151
|
He X, Zhang Z, Zhang Q, Yuan G. Selective recognition of G-quadruplex in the vascular endothelial growth factor gene with small-molecule natural products by electrospray ionization (ESI) mass spectrometry and circular dichroism (CD) spectrometry. CAN J CHEM 2012. [DOI: 10.1139/v11-104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, electrospray ionization mass spectrometry (ESI-MS) and circular dichroism (CD) spectroscopy were used to investigate selective recognition of G-quadruplex in the vascular endothelial growth factor (VEGF) gene with 12 small-molecule natural products. We found that kaempferol, a natural flavonol, shows the highest binding affinity among the 12 natural molecules. The results from ESI-MS and CD spectra indicated that kaempferol could enhance the thermal stability of the VEGF–G-quadruplex and showed selective recognition for the G-quadruplex in a solution consisting of the G-quadruplex and the corresponding duplex DNA.
Collapse
Affiliation(s)
- Xiangwei He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, Department of Chemical Biology, College of Chemistry, Peking University, Beijing 100871, P. R. China
| | - Zhenjiang Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, Department of Chemical Biology, College of Chemistry, Peking University, Beijing 100871, P. R. China
| | - Qiang Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, Department of Chemical Biology, College of Chemistry, Peking University, Beijing 100871, P. R. China
| | - Gu Yuan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, Department of Chemical Biology, College of Chemistry, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
152
|
Mullen MA, Assmann SM, Bevilacqua PC. Toward a digital gene response: RNA G-quadruplexes with fewer quartets fold with higher cooperativity. J Am Chem Soc 2011; 134:812-5. [PMID: 22239732 DOI: 10.1021/ja2096255] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Changes in RNA conformation can alter gene expression. The guanine quadruplex sequence (GQS) is an RNA motif that folds in the presence of K(+) ions. Changes in the conformation of this motif could be especially important in regulating gene expression in plants because intracellular K(+) concentrations often increase during drought stress. Little is known about the folding thermodynamics of RNA GQS. We show here that RNA GQS with tracts containing three G's [e.g., (GGGxx)(4)] have a modest dependence on the K(+) concentration, folding with no or even negative cooperativity (Hill coefficients ≤1), and are associated with populated folding intermediates. In contrast, GQS with tracts containing just two G's [e.g., (GGxx)(4)] have a steep dependence on the K(+) concentration and fold with positive cooperativity (Hill coefficients of 1.7-2.7) without significantly populating intermediate states. We postulate that in plants, the more stable G3 sequences are largely folded even under unstressed conditions, while the less stable G2 sequences fold only at the higher K(+) concentrations associated with cellular stress, wherein they respond sharply to changing K(+) concentrations. Given the binary nature of their folding, G2 sequences may find application in computation with DNA and in engineering of genetic circuits.
Collapse
Affiliation(s)
- Melissa A Mullen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
153
|
Raiber EA, Kranaster R, Lam E, Nikan M, Balasubramanian S. A non-canonical DNA structure is a binding motif for the transcription factor SP1 in vitro. Nucleic Acids Res 2011; 40:1499-508. [PMID: 22021377 PMCID: PMC3287196 DOI: 10.1093/nar/gkr882] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
SP1 is a ubiquitous transcription factor that is involved in the regulation of various house-keeping genes. It is known that it acts by binding to a double-stranded consensus motif. Here, we have discovered that SP1 binds also to a non-canonical DNA structure, a G-quadruplex, with high affinity. In particular, we have studied the SP1 binding site within the promoter region of the c-KIT oncogene and found that this site can fold into an anti-parallel two-tetrad G-quadruplex. SP1 pull-down experiments from cellular extracts, together with biophysical binding assays revealed that SP1 has a comparable binding affinity for this G-quadruplex structure and the canonical SP1 duplex sequence. Using SP1 ChIP-on-chip data sets, we have also found that 87% of SP1 binding sites overlap with G-quadruplex forming sequences. Furthermore, while many of these immuoprecipitated sequences (36%) even lack the minimal SP1 consensus motif, 5′-GGGCGG-3′, we have shown that 77% of them are putative G-quadruplexes. Collectively, these data suggest that SP1 is able to bind both, canonical SP1 duplex DNA as well as G-quadruplex structures in vitro and we hypothesize that both types of interactions may occur in cells.
