151
|
Lin J, Li C, Guo Y, Zou J, Wu P, Liao Y, Zhang B, Le J, Zhao R, Shao JW. Carrier-free nanodrugs for in vivo NIR bioimaging and chemo-photothermal synergistic therapy. J Mater Chem B 2019; 7:6914-6923. [DOI: 10.1039/c9tb00687g] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The combination of chemotherapy and photothermal therapy displays improved anti-cancer effects and lower systematic toxicity of a free drug compared with monotherapy.
Collapse
|
152
|
Xu C, Song RJ, Lu P, Chen JC, Zhou YQ, Shen G, Jiang MJ, Zhang W. pH-triggered charge-reversal and redox-sensitive drug-release polymer micelles codeliver doxorubicin and triptolide for prostate tumor therapy. Int J Nanomedicine 2018; 13:7229-7249. [PMID: 30510415 PMCID: PMC6231516 DOI: 10.2147/ijn.s182197] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM To significantly promote cancer cell uptake and to achieve combination therapy and on-demand drug release, a pH-triggered charge-switchable and redox-responsive drug-release nanovehicle was developed in this study. MATERIALS AND METHODS The nanocarrier was constructed by conjugating 3,3'-dithiodipropionic acid-modified doxorubicin (DTPA-DOX) and 2,3-dimethylmaleic anhydride (DMA) to the side amino groups of poly(ethylene glycol)-b-poly(L-lysine) (PEG-b-PLL) and by encapsulating triptolide (TRI) into the hydrophobic core. The surface charge of the obtained nanocarriers (DA-ss-DT) can change from negative to positive in response to tumor extracellular acidity pH, and the nanocarriers capably release two drugs in response to intracellular high glutathione (GSH) environment. RESULTS Compared to the control group, the in vitro cellular uptake of DA-ss-DT by human prostate cancer PC-3 cells was significantly promoted in slightly acidic conditions, and the drug could be rapidly released in the high concentration of GSH conditions. The in vitro and in vivo antitumor experiments exhibited that the DA-ss-DT nanoparticles have a great antitumor effect in comparison to the control group. CONCLUSION These findings demonstrated that the DA-ss-DT nanoparticles supply a useful strategy for promoting cellular uptake and synergetic anticancer therapy.
Collapse
Affiliation(s)
- Chen Xu
- Department of Urology, The First People's Hospital of Wujiang City, Suzhou, China,
| | - Ri-Jin Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,
| | - Pei Lu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,
| | - Jian-Chun Chen
- Department of Urology, The First People's Hospital of Wujiang City, Suzhou, China,
| | - Yong-Qiang Zhou
- Department of Urology, The First People's Hospital of Wujiang City, Suzhou, China,
| | - Gang Shen
- Department of Urology, The First People's Hospital of Wujiang City, Suzhou, China,
| | - Min-Jun Jiang
- Department of Urology, The First People's Hospital of Wujiang City, Suzhou, China,
| | - Wei Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,
| |
Collapse
|
153
|
Qin SY, Zhang AQ, Zhang XZ. Recent Advances in Targeted Tumor Chemotherapy Based on Smart Nanomedicines. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802417. [PMID: 30247806 DOI: 10.1002/smll.201802417] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/03/2018] [Indexed: 05/22/2023]
Abstract
Efficacy and safety of chemotherapeutic drugs constitute two major criteria in tumor chemotherapy. Nanomedicines with tumor-targeted properties hold great promise for improving the efficacy and safety. To design targeted nanomedicines, the pathological characteristics of tumors are extensively and deeply excavated. Here, the rationale, principles, and advantages of exploiting these pathological characteristics to develop targeted nanoplatforms for tumor chemotherapy are discussed. Homotypic targeting with the ability of self-recognition to source tumors is reviewed individually. In the meanwhile, the limitations and perspective of these targeted nanomedicines are also discussed.
