JM, Pi Y, Gonzales C, Wood KM, Schwartz JW, Nomura DK, Samad TA. A dysregulated endocannabinoid-eicosanoid network supports pathogenesis in a mouse model of Alzheimer's disease. Cell Rep 2012; 1:617-23. [PMID: 22813736 DOI: 10.1016/j.celrep.2012.05.001] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/07/2012] [Accepted: 05/02/2012] [Indexed: 12/29/2022] Open
Abstract
Although inflammation in the brain is meant as a defense mechanism against neurotoxic stimuli, increasing evidence suggests that uncontrolled, chronic, and persistent inflammation contributes to neurodegeneration. Most neurodegenerative diseases have now been associated with chronic inflammation, including Alzheimer's disease (AD). Whether anti-inflammatory approaches can be used to treat AD, however, is a major unanswered question. We recently demonstrated that monoacylglycerol lipase (MAGL) hydrolyzes endocannabinoids to generate the primary arachidonic acid pool for neuroinflammatory prostaglandins. In this study, we show that genetic inactivation of MAGL attenuates neuroinflammation and lowers amyloid β levels and plaques in an AD mouse model. We also find that pharmacological blockade of MAGL recapitulates the cytokine-lowering effects through reduced prostaglandin production, rather than enhanced endocannabinoid signaling. Our findings thus reveal a role of MAGL in modulating neuroinflammation and amyloidosis in AD etiology and put forth MAGL inhibitors as a potential next-generation strategy for combating AD.
Collapse
Affiliation(s)
- Justin R Piro
- Neuroscience Research Unit, Pfizer Global Research and Development, Groton, CT 06340, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Amirhamzeh A, Vosoughi M, Shafiee A, Amini M. Synthesis and docking study of diaryl-isothiazole and 1,2,3-thiadiazole derivatives as potential neuroprotective agents. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0124-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
165
|
Liedtke AJ, Crews BC, Daniel CM, Blobaum AL, Kingsley PJ, Ghebreselasie K, Marnett LJ. Cyclooxygenase-1-selective inhibitors based on the (E)-2'-des-methyl-sulindac sulfide scaffold. J Med Chem 2012; 55:2287-300. [PMID: 22263894 PMCID: PMC3297362 DOI: 10.1021/jm201528b] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Prostaglandins (PGs) are powerful lipid mediators in many physiological and pathophysiological responses. They are produced by oxidation of arachidonic acid (AA) by cyclooxygenases (COX-1 and COX-2) followed by metabolism of endoperoxide intermediates by terminal PG synthases. PG biosynthesis is inhibited by nonsteroidal anti-inflammatory drugs (NSAIDs). Specific inhibition of COX-2 has been extensively investigated, but relatively few COX-1-selective inhibitors have been described. Recent reports of a possible contribution of COX-1 in analgesia, neuroinflammation, or carcinogenesis suggest that COX-1 is a potential therapeutic target. We designed, synthesized, and evaluated a series of (E)-2'-des-methyl-sulindac sulfide (E-DMSS) analogues for inhibition of COX-1. Several potent and selective inhibitors were discovered, and the most promising compounds were active against COX-1 in intact ovarian carcinoma cells (OVCAR-3). The compounds inhibited tumor cell proliferation but only at concentrations >100-fold higher than the concentrations that inhibit COX-1 activity. E-DMSS analogues may be useful probes of COX-1 biology in vivo and promising leads for COX-1-targeted therapeutic agents.
