151
|
Hao L, Chen Q, Chen X, Zhou Q. Integrated analysis of bulk and single-cell RNA-seq reveals the role of MYC signaling in lung adenocarcinoma. Front Genet 2022; 13:1021978. [PMID: 36299592 PMCID: PMC9589149 DOI: 10.3389/fgene.2022.1021978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
Abstract
MYC is one of the well-known oncogenes, and its important role in cancer still remains largely unknown. We obtained lung adenocarcinoma (LUAD) multi-omics data including genome, transcriptome, and single-cell sequencing data from multiple cohorts. We calculated the GSVA score of the MYC target v1 using the ssGSEA method, and obtained the genes highly correlated with this score by Spearman correlation analysis. Subsequent hierarchical clustering divided these genes into two gene sets highly associated with MYC signaling (S1 and S2). Unsupervised clustering based on these genes divided the LUAD samples into two distinct subgroups, namely, the MYC signaling inhibition group (C1) and activation group (C2). The MCP counter package in R was used to assess tumor immune cell infiltration abundance and ssGSEA was used to calculate gene set scores. The scRNA-seq was used to verify the association of MYC signaling to cell differentiation. We observed significant differences in prognosis, clinical characteristics, immune microenvironment, and genomic alterations between MYC signaling inhibition and MYC signaling activation groups. MYC-signaling is associated with genomic instability and can mediate the immunosuppressive microenvironment and promote cell proliferation, tumor stemness. Moreover, MYC-signaling activation is also subject to complex post-transcriptional regulation and is highly associated with cell differentiation. In conclusion, MYC signaling is closely related to the genomic instability, genetic alteration and regulation, the immune microenvironment landscape, cell differentiation, and disease survival in LUAD. The findings of this study provide a valuable reference to revealing the mechanism of cancer-promoting action of MYC in LUAD.
Collapse
Affiliation(s)
- Lu Hao
- Science and Education Department, Shenzhen Baoan Shiyan People’s Hospital, Shenzhen, China
| | - Qiuyan Chen
- Science and Education Department, Shenzhen Baoan Shiyan People’s Hospital, Shenzhen, China
| | - Xi Chen
- Central Laboratory, The People’s Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qing Zhou
- Central Laboratory, The People’s Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
- *Correspondence: Qing Zhou,
| |
Collapse
|
152
|
Tian Y, Li Q, Yang Z, Zhang S, Xu J, Wang Z, Bai H, Duan J, Zheng B, Li W, Cui Y, Wang X, Wan R, Fei K, Zhong J, Gao S, He J, Gay CM, Zhang J, Wang J, Tang F. Single-cell transcriptomic profiling reveals the tumor heterogeneity of small-cell lung cancer. Signal Transduct Target Ther 2022; 7:346. [PMID: 36195615 PMCID: PMC9532437 DOI: 10.1038/s41392-022-01150-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 12/03/2022] Open
Abstract
Small-cell lung cancer (SCLC) is the most aggressive and lethal subtype of lung cancer, for which, better understandings of its biology are urgently needed. Single-cell sequencing technologies provide an opportunity to profile individual cells within the tumor microenvironment (TME) and investigate their roles in tumorigenic processes. Here, we performed high-precision single-cell transcriptomic analysis of ~5000 individual cells from primary tumors (PTs) and matched normal adjacent tissues (NATs) from 11 SCLC patients, including one patient with both PT and relapsed tumor (RT). The comparison revealed an immunosuppressive landscape of human SCLC. Malignant cells in SCLC tumors exhibited diverse states mainly related to the cell cycle, immune, and hypoxic properties. Our data also revealed the intratumor heterogeneity (ITH) of key transcription factors (TFs) in SCLC and related gene expression patterns and functions. The non-neuroendocrine (non-NE) tumors were correlated with increased inflammatory gene signatures and immune cell infiltrates in SCLC, which contributed to better responses to immune checkpoint inhibitors. These findings indicate a significant heterogeneity of human SCLC, and intensive crosstalk between cancer cells and the TME at single-cell resolution, and thus, set the stage for a better understanding of the biology of SCLC as well as for developing new therapeutics for SCLC.
Collapse
Affiliation(s)
- Yanhua Tian
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qingqing Li
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics & Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Zhenlin Yang
- Department of Throacic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu Zhang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics & Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Jiachen Xu
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua Bai
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianchun Duan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Zheng
- Department of Throacic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen Li
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics & Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yueli Cui
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics & Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Xin Wang
- Department of Throacic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Wan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kailun Fei
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia Zhong
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugeng Gao
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Carl M Gay
- Department of Thoracic/Head & Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jianjun Zhang
- Department of Thoracic/Head & Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China.
- Beijing Advanced Innovation Center for Genomics & Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
153
|
Chemi F, Pearce SP, Clipson A, Hill SM, Conway AM, Richardson SA, Kamieniecka K, Caeser R, White DJ, Mohan S, Foy V, Simpson KL, Galvin M, Frese KK, Priest L, Egger J, Kerr A, Massion PP, Poirier JT, Brady G, Blackhall F, Rothwell DG, Rudin CM, Dive C. cfDNA methylome profiling for detection and subtyping of small cell lung cancers. NATURE CANCER 2022; 3:1260-1270. [PMID: 35941262 PMCID: PMC9586870 DOI: 10.1038/s43018-022-00415-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/28/2022] [Indexed: 12/03/2022]
Abstract
Small cell lung cancer (SCLC) is characterized by morphologic, epigenetic and transcriptomic heterogeneity. Subtypes based upon predominant transcription factor expression have been defined that, in mouse models and cell lines, exhibit potential differential therapeutic vulnerabilities, with epigenetically distinct SCLC subtypes also described. The clinical relevance of these subtypes is unclear, due in part to challenges in obtaining tumor biopsies for reliable profiling. Here we describe a robust workflow for genome-wide DNA methylation profiling applied to both patient-derived models and to patients' circulating cell-free DNA (cfDNA). Tumor-specific methylation patterns were readily detected in cfDNA samples from patients with SCLC and were correlated with survival outcomes. cfDNA methylation also discriminated between the transcription factor SCLC subtypes, a precedent for a liquid biopsy cfDNA-methylation approach to molecularly subtype SCLC. Our data reveal the potential clinical utility of cfDNA methylation profiling as a universally applicable liquid biopsy approach for the sensitive detection, monitoring and molecular subtyping of patients with SCLC.
Collapse
Affiliation(s)
- Francesca Chemi
- Nucleic Acid Biomarker Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute, University of Manchester, Alderley Edge, UK
| | - Simon P Pearce
- Bioinformatics and Biostatistics Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute, University of Manchester, Alderley Edge, UK
| | - Alexandra Clipson
- Nucleic Acid Biomarker Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute, University of Manchester, Alderley Edge, UK
| | - Steven M Hill
- Bioinformatics and Biostatistics Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute, University of Manchester, Alderley Edge, UK
| | - Alicia-Marie Conway
- Nucleic Acid Biomarker Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute, University of Manchester, Alderley Edge, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Sophie A Richardson
- Nucleic Acid Biomarker Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute, University of Manchester, Alderley Edge, UK
| | - Katarzyna Kamieniecka
- Bioinformatics and Biostatistics Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute, University of Manchester, Alderley Edge, UK
| | - Rebecca Caeser
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel J White
- Nucleic Acid Biomarker Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute, University of Manchester, Alderley Edge, UK
| | - Sumitra Mohan
- Nucleic Acid Biomarker Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute, University of Manchester, Alderley Edge, UK
| | - Victoria Foy
- Nucleic Acid Biomarker Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute, University of Manchester, Alderley Edge, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Kathryn L Simpson
- Preclinical and Pharmacology Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute, University of Manchester, Alderley Edge, UK
| | - Melanie Galvin
- Preclinical and Pharmacology Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute, University of Manchester, Alderley Edge, UK
| | - Kristopher K Frese
- Preclinical and Pharmacology Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute, University of Manchester, Alderley Edge, UK
| | - Lynsey Priest
- Division of Cancer Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Jacklynn Egger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alastair Kerr
- Bioinformatics and Biostatistics Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute, University of Manchester, Alderley Edge, UK
| | - Pierre P Massion
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John T Poirier
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Gerard Brady
- Nucleic Acid Biomarker Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute, University of Manchester, Alderley Edge, UK
| | - Fiona Blackhall
- The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Dominic G Rothwell
- Nucleic Acid Biomarker Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute, University of Manchester, Alderley Edge, UK.
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Caroline Dive
- Nucleic Acid Biomarker Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute, University of Manchester, Alderley Edge, UK.
- Bioinformatics and Biostatistics Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute, University of Manchester, Alderley Edge, UK.
- Preclinical and Pharmacology Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute, University of Manchester, Alderley Edge, UK.
| |
Collapse
|
154
|
Li T, Qiao T. Unraveling tumor microenvironment of small-cell lung cancer: implications for immunotherapy. Semin Cancer Biol 2022; 86:117-125. [PMID: 36183998 DOI: 10.1016/j.semcancer.2022.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022]
Abstract
Small-cell lung cancer (SCLC) is an aggressive lung cancer subtype and its first-line treatment has remained unchanged for decades. In recent years, immunotherapy has emerged as a therapeutic strategy for tumor treatment, whereas, patients with SCLC exhibit poor overall responses to immunotherapy alone, which highlights the necessity for combinatorial approaches. The tumor microenvironment (TME), an integral component in cancer, is widely implicated in tumorigenesis and tumor metastasis. The interactions of various cells within TME shape the adverse conditions of the tumor microenvironment (characterized by hypoxia, nutrient restriction, and acidity) and are considered responsible for the modest therapeutic responses to immunotherapy. Several studies have suggested that adverse TME can regulate immune cell activation and function. However, the specific regulatory mechanisms and their implications on immunotherapy remain unclear. Thus, it is worth unraveling the characteristics of TME and its impact on antitumor immunity, in the hope of devising novel strategies to reinforce immunotherapeutic effects on SCLC. In this review, we firstly elaborate on the immune landscape of SCLC and the formation of three remarkable characteristics in TME, as well as the interaction among them. Next, we summarize the latest findings regarding the impacts of adverse TME on immune cells and its targeted therapy in SCLC. Finally, we discuss the ongoing trials in combination therapy and potential directions of SCLC therapy. Collectively, the findings combined here are expected to aid the design of trials for combining immunotherapy with therapy targeting the TME of SCLC.
Collapse
Affiliation(s)
- Tian Li
- Western Theater Command Air Force Hospital, Chengdu 610065, China; School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Tianyun Qiao
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.
| |
Collapse
|
155
|
Groves SM, Ildefonso GV, McAtee CO, Ozawa PMM, Ireland AS, Stauffer PE, Wasdin PT, Huang X, Qiao Y, Lim JS, Bader J, Liu Q, Simmons AJ, Lau KS, Iams WT, Hardin DP, Saff EB, Holmes WR, Tyson DR, Lovly CM, Rathmell JC, Marth G, Sage J, Oliver TG, Weaver AM, Quaranta V. Archetype tasks link intratumoral heterogeneity to plasticity and cancer hallmarks in small cell lung cancer. Cell Syst 2022; 13:690-710.e17. [PMID: 35981544 PMCID: PMC9615940 DOI: 10.1016/j.cels.2022.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 05/10/2022] [Accepted: 07/25/2022] [Indexed: 01/26/2023]
Abstract
Small cell lung cancer (SCLC) tumors comprise heterogeneous mixtures of cell states, categorized into neuroendocrine (NE) and non-neuroendocrine (non-NE) transcriptional subtypes. NE to non-NE state transitions, fueled by plasticity, likely underlie adaptability to treatment and dismal survival rates. Here, we apply an archetypal analysis to model plasticity by recasting SCLC phenotypic heterogeneity through multi-task evolutionary theory. Cell line and tumor transcriptomics data fit well in a five-dimensional convex polytope whose vertices optimize tasks reminiscent of pulmonary NE cells, the SCLC normal counterparts. These tasks, supported by knowledge and experimental data, include proliferation, slithering, metabolism, secretion, and injury repair, reflecting cancer hallmarks. SCLC subtypes, either at the population or single-cell level, can be positioned in archetypal space by bulk or single-cell transcriptomics, respectively, and characterized as task specialists or multi-task generalists by the distance from archetype vertex signatures. In the archetype space, modeling single-cell plasticity as a Markovian process along an underlying state manifold indicates that task trade-offs, in response to microenvironmental perturbations or treatment, may drive cell plasticity. Stifling phenotypic transitions and plasticity may provide new targets for much-needed translational advances in SCLC. A record of this paper's Transparent Peer Review process is included in the supplemental information.
