151
|
Abstract
Major progress has been made in unravelling of regulatory mechanisms in eukaryotic cells. Modification of target protein properties by reversible phosphorylation events has been found to be one of the most prominent cellular control processes in all organisms. The phospho-status of a protein is dynamically controlled by protein kinases and counteracting phosphatases. Therefore, monitoring of kinase and phosphatase activities, identification of specific phosphorylation sites, and assessment of their functional significance are of crucial importance to understand development and homeostasis. Recent advances in the area of molecular biology and biochemistry, for instance, mass spectrometry-based phosphoproteomics or fluorescence spectroscopical methods, open new possibilities to reach an unprecidented depth and a proteome-wide understanding of phosphorylation processes in plants and other species. In addition, the growing number of model species allows now deepening evolutionary insights into signal transduction cascades and the use of kinase/phosphatase systems. Thus, this is the age where we move from an understanding of the structure and function of individual protein modules to insights how these proteins are organized into pathways and networks. In this introductory chapter, we briefly review general definitions, methodology, and current concepts of the molecular mechanisms of protein kinase function as a foundation for this methods book. We briefly review biochemistry and structural biology of kinases and provide selected examples for the role of kinases in biological systems.
Collapse
|
152
|
Suryadinata R, Sadowski M, Steel R, Sarcevic B. Cyclin-dependent kinase-mediated phosphorylation of RBP1 and pRb promotes their dissociation to mediate release of the SAP30·mSin3·HDAC transcriptional repressor complex. J Biol Chem 2010; 286:5108-18. [PMID: 21148318 DOI: 10.1074/jbc.m110.198473] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic cell cycle progression is mediated by phosphorylation of protein substrates by cyclin-dependent kinases (CDKs). A critical substrate of CDKs is the product of the retinoblastoma tumor suppressor gene, pRb, which inhibits G(1)-S phase cell cycle progression by binding and repressing E2F transcription factors. CDK-mediated phosphorylation of pRb alleviates this inhibitory effect to promote G(1)-S phase cell cycle progression. pRb represses transcription by binding to the E2F transactivation domain and recruiting the mSin3·histone deacetylase (HDAC) transcriptional repressor complex via the retinoblastoma-binding protein 1 (RBP1). RBP1 binds to the pocket region of pRb via an LXCXE motif and to the SAP30 subunit of the mSin3·HDAC complex and, thus, acts as a bridging protein in this multisubunit complex. In the present study we identified RBP1 as a novel CDK substrate. RBP1 is phosphorylated by CDK2 on serines 864 and 1007, which are N- and C-terminal to the LXCXE motif, respectively. CDK2-mediated phosphorylation of RBP1 or pRb destabilizes their interaction in vitro, with concurrent phosphorylation of both proteins leading to their dissociation. Consistent with these findings, RBP1 phosphorylation is increased during progression from G(1) into S-phase, with a concurrent decrease in its association with pRb in MCF-7 breast cancer cells. These studies provide new mechanistic insights into CDK-mediated regulation of the pRb tumor suppressor during cell cycle progression, demonstrating that CDK-mediated phosphorylation of both RBP1 and pRb induces their dissociation to mediate release of the mSin3·HDAC transcriptional repressor complex from pRb to alleviate transcriptional repression of E2F.
Collapse
Affiliation(s)
- Randy Suryadinata
- Cell Cycle and Cancer, St Vincent’s Institute of Medical Research, The University of Melbourne, Fitzroy, Melbourne, Victoria 3065, Australia
| | | | | | | |
Collapse
|
153
|
Singh S, Johnson J, Chellappan S. Small molecule regulators of Rb-E2F pathway as modulators of transcription. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:788-94. [PMID: 20637913 PMCID: PMC2997897 DOI: 10.1016/j.bbagrm.2010.07.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/24/2010] [Accepted: 07/08/2010] [Indexed: 12/25/2022]
Abstract
The retinoblastoma tumor suppressor protein, Rb, plays a major role in the regulation of mammalian cell cycle progression. It has been shown that Rb function is essential for the proper modulation of G1/S transition and inactivation of Rb contributes to deregulated cell proliferation. Rb exerts its cell cycle regulatory functions mainly by targeting the E2F family of transcription factors and Rb has been shown to physically interact with E2Fs 1, 2 and 3, repressing their transcriptional activity. Multiple genes involved in DNA synthesis and cell cycle progression are regulated by E2Fs, and Rb prevents their expression by inhibiting E2F activity, inducing growth arrest. It has been established that inactivation of Rb by phosphorylation, mutation, or by the interaction of viral oncoproteins leads to a release of the repression of E2F activity, facilitating cell cycle progression. Rb-mediated repression of E2F activity involves the recruitment of a variety of transcriptional co-repressors and chromatin remodeling proteins, including histone deacetylases, DNA methyltransferases and Brg1/Brm chromatin remodeling proteins. Inactivation of Rb by sequential phosphorylation events during cell cycle progression leads to a dissociation of these co-repressors from Rb, facilitating transcription. It has been found that small molecules that prevent the phosphorylation of Rb prevent the dissociation of certain co-repressors from Rb, especially Brg1, leading to the maintenance of Rb-mediated transcriptional repression and cell cycle arrest. Such small molecules have anti-cancer activities and will also act as valuable probes to study chromatin remodeling and transcriptional regulation.
Collapse
Affiliation(s)
- Sandeep Singh
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| | - Jackie Johnson
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| | - Srikumar Chellappan
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| |
Collapse
|
154
|
Olson BJ, Oberholzer M, Li Y, Zones JM, Kohli HS, Bisova K, Fang SC, Meisenhelder J, Hunter T, Umen JG. Regulation of the Chlamydomonas cell cycle by a stable, chromatin-associated retinoblastoma tumor suppressor complex. THE PLANT CELL 2010; 22:3331-47. [PMID: 20978220 PMCID: PMC2990127 DOI: 10.1105/tpc.110.076067] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 08/31/2010] [Accepted: 10/09/2010] [Indexed: 05/19/2023]
Abstract
We examined the cell cycle dynamics of the retinoblastoma (RB) protein complex in the unicellular alga Chlamydomonas reinhardtii that has single homologs for each subunit-RB, E2F, and DP. We found that Chlamydomonas RB (encoded by MAT3) is a cell cycle-regulated phosphoprotein, that E2F1-DP1 can bind to a consensus E2F site, and that all three proteins interact in vivo to form a complex that can be quantitatively immunopurified. Yeast two-hybrid assays revealed the formation of a ternary complex between MAT3, DP1, and E2F1 that requires a C-terminal motif in E2F1 analogous to the RB binding domain of plant and animal E2Fs. We examined the abundance of MAT3/RB and E2F1-DP1 in highly synchronous cultures and found that they are synthesized and remain stably associated throughout the cell cycle with no detectable fraction of free E2F1-DP1. Consistent with their stable association, MAT3/RB and DP1 are constitutively nuclear, and MAT3/RB does not require DP1-E2F1 for nuclear localization. In the nucleus, MAT3/RB remains bound to chromatin throughout the cell cycle, and its chromatin binding is mediated through E2F1-DP1. Together, our data show that E2F-DP complexes can regulate the cell cycle without dissociation of their RB-related subunit and that other changes may be sufficient to convert RB-E2F-DP from a cell cycle repressor to an activator.
Collapse
Affiliation(s)
- Bradley J.S.C. Olson
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Michael Oberholzer
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Yubing Li
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - James M. Zones
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Harjivan S. Kohli
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Katerina Bisova
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Su-Chiung Fang
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Jill Meisenhelder
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - James G. Umen
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| |
Collapse
|
155
|
Saddic LA, West LE, Aslanian A, Yates JR, Rubin SM, Gozani O, Sage J. Methylation of the retinoblastoma tumor suppressor by SMYD2. J Biol Chem 2010; 285:37733-40. [PMID: 20870719 DOI: 10.1074/jbc.m110.137612] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The retinoblastoma tumor suppressor (RB) is a central cell cycle regulator and tumor suppressor. RB cellular functions are known to be regulated by a diversity of post-translational modifications such as phosphorylation and acetylation, raising the possibility that RB may also be methylated in cells. Here we demonstrate that RB can be methylated by SMYD2 at lysine 860, a highly conserved and novel site of modification. This methylation event occurs in vitro and in cells, and it is regulated during cell cycle progression, cellular differentiation, and in response to DNA damage. Furthermore, we show that RB monomethylation at lysine 860 provides a direct binding site for the methyl-binding domain of the transcriptional repressor L3MBTL1. These results support the idea that a code of post-translational modifications exists for RB and helps guide its functions in mammalian cells.
