151
|
Vega LA, Caparon MG. Cationic antimicrobial peptides disrupt the Streptococcus pyogenes ExPortal. Mol Microbiol 2012; 85:1119-32. [PMID: 22780862 DOI: 10.1111/j.1365-2958.2012.08163.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although they possess a well-characterized ability to porate the bacterial membrane, emerging research suggests that cationic antimicrobial peptides (CAPs) can influence pathogen behaviour at levels that are sublethal. In this study, we investigated the interaction of polymyxin B and human neutrophil peptide (HNP-1) with the human pathogen Streptococcus pyogenes. At sublethal concentrations, these CAPs preferentially targeted the ExPortal, a unique microdomain of the S. pyogenes membrane, specialized for protein secretion and processing. A consequence of this interaction was the disruption of ExPortal organization and a redistribution of ExPortal components into the peripheral membrane. Redistribution was associated with inhibition of secretion of certain toxins, including the SpeB cysteine protease and the streptolysin O (SLO) cytolysin, but not SIC, a protein that protects S. pyogenes from CAPs. These data suggest a novel function for CAPs in targeting the ExPortal and interfering with secretion of factors required for infection and survival. This mechanism may prove valuable for the design of new types of antimicrobial agents to combat the emergence of antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Luis Alberto Vega
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110-1093, USA
| | | |
Collapse
|
152
|
Rajabi M, Ericksen B, Wu X, de Leeuw E, Zhao L, Pazgier M, Lu W. Functional determinants of human enteric α-defensin HD5: crucial role for hydrophobicity at dimer interface. J Biol Chem 2012; 287:21615-27. [PMID: 22573326 DOI: 10.1074/jbc.m112.367995] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human α-defensins are cationic peptides that self-associate into dimers and higher-order oligomers. They bind protein toxins, such as anthrax lethal factor (LF), and kill bacteria, including Escherichia coli and Staphylococcus aureus, among other functions. There are six members of the human α-defensin family: four human neutrophil peptides, including HNP1, and two enteric human defensins, including HD5. We subjected HD5 to comprehensive alanine scanning mutagenesis. We then assayed LF binding by surface plasmon resonance, LF activity by enzyme kinetic inhibition, and antibacterial activity by the virtual colony count assay. Most mutations could be tolerated, resulting in activity comparable with that of wild type HD5. However, the L29A mutation decimated LF binding and bactericidal activity against Escherichia coli and Staphylococcus aureus. A series of unnatural aliphatic and aromatic substitutions at position 29, including aminobutyric acid (Abu) and norleucine (Nle) correlated hydrophobicity with HD5 function. The crystal structure of L29Abu-HD5 depicted decreased hydrophobic contacts at the dimer interface, whereas the Nle-29-HD5 crystal structure depicted a novel mode of dimerization with parallel β strands. The effect of mutating Leu(29) is similar to that of a C-terminal hydrophobic residue of HNP1, Trp(26). In addition, in order to further clarify the role of dimerization in HD5 function, an obligate monomer was generated by N-methylation of the Glu(21) residue, decreasing LF binding and antibacterial activity against S. aureus. These results further characterize the dimer interface of the α-defensins, revealing a crucial role of hydrophobicity-mediated dimerization.
Collapse
Affiliation(s)
- Mohsen Rajabi
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | |
Collapse
|
153
|
Yount NY, Yeaman MR. Emerging themes and therapeutic prospects for anti-infective peptides. Annu Rev Pharmacol Toxicol 2012; 52:337-60. [PMID: 22235859 DOI: 10.1146/annurev-pharmtox-010611-134535] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pathogens resistant to most conventional anti-infectives are a harbinger of the need to discover and develop novel anti-infective agents and strategies. Endogenous host defense peptides (HDPs) have retained evolution-tested efficacy against pathogens that have become refractory to traditional antibiotics. Evidence indicates that HDPs target membrane integrity, bioenergetics, and other essential features of microbes that may be less mutable than conventional antibiotic targets. For these reasons, HDPs have received increasing attention as templates for development of potential anti-infective therapeutics. Unfortunately, advances toward this goal have proven disappointing, in part owing to limited understanding of relevant structure-activity and selective toxicity relationships in vivo, a limited number of reports and overall understanding of HDP pharmacology, and the difficulty of cost-effective production of such peptides on a commodity scale. However, recent molecular insights and technology innovations have led to novel HDP-based and mimetic anti-infective peptide candidates designed to overcome these limitations. Although initial setbacks have presented challenges to therapeutic development, emerging themes continue to highlight the potential of HDP-based anti-infectives as a platform for next-generation therapeutics that will help address the growing threat of multidrug-resistant infections.