Collapse
Affiliation(s)
- Sarah M Groves
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Geena V Ildefonso
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Caitlin O McAtee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Patricia M M Ozawa
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Abbie S Ireland
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Philip E Stauffer
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Perry T Wasdin
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Xiaomeng Huang
- Utah Center for Genetic Discovery, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Yi Qiao
- Utah Center for Genetic Discovery, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jing Shan Lim
- Department of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jackie Bader
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Alan J Simmons
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37235, USA
| | - Ken S Lau
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37235, USA
| | - Wade T Iams
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Doug P Hardin
- Department of Mathematics and Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37235, USA
| | - Edward B Saff
- Department of Mathematics, Vanderbilt University, Nashville, TN 37235, USA
| | - William R Holmes
- Department of Mathematics, Vanderbilt University, Nashville, TN 37235, USA; Department of Physics, Vanderbilt University, Nashville, TN 37235, USA
| | - Darren R Tyson
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Christine M Lovly
- Department of Mathematics and Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gabor Marth
- Utah Center for Genetic Discovery, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Julien Sage
- Department of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Trudy G Oliver
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37235, USA
| | - Vito Quaranta
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
156
|
Zhang C, Wang H. Accurate treatment of small cell lung cancer: Current progress, new challenges and expectations. Biochim Biophys Acta Rev Cancer 2022; 1877:188798. [PMID: 36096336 DOI: 10.1016/j.bbcan.2022.188798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/19/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022]
Abstract
Small cell lung cancer (SCLC) is a deadly disease with poor prognosis. Fast growing speed, inclination to metastasis, enrichment in cancer stem cells altogether constitute its aggressive nature. In stark contrast to non-small cell lung cancer (NSCLC) that strides vigorously on the road to precision oncology, SCLC has been on the embryonic path to achieve effective personalized treatments. The survival of patients with SCLC have not been improved greatly, which could be possibly due to our inadequate understanding of genetic alterations of SCLC. Recently, encouraging effects have been observed in patients with SCLC undergoing immunotherapy. However, exciting results have only been observed in a small fraction of patients with SCLC, warranting biomarkers predictive of responses as well as novel therapeutic strategies. In addition, SCLC has previously been viewed to be homogeneous. However, perspectives have been changed thanks to the advances in sequencing techniques and platforms, which unfolds the complex heterogeneity of SCLC both genetically and non-genetically, rendering the treatment of SCLC a further step forward into the precision era. To outline the road of SCLC towards precision oncology, we summarize the progresses and achievements made in precision treatment in SCLC in genomic, transcriptomic, epigenetic, proteomic and metabolic dimensions. Moreover, we conclude relevant therapeutic vulnerabilities in SCLC. Clinically tested drugs and clinical trials have also been demonstrated. Ultimately, we look into the opportunities and challenges ahead to advance the individualized treatment in pursuit of improved survival for patients with SCLC.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
157
|
Kelenis DP, Rodarte KE, Kollipara RK, Pozo K, Choudhuri SP, Spainhower KB, Wait SJ, Stastny V, Oliver TG, Johnson JE. Inhibition of Karyopherin β1-Mediated Nuclear Import Disrupts Oncogenic Lineage-Defining Transcription Factor Activity in Small Cell Lung Cancer. Cancer Res 2022; 82:3058-3073. [PMID: 35748745 PMCID: PMC9444950 DOI: 10.1158/0008-5472.can-21-3713] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/29/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022]
Abstract
Genomic studies support the classification of small cell lung cancer (SCLC) into subtypes based on the expression of lineage-defining transcription factors ASCL1 and NEUROD1, which together are expressed in ∼86% of SCLC. ASCL1 and NEUROD1 activate SCLC oncogene expression, drive distinct transcriptional programs, and maintain the in vitro growth and oncogenic properties of ASCL1 or NEUROD1-expressing SCLC. ASCL1 is also required for tumor formation in SCLC mouse models. A strategy to inhibit the activity of these oncogenic drivers may therefore provide both a targeted therapy for the predominant SCLC subtypes and a tool to investigate the underlying lineage plasticity of established SCLC tumors. However, there are no known agents that inhibit ASCL1 or NEUROD1 function. In this study, we identify a novel strategy to pharmacologically target ASCL1 and NEUROD1 activity in SCLC by exploiting the nuclear localization required for the function of these transcription factors. Karyopherin β1 (KPNB1) was identified as a nuclear import receptor for both ASCL1 and NEUROD1 in SCLC, and inhibition of KPNB1 led to impaired ASCL1 and NEUROD1 nuclear accumulation and transcriptional activity. Pharmacologic targeting of KPNB1 preferentially disrupted the growth of ASCL1+ and NEUROD1+ SCLC cells in vitro and suppressed ASCL1+ tumor growth in vivo, an effect mediated by a combination of impaired ASCL1 downstream target expression, cell-cycle activity, and proteostasis. These findings broaden the support for targeting nuclear transport as an anticancer therapeutic strategy and have implications for targeting lineage-transcription factors in tumors beyond SCLC. SIGNIFICANCE The identification of KPNB1 as a nuclear import receptor for lineage-defining transcription factors in SCLC reveals a viable therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Demetra P. Kelenis
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kathia E. Rodarte
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rahul K. Kollipara
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Karine Pozo
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA,Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Kyle B. Spainhower
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Sarah J. Wait
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Victor Stastny
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Trudy G. Oliver
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Jane E. Johnson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
158
|
Fushimi A, Morimoto Y, Ishikawa S, Yamashita N, Bhattacharya A, Daimon T, Rajabi H, Jin C, Hagiwara M, Yasumizu Y, Luan Z, Suo W, Wong KK, Withers H, Liu S, Long MD, Kufe D. Dependence on the MUC1-C Oncoprotein in Classic, Variant, and Non-neuroendocrine Small Cell Lung Cancer. Mol Cancer Res 2022; 20:1379-1390. [PMID: 35612556 PMCID: PMC9437561 DOI: 10.1158/1541-7786.mcr-22-0165] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/27/2022] [Accepted: 05/20/2022] [Indexed: 01/07/2023]
Abstract
Small cell lung cancer (SCLC) is a recalcitrant malignancy defined by subtypes on the basis of differential expression of the ASCL1, NEUROD1, and POU2F3 transcription factors. The MUC1-C protein is activated in pulmonary epithelial cells by exposure to environmental carcinogens and promotes oncogenesis; however, there is no known association between MUC1-C and SCLC. We report that MUC1-C is expressed in classic neuroendocrine (NE) SCLC-A, variant NE SCLC-N and non-NE SCLC-P cells and activates the MYC pathway in these subtypes. In SCLC cells characterized by NE differentiation and DNA replication stress, we show that MUC1-C activates the MYC pathway in association with induction of E2F target genes and dysregulation of mitotic progression. Our studies further demonstrate that the MUC1-C→MYC pathway is necessary for induction of (i) NOTCH2, a marker of pulmonary NE stem cells that are the proposed cell of SCLC origin, and (ii) ASCL1 and NEUROD1. We also show that the MUC1-C→MYC→NOTCH2 network is necessary for self-renewal capacity and tumorigenicity of NE and non-NE SCLC cells. Analyses of datasets from SCLC tumors confirmed that MUC1 expression in single SCLC cells significantly associates with activation of the MYC pathway. These findings demonstrate that SCLC cells are addicted to MUC1-C and identify a potential new target for SCLC treatment. IMPLICATIONS This work uncovers addiction of SCLC cells to MUC1-C, which is a druggable target that could provide new opportunities for advancing SCLC treatment.
Collapse
Affiliation(s)
- Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Yoshihiro Morimoto
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Satoshi Ishikawa
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | - Tatsuaki Daimon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Hasan Rajabi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Caining Jin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Masayuki Hagiwara
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Yota Yasumizu
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Zhou Luan
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Wenhao Suo
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York
| | - Henry Withers
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Song Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Mark D. Long
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York.,Corresponding Authors: Donald Kufe, Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215. E-mail: ; and Mark D. Long, Roswell Park Comprehensive Cancer Center, Carlton & Elm Streets, Buffalo, NY 14263. E-mail:
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Corresponding Authors: Donald Kufe, Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215. E-mail: ; and Mark D. Long, Roswell Park Comprehensive Cancer Center, Carlton & Elm Streets, Buffalo, NY 14263. E-mail:
| |
Collapse
|
159
|
Baine MK, Febres-Aldana CA, Chang JC, Jungbluth AA, Sethi S, Antonescu CR, Travis WD, Hsieh MS, Roh MS, Homer RJ, Ladanyi M, Egger JV, Lai WV, Rudin CM, Rekhtman N. POU2F3 in SCLC: Clinicopathologic and Genomic Analysis With a Focus on Its Diagnostic Utility in Neuroendocrine-Low SCLC. J Thorac Oncol 2022; 17:1109-1121. [PMID: 35760287 PMCID: PMC9427708 DOI: 10.1016/j.jtho.2022.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022]
Abstract
INTRODUCTION POU2F3 is a recent marker of a small cell lung carcinoma (SCLC) subtype related to chemosensory tuft cells (SCLC-P). The characteristics of SCLC-P have not been fully defined, and the data on POU2F3 expression in other lung tumors are scarce. METHODS We screened 254 SCLC for POU2F3 expression and comprehensively analyzed histopathologic, genomic, and clinical characteristics of POU2F3-positive tumors. We also explored POU2F3 expression in other major lung cancer types (n = 433) and a targeted set of potential diagnostic mimics of SCLC (n = 123). RESULTS POU2F3 was expressed in 30 of 254 (12%) SCLC and was strongly associated with low expression of standard neuroendocrine markers (synaptophysin, chromogranin A, CD56, INSM1). Notably, POU2F3 was expressed in 75% of SCLC with entirely negative or minimal neuroendocrine marker expression (15/20) and was helpful in supporting the diagnosis of SCLC in such cases. Broad targeted next-generation sequencing revealed that SCLC-P (n = 12) exhibited enrichment in several alterations, including PTEN inactivation, MYC amplifications, and 20q13 amplifications, but similar rates of RB1 and TP53 alterations as other SCLC (n = 155). Beyond SCLC, POU2F3 expression was exclusively limited to large cell neuroendocrine carcinoma (12%) and basaloid squamous cell carcinoma (22%). CONCLUSIONS This is the largest cohort of SCLC-P clinical samples to date, where we describe the diagnostic utility of POU2F3 in a challenging subset of SCLC with low or absent expression of standard neuroendocrine markers. The distinct genomic alterations in SCLC-P may offer a novel avenue for therapeutic targeting. The role of POU2F3 in a narrow subset of other lung cancer types warrants further study.
Collapse
Affiliation(s)
- Marina K Baine
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Jason C Chang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Achim A Jungbluth
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shenon Sethi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cristina R Antonescu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William D Travis
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Min-Shu Hsieh
- Department of Pathology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Mee Sook Roh
- Department of Pathology, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Robert J Homer
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jacklynn V Egger
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - W Victoria Lai
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles M Rudin
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Natasha Rekhtman
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
160
|
Corbett V, Hallenbeck P, Rychahou P, Chauhan A. Evolving role of seneca valley virus and its biomarker TEM8/ANTXR1 in cancer therapeutics. Front Mol Biosci 2022; 9:930207. [PMID: 36090051 PMCID: PMC9458967 DOI: 10.3389/fmolb.2022.930207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Oncolytic viruses have made a significant inroad in cancer drug development. Numerous clinical trials are currently investigating oncolytic viruses both as single agents or in combination with various immunomodulators. Oncolytic viruses (OV) are an integral pillar of immuno-oncology and hold potential for not only delivering durable anti-tumor responses but also converting “cold” tumors to “hot” tumors. In this review we will discuss one such promising oncolytic virus called Seneca Valley Virus (SVV-001) and its therapeutic implications. SVV development has seen seismic evolution over the past decade and now boasts of being the only OV with a practically applicable biomarker for viral tropism. We discuss relevant preclinical and clinical data involving SVV and how bio-selecting for TEM8/ANTXR1, a negative tumor prognosticator can lead to first of its kind biomarker driven oncolytic viral cancer therapy.
Collapse
Affiliation(s)
- Virginia Corbett
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Piotr Rychahou
- Department of Surgery, Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Aman Chauhan
- Division of Medical Oncology, Department of Internal Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY, United States
- *Correspondence: Aman Chauhan,
| |
Collapse
|
161
|
Chen HY, Durmaz YT, Li Y, Sabet AH, Vajdi A, Denize T, Walton E, Laimon YN, Doench JG, Mahadevan NR, Losman JA, Barbie DA, Tolstorukov MY, Rudin CM, Sen T, Signoretti S, Oser MG. Regulation of neuroendocrine plasticity by the RNA-binding protein ZFP36L1. Nat Commun 2022; 13:4998. [PMID: 36008402 PMCID: PMC9411550 DOI: 10.1038/s41467-022-31998-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
Some small cell lung cancers (SCLCs) are highly sensitive to inhibitors of the histone demethylase LSD1. LSD1 inhibitors are thought to induce their anti-proliferative effects by blocking neuroendocrine differentiation, but the mechanisms by which LSD1 controls the SCLC neuroendocrine phenotype are not well understood. To identify genes required for LSD1 inhibitor sensitivity in SCLC, we performed a positive selection genome-wide CRISPR/Cas9 loss of function screen and found that ZFP36L1, an mRNA-binding protein that destabilizes mRNAs, is required for LSD1 inhibitor sensitivity. LSD1 binds and represses ZFP36L1 and upon LSD1 inhibition, ZFP36L1 expression is restored, which is sufficient to block the SCLC neuroendocrine differentiation phenotype and induce a non-neuroendocrine "inflammatory" phenotype. Mechanistically, ZFP36L1 binds and destabilizes SOX2 and INSM1 mRNAs, two transcription factors that are required for SCLC neuroendocrine differentiation. This work identifies ZFP36L1 as an LSD1 target gene that controls the SCLC neuroendocrine phenotype and demonstrates that modulating mRNA stability of lineage transcription factors controls neuroendocrine to non-neuroendocrine plasticity.