Collapse
Affiliation(s)
- Louis A Saddic
- Departments of Pediatrics, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
156
|
Acharya P, Raj N, Buckley MS, Zhang L, Duperon S, Williams G, Henry RW, Arnosti DN. Paradoxical instability-activity relationship defines a novel regulatory pathway for retinoblastoma proteins. Mol Biol Cell 2010; 21:3890-901. [PMID: 20861300 PMCID: PMC2982090 DOI: 10.1091/mbc.e10-06-0520] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Functional overlap of retinoblastoma protein stability and activity reveals a novel conserved regulatory pathway during Drosophila development. The Retinoblastoma (RB) transcriptional corepressor and related family of pocket proteins play central roles in cell cycle control and development, and the regulatory networks governed by these factors are frequently inactivated during tumorigenesis. During normal growth, these proteins are subject to tight control through at least two mechanisms. First, during cell cycle progression, repressor potential is down-regulated by Cdk-dependent phosphorylation, resulting in repressor dissociation from E2F family transcription factors. Second, RB proteins are subject to proteasome-mediated destruction during development. To better understand the mechanism for RB family protein instability, we characterized Rbf1 turnover in Drosophila and the protein motifs required for its destabilization. We show that specific point mutations in a conserved C-terminal instability element strongly stabilize Rbf1, but strikingly, these mutations also cripple repression activity. Rbf1 is destabilized specifically in actively proliferating tissues of the larva, indicating that controlled degradation of Rbf1 is linked to developmental signals. The positive linkage between Rbf1 activity and its destruction indicates that repressor function is governed in a manner similar to that described by the degron theory of transcriptional activation. Analogous mutations in the mammalian RB family member p107 similarly induce abnormal accumulation, indicating substantial conservation of this regulatory pathway.
Collapse
Affiliation(s)
- Pankaj Acharya
- Department of Microbiology and Molecular Genetics, Program in Genetics, Michigan State University, East Lansing, MI 48824-1319, USA
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Golubev A. Random discrete competing events vs. dynamic bistable switches in cell proliferation in differentiation. J Theor Biol 2010; 267:341-54. [PMID: 20816686 DOI: 10.1016/j.jtbi.2010.08.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 08/27/2010] [Accepted: 08/27/2010] [Indexed: 12/25/2022]
Abstract
Several recent experiments related to fundamental aspects of cell behaviour, such as passing of the restriction point of cell cycle, which are generally interpreted in accordance with the dynamic paradigm implying the use of differential equations operating with the concentrations of cellular components and rate constants of their interactions, are shown in the present paper to be consistent with a simple model based on discrete competing stochastic events interpreted as assembly of alternative complexes of transcription factors at gene promoters. The model conforms to the transition probability model of cell cycle and to the stochastic approaches to cell differentiation and integrates them with the restriction point concept.
Collapse
Affiliation(s)
- A Golubev
- Research Institute for Experimental Medicine, Saint-Petersburg, Russia.
| |
Collapse
|
158
|
An overlapping kinase and phosphatase docking site regulates activity of the retinoblastoma protein. Nat Struct Mol Biol 2010; 17:1051-7. [PMID: 20694007 PMCID: PMC2933323 DOI: 10.1038/nsmb.1868] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 06/11/2010] [Indexed: 01/20/2023]
Abstract
The phosphorylation state and corresponding activity of the retinoblastoma tumor suppressor protein (Rb) are modulated by a balance of kinase and phosphatase activities. Here we characterize the association of Rb with the catalytic subunit of protein phosphatase 1 (PP1c). A crystal structure identifies an enzyme-docking site in the Rb C-terminal domain that is required for efficient PP1c activity towards Rb. The phosphatase-docking site overlaps with the known docking site for Cyclin dependent kinase, and PP1 competition with Cdk-Cyclins for Rb binding is sufficient to retain Rb activity and block cell cycle advancement. These results provide the first detailed molecular insights into Rb activation and establish a novel mechanism for Rb regulation in which kinase and phosphatase compete for substrate docking.
Collapse
|
159
|
Seifert AW, Zheng Z, Ormerod BK, Cohn MJ. Sonic hedgehog controls growth of external genitalia by regulating cell cycle kinetics. Nat Commun 2010; 1:23. [PMID: 20975695 PMCID: PMC2964453 DOI: 10.1038/ncomms1020] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 04/28/2010] [Indexed: 02/07/2023] Open
Abstract
The faithful positioning and growth of cells during
embryonic development is essential. In this study Seifert et al. demonstrate that
inactivation of Sonic Hedgehog during development of the genital tubercle results in a
prolonged G1 phase and a slower rate of growth. During embryonic development, cells are instructed which position to occupy, they interpret
these cues as differentiation programmes, and expand these patterns by growth. Sonic
hedgehog (Shh) specifies positional identity in many organs; however, its role in growth is
not well understood. In this study, we show that inactivation of Shh in external
genitalia extends the cell cycle from 8.5 to 14.4 h, and genital growth is reduced by ∼75%.
Transient Shh signalling establishes pattern in the genital tubercle; however,
transcriptional levels of G1 cell cycle regulators are reduced. Consequently, G1 length is
extended, leading to fewer progenitor cells entering S-phase. Cell cycle genes responded
similarly to Shh inactivation in genitalia and limbs, suggesting that Shh may regulate
growth by similar mechanisms in different organ systems. The finding that Shh regulates cell
number by controlling the length of specific cell cycle phases identifies a novel mechanism
by which Shh elaborates pattern during appendage development.
Collapse
Affiliation(s)
- Ashley W Seifert
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | | | | | | |
Collapse
|
160
|
Popov BV, Watt SM, Rosanov JM, Chang LS. A structural pocket mutation of pRb increases its affinity for E2F4, which is coupled with activation of muscle differentiation. Mol Biol 2010. [DOI: 10.1134/s0026893310020147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
161
|
Hale KJ, Manaviazar S, George J. Total synthesis of (+)-A83586C, (+)-kettapeptin and (+)-azinothricin: powerful new inhibitors of beta-catenin/TCF4- and E2F-mediated gene transcription. Chem Commun (Camb) 2010; 46:4021-42. [PMID: 20405066 DOI: 10.1039/c000603c] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Herein we describe our asymmetric total syntheses of (+)-A83586C, (+)-kettapeptin and (+)-azinothricin. We also demonstrate that molecules of this class powerfully inhibit beta-catenin/TCF4- and E2F-mediated gene transcription within malignant human colon cancer cells at low drug concentrations.
Collapse
Affiliation(s)
- Karl J Hale
- The School of Chemistry and Chemical Engineering, and the Centre for Cancer Research and Cell Biology (CCRCB), Queen 's University Belfast, Stranmillis Road, Belfast, Northern Ireland, UK BT9 5AG.
| | | | | |
Collapse
|
162
|
Control of cell cycle progression by phosphorylation of cyclin-dependent kinase (CDK) substrates. Biosci Rep 2010; 30:243-55. [DOI: 10.1042/bsr20090171] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The eukaryotic cell cycle is a fundamental evolutionarily conserved process that regulates cell division from simple unicellular organisms, such as yeast, through to higher multicellular organisms, such as humans. The cell cycle comprises several phases, including the S-phase (DNA synthesis phase) and M-phase (mitotic phase). During S-phase, the genetic material is replicated, and is then segregated into two identical daughter cells following mitotic M-phase and cytokinesis. The S- and M-phases are separated by two gap phases (G1 and G2) that govern the readiness of cells to enter S- or M-phase. Genetic and biochemical studies demonstrate that cell division in eukaryotes is mediated by CDKs (cyclin-dependent kinases). Active CDKs comprise a protein kinase subunit whose catalytic activity is dependent on association with a regulatory cyclin subunit. Cell-cycle-stage-dependent accumulation and proteolytic degradation of different cyclin subunits regulates their association with CDKs to control different stages of cell division. CDKs promote cell cycle progression by phosphorylating critical downstream substrates to alter their activity. Here, we will review some of the well-characterized CDK substrates to provide mechanistic insights into how these kinases control different stages of cell division.