Collapse
Affiliation(s)
- Eun-Ang Raiber
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | | | | | | | | |
Collapse
|
154
|
Santoro MR, Bray SM, Warren ST. Molecular mechanisms of fragile X syndrome: a twenty-year perspective. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 7:219-45. [PMID: 22017584 DOI: 10.1146/annurev-pathol-011811-132457] [Citation(s) in RCA: 377] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fragile X syndrome (FXS) is a common form of inherited intellectual disability and is one of the leading known causes of autism. The mutation responsible for FXS is a large expansion of the trinucleotide CGG repeat in the 5' untranslated region of the X-linked gene FMR1. This expansion leads to DNA methylation of FMR1 and to transcriptional silencing, which results in the absence of the gene product, FMRP, a selective messenger RNA (mRNA)-binding protein that regulates the translation of a subset of dendritic mRNAs. FMRP is critical for mGluR (metabotropic glutamate receptor)-dependent long-term depression, as well as for other forms of synaptic plasticity; its absence causes excessive and persistent protein synthesis in postsynaptic dendrites and dysregulated synaptic function. Studies continue to refine our understanding of FMRP's role in synaptic plasticity and to uncover new functions of this protein, which have illuminated therapeutic approaches for FXS.
Collapse
Affiliation(s)
- Michael R Santoro
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
155
|
Singh V, Benz A, Hartig JS. G Quadruplexes Stabilised by 8-Oxo-2′-deoxyguanosine. Chemistry 2011; 17:10838-43. [DOI: 10.1002/chem.201100284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 06/16/2011] [Indexed: 01/19/2023]
|
156
|
Lattmann S, Stadler MB, Vaughn JP, Akman SA, Nagamine Y. The DEAH-box RNA helicase RHAU binds an intramolecular RNA G-quadruplex in TERC and associates with telomerase holoenzyme. Nucleic Acids Res 2011; 39:9390-404. [PMID: 21846770 PMCID: PMC3241650 DOI: 10.1093/nar/gkr630] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Guanine-quadruplexes (G4) consist of non-canonical four-stranded helical arrangements of guanine-rich nucleic acid sequences. The bulky and thermodynamically stable features of G4 structures have been shown in many respects to affect normal nucleic acid metabolism. In vivo conversion of G4 structures to single-stranded nucleic acid requires specialized proteins with G4 destabilizing/unwinding activity. RHAU is a human DEAH-box RNA helicase that exhibits G4-RNA binding and resolving activity. In this study, we employed RIP-chip analysis to identify en masse RNAs associated with RHAU in vivo. Approximately 100 RNAs were found to be associated with RHAU and bioinformatics analysis revealed that the majority contained potential G4-forming sequences. Among the most abundant RNAs selectively enriched with RHAU, we identified the human telomerase RNA template TERC as a true target of RHAU. Remarkably, binding of RHAU to TERC depended on the presence of a stable G4 structure in the 5′-region of TERC, both in vivo and in vitro. RHAU was further found to associate with the telomerase holoenzyme via the 5′-region of TERC. Collectively, these results provide the first evidence that intramolecular G4-RNAs serve as physiologically relevant targets for RHAU. Furthermore, our results suggest the existence of alternatively folded forms of TERC in the fully assembled telomerase holoenyzme.
Collapse
Affiliation(s)
- Simon Lattmann
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| | | | | | | | | |
Collapse
|
157
|
Lane AN. The stability of intramolecular DNA G-quadruplexes compared with other macromolecules. Biochimie 2011; 94:277-86. [PMID: 21854828 DOI: 10.1016/j.biochi.2011.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/04/2011] [Indexed: 11/19/2022]
Abstract
DNA quadruplexes are often conceived as very stable structures. However, most of the free energy of stabilization derives from specific ion binding via inner sphere coordination of the GO6 of the guanine residues comprising the basic quartet. When compared with other nucleic acid structures such as DNA or RNA duplexes and hairpins, or proteins of the same number of atoms, metal-coordinated intramolecular quadruplexes are found to be of comparable or lower thermodynamic stability under similar solution conditions. Furthermore, intramolecular quadruplexes are actually less stable kinetically, than DNA duplexes or hairpins of the same size. Although the literature is incomplete, it is clear that polyelectrolyte ion effects, the influence of solvation and steric crowding on stability are qualitatively different between intramolecular quadruplexes and DNA duplexes. For example, decreasing water activity destabilizes DNA duplexes, whereas quadruplexes are stabilized. The variety of folded conformations accessible to a single sequence further implies strong sensitivity of the conformational ensemble to the solution conditions, compared with DNA duplexes or small single domain proteins. These considerations may have relevance to the conditions prevailing inside cell nuclei and therefore the structures that potentially might form in vivo.