Collapse
Affiliation(s)
- Hsiao-Yun Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Yavuz T Durmaz
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Yixiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Amin H Sabet
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Amir Vajdi
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Thomas Denize
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Emily Walton
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yasmin Nabil Laimon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Navin R Mahadevan
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Julie-Aurore Losman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Michael Y Tolstorukov
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | | | - Triparna Sen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Matthew G Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
162
|
Iida K, Kondo J, Wibisana JN, Inoue M, Okada M. ASURAT: functional annotation-driven unsupervised clustering of single-cell transcriptomes. Bioinformatics 2022; 38:4330-4336. [PMID: 35924984 PMCID: PMC9477531 DOI: 10.1093/bioinformatics/btac541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 07/04/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Single-cell RNA sequencing (scRNA-seq) analysis reveals heterogeneity and dynamic cell transitions. However, conventional gene-based analyses require intensive manual curation to interpret biological implications of computational results. Hence, a theory for efficiently annotating individual cells remains warranted. RESULTS We present ASURAT, a computational tool for simultaneously performing unsupervised clustering and functional annotation of disease, cell type, biological process and signaling pathway activity for single-cell transcriptomic data, using a correlation graph decomposition for genes in database-derived functional terms. We validated the usability and clustering performance of ASURAT using scRNA-seq datasets for human peripheral blood mononuclear cells, which required fewer manual curations than existing methods. Moreover, we applied ASURAT to scRNA-seq and spatial transcriptome datasets for human small cell lung cancer and pancreatic ductal adenocarcinoma, respectively, identifying previously overlooked subpopulations and differentially expressed genes. ASURAT is a powerful tool for dissecting cell subpopulations and improving biological interpretability of complex and noisy transcriptomic data. AVAILABILITY AND IMPLEMENTATION ASURAT is published on Bioconductor (https://doi.org/10.18129/B9.bioc.ASURAT). The codes for analyzing data in this article are available at Github (https://github.com/keita-iida/ASURATBI) and figshare (https://doi.org/10.6084/m9.figshare.19200254.v4). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Keita Iida
- To whom correspondence should be addressed.
| | - Jumpei Kondo
- Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan,Department of Clinical Bio-Resource Research and Development, Graduate School of Medicine Kyoto University, Kyoto 606-8501, Japan
| | | | - Masahiro Inoue
- Department of Clinical Bio-Resource Research and Development, Graduate School of Medicine Kyoto University, Kyoto 606-8501, Japan
| | - Mariko Okada
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan,Center for Drug Design and Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
163
|
Keogh A, Finn S, Radonic T. Emerging Biomarkers and the Changing Landscape of Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14153772. [PMID: 35954436 PMCID: PMC9367597 DOI: 10.3390/cancers14153772] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Small cell lung cancer (SCLC) is an aggressive cancer representing 15% of all lung cancers. Unlike other types of lung cancer, treatments for SCLC have changed very little in the past 20 years and therefore, the survival rate remains low. This is due, in part, to the lack of understanding of the biological basis of this disease and the previous idea that all SCLCs are the same. Multiple recent studies have identified that SCLCs have varying biological activity and can be divided into four different groups. The advantage of this is that each of these four groups responds differently to new treatments, which hopefully will dramatically improve survival. Additionally, the aim of these new treatments is to specifically target these biological differences in SCLC so normal/non cancer cells are unaffected, leading to decreased side effects and a better quality of life. There is still a lot unknown about SCLC, but these new findings offer a glimmer of hope for patients in the future. Abstract Small cell lung cancer (SCLC) is a high-grade neuroendocrine malignancy with an aggressive behavior and dismal prognosis. 5-year overall survival remains a disappointing 7%. Genomically, SCLCs are homogeneous compared to non-small cell lung cancers and are characterized almost always by functional inactivation of RB1 and TP53 with no actionable mutations. Additionally, SCLCs histologically appear uniform. Thus, SCLCs are currently managed as a single disease with platinum-based chemotherapy remaining the cornerstone of treatment. Recent studies have identified expression of dominant transcriptional signatures which may permit classification of SCLCs into four biologically distinct subtypes, namely, SCLC-A, SCLC-N, SCLC-P, and SCLC-I. These groups are readily detectable by immunohistochemistry and also have potential predictive utility for emerging therapies, including PARPi, immune checkpoint inhibitors, and DLL3 targeted therapies. In contrast with their histology, studies have identified that SCLCs display both inter- and intra-tumoral heterogeneity. Identification of subpopulations of cells with high expression of PLCG2 has been linked with risk of metastasis. SCLCs also display subtype switching under therapy pressure which may contribute furthermore to metastatic ability and chemoresistance. In this review, we summarize the recent developments in the understanding of the biology of SCLCs, and discuss the potential diagnostic, prognostic, and treatment opportunities the four proposed subtypes may present for the future. We also discuss the emerging evidence of tumor heterogeneity and plasticity in SCLCs which have been implicated in metastasis and acquired therapeutic resistance seen in these aggressive tumors.
Collapse
Affiliation(s)
- Anna Keogh
- Department of Histopathology, St. James’s Hospital, D08 NHY1 Dublin, Ireland;
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, D08 HD53 Dublin, Ireland
- Correspondence:
| | - Stephen Finn
- Department of Histopathology, St. James’s Hospital, D08 NHY1 Dublin, Ireland;
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, D08 HD53 Dublin, Ireland
| | - Teodora Radonic
- Department of Pathology, Amsterdam University Medical Center, VUMC, University Amsterdam, 1081 HV Amsterdam, The Netherlands;
| |
Collapse
|
164
|
Kanemura H, Hayashi H, Tomida S, Tanizaki J, Suzuki S, Kawanaka Y, Tsuya A, Fukuda Y, Kaneda H, Kudo K, Takahama T, Imai R, Haratani K, Chiba Y, Otani T, Ito A, Sakai K, Nishio K, Nakagawa K. The Tumor Immune Microenvironment and Frameshift Neoantigen Load Determine Response to PD-L1 Blockade in Extensive-Stage SCLC. JTO Clin Res Rep 2022; 3:100373. [PMID: 35941997 PMCID: PMC9356091 DOI: 10.1016/j.jtocrr.2022.100373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/06/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Hiroaki Kanemura
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka, Japan
- Corresponding author. Address for correspondence: Hidetoshi Hayashi, MD, PhD, Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan.
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Junko Tanizaki
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka, Japan
- Department of Medical Oncology, Kishiwada City Hospital, Osaka, Japan
| | - Shinichiro Suzuki
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka, Japan
- Department of Medical Oncology, Kishiwada City Hospital, Osaka, Japan
| | - Yusuke Kawanaka
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka, Japan
- Department of Medical Oncology, Kishiwada City Hospital, Osaka, Japan
| | - Asuka Tsuya
- Department of Medical Oncology, Izumi City General Hospital, Osaka, Japan
| | - Yasushi Fukuda
- Department of Respiratory Medicine, Kurashiki Central Hospital, Okayama, Japan
| | - Hiroyasu Kaneda
- Department of Clinical Oncology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Keita Kudo
- Department of Thoracic Medical Oncology, National Hospital Organization Osaka Minami Medical Center, Osaka, Japan
| | - Takayuki Takahama
- Department of Medical Oncology, Kindai University Nara Hospital, Nara, Japan
| | - Ryosuke Imai
- Department of Pulmonary Medicine, Thoracic Center, St. Luke’s International Hospital, Tokyo, Japan
| | - Koji Haratani
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yasutaka Chiba
- Clinical Research Center, Kindai University Hospital, Osaka, Japan
| | - Tomoyuki Otani
- Department of Pathology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Akihiko Ito
- Department of Pathology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
165
|
Xiong J, Barayan R, Louie AV, Lok BH. Novel therapeutic combinations with PARP inhibitors for small cell lung cancer: A bench-to-bedside review. Semin Cancer Biol 2022; 86:521-542. [PMID: 35917883 DOI: 10.1016/j.semcancer.2022.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/02/2022] [Accepted: 07/29/2022] [Indexed: 10/31/2022]
Abstract
Small cell lung cancer (SCLC) is treated as a monolithic disease despite the evident intra- and intertumoral heterogeneity. Non-specific DNA-damaging agents have remained the first-line treatment for decades. Recently, emerging transcriptomic and genomic profiling of SCLC tumors identified distinct SCLC subtypes and vulnerabilities towards targeted therapeutics, including inhibitors of the nuclear enzyme poly (ADP-ribose) polymerase (PARPi). SCLC cell lines and tumors exhibited an elevated level of PARP1 protein and mRNA compared to healthy lung tissues and other subtypes of lung tumors. Notable responses to PARPi were also observed in preclinical SCLC models. Clinically, PARPi monotherapy exerted variable benefits for SCLC patients. To date, research is being vigorously conducted to examine predictive biomarkers of PARPi response and various PARPi combination strategies to maximize the clinical utility of PARPi. This narrative review summarizes existing preclinical evidence supporting PARPi monotherapy, combination therapy, and respective translation to the clinic. Specifically, we covered the combination of PARPi with DNA-damaging chemotherapy (cisplatin, etoposide, temozolomide), thoracic radiotherapy, immunotherapy (immune checkpoint inhibitors), and many other novel therapeutic agents that target DNA damage response, tumor microenvironment, epigenetic modulation, angiogenesis, the ubiquitin-proteasome system, or autophagy. Putative biomarkers, such as SLFN11 expression, MGMT methylation, E2F1 expression, and platinum sensitivity, which may be predictive of response to distinct therapeutic combinations, were also discussed. The future of SCLC treatment is undergoing rapid change with a focus on tailored and personalized treatment strategies. Further development of cancer therapy with PARPi will immensely benefit at least a subset of biomarker-defined SCLC patients.
Collapse
Affiliation(s)
- Jiaqi Xiong
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ranya Barayan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Alexander V Louie
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Odette Cancer Centre - Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
| | - Benjamin H Lok
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
166
|
Miyakawa K, Miyashita N, Horie M, Terasaki Y, Tanaka H, Urushiyama H, Fukuda K, Okabe Y, Ishii T, Kuwahara N, Suzuki HI, Nagase T, Saito A. ASCL1 regulates super-enhancer-associated miRNAs to define molecular subtypes of small cell lung cancer. Cancer Sci 2022; 113:3932-3946. [PMID: 35789143 PMCID: PMC9633298 DOI: 10.1111/cas.15481] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Small cell lung cancer (SCLC) is a highly aggressive neuroendocrine tumor with dismal prognosis. Recently, molecular subtypes of SCLC have been defined by the expression status of ASCL1, NEUROD1, YAP1, and POU2F3 transcription regulators. ASCL1 is essential for neuroendocrine differentiation and is expressed in the majority of SCLC. Although previous studies investigated ASCL1 target genes in SCLC cells, ASCL1‐mediated regulation of miRNAs and its relationship to molecular subtypes remain poorly explored. Here, we performed genome‐wide profiling of chromatin modifications (H3K27me3, H3K4me3, and H3K27ac) by CUT&Tag assay and ASCL1 knockdown followed by RNA sequencing and miRNA array analyses in SCLC cells. ASCL1 could preferentially regulate genes associated with super‐enhancers (SEs) defined by enrichment of H3K27ac marking. Moreover, ASCL1 positively regulated several SE‐associated miRNAs, such as miR‐7, miR‐375, miR‐200b‐3p, and miR‐429, leading to repression of their targets, whereas ASCL1 suppressed miR‐455‐3p, an abundant miRNA in other molecular subtypes. We further elucidated unique patterns of SE‐associated miRNAs in different SCLC molecular subtypes, highlighting subtype‐specific miRNA networks with functional relevance. Notably, we found apparent de‐repression of common target genes of different miRNAs following ASCL1 knockdown, suggesting combinatorial action of multiple miRNAs underlying molecular heterogeneity of SCLC (e.g., co‐targeting of YAP1 by miR‐9 and miR‐375). Our comprehensive analyses provide novel insights into SCLC pathogenesis and a clue to understanding subtype‐dependent phenotypic differences.
Collapse
Affiliation(s)
- Kazuko Miyakawa
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoya Miyashita
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masafumi Horie
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yasuhiro Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Hidenori Tanaka
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.,Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hirokazu Urushiyama
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kensuke Fukuda
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yugo Okabe
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Ishii
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division for Health Service Promotion, The University of Tokyo, Tokyo, Japan
| | - Naomi Kuwahara
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Hiroshi I Suzuki
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute for Glyco-core Research (iGCORE), Nagoya, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
167
|
Jin Y, Zhao Q, Zhu W, Feng Y, Xiao T, Zhang P, Jiang L, Hou Y, Guo C, Huang H, Chen Y, Tong X, Cao J, Li F, Zhu X, Qin J, Gao D, Liu XY, Zhang H, Chen L, Thomas RK, Wong KK, Zhang L, Wang Y, Hu L, Ji H. Identification of TAZ as the essential molecular switch in orchestrating SCLC phenotypic transition and metastasis. Natl Sci Rev 2022; 9:nwab232. [PMID: 35967587 PMCID: PMC9365451 DOI: 10.1093/nsr/nwab232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Small-cell lung cancer (SCLC) is a recalcitrant cancer characterized by high metastasis. However, the exact cell type contributing to metastasis remains elusive. Using a Rb1 L/L /Trp53 L/L mouse model, we identify the NCAMhiCD44lo/- subpopulation as the SCLC metastasizing cell (SMC), which is progressively transitioned from the non-metastasizing NCAMloCD44hi cell (non-SMC). Integrative chromatin accessibility and gene expression profiling studies reveal the important role of the SWI/SNF complex, and knockout of its central component, Brg1, significantly inhibits such phenotypic transition and metastasis. Mechanistically, TAZ is silenced by the SWI/SNF complex during SCLC malignant progression, and its knockdown promotes SMC transition and metastasis. Importantly, ectopic TAZ expression reversely drives SMC-to-non-SMC transition and alleviates metastasis. Single-cell RNA-sequencing analyses identify SMC as the dominant subpopulation in human SCLC metastasis, and immunostaining data show a positive correlation between TAZ and patient prognosis. These data uncover high SCLC plasticity and identify TAZ as the key molecular switch in orchestrating SCLC phenotypic transition and metastasis.
Collapse
Affiliation(s)
- Yujuan Jin
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiqi Zhao
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weikang Zhu
- Center for Excellence in Mathematical Sciences, National Center for Mathematics and Interdisciplinary Sciences, Key Laboratory of Management, Decision and Information System, Hua Loo-Keng Center for Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Feng
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tian Xiao
- Shenzhen Key Laboratory of Translational Medicine of Tumor, Department of Cell Biology and Genetics, Shenzhen University Health Sciences Center, Shenzhen 518060, China
| | - Peng Zhang
- Shanghai Pulmonary Hospital, Tongji University, Shanghai 200092, China
| | - Liyan Jiang
- Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Yingyong Hou
- Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chenchen Guo
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hsinyi Huang
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yabin Chen
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyuan Tong
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiayu Cao
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fei Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 200120, China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dong Gao
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin-Yuan Liu
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hua Zhang
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Roman K Thomas
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne 50931, Germany
- Department of Pathology, University Hospital Cologne, Cologne 50937, Germany
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Lei Zhang
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yong Wang
- Center for Excellence in Mathematical Sciences, National Center for Mathematics and Interdisciplinary Sciences, Key Laboratory of Management, Decision and Information System, Hua Loo-Keng Center for Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Liang Hu
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
168
|
Williams JF, Vivero M. Diagnostic criteria and evolving molecular characterization of pulmonary neuroendocrine carcinomas. Histopathology 2022; 81:556-568. [PMID: 35758205 DOI: 10.1111/his.14714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022]
Abstract
Neuroendocrine carcinomas of the lung are currently classified into two categories: small cell lung carcinoma and large cell neuroendocrine carcinoma. Diagnostic criteria for small cell- and large cell neuroendocrine carcinoma are based solely on tumor morphology; however, overlap in histologic and immunophenotypic features between the two types of carcinoma can potentially make their classification challenging. Accurate diagnosis of pulmonary neuroendocrine carcinomas is paramount for patient management, as clinical course and treatment differ between small cell and large cell neuroendocrine carcinoma. Molecular-genetic, transcriptomic, and proteomic data published over the past decade suggest that small cell and large cell neuroendocrine carcinomas are not homogeneous categories but rather comprise multiple groups of distinctive malignancies. Nuances in the susceptibility of small cell lung carcinoma subtypes to different chemotherapeutic regimens and the discovery of targetable mutations in large cell neuroendocrine carcinoma suggest that classification and treatment of neuroendocrine carcinomas may be informed by ancillary molecular and protein expression testing going forward. This review summarizes current diagnostic criteria, prognostic and predictive correlates of classification, and evidence of previously unrecognized subtypes of small cell and large cell neuroendocrine carcinoma.