Collapse
|
163
|
Burke JR, Deshong AJ, Pelton JG, Rubin SM. Phosphorylation-induced conformational changes in the retinoblastoma protein inhibit E2F transactivation domain binding. J Biol Chem 2010; 285:16286-93. [PMID: 20223825 DOI: 10.1074/jbc.m110.108167] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Inactivation of the retinoblastoma protein (Rb) through phosphorylation is an important step in promoting cell cycle progression, and hyperphosphorylated Rb is commonly found in tumors. Rb phosphorylation prevents its association with the E2F transcription factor; however, the molecular basis for complex inhibition has not been established. We identify here the key phosphorylation events and conformational changes that occur in Rb to inhibit the specific association between the E2F transactivation domain (E2F(TD)) and the Rb pocket domain. Calorimetry assays demonstrate that phosphorylation of Rb reduces the affinity of E2F(TD) binding approximately 250-fold and that phosphorylation at Ser(608)/Ser(612) and Thr(356)/Thr(373) is necessary and sufficient for this effect. An NMR assay identifies phosphorylation-driven conformational changes in Rb that directly inhibit E2F(TD) binding. We find that phosphorylation at Ser(608)/Ser(612) promotes an intramolecular association between a conserved sequence in the flexible pocket linker and the pocket domain of Rb that occludes the E2F(TD) binding site. We also find that phosphorylation of Thr(356)/Thr(373) inhibits E2F(TD) binding in a manner that requires the Rb N-terminal domain. Taken together, our results suggest two distinct mechanisms for how phosphorylation of Rb modulates association between E2F(TD) and the Rb pocket and describe for the first time a function for the structured N-terminal domain in Rb inactivation.
Collapse
Affiliation(s)
- Jason R Burke
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | | | | | | |
Collapse
|
164
|
Chemes LB, Sánchez IE, Smal C, de Prat-Gay G. Targeting mechanism of the retinoblastoma tumor suppressor by a prototypical viral oncoprotein. Structural modularity, intrinsic disorder and phosphorylation of human papillomavirus E7. FEBS J 2010; 277:973-88. [PMID: 20088881 DOI: 10.1111/j.1742-4658.2009.07540.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA tumor viruses ensure genome amplification by hijacking the cellular replication machinery and forcing infected cells to enter the S phase. The retinoblastoma (Rb) protein controls the G1/S checkpoint, and is targeted by several viral oncoproteins, among these the E7 protein from human papillomaviruses (HPVs). A quantitative investigation of the interaction mechanism between the HPV16 E7 protein and the RbAB domain in solution revealed that 90% of the binding energy is determined by the LxCxE motif, with an additional binding determinant (1.0 kcal.mol(-1)) located in the C-terminal domain of E7, establishing a dual-contact mode. The stoichiometry and subnanomolar affinity of E7 indicated that it can bind RbAB as a monomer. The low-risk HPV11 E7 protein bound 2.0 kcal.mol(-1) more weakly than the high-risk HPV16 and HPV18 type counterparts, but the modularity and binding mode were conserved. Phosphorylation at a conserved casein kinase II site in the natively unfolded N-terminal domain of E7 affected the local conformation by increasing the polyproline II content and stabilizing an extended conformation, which allowed for a tighter interaction with the Rb protein. Thus, the E7-RbAB interaction involves multiple motifs within the N-terminal domain of E7 and at least two conserved interaction surfaces in RbAB. We discussed a mechanistic model of the interaction of the Rb protein with a viral target in solution, integrated with structural data and the analysis of other cellular and viral proteins, which provided information about the balance of interactions involving the Rb protein and how these determine the progression into either the normal cell cycle or transformation.
Collapse
Affiliation(s)
- Lucía B Chemes
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
165
|
Chung CH, Gillison ML. Human papillomavirus in head and neck cancer: its role in pathogenesis and clinical implications. Clin Cancer Res 2009; 15:6758-62. [PMID: 19861444 DOI: 10.1158/1078-0432.ccr-09-0784] [Citation(s) in RCA: 279] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer with an annual incidence of approximately 400,000 worldwide. Although the principal risk factors for head and neck cancer remain tobacco and alcohol use, human papillomavirus (HPV) has recently been found to be etiologically associated with 20 to 25% of HNSCC, mostly in the oropharynx. HPV causes human cancers by expressing two viral oncoproteins, E6 and E7. These oncoproteins degrade and destabilize two major tumor suppressor proteins, p53 and pRb, through ubiquitination. Additional studies have shown that E6 and E7 can directly bind to multiple host proteins other than p53 and pRb (e.g., Bak and p21(Cip1)), further contributing to genetic instability. However, expression of E6 and E7 alone is not sufficient for cellular transformation, and the additional genetic alterations necessary for malignant progression in the setting of virus-induced genomic instability are unknown. In addition to the etiological differences, HPV-positive cancers are clinically distinct when compared with HPV-negative cancers with regard to treatment response and survival outcome, with tumor HPV-positivity being a favorable prognostic biomarker. Further understanding of carcinogenesis and clinical behavior of HPV-positive cancers will improve disease prevention, patient care, and surveillance strategies for HNSCC patients.
Collapse
Affiliation(s)
- Christine H Chung
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-6307. USA.
| | | |
Collapse
|
166
|
Wang H, Carey LB, Cai Y, Wijnen H, Futcher B. Recruitment of Cln3 cyclin to promoters controls cell cycle entry via histone deacetylase and other targets. PLoS Biol 2009; 7:e1000189. [PMID: 19823669 PMCID: PMC2730028 DOI: 10.1371/journal.pbio.1000189] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 07/30/2009] [Indexed: 12/22/2022] Open
Abstract
In yeast, titration of an increasing number of molecules of the G1 cyclin Cln3 by a fixed number of DNA-bound molecules of the transcription factor SBF might underlie the dependence of cell cycle entry on cell size. In yeast, the G1 cyclin Cln3 promotes cell cycle entry by activating the transcription factor SBF. In mammals, there is a parallel system for cell cycle entry in which cyclin dependent kinase (CDK) activates transcription factor E2F/Dp. Here we show that Cln3 regulates SBF by at least two different pathways, one involving the repressive protein Whi5, and the second involving Stb1. The Rpd3 histone deacetylase complex is also involved. Cln3 binds to SBF at the CLN2 promoter, and removes previously bound Whi5 and histone deacetylase. Adding extra copies of the SBF binding site to the cell delays Start, possibly by titrating Cln3. Since Rpd3 is the yeast ortholog of mammalian HDAC1, there is now a virtually complete analogy between the proteins regulating cell cycle entry in yeast (SBF, Cln3, Whi5 and Stb1, Rpd3) and mammals (E2F, Cyclin D, Rb, HDAC1). The cell may titrate Cln3 molecules against the number of SBF binding sites, and this could be the underlying basis of the size-control mechanism for Start. Cells seem to divide only after they have grown “big enough.” Entry into the cell cycle, at a point called Start in budding yeast, is triggered by activation of the Cln3 cyclin-dependent kinase (CDK), which in turn activates downstream transcription. We find that the Cln3-CDK acts through a histone deacetylase, as well as through the previously discovered repressor Whi5, to activate the SBF transcription factor and trigger entry into the cell cycle. The system is strikingly similar to the one in mammalian cells, which relies on Cyclin D, CDK, the transcription factor E2F, its repressor Rb, and the histone deacetylase system. There is preliminary evidence that as the yeast cell grows in size, the increasing number of Cln3 molecules is titrated against the fixed number of Cln3-CDK-SBF binding sites in genomic DNA, and that this cell size-dependent titration could be the mechanism that makes cell cycle entry dependent on cell size.