Collapse
Affiliation(s)
- Si-Yong Qin
- School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Ai-Qing Zhang
- School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
154
|
Ganot N, Briaitbard O, Gammal A, Tam J, Hochman J, Tshuva EY. In Vivo Anticancer Activity of a Nontoxic Inert Phenolato Titanium Complex: High Efficacy on Solid Tumors Alone and Combined with Platinum Drugs. ChemMedChem 2018; 13:2290-2296. [PMID: 30203598 PMCID: PMC6282713 DOI: 10.1002/cmdc.201800551] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Indexed: 11/10/2022]
Abstract
Due to the toxicity of platinum compounds used in the clinic as anticancer chemotherapies, titanium serves as a safe and attractive alternative. Lately, we introduced a new family of Ti complexes based on readily available phenolato ligands, demonstrating incredibly high hydrolytic stability, with the lead compound phenolaTi demonstrating wide cytotoxic activity toward the NCI‐60 panel of human cancer cell lines, with an average GI50 value of 4.7±2 μm. Herein, we evaluated in vivo: a) the safety, and b) the growth inhibitory capacity (efficacy) of this compound. PhenolaTi was found to be effective in vivo against colon (CT‐26) and lung (LLC‐1) murine cell lines in syngeneic hosts and toward a human colon cancer (HT‐29) cell line in immune‐deficient (Nude) mice, with an efficacy similar to that of known chemotherapy. Notably, no clinical signs of toxicity were observed in the treated mice, namely, no effect on body weight, spleen weight or kidney function, unlike the effects observed with the positive control Pt drugs. Studies of combinations of phenolaTi and Pt drugs provided evidence that similar efficacy with decreased toxicity may be achieved, which is highly valuable for medicinal applications.
Collapse
Affiliation(s)
- Nitzan Ganot
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Ori Briaitbard
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Asaad Gammal
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112001, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112001, Israel
| | - Jacob Hochman
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Edit Y Tshuva
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| |
Collapse
|
155
|
Wu MX, Yan HJ, Gao J, Cheng Y, Yang J, Wu JR, Gong BJ, Zhang HY, Yang YW. Multifunctional Supramolecular Materials Constructed from Polypyrrole@UiO-66 Nanohybrids and Pillararene Nanovalves for Targeted Chemophotothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34655-34663. [PMID: 30226739 DOI: 10.1021/acsami.8b13758] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Multifunctional supramolecular nanomaterials capable of targeted and multimodal therapy hold great potential to improve the efficiency of cancer therapeutics. Herein, we report a proof-of-concept nanoplatform for effective chemophotothermal therapy via the integration of folic acid-based active targeting and supramolecular nanovalves-based passive targeting. Inspired by facile surface engineering and designable layer-by-layer assembly concept, we design and synthesize PPy@UiO-66@WP6@PEI-Fa nanoparticles (PUWPFa NPs) to achieve efficient synergistic chemophotothermal therapy, taking advantage of the desirable photothermal conversion capability of polypyrrole nanoparticles (PPy NPs) and high drug-loading capacity of hybrid scaffolds. Significantly, pillararene-based pseudorotaxanes as pH/temperature dual-responsive nanovalves allow targeted drug delivery in pathological environment with sustained release over 4 days, which is complementary to photothermal therapy, and folic acid-conjugated polyethyleneimine (PEI-Fa) at the outmost layer through electrostatic interactions is able to enhance tumor-targeting and therapeutic efficiency. Such PUWPFa NPs showed efficient synergistic chemophotothermal therapy of cervical cancer both in vitro and in vivo. The present strategy offers not only the distinctly targeted drug delivery and release, but also excellent tumor inhibition efficacy of simultaneous chemophotothermal therapy, opening a new avenue for effective cancer treatment.