Collapse
Affiliation(s)
- Jessica F Williams
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Marina Vivero
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
169
|
Chen MY, Zeng YC, Zhao XH. Chemotherapy- and Immune-Related Gene Panel in Prognosis Prediction and Immune Microenvironment of SCLC. Front Cell Dev Biol 2022; 10:893490. [PMID: 35784467 PMCID: PMC9240612 DOI: 10.3389/fcell.2022.893490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Small-cell lung cancer (SCLC) is a highly proliferative, invasive lung cancer with poor prognosis. Chemotherapy is still the standard first-line treatment for SCLC, but many patients relapse due to chemoresistance. Along with advances in immunology, it is essential to investigate potential indicators of the immune response and the prognosis of SCLC. Using bioinformatics analysis, we identified 313 differentially expressed genes (DEGs) in SCLC and normal lung samples, and we found that four upregulated genes (TOP2A, CDKN2A, BIRC5, and MSH2) were associated with platinum resistance, while immune-related genes (HLA family genes) were downregulated in SCLC. Then, a prognostic prediction model was constructed for SCLC based on those genes. Immune cell infiltration analysis showed that antigen presentation was weak in SCLC, and TOP2A expression was negatively correlated with CD8+ T cells, while HLA-ABC expression was positively correlated with M1 macrophages, memory B cells, and CD8+ T cells. We also found that TOP2A was related to poor prognosis and inversely correlated with HLA-ABC, which was verified with immunohistochemical staining in 151 SCLC specimens. Our study findings indicated that TOP2A may be a potential prognosis indicator and a target to reverse the immunosuppressive tumor microenvironment of SCLC.
Collapse
Affiliation(s)
- Meng-Yu Chen
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Breast Oncology, The Third Hospital of Nanchang, Nanchang, China
| | - Yue-Can Zeng
- Department of Radiation Oncology, Cancer Center, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xi-He Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Xi-He Zhao,
| |
Collapse
|
170
|
Myc manipulates the miRNA content and biologic functions of small cell lung cancer cell-derived small extracellular vesicles. Mol Biol Rep 2022; 49:7953-7965. [PMID: 35690961 DOI: 10.1007/s11033-022-07632-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND MYC genes are amplified/overexpressed in 20% of SCLCs, showing that Myc and Myc-dependent cellular mechanisms are strong candidates as therapeutic targets in SCLC. Small extracellular vesicles support the carcinogenesis process by acting as messengers delivering nucleic acids and proteins-moreover, no reports associate Myc and the functional effect of small extracellular vesicles in small cell lung cancer. METHODS AND RESULTS After the effects of small extracellular vesicles (sEVs) obtained from H82 and H209 cells on HUVEC and MRC-5 cells were observed, the Myc-dependent effect of the sEVs on oncogenic potentials was further evaluated by manipulating Myc expression via lentiviral vectors in H82 and H209 cells. Then, small extracellular vesicles of Myc-manipulated SCLC cells were isolated using sEVs isolation reagents. Finally, HUVEC and MRC5 cells were treated with SCLC-derived small extracellular vesicles. Cellular activity of recipient normal lung cells was investigated by cell growth assay, wound healing assay, and transwell assay. miRNA composition changes in small extracellular vesicles and SCLC cells were investigated using miRNA microarray and QRT-PCR assay. Our results indicated that normal lung cells treated with SCLC-derived small extracellular vesicles had higher proliferation, migration capability than non-treated counterparts. Additionally, after investigating the potential effects of small extracellular vesicles derived from Myc-dysregulated SCLC cell lines, we further evaluated the Myc-dependent miRNA composition in the small extracellular vesicles. The present study revealed that Myc regulates hsa-miR-7, hsa-miR-9, hsa-miR-125b, hsa-miR-181a_2, hsa-miR-455, hsa-miR-642, and hsa-miR-4417 expressions in SCLC cell lines, not only in cellular but also in exosomal content. CONCLUSIONS Small extracellular vesicles and MYC are essential targets for therapeutic strategy in SCLC. Our study revealed that the expression level of MYC can affect the function of sEVs and encapsulate the miRNA composition in SCLC. Besides, small extracellular vesicles derived from SCLC cells can modulate normal lung cells.
Collapse
|
171
|
Wiedemeyer WR, Gavrilyuk J, Schammel A, Zhao X, Sarvaiya H, Pysz M, Gu C, You M, Isse K, Sullivan T, French D, Lee C, Dang AT, Zhang Z, Aujay M, Bankovich AJ, Vitorino P. ABBV-011, A Novel, Calicheamicin-Based Antibody-Drug Conjugate, Targets SEZ6 to Eradicate Small Cell Lung Cancer Tumors. Mol Cancer Ther 2022; 21:986-998. [PMID: 35642431 PMCID: PMC9381089 DOI: 10.1158/1535-7163.mct-21-0851] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/24/2022] [Accepted: 03/04/2022] [Indexed: 01/07/2023]
Abstract
In the past year, four antibody-drug conjugates (ADC) were approved, nearly doubling the marketed ADCs in oncology. Among other attributes, successful ADCs optimize targeting antibody, conjugation chemistry, and payload mechanism of action. Here, we describe the development of ABBV-011, a novel SEZ6-targeted, calicheamicin-based ADC for the treatment of small cell lung cancer (SCLC). We engineered a calicheamicin conjugate that lacks the acid-labile hydrazine linker that leads to systemic release of a toxic catabolite. We then screened a patient-derived xenograft library to identify SCLC as a tumor type with enhanced sensitivity to calicheamicin ADCs. Using RNA sequencing (RNA-seq) data from primary and xenograft SCLC samples, we identified seizure-related homolog 6 (SEZ6) as a surface-expressed SCLC target with broad expression in SCLC and minimal normal tissue expression by both RNA-seq and IHC. We developed an antibody targeting SEZ6 that is rapidly internalized upon receptor binding and, when conjugated to the calicheamicin linker drug, drives potent tumor regression in vitro and in vivo. These preclinical data suggest that ABBV-011 may provide a novel treatment for patients with SCLC and a rationale for ongoing phase I studies (NCT03639194).
Collapse
Affiliation(s)
| | | | | | - Xi Zhao
- AbbVie Inc., North Chicago, Illinois
| | | | | | | | | | | | | | | | | | | | | | | | | | - Philip Vitorino
- AbbVie Inc., North Chicago, Illinois.,Corresponding Author: Philip Vitorino, Bristol-Myers Squibb (United States), Redwood City, CA 94603. Phone: 650-380-5513; E-mail:
| |
Collapse
|
172
|
Hamad SH, Montgomery SA, Simon JM, Bowman BM, Spainhower KB, Murphy RM, Knudsen ES, Fenton SE, Randell SH, Holt JR, Hayes DN, Witkiewicz AK, Oliver TG, Major MB, Weissman BE. TP53, CDKN2A/P16, and NFE2L2/NRF2 regulate the incidence of pure- and combined-small cell lung cancer in mice. Oncogene 2022; 41:3423-3432. [PMID: 35577980 PMCID: PMC10039451 DOI: 10.1038/s41388-022-02348-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022]
Abstract
Studies have shown that Nrf2E79Q/+ is one of the most common mutations found in human tumors. To elucidate how this genetic change contributes to lung cancer, we compared lung tumor development in a genetically-engineered mouse model (GEMM) with dual Trp53/p16 loss, the most common mutations found in human lung tumors, in the presence or absence of Nrf2E79Q/+. Trp53/p16-deficient mice developed combined-small cell lung cancer (C-SCLC), a mixture of pure-SCLC (P-SCLC) and large cell neuroendocrine carcinoma. Mice possessing the LSL-Nrf2E79Q mutation showed no difference in the incidence or latency of C-SCLC compared with Nrf2+/+ mice. However, these tumors did not express NRF2 despite Cre-induced recombination of the LSL-Nrf2E79Q allele. Trp53/p16-deficient mice also developed P-SCLC, where activation of the NRF2E79Q mutation associated with a higher incidence of this tumor type. All C-SCLCs and P-SCLCs were positive for NE-markers, NKX1-2 (a lung cancer marker) and negative for P63 (a squamous cell marker), while only P-SCLC expressed NRF2 by immunohistochemistry. Analysis of a consensus NRF2 pathway signature in human NE+-lung tumors showed variable activation of NRF2 signaling. Our study characterizes the first GEMM that develops C-SCLC, a poorly-studied human cancer and implicates a role for NRF2 activation in SCLC development.
Collapse
Affiliation(s)
- Samera H Hamad
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Stephanie A Montgomery
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jeremy M Simon
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Brittany M Bowman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Kyle B Spainhower
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Ryan M Murphy
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Erik S Knudsen
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Suzanne E Fenton
- Division of National Toxicology Program, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Scott H Randell
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jeremiah R Holt
- University of Tennessee Health Science Center for Cancer Research, Department of Medicine, Division of Hematology and Oncology, University of Tennessee, Memphis, TN, USA
| | - D Neil Hayes
- University of Tennessee Health Science Center for Cancer Research, Department of Medicine, Division of Hematology and Oncology, University of Tennessee, Memphis, TN, USA
| | | | - Trudy G Oliver
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - M Ben Major
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| | - Bernard E Weissman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
173
|
Zhang J, Zhang H, Zhang L, Li D, Qi M, Zhang L, Yu H, Wang D, Jiang G, Wang X, Zhu X, Zhang P. Single-Cell Transcriptome Identifies Drug-Resistance Signature and Immunosuppressive Microenvironment in Metastatic Small Cell Lung Cancer. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2100060. [PMID: 36618022 PMCID: PMC9744506 DOI: 10.1002/ggn2.202100060] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 01/11/2023]
Abstract
Small cell lung cancer (SCLC) is a deadly neuroendocrine malignancy with high metastasis. However, the heterogeneity of metastatic SCLC at the single-cell level remains elusive. The single-cell transcriptome of a total of 24 081 cells in metastatic lymph node samples from seven SCLC patients via endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is examined. Genomic alterations are also examined by whole exome sequencing (WES) and the immune infiltration between SCLC and non-SCLC (NSCLC) is compared using public single-cell RNA sequencing (scRNA-seq) data. It is identified that malignant cells in lymph-node metastatic SCLC have inter-patient and intra-tumor heterogeneity characterized by distinct ASCL1 and NEUROD1 expression patterns. High expression of genes such as FZD8 in WNT pathway is associated with drug resistance in malignant cells. Compared to NSCLC, SCLC harbors a unique immunosuppressive tumor microenvironment. Malignant cells exhibit a pattern of attenuated MHC-I antigen presentation-related gene expression, which is associated with relatively low proportion of exhausted T cells. Natural killer (NK) cells display impaired antitumor function with high expression of TGFBR2. This work characterizes the inter-patient and intra-tumor heterogeneity of metastatic SCLC and uncovers the exhaustion signatures in NK cells, which may pave the way for novel treatments for SCLC including immune checkpoint blockade-based immunotherapy.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Thoracic SurgeryShanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghai200433China
| | - Haiping Zhang
- Department of Medical OncologyShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433China
| | - Lele Zhang
- Department of Thoracic SurgeryShanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghai200433China
- Central LaboratoryShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433China
| | - Dianke Li
- Department of Thoracic SurgeryShanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghai200433China
| | - Mengfan Qi
- Department of Thoracic SurgeryShanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghai200433China
| | - Liping Zhang
- Department of PathologyShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433China
| | - Huansha Yu
- Department of Thoracic SurgeryShanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghai200433China
| | - Di Wang
- Department of Thoracic SurgeryShanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghai200433China
| | - Gening Jiang
- Department of Thoracic SurgeryShanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghai200433China
| | - Xujun Wang
- SJTU‐Yale Joint Center for BiostatisticsSchool of Life Science and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Xianmin Zhu
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210China
| | - Peng Zhang
- Department of Thoracic SurgeryShanghai Pulmonary Hospital, School of MedicineTongji UniversityShanghai200433China
| |
Collapse
|
174
|
Li H, Zhong R, He C, Tang C, Cui H, Li R, Liu Y, Lan S, Cheng Y. Colony‑stimulating factor CSF2 mediates the phenotypic plasticity of small‑cell lung cancer by regulating the p‑STAT3/MYC pathway. Oncol Rep 2022; 48:122. [PMID: 35583004 PMCID: PMC9164265 DOI: 10.3892/or.2022.8333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
Relapse and drug resistance are the main causes of mortality in patients with small-cell lung cancer (SCLC). Intratumoral heterogeneity (ITH) is a key biological mechanism that leads to relapse and drug resistance. Phenotypic plasticity is an important factor that leads to ITH in SCLC, although its mechanisms and key regulatory factors remain to be elucidated. In the present study, cell proliferation and cell switch assay were measured using trypan blue. Alamar Blue was used to test drug sensitivity. Differential genes were screened by RNA sequencing. Reverse transcription-quantitative PCR and western blotting were performed to assess the expressions of CSF2/p-STAT3/MYC pathway related molecules, neuroendocrine (NE)/non-neuroendocrine (non-NE), transcription factors and drug-related targets. The present study found that SCLC cell line NCI-H69 exhibited adherent (H69A) and suspensive (H69S) phenotypes, which could switch back and forth. The two phenotypic cells had significant differences in cellular NE and non-NE characteristics, drug sensitivity and expression of drug-related targets. RNA sequencing showed that granulocyte-macrophage colony-stimulating factor [i.e., colony-stimulating factor 2 (CSF2)] was the main differentially expressed gene between the two phenotypes and that H69A cells highly expressed CSF2. The inhibition of CSF2 promoted the transformation from H69A to H69S, increased drug sensitivity and NE marker expression and decreased the non-NE marker expression in H69A. The STRING, Pathway Commons and Reactome databases showed a potential regulatory relationship between CSF2 and phosphorylated signal transducer and activator of transcription 3 (p-STAT3)/MYC. p-STAT3 and MYC expression was higher in H69A cells than in H69S cells and CSF2 silencing inhibited their expression. Taken together, these results indicated that CSF2 may regulate the phenotypic plasticity of SCLC through the phosphorylated STAT3/MYC pathway, thereby limiting the transformation between cell clones with different phenotypes and changing the sensitivity of specific cell clones to targeted drugs. Targeting CSF2 may be a potential therapeutic strategy to overcome drug resistance in SCLC treatment by influencing ITH.