Collapse
Affiliation(s)
- Hongyin Wang
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Lucas B. Carey
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, United States of America
| | - Ying Cai
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Herman Wijnen
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Bruce Futcher
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
167
|
Longworth MS, Dyson NJ. pRb, a local chromatin organizer with global possibilities. Chromosoma 2009; 119:1-11. [PMID: 19714354 DOI: 10.1007/s00412-009-0238-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 08/12/2009] [Accepted: 08/14/2009] [Indexed: 12/22/2022]
Abstract
The retinoblastoma (pRb) family of proteins are well known for their tumor suppressor properties and for their ability to regulate transcription. The action of pRb family members correlates with the appearance of repressive chromatin marks at promoter regions of genes encoding key regulators of cell proliferation. Recent studies raise the possibility that pRb family members do not simply act by controlling the activity of individual promoters but that they may also function by promoting the more general organization of chromatin. In several contexts, pRb family members stimulate the compaction or condensation of chromatin and promote the formation of heterochromatin. In this review, we summarize studies that link pRb family members to the condensation or compaction of DNA.
Collapse
Affiliation(s)
- Michelle S Longworth
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149, 13th Street, Charlestown, MA, 02129, USA
| | | |
Collapse
|
168
|
Kaur M, Velmurugan B, Tyagi A, Deep G, Katiyar S, Agarwal C, Agarwal R. Silibinin suppresses growth and induces apoptotic death of human colorectal carcinoma LoVo cells in culture and tumor xenograft. Mol Cancer Ther 2009; 8:2366-74. [PMID: 19638451 DOI: 10.1158/1535-7163.mct-09-0304] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Colorectal cancer is one of the leading causes of cancer-related morbidity and mortality. The use of nontoxic phytochemicals in the prevention and intervention of colorectal cancer has been suggested as an alternative to chemotherapy. Here we assessed the anticancer efficacy of silibinin against advanced colorectal cancer LoVo cells both in vitro and in vivo. Our results showed that silibinin treatment strongly inhibits the growth of LoVo cells (P < 0.05-0.001) and induces apoptotic death (P < 0.01-0.001), which was associated with increased levels of cleaved caspases (3 and 9) and cleaved poly(ADP-ribose) polymerase. Additionally, silibinin caused a strong cell cycle arrest at G(1) phase and a slight but significant G(2)-M-phase arrest at highest concentration (P < 0.01-0.001). Molecular analyses for cell cycle regulators showed that silibinin decreases the level of cyclins (D1, D3, A and B1) and cyclin-dependent kinases (1, 2, 4, and 6) and increases the level of cyclin-dependent kinase inhibitors (p21 and p27). Consistent with these results, silibinin treatment also decreased the phosphorylation of retinoblastoma protein at Ser(780), Ser(795), and Ser(807)/Ser(811) sites without significantly affecting its total level. In animal studies, oral administration of silibinin for 6 weeks (at 100 and 200 mg/kg/d for 5 days/wk) significantly inhibited the growth of LoVo xenograft (P < 0.001) in athymic nude mice without any apparent toxicity. Analyses of xenograft tissue showed that silibinin treatment inhibits proliferation and increases apoptosis along with a strong increase in p27 levels but a decrease in retinoblastoma phosphorylation. Together, these results suggest the potential use of silibinin against advanced human colorectal cancer.
Collapse
Affiliation(s)
- Manjinder Kaur
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado-Denver, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | |
Collapse
|
169
|
Masamha CP, Benbrook DM. Cyclin D1 degradation is sufficient to induce G1 cell cycle arrest despite constitutive expression of cyclin E2 in ovarian cancer cells. Cancer Res 2009; 69:6565-72. [PMID: 19638577 DOI: 10.1158/0008-5472.can-09-0913] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
D- and E-type cyclins mediate G(1)-S phase cell cycle progression through activation of specific cyclin-dependent kinases (cdk) that phosphorylate the retinoblastoma protein (pRb), thereby alleviating repression of E2F-DP transactivation of S-phase genes. Cyclin D1 is often overexpressed in a variety of cancers and is associated with tumorigenesis and metastasis. Loss of cyclin D can cause G(1) arrest in some cells, but in other cellular contexts, the downstream cyclin E protein can substitute for cyclin D and facilitate G(1)-S progression. The objective of this study was to determine if a flexible heteroarotinoid anticancer compound, SHetA2, regulates cell cycle proteins and cell cycle progression in ovarian cancer cells. SHetA2 induced cyclin D1 phosphorylation, ubiquitination, and proteasomal degradation, causing G(1) arrest in ovarian cancer cells despite continued cyclin E2 expression and independently of p53 and glycogen synthase kinase-3beta. Cyclin D1 loss inhibited pRb S780 phosphorylation by cyclin D1-cdk4/6 and released p21 from cyclin D1-cdk4/6-p21 protein complexes to form cyclin E2-cdk2-p21 complexes, which repressed phosphorylation of pRb S612 by cyclin E2-cdk2 and ultimately E2F-DP transcriptional activity. G(1) arrest was prevented by overexpression or preventing degradation of cyclin D1 but not by restoration of pRb S612 phosphorylation through p21 knockdown. In conclusion, we show that loss of cyclin D1 in ovarian cancer cells treated with SHetA2 is sufficient to induce G(1) cell cycle arrest and this strategy is not impeded by the presence of cyclin E2. Therefore, cyclin D1 is a sufficient therapeutic target in ovarian cancer cells.
Collapse
Affiliation(s)
- Chioniso Patience Masamha
- Departments of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, USA
| | | |
Collapse
|
170
|
Abstract
Phosphorylation plays essential roles in nearly every aspect of cell life. Protein kinases regulate signalling pathways and cellular processes that mediate metabolism, transcription, cell-cycle progression, differentiation, cytoskeleton arrangement and cell movement, apoptosis, intercellular communication, and neuronal and immunological functions. Protein kinases share a conserved catalytic domain, which catalyses the transfer of the γ-phosphate of ATP to a serine, threonine or tyrosine residue in protein substrates. The kinase can exist in an active or inactive state regulated by a variety of mechanisms in different kinases that include control by phosphorylation, regulation by additional domains that may target other molecules, binding and regulation by additional subunits, and control by protein–protein association. This Novartis Medal Lecture was delivered at a meeting on protein evolution celebrating the 200th anniversary of Charles Darwin's birth. I begin with a summary of current observations from protein sequences of kinase phylogeny. I then review the structural consequences of protein phosphorylation using our work on glycogen phosphorylase to illustrate one of the more dramatic consequences of phosphorylation. Regulation of protein phosphorylation is frequently disrupted in the diseased state, and protein kinases have become high-profile targets for drug development. Finally, I consider recent advances on protein kinases as drug targets and describe some of our recent work with CDK9 (cyclin-dependent kinase 9)–cyclin T, a regulator of transcription.
Collapse
|
171
|
Pifithrin-alpha decreases the radioprotective efficacy of a Podophyllum hexandrum Himalayan mayapple fraction REC-2006 in HepG2 cells. Biotechnol Appl Biochem 2009; 54:53-64. [PMID: 19409072 DOI: 10.1042/ba20080250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Inhibition of the tumour suppressor p53 by PFT (pifithrin-alpha) promotes p53-mediated apoptosis and protects against doxorubicin-induced apoptosis. The present study was carried out to evaluate the effect of PFT on the radioprotective potential of Podophyllum hexandrum fraction (REC-2006) in HepG2 (p53++) cell line. REC-2006 (10-5 microg/ml) treatment at 2 h before irradiation (10 Gy) rendered 80+/-3% protection in HepG2 cells, whereas PFT debilitated the radioprotective potential of REC-2006. REC-2006 increased the expression of Hsp70 (heat-shock protein 70), HSF1 (heat-shock factor 1) and Bcl-2 in irradiated HepG2 cells, whereas PFT when treated with REC-2006 decreased the expression of Hsp70, HSF1 and Bcl-2 in HepG2 cells. REC-2006 facilitated post-irradiation DNA repair by pausing cell-cycle progression at G1- and G2-phase, whereas no such cell-cycle arrest was observed in irradiated HepG2 cells pretreated with PFT in irradiated HepG2 cells. No change was observed in Mdm2 (murine double minute 2) and Ras-GAP (Ras-GTPase-activating protein) expression with or without PFT treatment. Decrease in the expression of caspase 3 and Bax was observed in HepG2 cells when REC-2006 treatment was given 2 h before irradiation; however, PFT treatment increased the expression of Bax leading to apoptosis. It can be concluded that p53 expression plays a major role in the REC-2006-mediated protection against acute irradiation in HepG2 cells. PFT treatment reduced the radioprotective efficacy of REC-2006 by inhibiting the expression of HSF1 and Hsp70 and thereby the expression of Bcl-2, by up-regulating the cell-cycle-regulatory proteins and therefore reducing the span of time for DNA repair and also by inducing Bax-mediated apoptosis. PFT did not, however, show any effect on p53 regulating protein (Mdm2) and pro-survival protein (Ras-GAP).
