Weinand C, Gupta R, Huang AY, Weinberg E, Madisch I, Qudsi RA, Neville CM, Pomerantseva I, Vacanti JP. Comparison of Hydrogels in theIn VivoFormation of Tissue-Engineered Bone Using Mesenchymal Stem Cells and Beta-Tricalcium Phosphate.
ACTA ACUST UNITED AC 2007;
13:757-65. [PMID:
17223744 DOI:
10.1089/ten.2006.0083]
[Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Availability of grafts and morbidity at the donor site limit autologous transplantation in patients requiring bone reconstruction. A tissue-engineering approach can overcome these limitations by producing bone-like tissue of custom shape and size from isolated cells. Several hydrogels facilitate osteogenesis on porous scaffolds; however, the relative suitability of various hydrogels has not been rigorously assessed. Fibrin glue, alginate, and collagen I hydrogels were mixed with swine bone marrow-derived differentiated mesenchymal stem cells (MSCs), applied to 3-dimensionally printed porous beta-tricalcium phosphate (beta-TCP) scaffolds and implanted subcutaneously in nude mice. Although noninvasive assessment of osteogenesis in 3 dimensions is desirable for monitoring new bone formation in vivo, correlations with traditional histological and mechanical testing need to be established. High-resolution volumetric computed tomography (VCT) scanning, histological examination, biomechanical compression testing, and osteonectin (ON) expression were performed on excised scaffolds after 1, 2, 4, and 6 weeks of subcutaneous implantation in mice. Statistical correlation analyses were performed between radiological density, stiffness, and ON expression. Use of collagen I as a hydrogel carrier produced superior bone formation at 6 weeks, as demonstrated using VCT scanning with densities similar to native bone and the highest compression values. Continued contribution of the seeded MSCs was demonstrated using swine-specific messenger ribonucleic acid probes. Radiological density values correlated closely with the results of histological and biomechanical testing and ON expression. High-resolution VCT is a promising method for monitoring osteogenesis.
Collapse