Collapse
Affiliation(s)
- Hui Li
- Translational Cancer Research Lab, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| | - Rui Zhong
- Translational Cancer Research Lab, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| | - Chunying He
- Biobank, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| | - Chenchen Tang
- Biobank, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| | - Heran Cui
- Biobank, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| | - Rixin Li
- Biobank, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| | - Yan Liu
- Translational Cancer Research Lab, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| | - Shaowei Lan
- Translational Cancer Research Lab, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| | - Ying Cheng
- Translational Cancer Research Lab, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
175
|
Taniguchi H, Caeser R, Chavan SS, Zhan YA, Chow A, Manoj P, Uddin F, Kitai H, Qu R, Hayatt O, Shah NS, Quintanal Villalonga Á, Allaj V, Nguyen EM, Chan J, Michel AO, Mukae H, de Stanchina E, Rudin CM, Sen T. WEE1 inhibition enhances the antitumor immune response to PD-L1 blockade by the concomitant activation of STING and STAT1 pathways in SCLC. Cell Rep 2022; 39:110814. [PMID: 35584676 PMCID: PMC9449677 DOI: 10.1016/j.celrep.2022.110814] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/31/2022] [Accepted: 04/20/2022] [Indexed: 01/15/2023] Open
Abstract
Small cell lung cancers (SCLCs) have high mutational burden but are relatively unresponsive to immune checkpoint blockade (ICB). Using SCLC models, we demonstrate that inhibition of WEE1, a G2/M checkpoint regulator induced by DNA damage, activates the STING-TBK1-IRF3 pathway, which increases type I interferons (IFN-α and IFN-β) and pro-inflammatory chemokines (CXCL10 and CCL5), facilitating an immune response via CD8+ cytotoxic T cell infiltration. We further show that WEE1 inhibition concomitantly activates the STAT1 pathway, increasing IFN-γ and PD-L1 expression. Consistent with these findings, combined WEE1 inhibition (AZD1775) and PD-L1 blockade causes remarkable tumor regression, activation of type I and II interferon pathways, and infiltration of cytotoxic T cells in multiple immunocompetent SCLC genetically engineered mouse models, including an aggressive model with stabilized MYC. Our study demonstrates cell-autonomous and immune-stimulating activity of WEE1 inhibition in SCLC models. Combined inhibition of WEE1 plus PD-L1 blockade represents a promising immunotherapeutic approach in SCLC.
Collapse
Affiliation(s)
- Hirokazu Taniguchi
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, Mortimer B. Zuckerman Research Center, Office: Z1701, 417 E 68th St, New York, NY 10065, USA
| | - Rebecca Caeser
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, Mortimer B. Zuckerman Research Center, Office: Z1701, 417 E 68th St, New York, NY 10065, USA
| | - Shweta S Chavan
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yingqian A Zhan
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Andrew Chow
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, Mortimer B. Zuckerman Research Center, Office: Z1701, 417 E 68th St, New York, NY 10065, USA
| | - Parvathy Manoj
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, Mortimer B. Zuckerman Research Center, Office: Z1701, 417 E 68th St, New York, NY 10065, USA
| | - Fathema Uddin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, Mortimer B. Zuckerman Research Center, Office: Z1701, 417 E 68th St, New York, NY 10065, USA
| | - Hidenori Kitai
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rui Qu
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Omar Hayatt
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nisargbhai S Shah
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, Mortimer B. Zuckerman Research Center, Office: Z1701, 417 E 68th St, New York, NY 10065, USA
| | - Álvaro Quintanal Villalonga
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, Mortimer B. Zuckerman Research Center, Office: Z1701, 417 E 68th St, New York, NY 10065, USA
| | - Viola Allaj
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, Mortimer B. Zuckerman Research Center, Office: Z1701, 417 E 68th St, New York, NY 10065, USA
| | - Evelyn M Nguyen
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, Mortimer B. Zuckerman Research Center, Office: Z1701, 417 E 68th St, New York, NY 10065, USA; Cancer Biology Program, Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joseph Chan
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, Mortimer B. Zuckerman Research Center, Office: Z1701, 417 E 68th St, New York, NY 10065, USA; Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Adam O Michel
- Drug Safety and Pharmacometrics, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA; Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles M Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, Mortimer B. Zuckerman Research Center, Office: Z1701, 417 E 68th St, New York, NY 10065, USA; Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA.
| | - Triparna Sen
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, Mortimer B. Zuckerman Research Center, Office: Z1701, 417 E 68th St, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
176
|
A conserved YAP/Notch/REST network controls the neuroendocrine cell fate in the lungs. Nat Commun 2022; 13:2690. [PMID: 35577801 PMCID: PMC9110333 DOI: 10.1038/s41467-022-30416-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 04/20/2022] [Indexed: 12/30/2022] Open
Abstract
The Notch pathway is a conserved cell-cell communication pathway that controls cell fate decisions. Here we sought to determine how Notch pathway activation inhibits the neuroendocrine cell fate in the lungs, an archetypal process for cell fate decisions orchestrated by Notch signaling that has remained poorly understood at the molecular level. Using intratumoral heterogeneity in small-cell lung cancer as a tractable model system, we uncovered a role for the transcriptional regulators REST and YAP as promoters of the neuroendocrine to non-neuroendocrine transition. We further identified the specific neuroendocrine gene programs repressed by REST downstream of Notch in this process. Importantly, we validated the importance of REST and YAP in neuroendocrine to non-neuroendocrine cell fate switches in both developmental and tissue repair processes in the lungs. Altogether, these experiments identify conserved roles for REST and YAP in Notch-driven inhibition of the neuroendocrine cell fate in embryonic lungs, adult lungs, and lung cancer.
Collapse
|
177
|
Frizziero M, Kilgour E, Simpson KL, Rothwell DG, Moore DA, Frese KK, Galvin M, Lamarca A, Hubner RA, Valle JW, McNamara MG, Dive C. Expanding Therapeutic Opportunities for Extrapulmonary Neuroendocrine Carcinoma. Clin Cancer Res 2022; 28:1999-2019. [PMID: 35091446 PMCID: PMC7612728 DOI: 10.1158/1078-0432.ccr-21-3058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/08/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022]
Abstract
Poorly differentiated neuroendocrine carcinomas (PD-NEC) are rare cancers garnering interest as they become more commonly encountered in the clinic. This is due to improved diagnostic methods and the increasingly observed phenomenon of "NE lineage plasticity," whereby nonneuroendocrine (non-NE) epithelial cancers transition to aggressive NE phenotypes after targeted treatment. Effective treatment options for patients with PD-NEC are challenging for several reasons. This includes a lack of targetable, recurrent molecular drivers, a paucity of patient-relevant preclinical models to study biology and test novel therapeutics, and the absence of validated biomarkers to guide clinical management. Although advances have been made pertaining to molecular subtyping of small cell lung cancer (SCLC), a PD-NEC of lung origin, extrapulmonary (EP)-PD-NECs remain understudied. This review will address emerging SCLC-like, same-organ non-NE cancer-like and tumor-type-agnostic biological vulnerabilities of EP-PD-NECs, with the potential for therapeutic exploitation. The hypotheses surrounding the origin of these cancers and how "NE lineage plasticity" can be leveraged for therapeutic purposes are discussed. SCLC is herein proposed as a paradigm for supporting progress toward precision medicine in EP-PD-NECs. The aim of this review is to provide a thorough portrait of the current knowledge of EP-PD-NEC biology, with a view to informing new avenues for research and future therapeutic opportunities in these cancers of unmet need.
Collapse
Affiliation(s)
- Melissa Frizziero
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park, SK10 4TG, United Kingdom
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
- Manchester European Neuroendocrine Tumour Society (ENETS) Centre of Excellence, The Christie NHS Foundation Trust, 550 Wilmslow Rd, Manchester, M20 4BX, United Kingdom
| | - Elaine Kilgour
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park, SK10 4TG, United Kingdom
| | - Kathryn L. Simpson
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park, SK10 4TG, United Kingdom
| | - Dominic G. Rothwell
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park, SK10 4TG, United Kingdom
| | - David A. Moore
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, 72 Huntley St, London WC1E 6DD, United Kingdom
- Department of Cellular Pathology, University College London Hospital NHS Foundation Trust, 235 Euston Rd, London NW1 2BU, United Kingdom
| | - Kristopher K. Frese
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park, SK10 4TG, United Kingdom
| | - Melanie Galvin
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park, SK10 4TG, United Kingdom
| | - Angela Lamarca
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
- Manchester European Neuroendocrine Tumour Society (ENETS) Centre of Excellence, The Christie NHS Foundation Trust, 550 Wilmslow Rd, Manchester, M20 4BX, United Kingdom
| | - Richard A. Hubner
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
- Manchester European Neuroendocrine Tumour Society (ENETS) Centre of Excellence, The Christie NHS Foundation Trust, 550 Wilmslow Rd, Manchester, M20 4BX, United Kingdom
| | - Juan W. Valle
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
- Manchester European Neuroendocrine Tumour Society (ENETS) Centre of Excellence, The Christie NHS Foundation Trust, 550 Wilmslow Rd, Manchester, M20 4BX, United Kingdom
| | - Mairéad G. McNamara
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
- Manchester European Neuroendocrine Tumour Society (ENETS) Centre of Excellence, The Christie NHS Foundation Trust, 550 Wilmslow Rd, Manchester, M20 4BX, United Kingdom
| | - Caroline Dive
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park, SK10 4TG, United Kingdom
| |
Collapse
|
178
|
Marcianò G, Palleria C, Casarella A, Rania V, Basile E, Catarisano L, Vocca C, Bianco L, Pelaia C, Cione E, D’Agostino B, Citraro R, De Sarro G, Gallelli L. Effect of Statins on Lung Cancer Molecular Pathways: A Possible Therapeutic Role. Pharmaceuticals (Basel) 2022; 15:589. [PMID: 35631415 PMCID: PMC9144184 DOI: 10.3390/ph15050589] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is a common neoplasm, usually treated through chemotherapy, radiotherapy and/or surgery. Both clinical and experimental studies on cancer cells suggest that some drugs (e.g., statins) have the potential to improve the prognosis of cancer. In fact, statins blocking the enzyme "hydroxy-3-methylglutaryl-coenzyme A reductase" exert pleiotropic effects on different genes involved in the pathogenesis of lung cancer. In this narrative review, we presented the experimental and clinical studies that evaluated the effects of statins on lung cancer and described data on the effectiveness and safety of these compounds. We also evaluated gender differences in the treatment of lung cancer to understand the possibility of personalized therapy based on the modulation of the mevalonate pathway. In conclusion, according to the literature data, statins exert multiple effects on lung cancer cells, even if the evidence for their use in clinical practice is lacking.
Collapse
Affiliation(s)
- Gianmarco Marcianò
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Caterina Palleria
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
| | - Alessandro Casarella
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Vincenzo Rania
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Emanuele Basile
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Luca Catarisano
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Cristina Vocca
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
| | - Luigi Bianco
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
| | - Corrado Pelaia
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Ed. Polifunzionale, Arcavacata di Rende, 87036 Rende, Italy;
| | - Bruno D’Agostino
- Department of Experimental Medicine L. Donatelli, Section of Pharmacology, School of Medicine, University of Campania Luigi Vanvitelli, 80100 Naples, Italy;
| | - Rita Citraro
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
- Research Centre FAS@UMG, Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
- Research Centre FAS@UMG, Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy
| | - Luca Gallelli
- Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (G.M.); (A.C.); (V.R.); (E.B.); (L.C.); (C.V.); (R.C.); (G.D.S.)
- Operative Unit of Clinical Pharmacology and Pharmacovigilanze, Mater Domini Hospital, 88100 Catanzaro, Italy; (C.P.); (L.B.); (C.P.)