Collapse
Affiliation(s)
- Andrew N Lane
- JG Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA.
| |
Collapse
|
158
|
Collie GW, Parkinson GN. The application of DNA and RNA G-quadruplexes to therapeutic medicines. Chem Soc Rev 2011; 40:5867-92. [PMID: 21789296 DOI: 10.1039/c1cs15067g] [Citation(s) in RCA: 461] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intriguing structural diversity in folded topologies available to guanine-rich nucleic acid repeat sequences have made four-stranded G-quadruplex structures the focus of both basic and applied research, from cancer biology and novel therapeutics through to nanoelectronics. Distributed widely in the human genome as targets for regulating gene expression and chromosomal maintenance, they offer unique avenues for future cancer drug development. In particular, the recent advances in chemical and structural biology have enabled the construction of bespoke selective DNA based aptamers to be used as novel therapeutic agents and access to detailed structural models for structure based drug discovery. In this critical review, we will explore the important underlying characteristics of G-quadruplexes that make them functional, stable, and predictable nanoscaffolds. We will review the current structural database of folding topologies, molecular interfaces and novel interaction surfaces, with a consideration to their future exploitation in drug discovery, molecular biology, supermolecular assembly and aptamer design. In recent years the number of potential applications for G-quadruplex motifs has rapidly grown, so in this review we aim to explore the many future challenges and highlight where possible successes may lie. We will highlight the similarities and differences between DNA and RNA folded G-quadruplexes in terms of stability, distribution, and exploitability as small molecule targets. Finally, we will provide a detailed review of basic G-quadruplex geometry, experimental tools used, and a critical evaluation of the application of high-resolution structural biology and its ability to provide meaningful and valid models for future applications (255 references).
Collapse
Affiliation(s)
- Gavin W Collie
- CRUK Biomolecular Structure Group, The School of Pharmacy, University of London, London, UK WC1N 1AX
| | | |
Collapse
|
159
|
Zhang AYQ, Bugaut A, Balasubramanian S. A sequence-independent analysis of the loop length dependence of intramolecular RNA G-quadruplex stability and topology. Biochemistry 2011; 50:7251-8. [PMID: 21744844 DOI: 10.1021/bi200805j] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
G-Quadruplexes are noncanonical nucleic acid secondary structures based on guanine association that are readily adopted by G-rich RNA and DNA sequences. Naturally occurring genomic G-quadruplex-forming sequences have functional roles in biology that are mediated through structure. To appreciate how this is achieved, an understanding of the likelihood of G-quadruplex formation and the structural features of the folded species under a defined set of conditions is informative. We previously systematically investigated the thermodynamic stability and folding topology of DNA G-quadruplexes and found a strong dependence of these properties on loop length and loop arrangement [Bugaut, A., and Balasubramanian, S. (2008) Biochemistry 47, 689-697]. Here we report on a complementary analysis of RNA G-quadruplexes using UV melting and circular dichroism spectroscopy that also serves as a comparison to the equivalent DNA G-quadruplex-forming sequences. We found that the thermodynamic stability of G-quadruplex RNA can be modulated by loop length while the overall structure is largely unaffected. The systematic design of our study also revealed subtle loop length dependencies in RNA G-quadruplex structure.