Collapse
|
172
|
Fukuchi S, Homma K, Minezaki Y, Gojobori T, Nishikawa K. Development of an accurate classification system of proteins into structured and unstructured regions that uncovers novel structural domains: its application to human transcription factors. BMC STRUCTURAL BIOLOGY 2009; 9:26. [PMID: 19402914 PMCID: PMC2687452 DOI: 10.1186/1472-6807-9-26] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 04/30/2009] [Indexed: 12/26/2022]
Abstract
BACKGROUND In addition to structural domains, most eukaryotic proteins possess intrinsically disordered (ID) regions. Although ID regions often play important functional roles, their accurate identification is difficult. As human transcription factors (TFs) constitute a typical group of proteins with long ID regions, we regarded them as a model of all proteins and attempted to accurately classify TFs into structural domains and ID regions. Although an extremely high fraction of ID regions besides DNA binding and/or other domains was detected in human TFs in our previous investigation, 20% of the residues were left unassigned. In this report, we exploit the generally higher sequence divergence in ID regions than in structural regions to completely divide proteins into structural domains and ID regions. RESULTS The new dichotomic system first identifies domains of known structures, followed by assignment of structural domains and ID regions with a combination of pre-existing tools and a newly developed program based on sequence divergence, taking un-aligned regions into consideration. The system was found to be highly accurate: its application to a set of proteins with experimentally verified ID regions had an error rate as low as 2%. Application of this system to human TFs (401 proteins) showed that 38% of the residues were in structural domains, while 62% were in ID regions. The preponderance of ID regions makes a sharp contrast to TFs of Escherichia coli (229 proteins), in which only 5% fell in ID regions. The method also revealed that 4.0% and 11.8% of the total length in human and E. coli TFs, respectively, are comprised of structural domains whose structures have not been determined. CONCLUSION The present system verifies that sequence divergence including information of unaligned regions is a good indicator of ID regions. The system for the first time estimates the complete fractioning of structured/un-structured regions in human TFs, also revealing structural domains without homology to known structures. These predicted novel structural domains are good targets of structural genomics. When applied to other proteins, the system is expected to uncover more novel structural domains.
Collapse
Affiliation(s)
- Satoshi Fukuchi
- Center for Information Biology & DNA Data Bank of Japan, National Institute of Genetics, Mishima, Shizuoka, Japan.
| | | | | | | | | |
Collapse
|
173
|
Nair JS, Ho AL, Tse AN, Coward J, Cheema H, Ambrosini G, Keen N, Schwartz GK. Aurora B kinase regulates the postmitotic endoreduplication checkpoint via phosphorylation of the retinoblastoma protein at serine 780. Mol Biol Cell 2009; 20:2218-28. [PMID: 19225156 DOI: 10.1091/mbc.e08-08-0885] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The phenotypic change characteristic of Aurora B inhibition is the induction of polyploidy. Utilizing specific siRNA duplexes and a selective small molecule inhibitor (AZD1152) to inhibit Aurora B activity in tumor cells, we sought to elucidate the mechanism by which Aurora B inhibition results in polyploidy. Cells treated with AZD1152 progressed through mitosis with misaligned chromosomes and exited without cytokinesis and subsequently underwent endoreduplication of DNA despite activation of a p53-dependent pseudo G1 checkpoint. Concomitant with polyploid cell formation, we observed the appearance of Rb hypophosphorylation, an event that occurred independently of cyclin-dependent kinase inhibition. We went on to discover that Aurora B directly phosphorylates Rb at serine 780 both in vitro and in vivo. This novel interaction plays a critical role in regulating the postmitotic checkpoint to prevent endoreduplication after an aberrant mitosis. Thus, we propose for the first time that Aurora B determines cellular fate after an aberrant mitosis by directly regulating the Rb tumor suppressor protein.
Collapse
Affiliation(s)
- Jayasree S Nair
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Gorges LL, Lents NH, Baldassare JJ. The extreme COOH terminus of the retinoblastoma tumor suppressor protein pRb is required for phosphorylation on Thr-373 and activation of E2F. Am J Physiol Cell Physiol 2008; 295:C1151-60. [PMID: 18768921 DOI: 10.1152/ajpcell.00300.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The retinoblastoma protein pRb plays a pivotal role in G(1)- to S-phase cell cycle progression and is among the most frequently mutated gene products in human cancer. Although much focus has been placed on understanding how the A/B pocket and COOH-terminal domain of pRb cooperate to relieve transcriptional repression of E2F-responsive genes, comparatively little emphasis has been placed on the function of the NH(2)-terminal region of pRb and the interaction of the multiple domains of pRb in the full-length context. Using "reverse mutational analysis" of Rb(DeltaCDK) (a dominantly active repressive allele of Rb), we have previously shown that restoration of Thr-373 is sufficient to render Rb(DeltaCDK) sensitive to inactivation via cyclin-CDK phosphorylation. This suggests that the NH(2)-terminal region plays a more critical role in pRb regulation than previously thought. In the present study, we have expanded this analysis to include additional residues in the NH(2)-terminal region of pRb and further establish that the mechanism of pRb inactivation by Thr-373 phosphorylation is through the dissociation of E2F. Most surprisingly, we further have found that removal of the COOH-terminal domain of either RbDeltaCDK(+T373) or wild-type pRb yields a functional allele that cannot be inactivated by phosphorylation and is repressive of E2F activation and S-phase entry. Our data demonstrate a novel function for the NH(2)-terminal domain of pRb and the necessity for cooperation of multiple domains for proper pRb regulation.
Collapse
Affiliation(s)
- Laura L Gorges
- Dept. of Pharmacological Sciences at Saint Louis Univ., St. Louis, MO 63104, USA
| | | | | |
Collapse
|
175
|
The N-terminal domain of the Drosophila retinoblastoma protein Rbf1 interacts with ORC and associates with chromatin in an E2F independent manner. PLoS One 2008; 3:e2831. [PMID: 18665226 PMCID: PMC2475671 DOI: 10.1371/journal.pone.0002831] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 07/03/2008] [Indexed: 12/21/2022] Open
Abstract
Background The retinoblastoma (Rb) tumor suppressor protein can function as a DNA replication inhibitor as well as a transcription factor. Regulation of DNA replication may occur through interaction of Rb with the origin recognition complex (ORC). Principal Findings We characterized the interaction of Drosophila Rb, Rbf1, with ORC. Using expression of proteins in Drosophila S2 cells, we found that an N-terminal Rbf1 fragment (amino acids 1–345) is sufficient for Rbf1 association with ORC but does not bind to dE2F1. We also found that the C-terminal half of Rbf1 (amino acids 345–845) interacts with ORC. We observed that the amino-terminal domain of Rbf1 localizes to chromatin in vivo and associates with chromosomal regions implicated in replication initiation, including colocalization with Orc2 and acetylated histone H4. Conclusions/Significance Our results suggest that Rbf1 can associate with ORC and chromatin through domains independent of the E2F binding site. We infer that Rbf1 may play a role in regulating replication directly through its association with ORC and/or chromatin factors other than E2F. Our data suggest an important role for retinoblastoma family proteins in cell proliferation and tumor suppression through interaction with the replication initiation machinery.