- Research Centre FAS@UMG, Department of Health Science, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
179
|
Liang J, Guan X, Bao G, Yao Y, Zhong X. Molecular subtyping of small cell lung cancer. Semin Cancer Biol 2022; 86:450-462. [DOI: 10.1016/j.semcancer.2022.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 01/12/2023]
|
180
|
Cucchiara F, Petrini I, Passaro A, Attili I, Crucitta S, Pardini E, de Marinis F, Danesi R, Re MD. Gene-Networks analyses define a subgroup of Small Cell Lung Cancers with short survival. Clin Lung Cancer 2022; 23:510-521. [DOI: 10.1016/j.cllc.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/03/2022]
|
181
|
Kashima J, Okuma Y. Advances in biology and novel treatments of SCLC: The four-color problem in uncharted territory. Semin Cancer Biol 2022; 86:386-395. [DOI: 10.1016/j.semcancer.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 10/31/2022]
|
182
|
Guo C, Wan R, He Y, Lin SH, Cao J, Qiu Y, Zhang T, Zhao Q, Niu Y, Jin Y, Huang HY, Wang X, Tan L, Thomas RK, Zhang H, Chen L, Wong KK, Hu L, Ji H. Therapeutic targeting of the mevalonate-geranylgeranyl diphosphate pathway with statins overcomes chemotherapy resistance in small cell lung cancer. NATURE CANCER 2022; 3:614-628. [PMID: 35449308 DOI: 10.1038/s43018-022-00358-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Small cell lung cancer (SCLC) lacks effective treatments to overcome chemoresistance. Here we established multiple human chemoresistant xenograft models through long-term intermittent chemotherapy, mimicking clinically relevant therapeutic settings. We show that chemoresistant SCLC undergoes metabolic reprogramming relying on the mevalonate (MVA)-geranylgeranyl diphosphate (GGPP) pathway, which can be targeted using clinically approved statins. Mechanistically, statins induce oxidative stress accumulation and apoptosis through the GGPP synthase 1 (GGPS1)-RAB7A-autophagy axis. Statin treatment overcomes both intrinsic and acquired SCLC chemoresistance in vivo across different SCLC PDX models bearing high GGPS1 levels. Moreover, we show that GGPS1 expression is negatively associated with survival in patients with SCLC. Finally, we demonstrate that combined statin and chemotherapy treatment resulted in durable responses in three patients with SCLC who relapsed from first-line chemotherapy. Collectively, these data uncover the MVA-GGPP pathway as a metabolic vulnerability in SCLC and identify statins as a potentially effective treatment to overcome chemoresistance.
Collapse
Affiliation(s)
- Chenchen Guo
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruijie Wan
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Shu-Hai Lin
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Jiayu Cao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Qiu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tengfei Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiqi Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Yujia Niu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Yujuan Jin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Hsin-Yi Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xue Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Li Tan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Roman K Thomas
- Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany
- Department of Pathology, Medical Faculty, University Hospital Cologne, Cologne, Germany
- DKFZ, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
| | - Hua Zhang
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Liang Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
183
|
Megyesfalvi Z, Barany N, Lantos A, Valko Z, Pipek O, Lang C, Schwendenwein A, Oberndorfer F, Paku S, Ferencz B, Dezso K, Fillinger J, Lohinai Z, Moldvay J, Galffy G, Szeitz B, Rezeli M, Rivard C, Hirsch FR, Brcic L, Popper H, Kern I, Kovacevic M, Skarda J, Mittak M, Marko-Varga G, Bogos K, Renyi-Vamos F, Hoda MA, Klikovits T, Hoetzenecker K, Schelch K, Laszlo V, Dome B. Expression patterns and prognostic relevance of subtype-specific transcription factors in surgically resected small cell lung cancer: an international multicenter study. J Pathol 2022; 257:674-686. [PMID: 35489038 PMCID: PMC9541929 DOI: 10.1002/path.5922] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/10/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
Abstract
The tissue distribution and prognostic relevance of subtype‐specific proteins (ASCL1, NEUROD1, POU2F3, YAP1) present an evolving area of research in small‐cell lung cancer (SCLC). The expression of subtype‐specific transcription factors and P53 and RB1 proteins were measured by immunohistochemistry (IHC) in 386 surgically resected SCLC samples. Correlations between subtype‐specific proteins and in vitro efficacy of various therapeutic agents were investigated by proteomics and cell viability assays in 26 human SCLC cell lines. Besides SCLC‐A (ASCL1‐dominant), SCLC‐AN (combined ASCL1/NEUROD1), SCLC‐N (NEUROD1‐dominant), and SCLC‐P (POU2F3‐dominant), IHC and cluster analyses identified a quadruple‐negative SCLC subtype (SCLC‐QN). No unique YAP1‐subtype was found. The highest overall survival rates were associated with non‐neuroendocrine subtypes (SCLC‐P and SCLC‐QN) and the lowest with neuroendocrine subtypes (SCLC‐A, SCLC‐N, SCLC‐AN). In univariate analyses, high ASCL1 expression was associated with poor prognosis and high POU2F3 expression with good prognosis. Notably, high ASCL1 expression influenced survival outcomes independently of other variables in a multivariate model. High POU2F3 and YAP1 protein abundances correlated with sensitivity and resistance to standard‐of‐care chemotherapeutics, respectively. Specific correlation patterns were also found between the efficacy of targeted agents and subtype‐specific protein abundances. In conclusion, we investigated the clinicopathological relevance of SCLC molecular subtypes in a large cohort of surgically resected specimens. Differential IHC expression of ASCL1, NEUROD1, and POU2F3 defines SCLC subtypes. No YAP1‐subtype can be distinguished by IHC. High POU2F3 expression is associated with improved survival in a univariate analysis, whereas elevated ASCL1 expression is an independent negative prognosticator. Proteomic and cell viability assays of human SCLC cell lines revealed distinct vulnerability profiles defined by transcription regulators. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Zsolt Megyesfalvi
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.,National Koranyi Institute of Pulmonology, Budapest, Hungary.,Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Nandor Barany
- National Koranyi Institute of Pulmonology, Budapest, Hungary.,Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Andras Lantos
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Zsuzsanna Valko
- National Koranyi Institute of Pulmonology, Budapest, Hungary.,Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Orsolya Pipek
- Department of Physics of Complex Systems, Eotvos Lorand University, Budapest, Hungary
| | - Christian Lang
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Anna Schwendenwein
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | | | - Sandor Paku
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Bence Ferencz
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.,National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Katalin Dezso
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Janos Fillinger
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Zoltan Lohinai
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Judit Moldvay
- National Koranyi Institute of Pulmonology, Budapest, Hungary.,MTA-SE NAP, Brain Metastasis Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gabriella Galffy
- Torokbalint County Institute of Pulmonology, Torokbalint, Hungary
| | - Beata Szeitz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Melinda Rezeli
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Christopher Rivard
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Fred R Hirsch
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Tisch Cancer Institute, Center for Thoracic Oncology, Mount Sinai Health System, New York, NY, USA
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Helmut Popper
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Izidor Kern
- University Clinic for Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
| | - Mile Kovacevic
- University Clinic for Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
| | - Jozef Skarda
- Institute of Clinical and Molecular Pathology, Medical Faculty, Palacky University Olomouc, Olomouc, Czech Republic.,Department of Pathology, University Hospital Ostrava and Faculty of Medicine University of Ostrava, Ostrava, Czech Republic
| | - Marcel Mittak
- Department of Surgery, University Hospital Ostrava and Faculty of Medicine University of Ostrava, Ostrava, Czech Republic
| | | | - Krisztina Bogos
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Ferenc Renyi-Vamos
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.,National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Thomas Klikovits
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Department of Thoracic Surgery, Klinik Floridsdorf, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Karin Schelch
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Viktoria Laszlo
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.,Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Balazs Dome
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.,National Koranyi Institute of Pulmonology, Budapest, Hungary.,Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
184
|
Dynamic expression of Schlafen 11 (SLFN11) in circulating tumour cells as a liquid biomarker in small cell lung cancer. Br J Cancer 2022; 127:569-576. [PMID: 35440668 PMCID: PMC9346119 DOI: 10.1038/s41416-022-01811-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Small cell lung cancer (SCLC) is an aggressive malignancy with no established biomarkers. Schlafen 11(SLFN11), a DNA/RNA helicase that sensitises cancer cells to DNA-damaging agents, has emerged as a promising predictive biomarker for several drug classes including platinum and PARP inhibitors. Detection of SLFN11 in circulating tumour cells (CTCs) may provide a valuable alternative to tissue sampling. METHODS SLFN11 expression was evaluated in tumour samples and characterised in circulating tumour cells (CTC) longitudinally to determine its potential role as a biomarker of response. RESULTS Among 196 SCLC tumours, 51% expressed SLFN11 by IHC. In addition, 20/29 extra-thoracic high-grade neuroendocrine tumours expressed SLFN11 expression. In 64 blood samples from 42 SCLC patients, 83% (53/64) of samples had detectable CTCs, and SLFN11-positive CTCs were detected in 55% (29/53). Patients actively receiving platinum treatment had the lowest number of CTCs and a lower percentage of SLFN11-positive CTCs (p = 0.014). Analysis from patients with longitudinal samples suggest a decrease in CTC number and in SLFN11 expression that correlates with clinical response. CONCLUSIONS SLFN11 levels can be monitored in CTCs from SCLC patients using non-invasive liquid biopsies. The ability to detect SLFN11 in CTCs from SCLC patients adds a valuable tool for the detection and longitudinal monitoring of this promising biomarker.
Collapse
|
185
|
Lissa D, Takahashi N, Desai P, Manukyan I, Schultz CW, Rajapakse V, Velez MJ, Mulford D, Roper N, Nichols S, Vilimas R, Sciuto L, Chen Y, Guha U, Rajan A, Atkinson D, El Meskini R, Weaver Ohler Z, Thomas A. Heterogeneity of neuroendocrine transcriptional states in metastatic small cell lung cancers and patient-derived models. Nat Commun 2022; 13:2023. [PMID: 35440132 PMCID: PMC9018864 DOI: 10.1038/s41467-022-29517-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
Molecular subtypes of small cell lung cancer (SCLC) defined by the expression of key transcription regulators have recently been proposed in cell lines and limited number of primary tumors. The clinical and biological implications of neuroendocrine (NE) subtypes in metastatic SCLC, and the extent to which they vary within and between patient tumors and in patient-derived models is not known. We integrate histology, transcriptome, exome, and treatment outcomes of SCLC from a range of metastatic sites, revealing complex intra- and intertumoral heterogeneity of NE differentiation. Transcriptomic analysis confirms previously described subtypes based on ASCL1, NEUROD1, POU2F3, YAP1, and ATOH1 expression, and reveal a clinical subtype with hybrid NE and non-NE phenotypes, marked by chemotherapy-resistance and exceedingly poor outcomes. NE tumors are more likely to have RB1, NOTCH, and chromatin modifier gene mutations, upregulation of DNA damage response genes, and are more likely to respond to replication stress targeted therapies. In contrast, patients preferentially benefited from immunotherapy if their tumors were non-NE. Transcriptional phenotypes strongly skew towards the NE state in patient-derived model systems, an observation that was confirmed in paired patient-matched tumors and xenografts. We provide a framework that unifies transcriptomic and genomic dimensions of metastatic SCLC. The marked differences in transcriptional diversity between patient tumors and model systems are likely to have implications in development of novel therapeutic agents.
Collapse
Affiliation(s)
- Delphine Lissa
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Nobuyuki Takahashi
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
- Medical Oncology Department, Center Hospital, National Center for Global Health and Medicine, Tokyo, Japan
| | - Parth Desai
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Irena Manukyan
- Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Christopher W Schultz
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Vinodh Rajapakse
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Moises J Velez
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Deborah Mulford
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Nitin Roper
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Samantha Nichols
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Rasa Vilimas
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Linda Sciuto
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Yuanbin Chen
- Cancer and Hematology Centers of Western Michigan, Grand Rapids, MI, USA
| | - Udayan Guha
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Arun Rajan
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Devon Atkinson
- Center for Advanced Preclinical Research, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Rajaa El Meskini
- Center for Advanced Preclinical Research, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Zoe Weaver Ohler
- Center for Advanced Preclinical Research, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA.
| |
Collapse
|
186
|
LaFave LM, Savage RE, Buenrostro JD. Single-Cell Epigenomics Reveals Mechanisms of Cancer Progression. ANNUAL REVIEW OF CANCER BIOLOGY 2022. [DOI: 10.1146/annurev-cancerbio-070620-094453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer initiation is driven by the cooperation between genetic and epigenetic aberrations that disrupt gene regulatory programs critical to maintaining specialized cellular functions. After initiation, cells acquire additional genetic and epigenetic alterations influenced by tumor-intrinsic and -extrinsic mechanisms, which increase intratumoral heterogeneity, reshape the cell's underlying gene regulatory networks and promote cancer evolution. Furthermore, environmental or therapeutic insults drive the selection of heterogeneous cell states, with implications for cancer initiation, maintenance, and drug resistance. The advancement of single-cell genomics has begun to uncover the full repertoire of chromatin and gene expression states (cell states) that exist within individual tumors. These single-cell analyses suggest that cells diversify in their regulatory states upon transformation by co-opting damage-induced and nonlineage regulatory programs that can lead to epigenomic plasticity. Here, we review these recent studies related to regulatory state changes in cancer progression and highlight the growing single-cell epigenomics toolkit poised to address unresolved questions in the field.
Collapse
Affiliation(s)
- Lindsay M. LaFave
- Department of Cell Biology and Albert Einstein Cancer Center, Albert Einstein College of Medicine, Montefiore Health System, Bronx, NY, USA
| | - Rachel E. Savage
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jason D. Buenrostro
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
187
|
Wang WZ, Shulman A, Amann JM, Carbone DP, Tsichlis PN. Small cell lung cancer: Subtypes and therapeutic implications. Semin Cancer Biol 2022; 86:543-554. [DOI: 10.1016/j.semcancer.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 12/20/2022]
|
188
|
Baykara Y, Xiao Y, Yang D, Yakirevich E, Maleki S, Garcia-Moliner M, Wang LJ, Huang CK, Lu S. Utility of secretagogin as a marker for the diagnosis of lung neuroendocrine carcinoma. Virchows Arch 2022; 481:31-39. [PMID: 35357570 DOI: 10.1007/s00428-022-03312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/22/2022] [Accepted: 03/14/2022] [Indexed: 12/01/2022]
Abstract
Small-cell lung cancers (SCLC) and large-cell neuroendocrine carcinomas (LCNEC) are two types of high-grade pulmonary neuroendocrine carcinomas (NECs). Diagnostic neuroendocrine markers commonly include synaptophysin, chromogranin A, CD56, and insulinoma-associated protein 1 (INSM1). In this study, the utility of secretagogin (SCGN) was examined in the context of pulmonary NEC diagnosis. The study included 71 pulmonary NEC cases (18 SCLCs, 13 combined-SCLCs, 23 LCNECs, and 17 combined-LCNECs). Immunohistochemical stains of SCGN, synaptophysin, chromogranin A, CD56, and INSM1 were performed on whole tumor sections. The stains were evaluated based on combined staining intensity and the proportion of positive tumor cells. At least mild staining intensity in at least 1% of the cells was considered positive. Bioinformatic studies showed specific SCGN expression in neuroendocrine cells and NECs. SCGN showed diffuse nuclear and cytoplasmic staining in NECs with intra-tumoral heterogeneity. The non-neuroendocrine components were negative. The sensitivity of SCGN was no better than the other established neuroendocrine markers based on all NECs combined or LCNECs/c-LCNECs only. However, the sensitivity of SCGN (71%) was higher than chromogranin A (68%) for SCLCs/c-SCLCs only. The average proportion of SCGN positive tumor cells was 8% higher than chromogranin A (22% versus 14%, P = 0.0332) in all NECs and 18% higher for SCLC and c-SCLC cases only (32% versus 13%, P = 0.0054). The above data showed that SCGN could be used as a supplemental neuroendocrine marker to diagnose SCLC.