Collapse
Affiliation(s)
- Amy Y Q Zhang
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | |
Collapse
|
160
|
Martadinata H, Heddi B, Lim KW, Phan AT. Structure of Long Human Telomeric RNA (TERRA): G-Quadruplexes Formed by Four and Eight UUAGGG Repeats Are Stable Building Blocks. Biochemistry 2011; 50:6455-61. [DOI: 10.1021/bi200569f] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Herry Martadinata
- School of Physical and Mathematical Sciences and ‡School of Biological Sciences, Nanyang Technological University, Singapore
| | - Brahim Heddi
- School of Physical and Mathematical Sciences and ‡School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kah Wai Lim
- School of Physical and Mathematical Sciences and ‡School of Biological Sciences, Nanyang Technological University, Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences and ‡School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
161
|
Halder K, Largy E, Benzler M, Teulade-Fichou MP, Hartig JS. Efficient Suppression of Gene Expression by Targeting 5′-UTR-Based RNA Quadruplexes with Bisquinolinium Compounds. Chembiochem 2011; 12:1663-8. [DOI: 10.1002/cbic.201100228] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Indexed: 12/30/2022]
|
162
|
Benz A, Singh V, Mayer TU, Hartig JS. Identification of Novel Quadruplex Ligands from Small Molecule Libraries by FRET-Based High-Throughput Screening. Chembiochem 2011; 12:1422-6. [DOI: 10.1002/cbic.201100094] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Indexed: 12/11/2022]
|
163
|
Abstract
Opposed to DNA quadruplex sequences, RNA quadruplexes are still less well characterized. On the other hand, RNA quadruplexes are found to be at least as stable as their DNA counterparts. They show the same dependence on metal ions but seem to be much more restricted with respect to the adopted conformations. Other than DNA, which is mostly found to be double-stranded inside cells, RNAs are produced during transcription without its complementary sequence. The absence of a second strand that is able to hybridize and form a duplex makes the folding of RNA quadruplexes a likely event of intramolecular structure formation. Consequently, the formation of RNA quadruplexes in cellular RNAs has recently been suggested and the study of their influence and potential roles in cellular processes has just started. Here we give an overview of the RNA quadruplex field, summarizing issues such as structures, stabilities, and anticipated roles of these interesting four-stranded, guanosine-rich sequences.
Collapse
Affiliation(s)
- Kangkan Halder
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany
| | | |
Collapse
|
164
|
Collie GW, Sparapani S, Parkinson GN, Neidle S. Structural basis of telomeric RNA quadruplex--acridine ligand recognition. J Am Chem Soc 2011; 133:2721-8. [PMID: 21291211 DOI: 10.1021/ja109767y] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human telomeric DNA is now known to be transcribed into noncoding RNA sequences, termed TERRA. These sequences, which are believed to play roles in the regulation of telomere function, can form higher-order quadruplex structures and may themselves be the target of therapeutic intervention. The crystal structure of a TERRA quadruplex-acridine small-molecule complex at a resolution of 2.60 Å, is reported here and contrasts remarkably with the structure of the analogous DNA quadruplex complex. The bimolecular RNA complex has a parallel-stranded topology with propeller-like UUA loops. These loops are held in particular conformations by multiple hydrogen bonds involving the O2' hydroxyl groups of the ribonucleotide sugars and play an active role in binding the acridine molecules to the RNA quadruplex. By contrast, the analogous DNA quadruplex complex has simpler 1:1 acridine binding, with no loop involvement. There are significant loop conformational changes in the RNA quadruplex compared to the native TERRA quadruplex (Collie, G. W.; Haider, S. M.; Neidle, S.; Parkinson, G. N. Nucleic Acids Res. 2010, 38, 5569 - 5580), which have implications for the future design of small molecules targeting TERRA quadruplexes, and RNA quadruplexes more generally.
Collapse
Affiliation(s)
- Gavin W Collie
- CRUK Biomolecular Structure Group, The School of Pharmacy, University of London, London, United Kingdom
| | | | | | | |
Collapse
|
165
|
Mullen MA, Olson KJ, Dallaire P, Major F, Assmann SM, Bevilacqua PC. RNA G-Quadruplexes in the model plant species Arabidopsis thaliana: prevalence and possible functional roles. Nucleic Acids Res 2010; 38:8149-63. [PMID: 20860998 PMCID: PMC3001093 DOI: 10.1093/nar/gkq804] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/24/2010] [Accepted: 08/30/2010] [Indexed: 01/25/2023] Open
Abstract
Tandem stretches of guanines can associate in hydrogen-bonded arrays to form G-quadruplexes, which are stabilized by K(+) ions. Using computational methods, we searched for G-Quadruplex Sequence (GQS) patterns in the model plant species Arabidopsis thaliana. We found ∼ 1200 GQS with a G(3) repeat sequence motif, most of which are located in the intergenic region. Using a Markov modeled genome, we determined that GQS are significantly underrepresented in the genome. Additionally, we found ∼ 43,000 GQS with a G(2) repeat sequence motif; notably, 80% of these were located in genic regions, suggesting that these sequences may fold at the RNA level. Gene Ontology functional analysis revealed that GQS are overrepresented in genes encoding proteins of certain functional categories, including enzyme activity. Conversely, GQS are underrepresented in other categories of genes, notably those for non-coding RNAs such as tRNAs and rRNAs. We also find that genes that are differentially regulated by drought are significantly more likely to contain a GQS. CD-detected K(+) titrations performed on representative RNAs verified formation of quadruplexes at physiological K(+) concentrations. Overall, this study indicates that GQS are present at unique locations in Arabidopsis and that folding of RNA GQS may play important roles in regulating gene expression.
