151
|
Gutierrez JB, Galinski MR, Cantrell S, Voit EO. WITHDRAWN: From within host dynamics to the epidemiology of infectious disease: Scientific overview and challenges. Math Biosci 2015:S0025-5564(15)00085-1. [PMID: 25890102 DOI: 10.1016/j.mbs.2015.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Juan B Gutierrez
- Department of Mathematics, Institute of Bioinformatics, University of Georgia, Athens, GA 30602, United States .
| | - Mary R Galinski
- Emory University School of Medicine, Division of Infectious Diseases, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States .
| | - Stephen Cantrell
- Department of Mathematics, University of Miami, Coral Gables, FL 33124, United States .
| | - Eberhard O Voit
- Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Suite 4103, Atlanta, GA 30332-0535, United States .
| |
Collapse
|
152
|
Dantzler KW, Ravel DB, Brancucci NM, Marti M. Ensuring transmission through dynamic host environments: host-pathogen interactions in Plasmodium sexual development. Curr Opin Microbiol 2015; 26:17-23. [PMID: 25867628 DOI: 10.1016/j.mib.2015.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/09/2015] [Indexed: 01/08/2023]
Abstract
A renewed global commitment to malaria elimination lends urgency to understanding the biology of Plasmodium transmission stages. Recent progress toward uncovering the mechanisms underlying Plasmodium falciparum sexual differentiation and maturation reveals potential targets for transmission-blocking drugs and vaccines. The identification of parasite factors that alter sexual differentiation, including extracellular vesicles and a master transcriptional regulator, suggest that parasites make epigenetically controlled developmental decisions based on environmental cues. New insights into sexual development, especially host cell remodeling and sequestration in the bone marrow, highlight open questions regarding parasite homing to the tissue, transmigration across the vascular endothelium, and maturation in the parenchyma. Novel molecular and translational tools will provide further opportunities to define host-parasite interactions and design effective transmission-blocking therapeutics.
Collapse
Affiliation(s)
- Kathleen W Dantzler
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Deepali B Ravel
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nicolas Mb Brancucci
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Matthias Marti
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
153
|
Flueck C, Baker DA. Malaria parasite epigenetics: when virulence and romance collide. Cell Host Microbe 2015; 16:148-150. [PMID: 25121742 DOI: 10.1016/j.chom.2014.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Blood-stage malaria parasites evade the immune system by switching the protein exposed at the surface of the infected erythrocyte. A small proportion of these parasites commits to sexual development to mediate mosquito transmission. Two studies in this issue (Brancucci et al., 2014; Coleman et al., 2014) shed light on shared epigenetic machinery underlying both of these events.
Collapse
Affiliation(s)
- Christian Flueck
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| |
Collapse
|
154
|
Brancucci NMB, Bertschi NL, Zhu L, Niederwieser I, Chin WH, Wampfler R, Freymond C, Rottmann M, Felger I, Bozdech Z, Voss TS. Heterochromatin protein 1 secures survival and transmission of malaria parasites. Cell Host Microbe 2015; 16:165-176. [PMID: 25121746 DOI: 10.1016/j.chom.2014.07.004] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 04/28/2014] [Accepted: 06/06/2014] [Indexed: 12/14/2022]
Abstract
Clonally variant expression of surface antigens allows the malaria parasite Plasmodium falciparum to evade immune recognition during blood stage infection and secure malaria transmission. We demonstrate that heterochromatin protein 1 (HP1), an evolutionary conserved regulator of heritable gene silencing, controls expression of numerous P. falciparum virulence genes as well as differentiation into the sexual forms that transmit to mosquitoes. Conditional depletion of P. falciparum HP1 (PfHP1) prevents mitotic proliferation of blood stage parasites and disrupts mutually exclusive expression and antigenic variation of the major virulence factor PfEMP1. Additionally, PfHP1-dependent regulation of PfAP2-G, a transcription factor required for gametocyte conversion, controls the switch from asexual proliferation to sexual differentiation, providing insight into the epigenetic mechanisms underlying gametocyte commitment. These findings show that PfHP1 is centrally involved in clonally variant gene expression and sexual differentiation in P. falciparum and have major implications for developing antidisease and transmission-blocking interventions against malaria.