Collapse
Affiliation(s)
- Andy J Liedtke
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Department of Biochemistry, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
166
|
Khansari PS, Coyne L. NSAIDs in the treatment and/or prevention of neurological disorders. Inflammopharmacology 2012; 20:159-67. [DOI: 10.1007/s10787-011-0116-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 12/21/2011] [Indexed: 12/26/2022]
|
167
|
Anti-neuroinflammatory effects of the extract of Achillea fragrantissima. Altern Ther Health Med 2011; 11:98. [PMID: 22018032 PMCID: PMC3213061 DOI: 10.1186/1472-6882-11-98] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 10/21/2011] [Indexed: 01/20/2023]
Abstract
BACKGROUND The neuroinflammatory process plays a central role in the initiation and progression of neurodegenerative diseases such as Parkinson's and Alzheimer's diseases, and involves the activation of brain microglial cells. During the neuroinflammatory process, microglial cells release proinflammatory mediators such as cytokines, matrix metalloproteinases (MMP), Reactive oxygen species (ROS) and nitric oxide (NO). In the present study, extracts from 66 different desert plants were tested for their effect on lipopolysaccharide (LPS) - induced production of NO by primary microglial cells. The extract of Achillea fragrantissima (Af), which is a desert plant that has been used for many years in traditional medicine for the treatment of various diseases, was the most efficient extract, and was further studied for additional anti-neuroinflammatory effects in these cells. METHODS In the present study, the ethanolic extract prepared from Af was tested for its anti-inflammatory effects on lipopolysaccharide (LPS)-activated primary cultures of brain microglial cells. The levels of the proinflammatory cytokines interleukin1β (IL-1β) and tumor necrosis factor-α (TNFα) secreted by the cells were determined by reverse transcriptase-PCR and Enzyme-linked immunosorbent assay (ELISA), respectively. NO levels secreted by the activate cells were measured using Griess reagent, ROS levels were measured by 2'7'-dichlorofluorescein diacetate (DCF-DA), MMP-9 activity was measured using gel zymography, and the protein levels of the proinflammatory enzymes cyclooxygenase-2 (COX-2) and induced nitric oxide synthase (iNOS) were measured by Western blot analysis. Cell viability was assessed using Lactate dehydrogenase (LDH) activity in the media conditioned by the cells or by the crystal violet cell staining. RESULTS We have found that out of the 66 desert plants tested, the extract of Af was the most efficient extract and inhibited ~70% of the NO produced by the LPS-activated microglial cells, without affecting cell viability. In addition, this extract inhibited the LPS - elicited expression of the proinflammatory mediators IL-1β, TNFα, MMP-9, COX-2 and iNOS in these cells. CONCLUSIONS Thus, phytochemicals present in the Af extract could be beneficial in preventing/treating neurodegenerative diseases in which neuroinflammation is part of the pathophysiology.
Collapse
|
168
|
Russo I, Amornphimoltham P, Weigert R, Barlati S, Bosetti F. Cyclooxygenase-1 is involved in the inhibition of hippocampal neurogenesis after lipopolysaccharide-induced neuroinflammation. Cell Cycle 2011; 10:2568-73. [PMID: 21694498 DOI: 10.4161/cc.10.15.15946] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Growing evidence indicates that neuroinflammation can alter adult neurogenesis by mechanisms as yet unclear. We have previously demonstrated that the neuroinflammatory response and neuronal damage after lipopolysaccharide (LPS) injection is reduced in cyclooxygenase-1 deficient (COX-1(-/-)) mice. In this study, we investigated the role of COX-1 on hippocampal neurogenesis during LPS-induced neuroinflammation, using COX-1(-/-) and wild type (WT) mice. We found that LPS-induced neuroinflammation resulted in the decrease of proliferation, survival and differentiation of hippocampal progenitor cells in WT but not in COX-1(-/-) mice. Thus, we demonstrate for the first time that COX-1 is involved in the inhibition of BrdU progenitor cells in proliferation and hippocampal neurogenesis after LPS. These results suggest that COX-1 may represent a viable therapeutic target to reduce neuroinflammation and promote neurogenesis in neurodegenerative diseases with a strong inflammatory component.
Collapse
Affiliation(s)
- Isabella Russo
- Molecular Neuroscience Unit, Brain Physiology and Metabolism Section, National Institute on Aging, NIH, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|