Collapse
Affiliation(s)
- Melissa A. Mullen
- Department of Chemistry, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802-5302, USA and Institute for Research in Immunology and Cancer (IRIC), Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - Kalee J. Olson
- Department of Chemistry, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802-5302, USA and Institute for Research in Immunology and Cancer (IRIC), Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - Paul Dallaire
- Department of Chemistry, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802-5302, USA and Institute for Research in Immunology and Cancer (IRIC), Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - François Major
- Department of Chemistry, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802-5302, USA and Institute for Research in Immunology and Cancer (IRIC), Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - Sarah M. Assmann
- Department of Chemistry, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802-5302, USA and Institute for Research in Immunology and Cancer (IRIC), Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - Philip C. Bevilacqua
- Department of Chemistry, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802-5302, USA and Institute for Research in Immunology and Cancer (IRIC), Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
166
|
Saxena S, Miyoshi D, Sugimoto N. Sole and stable RNA duplexes of G-rich sequences located in the 5'-untranslated region of protooncogenes. Biochemistry 2010; 49:7190-201. [PMID: 20672842 DOI: 10.1021/bi101093a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Guanine- (G-) rich nucleic acid sequences can form four-stranded structures called G-quadruplexes. It is widely held that the formation of a G-quadruplex in RNA is more feasible than in DNA because of the lack of a complementary strand in mRNA. Here, we analyzed sequences of 5'-untranslated regions of protooncogenes and surprisingly found that these regions showed an enrichment of not only guanine (G) but also cytosine (C) nucleotides. Since neighboring cytosine- (C-) rich regions can affect the formation and stability of a G-quadruplex structure, we further investigated the properties of DNA and RNA structures of G-rich and GC-rich regions. We selected typical GC-rich RNA sequences from protooncogenes and corresponding DNA sequences and investigated their structures. It was found that the GC-rich RNA sequences formed stable A-form duplexes as their major structure independent of the surrounding conditions, including the presence of different cations (Na(+), K(+), or Li(+)) or molecular crowding with 40 wt % poly(ethylene glycol) with an average molecular mass of 200 Da although there are a few exceptions in which only a combination of K(+) and molecular crowding induced a G-quadruplex structure of an extremely G-rich RNA sequence. In contrast, structural polymorphisms involving duplexes, G-quadruplexes, and i-motifs were observed for GC-rich DNA sequences depending on the surrounding factors. These results demonstrate the considerable structural and functional differences in GC-rich sequences of the genome (DNA) and transcriptosome (mRNA) with respect to the nucleic acid backbone. Moreover, it was suggested that structural study for a G-rich RNA sequence should be carried out under cell-mimicking condition where K(+) and crowding cosolutes exist.
Collapse
Affiliation(s)
- Sarika Saxena
- Frontier Institute for Biomolecular Engineering Research (FIBER), 7-1-20 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | |
Collapse
|
167
|
McManus SA, Li Y. The structural diversity of deoxyribozymes. Molecules 2010; 15:6269-84. [PMID: 20877222 PMCID: PMC6257715 DOI: 10.3390/molecules15096269] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/23/2010] [Accepted: 09/02/2010] [Indexed: 11/16/2022] Open
Abstract
When not constrained to long double-helical arrangements, DNA is capable of forming structural arrangements that enable specific sequences to perform functions such as binding and catalysis under defined conditions. Through a process called in vitro selection, numerous catalytic DNAs, known as deoxyribozymes or DNAzymes, have been isolated. Many of these molecules have the potential to act as therapeutic agents and diagnostic tools. As such, a better understanding of the structural arrangements present in these functional DNAs will aid further efforts in the development and optimization of these useful molecules. Structural characterization of several deoxyribozymes through mutagenesis, in vitro re-selection, chemical probing and circular dichroism has revealed many distinct and elaborate structural classes. Deoxyribozymes have been found to contain diverse structural elements including helical junctions, pseudoknots, triplexes, and guanine quadruplexes. Some of these studies have further shown the repeated isolation of similar structural motifs in independent selection experiments for the same type of chemical reaction, suggesting that some structural motifs are well suited for catalyzing a specific chemical reaction. To investigate the extent of structural diversity possible in deoxyribozymes, a group of kinase deoxyribozymes have been extensively characterized. Such studies have discovered some interesting structural features of these DNAzymes while revealing some novel DNA structures.