Collapse
Affiliation(s)
- Nannette Y Yount
- Divisions of Infectious Diseases and Molecular Medicine, Los Angeles County Harbor-UCLA Medical Center, Torrance, California 90509, USA
| | | |
Collapse
|
154
|
Abstract
Defensins are small, multifunctional cationic peptides. They typically contain six conserved cysteines whose three intramolecular disulfides stabilize a largely β-sheet structure. This review of human α-defensins begins by describing their evolution, including their likely relationship to the Big Defensins of invertebrates, and their kinship to the β-defensin peptides of many if not all vertebrates, and the θ-defensins found in certain non-human primates. We provide a short history of the search for leukocyte-derived microbicidal molecules, emphasizing the roles played by luck (good), preconceived notions (mostly bad), and proper timing (essential). The antimicrobial, antiviral, antitoxic, and binding properties of human α-defensins are summarized. The structural features of α-defensins are described extensively and their functional contributions are assessed. The properties of HD6, an enigmatic Paneth cell α-defensin, are contrasted with those of the four myeloid α-defensins (HNP1-4) and of HD5, the other α-defensin of human Paneth cells. The review ends with a decalogue that may assist researchers or students interested in α-defensins and related aspects of neutrophil function.
Collapse
Affiliation(s)
- Robert I Lehrer
- Department of Medicine and Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1688, USA.
| | | |
Collapse
|
155
|
Leonard BC, Affolter VK, Bevins CL. Antimicrobial peptides: agents of border protection for companion animals. Vet Dermatol 2012; 23:177-e36. [PMID: 22409270 PMCID: PMC3467306 DOI: 10.1111/j.1365-3164.2012.01037.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the past 20 years, there have been significant inroads into understanding the roles of antimicrobial peptides in homeostatic functions and their involvement in disease pathogenesis. In addition to direct antimicrobial activity, these peptides participate in many cellular functions, including chemotaxis, wound healing and even determination of canine coat colour. Various biological and genetic approaches have helped to elucidate the role of antimicrobial peptides with respect to innate immunity and host defense. Associations of antimicrobial peptides with various skin diseases, including psoriasis, rosacea and atopic dermatitis, have been documented in humans. In the longer term, therapeutic modulation of antimicrobial peptide expression may provide effective new treatments for disease. This review highlights current knowledge about antimicrobial peptides of the skin and circulating leukocytes, with particular focus on relevance to physiology and disease in companion animals.
Collapse
Affiliation(s)
- Brian C Leonard
- Department of Microbiology and Immunology, UC Davis School of Medicine, Davis, CA 95616, USA
| | | | | |
Collapse
|
156
|
Mastroianni JR, Costales JK, Zaksheske J, Selsted ME, Salzman NH, Ouellette AJ. Alternative luminal activation mechanisms for paneth cell α-defensins. J Biol Chem 2012; 287:11205-12. [PMID: 22334698 DOI: 10.1074/jbc.m111.333559] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Paneth cell α-defensins mediate host defense and homeostasis at the intestinal mucosal surface. In mice, matrix metalloproteinase-7 (MMP7) converts inactive pro-α-defensins (proCrps) to bactericidal forms by proteolysis at specific proregion cleavage sites. MMP7(-/-) mice lack mature α-defensins in Paneth cells, accumulating unprocessed precursors for secretion. To test for activation of secreted pro-α-defensins by host and microbial proteinases in the absence of MMP7, we characterized colonic luminal α-defensins. Protein extracts of complete (organ plus luminal contents) ileum, cecum, and colon of MMP7-null and wild-type mice were analyzed by sequential gel permeation chromatography/acid-urea polyacrylamide gel analyses. Mature α-defensins were identified by N-terminal sequencing and mass spectrometry and characterized in bactericidal assays. Abundance of specific bacterial groups was measured by qPCR using group specific 16 S rDNA primers. Intact, native α-defensins, N-terminally truncated α-defensins, and α-defensin variants with novel N termini due to alternative processing were identified in MMP7(-/-) cecum and colon, and proteinases of host and microbial origin catalyzed proCrp4 activation in vitro. Although Paneth cell α-defensin deficiency is associated with ileal microbiota alterations, the cecal and colonic microbiota of MMP7(-/-) and wild-type mice were not significantly different. Thus, despite the absence of MMP7, mature α-defensins are abundant in MMP7(-/-) cecum and colon due to luminal proteolytic activation by alternative host and microbial proteinases. MMP7(-/-) mice only lack processed α-defensins in the small intestine, and the model is not appropriate for studying effects of α-defensin deficiency in cecal or colonic infection or disease.