Collapse
Affiliation(s)
- Nicolas M B Brancucci
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel 4051, Switzerland; University of Basel, Petersplatz 1, Basel 4003, Switzerland
| | - Nicole L Bertschi
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel 4051, Switzerland; University of Basel, Petersplatz 1, Basel 4003, Switzerland
| | - Lei Zhu
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Igor Niederwieser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel 4051, Switzerland; University of Basel, Petersplatz 1, Basel 4003, Switzerland
| | - Wai Hoe Chin
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Rahel Wampfler
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel 4051, Switzerland; University of Basel, Petersplatz 1, Basel 4003, Switzerland
| | - Céline Freymond
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel 4051, Switzerland; University of Basel, Petersplatz 1, Basel 4003, Switzerland
| | - Matthias Rottmann
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel 4051, Switzerland; University of Basel, Petersplatz 1, Basel 4003, Switzerland
| | - Ingrid Felger
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel 4051, Switzerland; University of Basel, Petersplatz 1, Basel 4003, Switzerland
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Till S Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel 4051, Switzerland; University of Basel, Petersplatz 1, Basel 4003, Switzerland.
| |
Collapse
|
155
|
Drugging the schistosome zinc-dependent HDACs: current progress and future perspectives. Future Med Chem 2015; 7:783-800. [DOI: 10.4155/fmc.15.25] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Schistosomes, like many eukaryotic pathogens, typically display morphologically distinct stages during their life cycles. Epigenetic mechanisms underlie the pathogens’ morphological transformations, and the targeting of epigenetics-driven cellular programs therefore represents an Achilles’ heel of parasites. To speed up the search for new antiparasitic agents, drugs validated for other diseases can be rationally optimized into antiparasitic therapeutics. Specifically, zinc-dependent histone deacetylases (HDACs) are the most explored targets for epigenetic therapies, notably for anticancer treatments. This review focuses on the development of drug-leads inhibiting HDACs from schistosomes. More precisely, current progress on Schistosoma mansoni HDAC8 (smHDAC8) provided a proof of concept that targeting epigenetic enzymes is a valid approach to treat diseases caused by schistosomes, and possibly other eukaryotic pathogens.
Collapse
|
156
|
Hviid L, Jensen ATR. PfEMP1 - A Parasite Protein Family of Key Importance in Plasmodium falciparum Malaria Immunity and Pathogenesis. ADVANCES IN PARASITOLOGY 2015; 88:51-84. [PMID: 25911365 DOI: 10.1016/bs.apar.2015.02.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Plasmodium falciparum causes the most severe form of malaria and is responsible for essentially all malaria-related deaths. The accumulation in various tissues of erythrocytes infected by mature P. falciparum parasites can lead to circulatory disturbances and inflammation, and is thought to be a central element in the pathogenesis of the disease. It is mediated by the interaction of parasite ligands on the erythrocyte surface and a range of host receptor molecules in many organs and tissues. Among several proteins and protein families implicated in this process, the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of high-molecular weight and highly variable antigens appears to be the most prominent. In this chapter, we aim to provide a systematic overview of the current knowledge about these proteins, their structure, their function, how they are presented on the erythrocyte surface, and how the var genes encoding them are regulated. The role of PfEMP1 in the pathogenesis of malaria, PfEMP1-specific immune responses, and the prospect of PfEMP1-specific vaccination against malaria are also covered briefly.
Collapse
Affiliation(s)
- Lars Hviid
- Centre for Medical Parasitology, University of Copenhagen and Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Anja T R Jensen
- Centre for Medical Parasitology, University of Copenhagen and Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| |
Collapse
|
157
|
Tibúrcio M, Sauerwein R, Lavazec C, Alano P. Erythrocyte remodeling by Plasmodium falciparum gametocytes in the human host interplay. Trends Parasitol 2015; 31:270-8. [PMID: 25824624 DOI: 10.1016/j.pt.2015.02.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/20/2015] [Accepted: 02/26/2015] [Indexed: 12/31/2022]
Abstract
The spread of malaria critically relies on the presence of Plasmodium transmission stages - the gametocytes - circulating in the blood of an infected individual, which are taken up by Anopheles mosquitoes. A striking feature of Plasmodium falciparum gametocytes is their long development inside the erythrocytes while sequestered in the internal organs of the human host. Recent studies of the molecular and cellular remodeling of the host erythrocyte induced by P. falciparum during gametocyte maturation are shedding light on how these may affect the establishment and maintenance of sequestration of the immature transmission stages and the subsequent release and circulation of mature gametocytes in the peripheral bloodstream.