Collapse
Affiliation(s)
- Ming-Xue Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Hong-Jing Yan
- Hospital of Stomatology , Jilin University , 1500 Qinghua Road , Changchun 130012 , P. R. China
| | - Jia Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Yan Cheng
- Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Jie Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Jia-Rui Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Bai-Juan Gong
- Hospital of Stomatology , Jilin University , 1500 Qinghua Road , Changchun 130012 , P. R. China
| | - Hai-Yuan Zhang
- Laboratory of Chemical Biology , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
- Department of Chemistry & Biochemistry , University of California, Los Angeles , 607 Charles E. Young Drive East , Los Angeles , California 90095 , United States
| |
Collapse
|
156
|
Abstract
This retrospective study investigated the effectiveness of percutaneous nerve electrical stimulation (PNES) for fatigue caused by chemotherapy for cervical cancer survivors.Totally, 83 cases of fatigue caused by chemotherapy for cervical cancer survivors were analyzed. All these cases were assigned to a treatment group (n = 43), and a control group (n = 40). Patients in the treatment group received PNES, while the subjects in the control group were on waiting list. The treatment was applied once daily for a total of 6 weeks. The primary endpoint was fatigue. It was evaluated by the Multidimensional Fatigue Inventory (MFI), and Fatigue Questionnaire (FQ). The secondary endpoints consisted of anxiety and depression. They were measured by the Hospital Anxiety and Depression Scale (HADS). All outcomes were measured before and after 6-week treatment.After treatment, PNES did not show significant difference in fatigue relief, measured by MFI (General fatigue, P = .31; Physical fatigue, P = .44; Activity, P = .36; Motivation, P = .55; Mental fatigue, P = .49), and FQ (Mental fatigue, P = .29; Physical fatigue, P = .35); and the reduction of anxiety and depression, measured by the HADS (Anxiety, P = .21; Depression, P = .17) after 6 weeks treatment between 2 groups.This study demonstrated that PNES may not benefit for cervical cancer survivors with fatigue caused by chemotherapy after 6-week treatment.
Collapse
Affiliation(s)
- Ting Fu
- Department of Gynecology, The Fourth People's Hospital of Shaanxi, Xi’an
| | - Hui-juan Guang
- Department of Gynecology, Hanzhong People's Hospital, Hanzhong, Shaanxi, China
| | - Xiang-zhuan Gao
- Department of Gynecology, The Fourth People's Hospital of Shaanxi, Xi’an
| |
Collapse
|
157
|
Yu J, Ji HY, Liu AJ. Alcohol-soluble polysaccharide from Astragalus membranaceus: Preparation, characteristics and antitumor activity. Int J Biol Macromol 2018; 118:2057-2064. [PMID: 30009907 DOI: 10.1016/j.ijbiomac.2018.07.073] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/04/2018] [Accepted: 07/12/2018] [Indexed: 01/14/2023]
Abstract
The alcohol-soluble polysaccharide (ASP) was extracted from Astragalus membranaceus, and their preliminary structural characteristics and in vivo antitumor activity were investigated in this study. The contents of total sugar, protein and uronic acid in ASP was 92.04%, 0.51% and 1.42%, respectively. FTIR and IC results indicated that ASP (about 2.1 × 103 Da) was a neutral polysaccharide composed of arabinose, galactose, glucose and mannose (molar ratio: 1.00:0.98:3.01:1.52) with pyranose ring and α-type glycosidic linkages. Besides, ASP could significantly inhibit the growth of H22 heptoma cells in vivo via improving the levels of serum cytokines (TNF-α, IL-2 and IFN-γ) and activities of immune cells (macrophages, lymphocytes and NK cells), thereby inducing tumor cell apoptosis and attenuating their accessional damages. These results suggested that ASP may serve as a novel potential antitumor agent in the future.
Collapse
Affiliation(s)
- Juan Yu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; QingYunTang Biotech (Beijing) Co., Ltd. Beijing 100176, China
| | - Hai-Yu Ji
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; QingYunTang Biotech (Beijing) Co., Ltd. Beijing 100176, China
| | - An-Jun Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|