Collapse
Affiliation(s)
- Simon A. McManus
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada; E-Mail:
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada; E-Mail:
- Department of Chemistry and Chemical Biology, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-905-528-9140 ext. 22462
| |
Collapse
|
168
|
Collie GW, Parkinson GN, Neidle S, Rosu F, De Pauw E, Gabelica V. Electrospray Mass Spectrometry of Telomeric RNA (TERRA) Reveals the Formation of Stable Multimeric G-Quadruplex Structures. J Am Chem Soc 2010; 132:9328-34. [DOI: 10.1021/ja100345z] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gavin W. Collie
- CRUK Biomolecular Structure Group, The School of Pharmacy, University of London, WC1N 1AX London, United Kingdom, and Physical Chemistry and Mass Spectrometry Laboratory, Department of Chemistry, University of Liège, Belgium
| | - Gary N. Parkinson
- CRUK Biomolecular Structure Group, The School of Pharmacy, University of London, WC1N 1AX London, United Kingdom, and Physical Chemistry and Mass Spectrometry Laboratory, Department of Chemistry, University of Liège, Belgium
| | - Stephen Neidle
- CRUK Biomolecular Structure Group, The School of Pharmacy, University of London, WC1N 1AX London, United Kingdom, and Physical Chemistry and Mass Spectrometry Laboratory, Department of Chemistry, University of Liège, Belgium
| | - Frédéric Rosu
- CRUK Biomolecular Structure Group, The School of Pharmacy, University of London, WC1N 1AX London, United Kingdom, and Physical Chemistry and Mass Spectrometry Laboratory, Department of Chemistry, University of Liège, Belgium
| | - Edwin De Pauw
- CRUK Biomolecular Structure Group, The School of Pharmacy, University of London, WC1N 1AX London, United Kingdom, and Physical Chemistry and Mass Spectrometry Laboratory, Department of Chemistry, University of Liège, Belgium
| | - Valérie Gabelica
- CRUK Biomolecular Structure Group, The School of Pharmacy, University of London, WC1N 1AX London, United Kingdom, and Physical Chemistry and Mass Spectrometry Laboratory, Department of Chemistry, University of Liège, Belgium
| |
Collapse
|
169
|
Zhang DH, Fujimoto T, Saxena S, Yu HQ, Miyoshi D, Sugimoto N. Monomorphic RNA G-quadruplex and polymorphic DNA G-quadruplex structures responding to cellular environmental factors. Biochemistry 2010; 49:4554-63. [PMID: 20420470 DOI: 10.1021/bi1002822] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We systematically and quantitatively investigated the structure and thermodynamics of G-quadruplexes of RNAs and corresponding DNAs of the same sequences under molecular crowding conditions that mimic the high osmotic stress induced by the numerous molecules inside of living cells. Structural analyses demonstrated that various telomere RNA sequences folded into parallel-stranded G-quadruplexes in a manner independent of the surrounding conditions with different cations under both dilute and molecular crowding conditions. In contrast, DNA G-quadruplexes showed structural polymorphism. Moreover, we demonstrated that the G-quadruplexes of the RNA sequences were more stable than those of the same DNA sequences. These results show that a single and robust RNA G-quadruplex structure can exist in a manner independent of the sequence and surrounding conditions. To confirm this, we studied a guanine-rich sequence located in the 5'-untranslated region of human bcl-2 mRNA that is thought to play a role in translation. The results revealed a stable parallel G-quadruplex that formed under all conditions tested. For example, a bcl-RNA G-quadruplex in the presence of 5 mM KCl [free energy change at 25 degrees C (DeltaG degrees (25)) of -5.42 kcal/mol] was more stable than its corresponding DNA G-quadruplex (DeltaG degrees (25) = -2.31 kcal/mol). Our results further indicated that water molecules binding to the 2'-OH group of RNA G-quadruplexes play a critical role in their formation and stability.