Collapse
Affiliation(s)
- Jennifer R Mastroianni
- Department of Pathology & Laboratory Medicine and the USC Norris Cancer Center Keck School of Medicine of The University of Southern California, Los Angeles, California 90089-9601, USA
| | | | | | | | | | | |
Collapse
|
157
|
Pazgier M, Wei G, Ericksen B, Jung G, Wu Z, de Leeuw E, Yuan W, Szmacinski H, Lu WY, Lubkowski J, Lehrer RI, Lu W. Sometimes it takes two to tango: contributions of dimerization to functions of human α-defensin HNP1 peptide. J Biol Chem 2012; 287:8944-53. [PMID: 22270360 DOI: 10.1074/jbc.m111.332205] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human myeloid α-defensins called HNPs play multiple roles in innate host defense. The Trp-26 residue of HNP1 was previously shown to contribute importantly to its ability to kill S. aureus, inhibit anthrax lethal factor (LF), bind gp120 of HIV-1, dimerize, and undergo further self-association. To gain additional insights into the functional significance of dimerization, we compared wild type HNP1 to dimerization-impaired, N-methylated HNP1 monomers and to disulfide-tethered obligate HNP1 dimers. The structural effects of these modifications were confirmed by x-ray crystallographic analyses. Like the previously studied W26A mutation, N-methylation of Ile-20 dramatically reduced the ability of HNP1 to kill Staphylococcus aureus, inhibit LF, and bind gp120. Importantly, this modification had minimal effect on the ability of HNP1 to kill Escherichia coli. The W26A and MeIle-20 mutations impaired defensin activity synergistically. N-terminal covalent tethering rescued the ability of W26A-HNP1 to inhibit LF but failed to restore its defective killing of S. aureus. Surface plasmon resonance studies revealed that Trp-26 mediated the association of monomers and canonical dimers of HNP1 to immobilized HNP1, LF, and gp120, and also indicated a possible mode of tetramerization of HNP1 mediated by Ile-20 and Leu-25. This study demonstrates that dimerization contributes to some but not all of the many and varied activities of HNP1.
Collapse
Affiliation(s)
- Marzena Pazgier
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Yamaguchi Y, Ouchi Y. Antimicrobial peptide defensin: identification of novel isoforms and the characterization of their physiological roles and their significance in the pathogenesis of diseases. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2012; 88:152-66. [PMID: 22498979 PMCID: PMC3406309 DOI: 10.2183/pjab.88.152] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/21/2012] [Indexed: 05/31/2023]
Abstract
Defensins comprise a family of cationic antimicrobial peptides containing a specific six-cysteine motif. Their contribution to the host defense against microbial invasion and the control of normal flora have been previously described. Some of the β-defensin isoforms are predominantly expressed in the epididymis and showed a region-specific expression pattern in the epididymis, which thus suggested that these isoforms may possess epididymis-specific functions in addition to antimicrobial activities. A sequence variant of the β-defensin 126 gene has been shown to be associated with reductions in the human sperm function, thus supporting this hypothesis. Furthermore, defensins have the capacity to chemoattract immune cells and induce the secretion of inflammatory cytokines. Mice expressing human neutrophil α-defensin showed more severe lung injuries after the aspiration of acidic contents than did control mice. Recent investigations regarding copy number variations of human defensin genes also suggest the significance of defensin in the pathogenesis or the worsening of chronic obstructive pulmonary diseases, sepsis and psoriasis.