Collapse
|
176
|
Longworth MS, Herr A, Ji JY, Dyson NJ. RBF1 promotes chromatin condensation through a conserved interaction with the Condensin II protein dCAP-D3. Genes Dev 2008; 22:1011-24. [PMID: 18367646 DOI: 10.1101/gad.1631508] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Drosophila retinoblastoma family of proteins (RBF1 and RBF2) and their mammalian homologs (pRB, p130, and p107) are best known for their regulation of the G1/S transition via the repression of E2F-dependent transcription. However, RB family members also possess additional functions. Here, we report that rbf1 mutant larvae have extensive defects in chromatin condensation during mitosis. We describe a novel interaction between RBF1 and dCAP-D3, a non-SMC component of the Condensin II complex that links RBF1 to the regulation of chromosome structure. RBF1 physically interacts with dCAP-D3, RBF1 and dCAP-D3 partially colocalize on polytene chromosomes, and RBF1 is required for efficient association of dCAP-D3 with chromatin. dCap-D3 mutants also exhibit chromatin condensation defects, and mutant alleles of dCap-D3 suppress cellular and developmental phenotypes induced by the overexpression of RBF1. Interestingly, this interaction is conserved between flies and humans. The re-expression of pRB into a pRB-deficient human tumor cell line promotes chromatin association of hCAP-D3 in a manner that depends on the LXCXE-binding cleft of pRB. These results uncover an unexpected link between pRB/RBF1 and chromatin condensation, providing a mechanism by which the functional inactivation of RB family members in human tumor cells may contribute to genome instability.
Collapse
Affiliation(s)
- Michelle S Longworth
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | |
Collapse
|
177
|
Abstract
Disruption of pRB-E2F interactions by E1A is a key event in the adenoviral life cycle that drives expression of early viral transcription and induces cell cycle progression. This function of E1A is complicated by E2F1, an E2F family member that controls multiple processes besides proliferation, including apoptosis and DNA repair. Recently, a second interaction site in pRB that only contacts E2F1 has been discovered, allowing pRB to control proliferation separately from other E2F1-dependent activities. Based on this new insight into pRB-E2F1 regulation, we investigated how E1A affects control of E2F1 by pRB. Our data reveal that pRB-E2F1 interactions are resistant to E1A-mediated disruption. Using mutant forms of pRB that selectively force E2F1 to bind through only one of the two binding sites on pRB, we determined that E1A is unable to disrupt E2F1's unique interaction with pRB. Furthermore, analysis of pRB-E2F complexes during adenoviral infection reveals the selective maintenance of pRB-E2F1 interactions despite the presence of E1A. Our experiments also demonstrate that E2F1 functions to maintain cell viability in response to E1A expression. This suggests that adenovirus E1A's seemingly complex mechanism of disrupting pRB-E2F interactions provides selectivity in promoting viral transcription and cell cycle advancement, while maintaining cell viability.
Collapse
|
178
|
Hassler M, Singh S, Yue WW, Luczynski M, Lakbir R, Sanchez-Sanchez F, Bader T, Pearl LH, Mittnacht S. Crystal structure of the retinoblastoma protein N domain provides insight into tumor suppression, ligand interaction, and holoprotein architecture. Mol Cell 2008; 28:371-85. [PMID: 17996702 DOI: 10.1016/j.molcel.2007.08.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 05/21/2007] [Accepted: 08/27/2007] [Indexed: 01/29/2023]
Abstract
The retinoblastoma susceptibility protein, Rb, has a key role in regulating cell-cycle progression via interactions involving the central "pocket" and C-terminal regions. While the N-terminal domain of Rb is dispensable for this function, it is nonetheless strongly conserved and harbors missense mutations found in hereditary retinoblastoma, indicating that disruption of its function is oncogenic. The crystal structure of the Rb N-terminal domain (RbN), reveals a globular entity formed by two rigidly connected cyclin-like folds. The similarity of RbN to the A and B boxes of the Rb pocket domain suggests that Rb evolved through domain duplication. Structural and functional analysis provides insight into oncogenicity of mutations in RbN and identifies a unique phosphorylation-regulated site of protein interaction. Additionally, this analysis suggests a coherent conformation for the Rb holoprotein in which RbN and pocket domains directly interact, and which can be modulated through ligand binding and possibly Rb phosphorylation.
Collapse
Affiliation(s)
- Markus Hassler
- Cancer Research UK Centre for Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Liu X, Marmorstein R. Structure of the retinoblastoma protein bound to adenovirus E1A reveals the molecular basis for viral oncoprotein inactivation of a tumor suppressor. Genes Dev 2008; 21:2711-6. [PMID: 17974914 DOI: 10.1101/gad.1590607] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The adenovirus (Ad) E1A (Ad-E1A) oncoprotein mediates cell transformation, in part, by displacing E2F transcription factors from the retinoblastoma protein (pRb) tumor suppressor. In this study we determined the crystal structure of the pRb pocket domain in complex with conserved region 1 (CR1) of Ad5-E1A. The structure and accompanying biochemical studies reveal that E1A-CR1 binds at the interface of the A and B cyclin folds of the pRb pocket domain, and that both E1A-CR1 and the E2F transactivation domain use similar conserved nonpolar residues to engage overlapping sites on pRb, implicating a novel molecular mechanism for pRb inactivation by a viral oncoprotein.
Collapse
Affiliation(s)
- Xin Liu
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
180
|
Darnell GA, Schroder WA, Antalis TM, Lambley E, Major L, Gardner J, Birrell G, Cid-Arregui A, Suhrbier A. Human Papillomavirus E7 Requires the Protease Calpain to Degrade the Retinoblastoma Protein. J Biol Chem 2007; 282:37492-500. [DOI: 10.1074/jbc.m706860200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
181
|
Julian LM, Palander O, Seifried LA, Foster JEG, Dick FA. Characterization of an E2F1-specific binding domain in pRB and its implications for apoptotic regulation. Oncogene 2007; 27:1572-9. [PMID: 17891180 DOI: 10.1038/sj.onc.1210803] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The retinoblastoma protein (pRB) has the dual capability to negatively regulate both E2F-induced cell cycle entry and E2F1-induced apoptosis. In this report, we characterize a unique pRB-E2F1 interaction. Using mutagenesis to disrupt E2F1 binding, we find that the ability of pRB to regulate E2F1-induced apoptosis is diminished when this interaction is lost. Strikingly, this mutant form of pRB retains the ability to control E2F responsive cell cycle genes and blocks cell proliferation. These functional properties are the reciprocal of a previously described E2F binding mutant of pRB that interacts with E2F1, but lacks the ability to interact with other E2Fs. Our work shows that these distinct interactions allow pRB to separately regulate E2F-induced cell proliferation and apoptosis. This suggests a novel form of regulation whereby separate types of binding contacts between the same types of molecules can confer distinct functional outcomes.
Collapse
Affiliation(s)
- L M Julian
- London Regional Cancer Program, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
182
|
Dick FA. Structure-function analysis of the retinoblastoma tumor suppressor protein - is the whole a sum of its parts? Cell Div 2007; 2:26. [PMID: 17854503 PMCID: PMC2082274 DOI: 10.1186/1747-1028-2-26] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 09/13/2007] [Indexed: 12/28/2022] Open
Abstract
Biochemical analysis of the retinoblastoma protein's function has received considerable attention since it was cloned just over 20 years ago. During this time pRB has emerged as a key regulator of the cell division cycle and its ability to block proliferation is disrupted in the vast majority of human cancers. Much has been learned about the regulation of E2F transcription factors by pRB in the cell cycle. However, many questions remain unresolved and researchers continue to explore this multifunctional protein. In particular, understanding how its biochemical functions contribute to its role as a tumor suppressor remains to be determined. Since pRB has been shown to function as an adaptor molecule that links different proteins together, or to particular promoters, analyzing pRB by disrupting individual protein interactions holds tremendous promise in unraveling the intricacies of its function. Recently, crystal structures have reported how pRB interacts with some of its molecular partners. This information has created the possibility of rationally separating pRB functions by studying mutants that disrupt individual binding sites. This review will focus on literature that investigates pRB by isolating functions based on binding sites within the pocket domain. This article will also discuss the prospects for using this approach to further explore the unknown functions of pRB.