Collapse
Affiliation(s)
- Yigit Baykara
- Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Ying Xiao
- Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Dongfang Yang
- Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Evgeny Yakirevich
- Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Sara Maleki
- Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Maria Garcia-Moliner
- Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Li Juan Wang
- Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Chiung-Kuei Huang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Shaolei Lu
- Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Providence, RI, 02903, USA.
| |
Collapse
|
189
|
Qi J, Zhang J, Liu N, Zhao L, Xu B. Prognostic Implications of Molecular Subtypes in Primary Small Cell Lung Cancer and Their Correlation With Cancer Immunity. Front Oncol 2022; 12:779276. [PMID: 35311069 PMCID: PMC8924463 DOI: 10.3389/fonc.2022.779276] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/25/2022] [Indexed: 12/18/2022] Open
Abstract
Introduction Small cell lung cancer (SCLC) has recently been characterized as heterogeneous tumors due to consensus nomenclature for distinct molecular subtypes on the basis of differential expression of four transcription markers (ASCL1, NEUROD1, POU2F3, and YAP1). It is necessary to validate molecular subtype classification in primary SCLC tumors by immunohistochemical (IHC) staining and investigate its relevance to survival outcomes. Methods Using a large number of surgically resected primary SCLC tumors, we assessed the mRNA and protein levels of the four subtype markers (ASCL1, NEUROD1, POU2F3 and YAP1) in two independent cohorts, respectively. Next, molecular subtypes defined by the four subtype markers was conducted to identify the association with clinicopathologic characteristics, survival outcomes, the expression of classic neuroendocrine markers, and molecules related to tumor immune microenvironment. Results Samples were categorized into four subtypes based on the relative expression levels of the four subtype markers, yielding to ASCL1, NEUROD1, POU2F3 and YAP1 subtypes, respectively. The combined neuroendocrine differentiation features were more prevalent in either ASCL1 or NEUROD1 subtypes. Kaplan-Meier analyses found that patients with tumors of the YAP1 subtype and ASCL1 subtype obtained the best and worst prognosis on both mRNA and IHC levels, respectively. Based on multivariate Cox proportional-hazards regression model, molecular subtype classification determined by IHC was identified as an independent indicator for survival outcomes in primary SCLC tumors. Correlation analyses indicated that the four subtype markers in SCLC cancer cells were interacted with its tumor immune microenvironment. Specifically, tumors positive for YAP1 was associated with fewer CTLA4+ T cell infiltration, while more immune-inhibitory receptors (FoxP3,PD1, and CTLA4) and fewer immune-promoting receptor (CD8) were found in tumors positive for ASCL1. Conclusions We validated the new molecular subtype classification and clinical relevance on both mRNA and protein levels from primary SCLC tumors. The molecular subtypes determined by IHC could be a pre-selected effective biomarker significantly influenced on prognosis in patients with SCLC, which warrants further studies to provide better preventative and therapeutic options for distinct molecular subtypes.
Collapse
Affiliation(s)
- Jing Qi
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jiaqi Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ningbo Liu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lujun Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Bo Xu
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
190
|
Matsui S, Haruki T, Oshima Y, Kidokoro Y, Sakabe T, Umekita Y, Nakamura H. High mRNA expression of POU2F3 in small cell lung cancer cell lines predicts the effect of lurbinectedin. Thorac Cancer 2022; 13:1184-1192. [PMID: 35278040 PMCID: PMC9013643 DOI: 10.1111/1759-7714.14382] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/02/2023] Open
Abstract
Background Small cell lung cancer (SCLC) is a progressive disease with a poor prognosis. Recently, a method to classify SCLC by the expression status of four transcription factors, ASCL1, NEUROD1, POU2F3, and YAP1, was proposed. Here, we investigated the potential relationships between expression of these four transcription factors and the effect of lurbinectedin. Methods mRNA and protein expression of ASCL1, NEUROD1, POU2F3, and YAP1 were quantified in eight SCLC cell lines and analyzed for potential correlations with drug sensitivity. In addition, ASCL1, NEUROD1, POU2F3, and YAP1 expression were evaluated in 105 resected cases of high‐grade neuroendocrine carcinoma of the lung, including 59 resected cases of SCLC. Results Based on the results of qRT‐PCR and western blot analyses, the eight SCLC cell lines examined were classified into NEUROD1, POU2F3, and YAP1 subtypes, as well as five ASCL1 subtypes. There were no correlations between cell line subtype classification and drug sensitivity to cisplatin, etoposide, or lurbinectedin. Next, we compared relative mRNA expression levels of each transcription factor with drug sensitivity and found that the higher the mRNA expression level of POU2F3, the lower the IC50 of lurbinectedin. Evaluation of resected SCLC tissue revealed that the composition of subtypes defined by the relative dominance of ASCL1, NEUROD1, POU2F3, and YAP1 was as follows: 61% ASCL1, 15% NEUROD1, 14% POU2F3, 5% YAP1, and 5% all‐negative. Conclusion In our experiments, high mRNA expression of POU2F3 in SCLC cell lines correlated with the effect of lurbinectedin.
Collapse
Affiliation(s)
- Shinji Matsui
- Department of Surgery, Division of General Thoracic Surgery, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Tomohiro Haruki
- Department of Surgery, Division of General Thoracic Surgery, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Yuki Oshima
- Department of Surgery, Division of General Thoracic Surgery, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Yoshiteru Kidokoro
- Department of Surgery, Division of General Thoracic Surgery, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Tomohiko Sakabe
- Department of Pathology, Division of Pathology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Yoshihisa Umekita
- Department of Pathology, Division of Pathology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Hiroshige Nakamura
- Department of Surgery, Division of General Thoracic Surgery, Faculty of Medicine, Tottori University, Tottori, Japan
| |
Collapse
|
191
|
Costanzo F, Martínez Diez M, Santamaría Nuñez G, Díaz-Hernandéz JI, Genes Robles CM, Díez Pérez J, Compe E, Ricci R, Li TK, Coin F, Martínez Leal JF, Garrido-Martin EM, Egly JM. Promoters of ASCL1- and NEUROD1-dependent genes are specific targets of lurbinectedin in SCLC cells. EMBO Mol Med 2022; 14:e14841. [PMID: 35263037 PMCID: PMC8988166 DOI: 10.15252/emmm.202114841] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/22/2023] Open
Abstract
Small‐Cell Lung Cancer (SCLC) is an aggressive neuroendocrine malignancy with a poor prognosis. Here, we focus on the neuroendocrine SCLC subtypes, SCLC‐A and SCLC‐N, whose transcription addiction was driven by ASCL1 and NEUROD1 transcription factors which target E‐box motifs to activate up to 40% of total genes, the promoters of which are maintained in a steadily open chromatin environment according to ATAC and H3K27Ac signatures. This leverage is used by the marine agent lurbinectedin, which preferentially targets the CpG islands located downstream of the transcription start site, thus arresting elongating RNAPII and promoting its degradation. This abrogates the expression of ASCL1 and NEUROD1 and of their dependent genes, such as BCL2, INSM1, MYC, and AURKA, which are responsible for relevant SCLC tumorigenic properties such as inhibition of apoptosis and cell survival, as well as for a part of its neuroendocrine features. In summary, we show how the transcription addiction of these cells becomes their Achilles’s heel, and how this is effectively exploited by lurbinectedin as a novel SCLC therapeutic endeavor.
Collapse
Affiliation(s)
- Federico Costanzo
- Department of Functional Genomics and Cancer, IGBMC, CNRS/INSERM/University of Strasbourg, Equipe labellisée Ligue contre le Cancer, Strasbourg, France.,Cell Biology Department, Research and Development, Pharmamar SA, Colmenar Viejo, Spain
| | - Marta Martínez Diez
- Cell Biology Department, Research and Development, Pharmamar SA, Colmenar Viejo, Spain
| | - Gema Santamaría Nuñez
- Cell Biology Department, Research and Development, Pharmamar SA, Colmenar Viejo, Spain
| | | | - Carlos Mario Genes Robles
- Department of Functional Genomics and Cancer, IGBMC, CNRS/INSERM/University of Strasbourg, Equipe labellisée Ligue contre le Cancer, Strasbourg, France
| | - Javier Díez Pérez
- Cell Biology Department, Research and Development, Pharmamar SA, Colmenar Viejo, Spain
| | - Emmanuel Compe
- Department of Functional Genomics and Cancer, IGBMC, CNRS/INSERM/University of Strasbourg, Equipe labellisée Ligue contre le Cancer, Strasbourg, France.,Laboratoire de Biochimie et de Biologie Moléculaire, Nouvel Hôpital Civil, Strasbourg, France
| | - Romeo Ricci
- Department of Functional Genomics and Cancer, IGBMC, CNRS/INSERM/University of Strasbourg, Equipe labellisée Ligue contre le Cancer, Strasbourg, France.,Laboratoire de Biochimie et de Biologie Moléculaire, Nouvel Hôpital Civil, Strasbourg, France
| | - Tsai-Kun Li
- College of Medicine, Center for Genomics and Precision Medicine, National Taiwan University, Taipei city, Taiwan
| | - Frédéric Coin
- Department of Functional Genomics and Cancer, IGBMC, CNRS/INSERM/University of Strasbourg, Equipe labellisée Ligue contre le Cancer, Strasbourg, France.,Laboratoire de Biochimie et de Biologie Moléculaire, Nouvel Hôpital Civil, Strasbourg, France
| | | | | | - Jean Marc Egly
- Department of Functional Genomics and Cancer, IGBMC, CNRS/INSERM/University of Strasbourg, Equipe labellisée Ligue contre le Cancer, Strasbourg, France.,College of Medicine, Center for Genomics and Precision Medicine, National Taiwan University, Taipei city, Taiwan
| |
Collapse
|
192
|
Abstract
Small cell lung cancer (SCLC) is a rapidly growing, highly metastatic, and relatively immune-cold lung cancer subtype. Historically viewed in the laboratory and clinic as a single disease, new discoveries suggest that SCLC comprises multiple molecular subsets. Expression of MYC family members and lineage-related transcription factors ASCL1, NEUROD1, and POU2F3 (and, in some studies, YAP1) define unique molecular states that have been associated with distinct responses to a variety of therapies. However, SCLC tumors exhibit a high degree of intratumoral heterogeneity, with recent studies suggesting the existence of tumor cell plasticity and phenotypic switching between subtype states. While SCLC plasticity is correlated with, and likely drives, therapeutic resistance, the mechanisms underlying this plasticity are still largely unknown. Subtype states are also associated with immune-related gene expression, which likely impacts response to immune checkpoint blockade and may reveal novel targets for alternative immunotherapeutic approaches. In this review, we synthesize recent discoveries on the mechanisms of SCLC plasticity and how these processes may impinge on antitumor immunity.
Collapse
Affiliation(s)
- Kate D Sutherland
- Australian Cancer Research Foundation (ACRF) Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Abbie S Ireland
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Trudy G Oliver
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
193
|
Chen J, Hu Y, Zhang J, Wang Q, Wu X, Huang W, Wang Q, Cai G, Wang H, Ou T, Feng W, Liu P, Liu Y, Wang J, Huang J, Wang J. Therapeutic targeting RORγ with natural product N-hydroxyapiosporamide for small cell lung cancer by reprogramming neuroendocrine fate. Pharmacol Res 2022; 178:106160. [DOI: 10.1016/j.phrs.2022.106160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/15/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023]
|
194
|
Ding XL, Su YG, Yu L, Bai ZL, Bai XH, Chen XZ, Yang X, Zhao R, He JX, Wang YY. Clinical characteristics and patient outcomes of molecular subtypes of small cell lung cancer (SCLC). World J Surg Oncol 2022; 20:54. [PMID: 35220975 PMCID: PMC8883717 DOI: 10.1186/s12957-022-02528-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/14/2022] [Indexed: 12/22/2022] Open
Abstract
Abstract
Background
Recent studies have shown that according to the expression levels of achaete-scute homolog 1 (ASCL1), neurogenic differentiation factor 1 (NEUROD1), and POU class 2 homeobox 3 (POU2F3), small cell lung cancer (SCLC) can be divided into four subtypes: SCLC-A (ASCL1-dominant), SCLC-N (NEUROD1-dominant), SCLC-P (POU2F3-dominant), and SCLC-I (triple negative or SCLC-inflamed). However, there are limited data on the clinical characteristics and prognosis of molecular subtypes of SCLC.
Methods
Immunohistochemistry (IHC) was used to detect the expression levels of ASCL1, NEUROD1, and POU2F3 in 53 patient samples of resectable SCLC. The subtype was defined by the differential expression of the transcription factors for ASCL1, NEUROD1, and POU2F3 or the low expression of all three factors with an inflamed gene signature (SCLC-A, SCLC-N, SCLC-P, and SCLC-I, respectively). The clinicopathological characteristics, immunological features (programmed death ligand 1 [PD-L1] expression and CD8+ tumor infiltrating lymphocyte [TIL] density), and patient outcomes of the four subtypes of SCLC were analyzed.