Collapse
Affiliation(s)
- Yasuhiro Yamaguchi
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | | |
Collapse
|
159
|
Garcia AE, Tai KP, Puttamadappa SS, Shekhtman A, Ouellette AJ, Camarero JA. Biosynthesis and antimicrobial evaluation of backbone-cyclized α-defensins. Biochemistry 2011; 50:10508-19. [PMID: 22040603 DOI: 10.1021/bi201430f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Defensins are antimicrobial peptides that are important in the innate immune defense of mammals. Upon stimulation by bacterial antigens, enteric α-defensins are secreted into the intestinal lumen where they have potent microbicidal activities. Cryptdin-4 (Crp4) is an α-defensin expressed in Paneth cells of the mouse small intestine and the most bactericidal of the known cryptdin isoforms. The structure of Crp4 consists of a triple-stranded antiparallel β-sheet but lacks three amino acids between the fourth and fifth cysteine residues, making them distinct from other α-defensins. The structure also reveals that the α-amino and C-terminal carboxylic groups are in the proximity of each other (d ≈ 3 Å) in the folded structure. We present here the biosynthesis of backbone-cyclized Crp4 using a modified protein splicing unit or intein. Our data show that cyclized Crp4 can be biosynthesized by using this approach both in vitro and in vivo, although the expression yield was significantly lower when the protein was produced inside the cell. The resulting cyclic defensins retained the native α-defensin fold and showed equivalent or better microbicidal activities against several Gram-positive and Gram-negative bacteria when compared to native Crp4. No detectable hemolytic activity against human red blood cells was observed for either native Crp4 or its cyclized variants. Moreover, both forms of Crp4 also showed high stability to degradation when incubated with human serum. Altogether, these results indicate the potential for backbone-cyclized defensins in the development of novel peptide-based antimicrobial compounds.
Collapse
Affiliation(s)
- Angie E Garcia
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, Calofornia 90033, USA
| | | | | | | | | | | |
Collapse
|
160
|
Wanniarachchi YA, Kaczmarek P, Wan A, Nolan EM. Human defensin 5 disulfide array mutants: disulfide bond deletion attenuates antibacterial activity against Staphylococcus aureus. Biochemistry 2011; 50:8005-17. [PMID: 21861459 DOI: 10.1021/bi201043j] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human α-defensin 5 (HD5, HD5(ox) to specify the oxidized and disulfide linked form) is a 32-residue cysteine-rich host-defense peptide, expressed and released by small intestinal Paneth cells, that exhibits antibacterial activity against a number of Gram-negative and -positive bacterial strains. To ascertain the contributions of its disulfide array to structure, antimicrobial activity, and proteolytic stability, a series of HD5 double mutant peptides where pairs of cysteine residues corresponding to native disulfide linkages (Cys(3)-Cys(31), Cys(5)-Cys(20), Cys(10)-Cys(30)) were mutated to Ser or Ala residues, overexpressed in E. coli, purified, and characterized. A hexa mutant peptide, HD5[Ser(hexa)], where all six native Cys residues are replaced by Ser residues, was also evaluated. Removal of a single native S-S linkage influences oxidative folding and regioisomerization, antibacterial activity, Gram-negative bacterial membrane permeabilization, and proteolytic stability. Whereas the majority of the HD5 mutant peptides show low micromolar activity against Gram-negative E. coli ATCC 25922 in colony counting assays, the wild-type disulfide array is essential for low micromolar activity against Gram-positive S. aureus ATCC 25923. Removal of a single disulfide bond attenuates the activity observed for HD5(ox) against this Gram-positive bacterial strain. This observation supports the notion that the HD5(ox) mechanism of antibacterial action differs for Gram-negative and Gram-positive species [Wei et al. (2009) J. Biol. Chem. 284, 29180-29192] and that the native disulfide array is a requirement for its activity against S. aureus.