Collapse
|
183
|
Huang X, Masselli A, Frisch SM, Hunton IC, Jiang Y, Wang JYJ. Blockade of tumor necrosis factor-induced Bid cleavage by caspase-resistant Rb. J Biol Chem 2007; 282:29401-13. [PMID: 17686781 DOI: 10.1074/jbc.m702261200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF) activates caspase-8 to cleave effector caspases or Bid, resulting in type-1 or type-2 apoptosis, respectively. We show here that TNF also induces caspase-8-dependent C-terminal cleavage of the retinoblastoma protein (Rb). Interestingly, fibroblasts from Rb(MI/MI) mice, in which the C-terminal caspase cleavage site is mutated, exhibit a defect in Bid cleavage despite caspase-8 activation. Recent results suggest that TNF receptor endocytosis is required for the activation of caspase-8. Consistent with this notion, inhibition of V-ATPase, which plays an essential role in acidification and degradation of endosomes, specifically restores Bid cleavage in Rb(MI/MI) cells. Inhibition of V-ATPase sensitizes Rb(MI/MI) but not wild-type fibroblasts to TNF-induced apoptosis and stimulates inflammation-associated colonic apoptosis in Rb(MI/MI) but not wild-type mice. These results suggest that Rb cleavage is required for Bid cleavage in TNF-induced type-2 apoptosis, and this requirement can be supplanted by the inhibition of V-ATPase.
Collapse
Affiliation(s)
- XiaoDong Huang
- Division of Biological Sciences, Department of Medicine, University of California, San Diego, La Jolla, California 92093-0820, USA
| | | | | | | | | | | |
Collapse
|
184
|
Tyagi S, Chabes AL, Wysocka J, Herr W. E2F activation of S phase promoters via association with HCF-1 and the MLL family of histone H3K4 methyltransferases. Mol Cell 2007; 27:107-19. [PMID: 17612494 DOI: 10.1016/j.molcel.2007.05.030] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 04/23/2007] [Accepted: 05/22/2007] [Indexed: 02/04/2023]
Abstract
E2F transcriptional regulators control human-cell proliferation by repressing and activating the transcription of genes required for cell-cycle progression, particularly the S phase. E2F proteins repress transcription in association with retinoblastoma pocket proteins, but less is known about how they activate transcription. Here, we show that the human G1 phase regulator HCF-1 associates with both activator (E2F1 and E2F3a) and repressor (E2F4) E2F proteins, properties that are conserved in insect cells. Human HCF-1-E2F interactions are versatile: their associations and binding to E2F-responsive promoters are cell-cycle selective, and HCF-1 displays coactivator properties when bound to the E2F1 activator and corepressor properties when bound to the E2F4 repressor. During the G1-to-S phase transition, HCF-1 recruits the mixed-lineage leukemia (MLL) and Set-1 histone H3 lysine 4 methyltransferases to E2F-responsive promoters and induces histone methylation and transcriptional activation. These results suggest that HCF-1 induces cell-cycle-specific transcriptional activation by E2F proteins to promote cell proliferation.
Collapse
Affiliation(s)
- Shweta Tyagi
- Center for Integrative Genomics, University of Lausanne, Génopode, 1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
185
|
McClellan KA, Ruzhynsky VA, Douda DN, Vanderluit JL, Ferguson KL, Chen D, Bremner R, Park DS, Leone G, Slack RS. Unique requirement for Rb/E2F3 in neuronal migration: evidence for cell cycle-independent functions. Mol Cell Biol 2007; 27:4825-43. [PMID: 17452454 PMCID: PMC1951492 DOI: 10.1128/mcb.02100-06] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell cycle regulatory retinoblastoma (Rb) protein is a key regulator of neural precursor proliferation; however, its role has been expanded to include a novel cell-autonomous role in mediating neuronal migration. We sought to determine the Rb-interacting factors that mediate both the cell cycle and migration defects. E2F1 and E2F3 are likely Rb-interacting candidates that we have shown to be deregulated in the absence of Rb. Using mice with compound null mutations of Rb and E2F1 or E2F3, we asked to what extent either E2F1 or E2F3 interacts with Rb in neurogenesis. Here, we report that E2F1 and E2F3 are both functionally relevant targets in neural precursor proliferation, cell cycle exit, and laminar patterning. Each also partially mediates the Rb requirement for neuronal survival. Neuronal migration, however, is specifically mediated through E2F3, beyond its role in cell cycle regulation. This study not only outlines overlapping and distinct functions for E2Fs in neurogenesis but also is the first to establish a physiologically relevant role for the Rb/E2F pathway beyond cell cycle regulation in vivo.
Collapse
Affiliation(s)
- Kelly A McClellan
- Department of Cellular and Molecular Medicine, Ottawa Health Research Institute, University of Ottawa, Ottawa, ON, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Abstract
The tumor suppressor function of the retinoblastoma protein (pRb) is historically attributed to inhibition of E2F gene transcription. In a recent issue of Nature Cell Biology, Binné and colleagues show that pRB is physically linked to the active anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase, suggesting that pRB-mediated tumor suppression may also function by directing the local degradation of E2F targets, including Skp2 (Binné et al., 2006).
Collapse
|
187
|
Danielian PS, Bender Kim CF, Caron AM, Vasile E, Bronson RT, Lees JA. E2f4 is required for normal development of the airway epithelium. Dev Biol 2007; 305:564-76. [PMID: 17383628 PMCID: PMC1939821 DOI: 10.1016/j.ydbio.2007.02.037] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 02/24/2007] [Accepted: 02/27/2007] [Indexed: 01/08/2023]
Abstract
The airway epithelium is comprised of specialized cell types that play key roles in protecting the lungs from environmental insults. The cellular composition of the murine respiratory epithelium is established during development and different cell types populate specific regions along the airway. Here we show that E2f4-deficiency leads to an absence of ciliated cells from the entire airway epithelium and the epithelium of the submucosal glands in the paranasal sinuses. This defect is particularly striking in the nasal epithelium of E2f4-/- mice where ciliated cells are replaced by columnar secretory cells that produce mucin-like substances. In addition, in the proximal lung, E2f4 loss causes a reduction in Clara cell marker expression indicating that Clara cell development is also affected. These defects arise during embryogenesis and, in the nasal epithelium, appear to be independent of any changes in cell proliferation, the principal process regulated by members of the E2f family of transcription factors. We therefore conclude that E2f4 is required to determine the appropriate development of the airway epithelium. Importantly, the combination of no ciliated cells and excess mucous cells can account for the chronic rhinitis and increased susceptibility to opportunistic infections that causes the postnatal lethality of E2f4 mutant mice.
Collapse
Affiliation(s)
- Paul S. Danielian
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Carla F. Bender Kim
- Stem Cell Program, Children’s Hospital, Harvard Stem Cell Institute, Boston, MA, 02115, USA
| | - Alicia M. Caron
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Eliza Vasile
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | - Jacqueline A. Lees
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Corresponding author. Center for Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA, Email address: , Telephone: +1-617-252-1972, Fax: +1-617-253-9863
| |
Collapse
|
188
|
Chau BN, Pan CW, Wang JY. Separation of anti-proliferation and anti-apoptotic functions of retinoblastoma protein through targeted mutations of its A/B domain. PLoS One 2006; 1:e82. [PMID: 17183714 PMCID: PMC1762320 DOI: 10.1371/journal.pone.0000082] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 11/14/2006] [Indexed: 01/19/2023] Open
Abstract
Background The human retinoblastoma susceptibility gene encodes a nuclear phosphoprotein RB, which is a negative regulator of cell proliferation. The growth suppression function of RB requires an evolutionarily conserved A/B domain that contains two distinct peptide-binding pockets. At the A/B interface is a binding site for the C-terminal trans-activation domain of E2F. Within the B-domain is a binding site for proteins containing the LxCxE peptide motif. Methodology/Principle Findings Based on the crystal structure of the A/B domain, we have constructed an RB-K530A/N757F (KN) mutant to disrupt the E2F- and LxCxE-binding pockets. The RB-K530A (K) mutant is sufficient to inactivate the E2F-binding pocket, whereas the RB-N757F (N) mutant is sufficient to inactivate the LxCxE-binding pocket. Each single mutant inhibits cell proliferation, but the RB-KN double mutant is defective in growth suppression. Nevertheless, the RB-KN mutant is capable of reducing etoposide-induced apoptosis. Conclusion/Significance Previous studies have established that RB-dependent G1-arrest can confer resistance to DNA damage-induced apoptosis. Results from this study demonstrate that RB can also inhibit apoptosis independent of growth suppression.