Collapse
Affiliation(s)
- Dong-Hao Zhang
- Frontier Institute for Biomolecular Engineering Research (FIBER)
| | | | | | | | | | | |
Collapse
|
170
|
Melko M, Bardoni B. The role of G-quadruplex in RNA metabolism: involvement of FMRP and FMR2P. Biochimie 2010; 92:919-26. [PMID: 20570707 DOI: 10.1016/j.biochi.2010.05.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 05/28/2010] [Indexed: 12/20/2022]
Abstract
Regulation of post-transcriptional gene expression is a cellular process that is accomplished through the activity of multiple mRNP (messenger RiboNucleoProtein) complexes which are composed of mRNA-binding proteins and RNA molecules interacting with those proteins. The specificity of these interactions is mediated by the ability of the RNA-binding proteins to precisely recognize and bind RNA sequences or structures. Alterations of their function may have some dramatic consequences, resulting in different pathologies. An increasing body of data is emerging showing the impact of a G-quadruplex forming structure in the maturation and expression of some RNA molecules. We review here the role of the G-quadruplex RNA structure in the regulation of translation and splicing, when it interacts with two RNA-binding proteins: FMRP (Fragile X Mental Retardation Protein) and FMR2P (Fragile X Mental Retardation 2 protein). Impaired expression of these proteins causes two forms of intellectual disability: the Fragile X Mental Retardation syndrome (FXS) and the FRAXE-associated mental retardation (FRAXE), respectively. FMRP is involved in different steps of RNA metabolism and, in particular, in translational regulation. FMR2P has been initially described as a transcription factor and we recently showed also its role in regulation of alternative splicing. By the study of the functional significance of the interaction of both FMRP and FMR2P with a G-quadruplex forming RNA we were able to show an impact of this structure in translational regulation and also in splicing, behaving as an Exonic Splicing Enhancer.
Collapse
Affiliation(s)
- Mireille Melko
- CNRS UMR 6097, Institute of Molecular and Cellular Pharmacology, University of Nice-Sophia Antipolis, 06560 Valbonne Sophia-Antipolis, France
| | | |
Collapse
|
171
|
Collie GW, Haider SM, Neidle S, Parkinson GN. A crystallographic and modelling study of a human telomeric RNA (TERRA) quadruplex. Nucleic Acids Res 2010; 38:5569-80. [PMID: 20413582 PMCID: PMC2938214 DOI: 10.1093/nar/gkq259] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
DNA telomeric repeats in mammalian cells are transcribed to guanine-rich RNA sequences, which adopt parallel-stranded G-quadruplexes with a propeller-like fold. The successful crystallization and structure analysis of a bimolecular human telomeric RNA G-quadruplex, folded into the same crystalline environment as an equivalent DNA oligonucleotide sequence, is reported here. The structural basis of the increased stability of RNA telomeric quadruplexes over DNA ones and their preference for parallel topologies is described here. Our findings suggest that the 2′-OH hydroxyl groups in the RNA quadruplex play a significant role in redefining hydration structure in the grooves and the hydrogen bonding networks. The preference for specific nucleotides to populate the C3′-endo sugar pucker domain is accommodated by alterations in the phosphate backbone, which leads to greater stability through enhanced hydrogen bonding networks. Molecular dynamics simulations on the DNA and RNA quadruplexes are consistent with these findings. The computations, based on the native crystal structure, provide an explanation for RNA G-quadruplex ligand binding selectivity for a group of naphthalene diimide ligands as compared to the DNA G-quadruplex.
Collapse
Affiliation(s)
- Gavin W Collie
- Cancer Research UK Biomolecular Structure Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | | | | | |
Collapse
|
172
|
Collie G, Reszka AP, Haider SM, Gabelica V, Parkinson GN, Neidle S. Selectivity in small molecule binding to human telomeric RNA and DNA quadruplexes. Chem Commun (Camb) 2009:7482-4. [PMID: 20024253 DOI: 10.1039/b901889a] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Quadruplex RNAs are less well understood than their DNA counterparts, yet of potentially high biological relevance. The interactions of several quadruplex-binding ligands with telomeric RNA quadruplexes are reported and compared with their binding to the analogous DNA quadruplexes.
Collapse
Affiliation(s)
- Gavin Collie
- Cancer Research UK Biomolecular Structure Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London, UK WC1N 1AX
| | | | | | | | | | | |
Collapse
|