Collapse
Affiliation(s)
- Yoshitha A Wanniarachchi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
161
|
Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 2011; 29:464-72. [PMID: 21680034 DOI: 10.1016/j.tibtech.2011.05.001] [Citation(s) in RCA: 1114] [Impact Index Per Article: 79.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/27/2011] [Accepted: 05/04/2011] [Indexed: 11/17/2022]
Abstract
Antimicrobial peptides (AMPs) are an integral part of the innate immune system that protect a host from invading pathogenic bacteria. To help overcome the problem of antimicrobial resistance, cationic AMPs are currently being considered as potential alternatives for antibiotics. Although extremely variable in length, amino acid composition and secondary structure, all peptides can adopt a distinct membrane-bound amphipathic conformation. Recent studies demonstrate that they achieve their antimicrobial activity by disrupting various key cellular processes. Some peptides can even use multiple mechanisms. Moreover, several intact proteins or protein fragments are now being shown to have inherent antimicrobial activity. A better understanding of the structure-activity relationships of AMPs is required to facilitate the rational design of novel antimicrobial agents.
Collapse
Affiliation(s)
- Leonard T Nguyen
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada, T2N 1N4
| | | | | |
Collapse
|
162
|
Wilmes M, Cammue BPA, Sahl HG, Thevissen K. Antibiotic activities of host defense peptides: more to it than lipid bilayer perturbation. Nat Prod Rep 2011; 28:1350-8. [PMID: 21617811 DOI: 10.1039/c1np00022e] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Defensins are small basic amphiphilic peptides (up to 5 kDa) that have been shown to be important effector molecules of the innate immune system of animals, plants and fungi. In addition to immune modulatory functions, they have potent direct antimicrobial activity against a broad spectrum of bacteria, fungi and/or viruses, which makes them promising lead compounds for the development of next-generation antiinfectives. The mode of antibiotic action of defensins was long thought to result from electrostatic interaction between the positively charged defensins and negatively charged microbial membranes, followed by unspecific membrane permeabilization or pore-formation. Microbial membranes are more negatively charged than human membranes, which may explain to some extent the specificity of defensin action against microbes and associated low toxicity for the host. However, research during the past decade has demonstrated that defensin activities can be much more targeted and that microbe-specific lipid receptors are involved in the killing activity of various defensins. In this respect, human, fungal and invertebrate defensins have been shown to bind to and sequester the bacterial cell wall building block lipid II, thereby specifically inhibiting cell wall biosynthesis. Moreover, plant and insect defensins were found to interact with fungal sphingolipid receptors, resulting in fungal cell death. This review summarizes the current knowledge on the mode of action and structure of defensins from different kingdoms, with specific emphasis on their interaction with microbial lipid receptors.
Collapse
Affiliation(s)
- Miriam Wilmes
- Institute of Medical Microbiology, Immunology and Parasitology - Pharmaceutical Microbiology Section, University of Bonn, Meckenheimer Allee 168. 53115, Bonn. Germany
| | | | | | | |
Collapse
|
163
|
Fu LB, Yu JL, Liu WH. [Biological characteristics of defensin and its disease-resistance genetic engineering]. YI CHUAN = HEREDITAS 2011; 33:512-519. [PMID: 21586398 DOI: 10.3724/sp.j.1005.2011.00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Defensin is a kind of cysteine-rich small peptide, which has a broad spectrum of resistance to bacteria with a special resistance mechanism. So far, a large number of studies on defensins have been reported, and the different types of defensins have been isolated from various organisms. A broad prospect of application on defensins has been displayed both in genetic engineering and medicine field. This article reviewed the classification and the biological characteristics of defensins, including mammalian α-, β-, θ-defensins, insect defensins, and plant defensins. The molecular structures, antibacterial activities, and antibacterial mechanisms of these definsins were summarized. The two mechanisms of de-fensin, including independent membrane mechanism and targeting of intracellular compounds by defensins, are ex-pounded. This paper also summarized the researches on isolation and expression of defensin genes and disease resistance genetic engineering of mammal and plant defensins. A prospect of the future applications of defensin both in biophar-maceutical sciences and plant disease resistance genetic engineering was discussed.