Collapse
|
189
|
Abstract
The retinoblastoma protein RB regulates cell proliferation, differentiation and apoptosis. Homozygous knockout of Rb in mice causes embryonic lethality owing to placental defects that result in excessive apoptosis. RB binds to a number of cellular proteins including the nuclear Abl protein and inhibits its tyrosine kinase activity. Ex vivo experiments have shown that genotoxic or inflammatory stress can activate Abl kinase to stimulate apoptosis. Employing the Rb-null embryos as an in vivo model of apoptosis, we have shown that the genetic ablation of Abl can reduce apoptosis in the developing central nervous system and the embryonic liver. These results are consistent with the inhibitory interaction between RB and Abl, and provide in vivo evidence for the proapoptotic function of Abl.
Collapse
Affiliation(s)
- H L Borges
- Division of Hematology/Oncology, Department of Medicine, Moores Cancer Center, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
190
|
Schmitz NMR, Hirt A, Aebi M, Leibundgut K. Limited redundancy in phosphorylation of retinoblastoma tumor suppressor protein by cyclin-dependent kinases in acute lymphoblastic leukemia. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1074-9. [PMID: 16936279 PMCID: PMC1698824 DOI: 10.2353/ajpath.2006.051137] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cyclin-dependent kinases (CDKs) successively phosphorylate the retinoblastoma protein (RB) at the restriction point in G1 phase. Hyperphosphorylation results in functional inactivation of RB, activation of the E2F transcriptional program, and entry of cells into S phase. RB unphosphorylated at serine 608 has growth suppressive activity. Phosphorylation of serines 608/612 inhibits binding of E2F-1 to RB. In Nalm-6 acute lymphoblastic leukemia extracts, serine 608 is phosphorylated by CDK4/6 complexes but not by CDK2. We reasoned that phosphorylation of serines 608/612 by redundant CDKs could accelerate phospho group formation and determined which G1 CDK contributes to serine 612 phosphorylation. Here, we report that CDK4 complexes from Nalm-6 extracts phosphorylated in vitro the CDK2-preferred serine 612, which was inhibited by p16INK4a, and fascaplysin. In contrast, serine 780 and serine 795 were efficiently phosphorylated by CDK4 but not by CDK2. The data suggest that the redundancy in phosphorylation of RB by CDK2 and CDK4 in Nalm-6 extracts is limited. Serine 612 phosphorylation by CDK4 also occurred in extracts of childhood acute lymphoblastic leukemia cells but not in extracts of mobilized CD34+ hemopoietic progenitor cells. This phenomenon could contribute to the commitment of childhood acute lymphocytic leukemia cells to proliferate and explain their refractoriness to differentiation-inducing agents.
Collapse
Affiliation(s)
- Nicole M R Schmitz
- Department of Clinical Research, University of Bern, and the Department of Paediatrics, University Children's Hospital Inselspital, Switzerland.
| | | | | | | |
Collapse
|
191
|
Affiliation(s)
- Xin Liu
- Wistar Institute and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
192
|
Fang SC, Reyes CDL, Umen JG. Cell size checkpoint control by the retinoblastoma tumor suppressor pathway. PLoS Genet 2006; 2:e167. [PMID: 17040130 PMCID: PMC1599770 DOI: 10.1371/journal.pgen.0020167] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 08/17/2006] [Indexed: 01/15/2023] Open
Abstract
Size control is essential for all proliferating cells, and is thought to be regulated by checkpoints that couple cell size to cell cycle progression. The aberrant cell-size phenotypes caused by mutations in the retinoblastoma (RB) tumor suppressor pathway are consistent with a role in size checkpoint control, but indirect effects on size caused by altered cell cycle kinetics are difficult to rule out. The multiple fission cell cycle of the unicellular alga Chlamydomonas reinhardtii uncouples growth from division, allowing direct assessment of the relationship between size phenotypes and checkpoint function. Mutations in the C. reinhardtii RB homolog encoded by MAT3 cause supernumerous cell divisions and small cells, suggesting a role for MAT3 in size control. We identified suppressors of an mat3 null allele that had recessive mutations in DP1 or dominant mutations in E2F1, loci encoding homologs of a heterodimeric transcription factor that is targeted by RB-related proteins. Significantly, we determined that the dp1 and e2f1 phenotypes were caused by defects in size checkpoint control and were not due to a lengthened cell cycle. Despite their cell division defects, mat3, dp1, and e2f1 mutants showed almost no changes in periodic transcription of genes induced during S phase and mitosis, many of which are conserved targets of the RB pathway. Conversely, we found that regulation of cell size was unaffected when S phase and mitotic transcription were inhibited. Our data provide direct evidence that the RB pathway mediates cell size checkpoint control and suggest that such control is not directly coupled to the magnitude of periodic cell cycle transcription. All cell types have a characteristic size, but the means by which cell size is determined remain mysterious. In proliferating cells, control mechanisms termed checkpoints are thought to prevent cells from dividing until they have reached a minimum size, but the nature of size checkpoints has proved difficult to dissect. The unicellular alga Chlamydomonas reinhardtii divides via an unusual mechanism that uncouples growth from division, and thereby allows a direct assessment of how different genetic pathways contribute to size control. The retinoblastoma (RB) tumor suppressor pathway is a critical regulator of cell cycle control in plants and animals and is thought to act as a transcriptional switch for cell cycle genes, but it had not been directly implicated in cell size checkpoint function. The authors found that mutations in genes that encode key proteins of the RB pathway in Chlamydomonas affect cell size and cell cycle control by altering size checkpoint function. Unexpectedly, the predicted transcriptional targets of the RB pathway were not affected by the mutations, and blocking transcription did not alter cell size control. These data link the RB tumor suppressor pathway directly to size control and suggest the possibility that cell size and cell cycle control by the RB pathway may not be coupled to its transcriptional output.
Collapse
Affiliation(s)
- Su-Chiung Fang
- Plant Biology Laboratory, The Salk Institute, La Jolla, California, United States of America
| | - Chris de los Reyes
- Plant Biology Laboratory, The Salk Institute, La Jolla, California, United States of America
| | - James G Umen
- Plant Biology Laboratory, The Salk Institute, La Jolla, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
193
|
Knudsen ES, Knudsen KE. Retinoblastoma tumor suppressor: where cancer meets the cell cycle. Exp Biol Med (Maywood) 2006; 231:1271-81. [PMID: 16816134 DOI: 10.1177/153537020623100713] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The retinoblastoma tumor suppressor gene, Rb, was the first tumor suppressor identified and plays a fundamental role in regulation of progression through the cell cycle. This review details facets of RB protein function in cell cycle control and focuses on specific questions that remain intensive areas of investigation.
Collapse
Affiliation(s)
- Erik S Knudsen
- Department of Cell Biology and University of Cincinnati Cancer Center, University of Cincinnati, Cincinnati, Ohio 45267-0521, USA.
| | | |
Collapse
|
194
|
Zhou HX. Quantitative relation between intermolecular and intramolecular binding of pro-rich peptides to SH3 domains. Biophys J 2006; 91:3170-81. [PMID: 16891373 PMCID: PMC1614496 DOI: 10.1529/biophysj.106.090258] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Flexible linkers are often found to tether binding sequence motifs or connect protein domains. Here we analyze three usages of flexible linkers: 1), intramolecular binding of proline-rich peptides (PRPs) to SH3 domains for kinase regulation; 2), intramolecular binding of PRP for increasing the folding stability of SH3 domains; and 3), covalent linking of PRPs and other ligands for high-affinity bivalent binding. The basis of these analyses is a quantitative relation between intermolecular and intramolecular binding constants. This relation has the form K(i) = K(e0)p for intramolecular binding and K(e) = K(e01)K(e02)p for bivalent binding. The effective concentration p depends on the length of the linker and the distance between the linker attachment points in the bound state. Several applications illustrate the usefulness of the quantitative relation. These include intramolecular binding to the Itk SH3 domain by an internal PRP and to a circular permutant of the alpha-spectrin SH3 domain by a designed PRP, and bivalent binding to the two SH3 domains of Grb2 by two linked PRPs. These and other examples suggest that flexible linkers and sequence motifs tethered to them, like folded protein domains, are also subject to tight control during evolution.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics and School of Computational Science, Florida State University, Tallahassee, USA.
| |
Collapse
|