Collapse
Affiliation(s)
- Marta Tibúrcio
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena n.299, 00161 Rome, Italy
| | - Robert Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Nijmegen HB 6500, The Netherlands
| | - Catherine Lavazec
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes - Sorbonne Paris Cité, 75270 Paris, France
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena n.299, 00161 Rome, Italy.
| |
Collapse
|
158
|
Merrick CJ, Jiang RHY, Skillman KM, Samarakoon U, Moore RM, Dzikowski R, Ferdig MT, Duraisingh MT. Functional analysis of sirtuin genes in multiple Plasmodium falciparum strains. PLoS One 2015; 10:e0118865. [PMID: 25780929 PMCID: PMC4364008 DOI: 10.1371/journal.pone.0118865] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 01/07/2015] [Indexed: 12/22/2022] Open
Abstract
Plasmodium falciparum, the causative agent of severe human malaria, employs antigenic variation to avoid host immunity. Antigenic variation is achieved by transcriptional switching amongst polymorphic var genes, enforced by epigenetic modification of chromatin. The histone-modifying 'sirtuin' enzymes PfSir2a and PfSir2b have been implicated in this process. Disparate patterns of var expression have been reported in patient isolates as well as in cultured strains. We examined var expression in three commonly used laboratory strains (3D7, NF54 and FCR-3) in parallel. NF54 parasites express significantly lower levels of var genes compared to 3D7, despite the fact that 3D7 was originally a clone of the NF54 strain. To investigate whether this was linked to the expression of sirtuins, genetic disruption of both sirtuins was attempted in all three strains. No dramatic changes in var gene expression occurred in NF54 or FCR-3 following PfSir2b disruption, contrasting with previous observations in 3D7. In 3D7, complementation of the PfSir2a genetic disruption resulted in a significant decrease in previously-elevated var gene expression levels, but with the continued expression of multiple var genes. Finally, rearranged chromosomes were observed in the 3D7 PfSir2a knockout line. Our results focus on the potential for parasite genetic background to contribute to sirtuin function in regulating virulence gene expression and suggest a potential role for sirtuins in maintaining genome integrity.
Collapse
Affiliation(s)
- Catherine J. Merrick
- Department of Immunology & Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Rays H. Y. Jiang
- Department of Immunology & Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Kristen M. Skillman
- Department of Immunology & Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Upeka Samarakoon
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Rachel M. Moore
- Department of Immunology & Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Ron Dzikowski
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Michael T. Ferdig
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Manoj T. Duraisingh
- Department of Immunology & Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
159
|
Pelle KG, Oh K, Buchholz K, Narasimhan V, Joice R, Milner DA, Brancucci NM, Ma S, Voss TS, Ketman K, Seydel KB, Taylor TE, Barteneva NS, Huttenhower C, Marti M. Transcriptional profiling defines dynamics of parasite tissue sequestration during malaria infection. Genome Med 2015; 7:19. [PMID: 25722744 PMCID: PMC4342211 DOI: 10.1186/s13073-015-0133-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/15/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND During intra-erythrocytic development, late asexually replicating Plasmodium falciparum parasites sequester from peripheral circulation. This facilitates chronic infection and is linked to severe disease and organ-specific pathology including cerebral and placental malaria. Immature gametocytes - sexual stage precursor cells - likewise disappear from circulation. Recent work has demonstrated that these sexual stage parasites are located in the hematopoietic system of the bone marrow before mature gametocytes are released into the bloodstream to facilitate mosquito transmission. However, as sequestration occurs only in vivo and not during in vitro culture, the mechanisms by which it is regulated and enacted (particularly by the gametocyte stage) remain poorly understood. RESULTS We generated the most comprehensive P. falciparum functional gene network to date by integrating global transcriptional data from a large set of asexual and sexual in vitro samples, patient-derived in vivo samples, and a new set of in vitro samples profiling sexual commitment. We defined more than 250 functional modules (clusters) of genes that are co-expressed primarily during the intra-erythrocytic parasite cycle, including 35 during sexual commitment and gametocyte development. Comparing the in vivo and in vitro datasets allowed us, for the first time, to map the time point of asexual parasite sequestration in patients to 22 hours post-invasion, confirming previous in vitro observations on the dynamics of host cell modification and cytoadherence. Moreover, we were able to define the properties of gametocyte sequestration, demonstrating the presence of two circulating gametocyte populations: gametocyte rings between 0 and approximately 30 hours post-invasion and mature gametocytes after around 7 days post-invasion. CONCLUSIONS This study provides a bioinformatics resource for the functional elucidation of parasite life cycle dynamics and specifically demonstrates the presence of the gametocyte ring stages in circulation, adding significantly to our understanding of the dynamics of gametocyte sequestration in vivo.