Collapse
Affiliation(s)
- Lan-Bao Fu
- 1. The State Key Laboratory for Agro-biotechnology, China Agricultural University, Beijing 100193, China.
| | | | | |
Collapse
|
164
|
Abstract
Building and maintaining a homeostatic relationship between a host and its colonizing microbiota entails ongoing complex interactions between the host and the microorganisms. The mucosal immune system, including epithelial cells, plays an essential part in negotiating this equilibrium. Paneth cells (specialized cells in the epithelium of the small intestine) are an important source of antimicrobial peptides in the intestine. These cells have become the focus of investigations that explore the mechanisms of host-microorganism homeostasis in the small intestine and its collapse in the processes of infection and chronic inflammation. In this Review, we provide an overview of the intestinal microbiota and describe the cell biology of Paneth cells, emphasizing the composition of their secretions and the roles of these cells in intestinal host defence and homeostasis. We also highlight the implications of Paneth cell dysfunction in susceptibility to chronic inflammatory bowel disease.
Collapse
|
165
|
Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 2011. [PMID: 21423246 DOI: 10.1038/nrmicro2546.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Building and maintaining a homeostatic relationship between a host and its colonizing microbiota entails ongoing complex interactions between the host and the microorganisms. The mucosal immune system, including epithelial cells, plays an essential part in negotiating this equilibrium. Paneth cells (specialized cells in the epithelium of the small intestine) are an important source of antimicrobial peptides in the intestine. These cells have become the focus of investigations that explore the mechanisms of host-microorganism homeostasis in the small intestine and its collapse in the processes of infection and chronic inflammation. In this Review, we provide an overview of the intestinal microbiota and describe the cell biology of Paneth cells, emphasizing the composition of their secretions and the roles of these cells in intestinal host defence and homeostasis. We also highlight the implications of Paneth cell dysfunction in susceptibility to chronic inflammatory bowel disease.
Collapse
|
166
|
Hong M, Su Y. Structure and dynamics of cationic membrane peptides and proteins: insights from solid-state NMR. Protein Sci 2011; 20:641-55. [PMID: 21344534 DOI: 10.1002/pro.600] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 01/14/2011] [Accepted: 01/18/2011] [Indexed: 12/11/2022]
Abstract
Many membrane peptides and protein domains contain functionally important cationic Arg and Lys residues, whose insertion into the hydrophobic interior of the lipid bilayer encounters significant energy barriers. To understand how these cationic molecules overcome the free energy barrier to insert into the lipid membrane, we have used solid-state NMR spectroscopy to determine the membrane-bound topology of these peptides. A versatile array of solid-state NMR experiments now readily yields the conformation, dynamics, orientation, depth of insertion, and site-specific protein-lipid interactions of these molecules. We summarize key findings of several Arg-rich membrane peptides, including β-sheet antimicrobial peptides, unstructured cell-penetrating peptides, and the voltage-sensing helix of voltage-gated potassium channels. Our results indicate the central role of guanidinium-phosphate and guanidinium-water interactions in dictating the structural topology of these cationic molecules in the lipid membrane, which in turn account for the mechanisms of this functionally diverse class of membrane peptides.