Results
Positive ASCL1, NEUROD1, and POU2F3 staining was detected in 43 (79.2%), 27 (51.0%), and 17 (32.1%) SCLC specimens by IHC. According to the results of IHC analysis, SCLC was divided into four subtypes: SCLC-A (39.6%), SCLC-N (28.3%), SCLC-P (17.0%), and SCLC-I (15.1%). The 5-year overall survival (OS) rates of these four subtypes were 61.9%, 69.3%, 41.7%, and 85.7%, respectively (P=0.251). There were significant differences in smoking status among different subtypes of SCLC (P= 0.031). However, we did not confirm the correlation between subtypes of SCLC and other clinicopathological factors or immune profiles. Cox multivariate analysis showed that N stage (P=0.025), CD8+ TILs (P=0.024), Ki-67 level (P=0.040), and SCLC-P (P=0.023) were independent prognostic factors for resectable SCLC.
Conclusions
Our IHC-based study validated the proposed classification of SCLC using the expression patterns of key transcriptional regulatory factors. We found that SCLC-P was associated with smokers and was one of the poor prognostic factors of limited-stage SCLC. In addition, no correlation was found between PD-L1 expression or CD8+ TIL density and SCLC subtypes.
Collapse
|
195
|
Li H, Qu L, Yang Y, Zhang H, Li X, Zhang X. Single-cell Transcriptomic Architecture Unraveling the Complexity of Tumor Heterogeneity in Distal Cholangiocarcinoma. Cell Mol Gastroenterol Hepatol 2022; 13:1592-1609.e9. [PMID: 35219893 PMCID: PMC9043309 DOI: 10.1016/j.jcmgh.2022.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND & AIMS Distal cholangiocarcinoma (dCCA) are a group of epithelial cell malignancies that occurs at the distal common bile duct, and account for approximately 40% of all cholangiocarcinoma cases. dCCA remains a highly lethal disease as it typically features remarkable cellular heterogeneity. A comprehensive exploration of cellular diversity and the tumor microenvironment is essential to depict the mechanisms driving dCCA progression. METHODS Single-cell RNA sequencing was used here to dissect the heterogeneity landscape and tumor microenvironment composition of human dCCAs. Seven human dCCAs and adjacent normal bile duct samples were included in the current study for single-cell RNA sequencing and subsequent validation approaches. Additionally, the results of the analyses were compared with bulk transcriptomic datasets from extrahepatic cholangiocarcinoma and single-cell RNA data from intrahepatic cholangiocarcinoma. RESULTS We sequenced a total of 49,717 single cells derived from human dCCAs and adjacent tissues, identifying 11 distinct cell types. Malignant cells displayed remarkable inter- and intra-tumor heterogeneity with 5 distinct subsets were defined in tumor samples. The malignant cells displayed variable degree of aneuploidy, which can be classified into low- and high-copy number variation groups based on either amplification or deletion of chr17q12 - chr17q21.2. Additionally, we identified 4 distinct T lymphocytes subsets, of which cytotoxic CD8+ T cells predominated as effectors in tumor tissues, whereas tumor infiltrating FOXP3+ CD4+ regulatory T cells exhibited highly immunosuppressive characteristics. CONCLUSION Our single-cell transcriptomic dataset depicts the inter- and intra-tumor heterogeneity of human dCCAs at the expression level.
Collapse
Affiliation(s)
- Hongguang Li
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lingxin Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yongheng Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Haibin Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xuexin Li
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Xiaolu Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,Correspondence Address correspondence to: Xiaolu Zhang, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China. tel: (+86) 17862933917; fax: (+86) 53188565657.
| |
Collapse
|
196
|
Yes-associated protein 1 exerts its tumor-promoting effects and increases cisplatin resistance in tongue squamous cell carcinoma cells by dysregulating Hippo signal pathway. Anticancer Drugs 2022; 33:352-361. [DOI: 10.1097/cad.0000000000001269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
197
|
Iyer SR, Odintsov I, Schoenfeld AJ, Siau E, Mattar MS, de Stanchina E, Khodos I, Drilon A, Riely GJ, Ladanyi M, Somwar R, Davare MA. MYC promotes tyrosine kinase inhibitor resistance in ROS1 fusion-positive lung cancer. Mol Cancer Res 2022; 20:722-734. [PMID: 35149545 DOI: 10.1158/1541-7786.mcr-22-0025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/26/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022]
Abstract
Targeted therapy of ROS1 fusion-driven non-small cell lung cancer (NSCLC) has achieved notable clinical success. Despite this, resistance to therapy inevitably poses a significant challenge. MYC amplification was present in ~19% of lorlatinib-resistant ROS1-driven NSCLC. We hypothesized that MYC overexpression drives ROS1-TKI resistance. Using complementary approaches in multiple models, including a MYC-amplified patient-derived cell line and xenograft (LUAD-0006), we established that MYC overexpression induces broad ROS1 TKI resistance. Pharmacological inhibition of ROS1 combined with MYC knockdown were essential to completely suppress LUAD-0006 cell proliferation compared to either treatment alone. We interrogated cellular signaling in ROS1-TKI resistant LUAD-0006 and discovered significant differential regulation of targets associated with cell cycle, apoptosis, and mitochondrial function. Combinatorial treatment of mitochondrial inhibitors with crizotinib revealed inhibitory synergism, suggesting increased reliance on glutamine metabolism and fatty-acid synthesis in chronic ROS1-TKI treated LUAD-0006 cells. In vitro experiments further revealed that CDK4/6 and BET bromodomain inhibitors effectively mitigate ROS1 TKI resistance in MYC-overexpressing cells. Notably, in vivo studies demonstrate that tumor control may be regained by combining ROS1 TKI and CDK4/6 inhibition. Our results contribute to the broader understanding of ROS1-TKI resistance in NSCLC. Implications: This study functionally characterizes MYC overexpression as a novel form of therapeutic resistance to ROS1 tyrosine kinase inhibitors in non-small-cell lung cancer and proposes rational combination treatment strategies.
Collapse
Affiliation(s)
| | - Igor Odintsov
- Department of Pathology, Memorial Sloan Kettering Cancer Center
| | | | - Evan Siau
- Medicine, Icahn School of Medicine at Mount Sinai
| | - Marissa S Mattar
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center
| | | | - Inna Khodos
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center
| | | | | | - Marc Ladanyi
- Pathology, Memorial Sloan Kettering Cancer Center
| | - Romel Somwar
- Pathology, Memorial Sloan Kettering Cancer Center
| | | |
Collapse
|
198
|
c-Myc Targets HDAC3 to Suppress NKG2DL Expression and Innate Immune Response in N-Type SCLC through Histone Deacetylation. Cancers (Basel) 2022; 14:cancers14030457. [PMID: 35158730 PMCID: PMC8833590 DOI: 10.3390/cancers14030457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Natural killer group 2, member D ligand (NKG2DL) is the most relevant ligand of NK cells to perform immune surveillance and is rarely expressed in most small cell lung cancer (SCLC) with the unclear mechanism. This study aimed to investigate the mechanisms underlying the NKG2DL deficiency in C-MYC (MYC)-amplificated N-type SCLC (SCLC-N) with less immune infiltrate. Our data showed that c-Myc was the suppressor of NKG2DL in SCLC-N. Further, c-Myc suppressed the transcription of NKG2DL by recruiting HDAC3 to deacetylate H3K9ac at the promoter of MICA and MICB in SCLC-N and inhibited the cytotoxicity of NK cells. The above findings revealed the role of c-Myc/HDAC3 axis in the regulation of NKG2DL expression, supplying a new perception for comprehending the mechanism of SCLC-N immune escape, which was poorly understood and providing the therapeutic targets that SCLC-N may benefit from. Abstract SCLC is an aggressive malignancy with a very poor prognosis and limited effective therapeutic options. Despite the high tumor mutational burden, responses to immunotherapy are rare in SCLC patients, which may be due to the lack of immune surveillance. Here, we aimed to examine the role and mechanism of oncogene MYC in the regulation of NKG2DL, the most relevant NK-activating ligand in SCLC-N. Western Blotting, Immunofluorescence, flow cytometry, quantitative real-time PCR (qRT-PCR), Co-Immunoprecipitation (Co-IP), chromatin immunoprecipitation (ChIP), and Cytotoxicity assay were used on H2227 cells, H446 cells, and other SCLC cell lines, and we found that c-Myc negatively regulated NKG2DL expression in SCLC-N cells. Mechanistically, c-Myc recruited HDAC3 to deacetylate H3K9ac at the promoter regions of MICA and MICB, suppressing the MICA/B expression of SCLC-N cells and the cytotoxicity of NK cells. Treatment with selective HDAC3 inhibitor up-regulated the expression of NKG2DL on SCLC-N cells and increased the cytotoxicity of NK cells. Furthermore, analysis of the CCLE and Kaplan-Meier plotter data performed the negative correlation between MYC and NKG2DL in SCLC-N cells and the correlation with the prognosis of lung cancer patients. Collectively, the results provided the new insight into the role and mechanism of c-Myc/HDAC3 axis in NKG2DL expression and innate immune escape of SCLC-N, suggesting the potential target for SCLC-N immunotherapy.
Collapse
|
199
|
Hong D, Knelson EH, Li Y, Durmaz YT, Gao W, Walton E, Vajdi A, Thai T, Sticco-Ivins M, Sabet AH, Jones KL, Schinzel AC, Bronson RT, Nguyen QD, Tolstorukov MY, Vivero M, Signoretti S, Barbie DA, Oser MG. Plasticity in the Absence of NOTCH Uncovers a RUNX2-Dependent Pathway in Small Cell Lung Cancer. Cancer Res 2022; 82:248-263. [PMID: 34810201 PMCID: PMC8770597 DOI: 10.1158/0008-5472.can-21-1991] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/05/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022]
Abstract
Neuroendocrine to nonneuroendocrine plasticity supports small cell lung cancer (SCLC) tumorigenesis and promotes immunogenicity. Approximately 20% to 25% of SCLCs harbor loss-of-function (LOF) NOTCH mutations. Previous studies demonstrated that NOTCH functions as a SCLC tumor suppressor, but can also drive nonneuroendocrine plasticity to support SCLC growth. Given the dual functionality of NOTCH, it is not understood why SCLCs select for LOF NOTCH mutations and how these mutations affect SCLC tumorigenesis. In a CRISPR-based genetically engineered mouse model of SCLC, genetic loss of Notch1 or Notch2 modestly accelerated SCLC tumorigenesis. Interestingly, Notch-mutant SCLCs still formed nonneuroendocrine subpopulations, and these Notch-independent, nonneuroendocrine subpopulations were driven by Runx2-mediated regulation of Rest. Notch2-mutant nonneuroendocrine cells highly express innate immune signaling genes including stimulator of interferon genes (STING) and were sensitive to STING agonists. This work identifies a Notch-independent mechanism to promote nonneuroendocrine plasticity and suggests that therapeutic approaches to activate STING could be selectively beneficial for SCLCs with NOTCH2 mutations. SIGNIFICANCE: A genetically engineered mouse model of NOTCH-mutant SCLC reveals that nonneuroendocrine plasticity persists in the absence of NOTCH, driven by a RUNX2-REST-dependent pathway and innate immune signaling.
Collapse
Affiliation(s)
- Deli Hong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Erik H Knelson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Yixiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Yavuz T Durmaz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Wenhua Gao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Emily Walton
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amir Vajdi
- Department of Informatics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Tran Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Maura Sticco-Ivins
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amin H Sabet
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kristen L Jones
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anna C Schinzel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Rod T Bronson
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Michael Y Tolstorukov
- Department of Informatics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Marina Vivero
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Matthew G Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
200
|
Hwang S, Hong TH, Park S, Jung HA, Sun JM, Ahn JS, Ahn MJ, Park K, Choi YL, Lee SH. Molecular subtypes of small cell lung cancer transformed from adenocarcinoma after EGFR tyrosine kinase inhibitor treatment. Transl Lung Cancer Res 2022; 10:4209-4220. [PMID: 35004251 PMCID: PMC8674595 DOI: 10.21037/tlcr-21-691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/09/2021] [Indexed: 01/22/2023]
Abstract
Background A certain proportion of non-small cell lung cancer (NSCLC) with activating EGFR mutations showed resistance to tyrosine kinase inhibitors (TKIs) by transforming their histology into small cell lung cancer (SCLC). In this study, we evaluated the molecular characteristics of transformed SCLCs. Methods Eighteen SCLC tissue samples transformed after EGFR TKI treatment were used for the analysis. Immunohistochemistry was conducted to evaluate the molecular subtype using antibodies representative of the major transcriptional factor-based molecular subtypes, ASCL1 (SCLC-A), NEUROD1 (SCLC-N), POU2F3 (SCLC-P), and YAP1. Subtypes were categorized based on a predefined criteria. Results Among the study population (n=18), most of the patients were initially diagnosed with adenocarcinoma (n=17), and one patient was diagnosed with adenosquamous histology. Eight patients (44.4%) were never-smokers, and nine patients were women (50.0%). Staining of pre-transformation sample was conducted in six patients, and five of them showed no discernible expression for ASCL1, NEUROD1, or POU2F3. However, the proportion of molecular subtypes after SCLC transformation was predominantly SCLC-N (n=9, 50.0%), followed by SCLC-Triple Negative (SCLC-TN; n=5, 27.8%) and SCLC-A (n=4, 22.2%). The median overall survival from TKI initiation was longer in patients who transformed to SCLC-A (P=0.009) than in those who transformed to either SCLC-N or SCLC-TN. However, the overall survival difference since SCLC transformation was not significant (P=0.370). Conclusions In our series, SCLC-N subtype was prevalent in SCLC transformed after EGFR TKI treatment. In addition, overall survival and the time to SCLC transformation from the EGFR TKI treatment were longer in patients who transformed to the SCLC-A type. Large-scale data will be required to confirm our findings.
Collapse
Affiliation(s)
- Soohyun Hwang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Tae Hee Hong
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Digital Health, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Sehhoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyun-Ae Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong-Mu Sun
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Keunchil Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yoon-La Choi
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|