Collapse
Affiliation(s)
- Karell G Pelle
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115 USA
| | - Keunyoung Oh
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115 USA
| | - Kathrin Buchholz
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115 USA
| | - Vagheesh Narasimhan
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115 USA
| | - Regina Joice
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115 USA
| | - Danny A Milner
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115 USA ; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115 USA
| | - Nicolas Mb Brancucci
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115 USA ; Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
| | - Siyuan Ma
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115 USA
| | - Till S Voss
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
| | - Ken Ketman
- Program in Cellular and Molecular Medicine, Children's Hospital, Boston, MA 02115 USA
| | - Karl B Seydel
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48825 USA ; Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, 3 Malawi
| | - Terrie E Taylor
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48825 USA ; Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, 3 Malawi
| | - Natasha S Barteneva
- Program in Cellular and Molecular Medicine, Children's Hospital, Boston, MA 02115 USA ; Department of Pediatrics, Harvard Medical School, Boston, MA 02115 USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115 USA ; The Broad Institute of Harvard and MIT, Cambridge, MA 02142 USA
| | - Matthias Marti
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115 USA
| |
Collapse
|
160
|
Abstract
Post-translational modifications play crucial parts in regulating protein function and thereby control several fundamental aspects of eukaryotic biology, including cell signalling, protein trafficking, epigenetic control of gene expression, cell-cell interactions, and cell proliferation and differentiation. In this Review, we discuss protein modifications that have been shown to have a key role in malaria parasite biology and pathogenesis. We focus on phosphorylation, acetylation, methylation and lipidation. We provide an overview of the biological significance of these modifications and discuss prospects and progress in antimalarial drug discovery based on the inhibition of the enzymes that mediate these modifications.
Collapse
|
161
|
Sinden RE. The cell biology of malaria infection of mosquito: advances and opportunities. Cell Microbiol 2015; 17:451-66. [PMID: 25557077 PMCID: PMC4409862 DOI: 10.1111/cmi.12413] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/12/2014] [Accepted: 12/24/2014] [Indexed: 01/01/2023]
Abstract
Recent reviews (Feachem et al.; Alonso et al.) have concluded that in order to have a sustainable impact on the global burden of malaria, it is essential that we knowingly reduce the global incidence of infected persons. To achieve this we must reduce the basic reproductive rate of the parasites to < 1 in diverse epidemiological settings. This can be achieved by impacting combinations of the following parameters: the number of mosquitoes relative to the number of persons, the mosquito/human biting rate, the proportion of mosquitoes carrying infectious sporozoites, the daily survival rate of the infectious mosquito and the ability of malaria-infected persons to infect mosquito vectors. This paper focuses on our understanding of parasite biology underpinning the last of these terms: infection of the mosquito. The article attempts to highlight central issues that require further study to assist in the discovery of useful transmission-blocking measures.
Collapse
Affiliation(s)
- R E Sinden
- Department of Life Sciences, Imperial College London and the Jenner Institute, The University of Oxford, Oxford, UK
| |
Collapse
|
162
|
Ay F, Bunnik EM, Varoquaux N, Vert JP, Noble WS, Le Roch KG. Multiple dimensions of epigenetic gene regulation in the malaria parasite Plasmodium falciparum: gene regulation via histone modifications, nucleosome positioning and nuclear architecture in P. falciparum. Bioessays 2014; 37:182-94. [PMID: 25394267 DOI: 10.1002/bies.201400145] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Plasmodium falciparum is the most deadly human malarial parasite, responsible for an estimated 207 million cases of disease and 627,000 deaths in 2012. Recent studies reveal that the parasite actively regulates a large fraction of its genes throughout its replicative cycle inside human red blood cells and that epigenetics plays an important role in this precise gene regulation. Here, we discuss recent advances in our understanding of three aspects of epigenetic regulation in P. falciparum: changes in histone modifications, nucleosome occupancy and the three-dimensional genome structure. We compare these three aspects of the P. falciparum epigenome to those of other eukaryotes, and show that large-scale compartmentalization is particularly important in determining histone decomposition and gene regulation in P. falciparum. We conclude by presenting a gene regulation model for P. falciparum that combines the described epigenetic factors, and by discussing the implications of this model for the future of malaria research.
Collapse
Affiliation(s)
- Ferhat Ay
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
163
|
Nunes-Alves C. Linking virulence and transmission in malaria. Nat Rev Microbiol 2014; 12:655. [DOI: 10.1038/nrmicro3354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
164
|
Alano P. The sound of sexual commitment breaks the silencing of malaria parasites. Trends Parasitol 2014; 30:509-10. [PMID: 25261923 DOI: 10.1016/j.pt.2014.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 10/24/2022]
Abstract
A fundamental binary decision is made by malaria parasites at every asexual cycle in the blood between further proliferation and differentiation into gametocytes, the mosquito transmissible stages. Recent studies on Plasmodium epigenetic regulation, transcriptional control and genetic basis of gametocyte production are merging today to unveil players and propose molecular mechanisms of this key branch point in the malaria parasite life cycle.
Collapse
Affiliation(s)
- Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, viale Regina Elena n.299, 00161 Rome, Italy.
| |
Collapse
|