Collapse
Affiliation(s)
- Mei Hong
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| | | |
Collapse
|
167
|
Zhang Y, Lu W, Hong M. The membrane-bound structure and topology of a human α-defensin indicate a dimer pore mechanism for membrane disruption. Biochemistry 2010; 49:9770-82. [PMID: 20961099 PMCID: PMC2992833 DOI: 10.1021/bi101512j] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Defensins are cationic and disulfide-bonded host defense proteins of many animals that target microbial cell membranes. Elucidating the three-dimensional structure, dynamics, and topology of these proteins in phospholipid bilayers is important for understanding their mechanisms of action. Using solid-state nuclear magnetic resonance spectroscopy, we have now determined the conformation, dynamics, oligomeric state, and topology of a human α-defensin, HNP-1, in DMPC/DMPG bilayers. Two-dimensional correlation spectra show that membrane-bound HNP-1 exhibits a conformation similar to that of the water-soluble state, except for the turn connecting strands β2 and β3, whose side chains exhibit immobilization and conformational perturbation upon membrane binding. At high protein/lipid ratios, rapid (1)H spin diffusion from the lipid chains to the protein was observed, indicating that HNP-1 was well inserted into the hydrocarbon core of the bilayer. Arg Cζ-lipid (31)P distances indicate that only one of the four Arg residues forms tight hydrogen-bonded guanidinium-phosphate complexes. The protein is predominantly dimerized at high protein/lipid molar ratios, as shown by (19)F spin diffusion experiments. The presence of a small fraction of monomers and the shallower insertion at lower protein concentrations suggest that HNP-1 adopts concentration-dependent oligomerization and membrane-bound structure. These data strongly support a "dimer pore" topology of HNP-1 in which the polar top of the dimer lines an aqueous pore while the hydrophobic bottom faces the lipid chains. In this structure, R25 lies closest to the membrane surface among the four Arg residues. The pore does not have a high degree of lipid disorder, in contrast to the toroidal pores formed by protegrin-1, a two-stranded β-hairpin antimicrobial peptide. These results provide the first glimpse into the membrane-bound structure and mechanism of action of human α-defensins.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Chemistry, Iowa State University, Ames, IA, 50011
| | - Wuyuan Lu
- Institute of Human Virology & Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201
| | - Mei Hong
- Department of Chemistry, Iowa State University, Ames, IA, 50011
| |
Collapse
|
168
|
Hazlett L, Wu M. Defensins in innate immunity. Cell Tissue Res 2010; 343:175-88. [PMID: 20730446 DOI: 10.1007/s00441-010-1022-4] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 07/13/2010] [Indexed: 02/07/2023]
Abstract
The innate immune system is the first line of defense against many common microorganisms, which can initiate adaptive immune responses to provide increased protection against subsequent re-infection by the same pathogen. As a major family of antimicrobial peptides, defensins are widely expressed in a variety of epithelial cells and sometimes in leukocytes, playing an important role in the innate immune system due to their antimicrobial, chemotactic and regulatory activities. This review introduces their structure, classification, distribution, synthesis, and focuses on their biological activities and mechanisms, as well as clinical relevance. These studies of defensins in the innate immune system have implications for the prevention and treatment of a variety of infectious diseases, including bacterial ocular disease.
Collapse
Affiliation(s)
- Linda Hazlett
- Anatomy/Cell Biology, Wayne State University, 540 E. Canfield Ave, Detroit, MI 48201, USA.
| | | |
Collapse
|
169
|
Schmitt P, Wilmes M, Pugnière M, Aumelas A, Bachère E, Sahl HG, Schneider T, Destoumieux-Garzón D. Insight into invertebrate defensin mechanism of action: oyster defensins inhibit peptidoglycan biosynthesis by binding to lipid II. J Biol Chem 2010; 285:29208-16. [PMID: 20605792 DOI: 10.1074/jbc.m110.143388] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three oyster defensin variants (Cg-Defh1, Cg-Defh2, and Cg-Defm) were produced as recombinant peptides and characterized in terms of activities and mechanism of action. In agreement with their spectrum of activity almost specifically directed against Gram-positive bacteria, oyster defensins were shown here to be specific inhibitors of a bacterial biosynthesis pathway rather than mere membrane-active agents. Indeed, at lethal concentrations, the three defensins did not compromise Staphylococcus aureus membrane integrity but inhibited the cell wall biosynthesis as indicated by the accumulation of the UDP-N-acetylmuramyl-pentapeptide cell wall precursor. In addition, a combination of antagonization assays, thin layer chromatography, and surface plasmon resonance measurements showed that oyster defensins bind almost irreversibly to the lipid II peptidoglycan precursor, thereby inhibiting the cell wall biosynthesis. To our knowledge, this is the first detailed analysis of the mechanism of action of antibacterial defensins produced by invertebrates. Interestingly, the three defensins, which were chosen as representative of the oyster defensin molecular diversity, bound differentially to lipid II. This correlated with their differential antibacterial activities. From our experimental data and the analysis of oyster defensin sequence diversity, we propose that oyster defensin activity results from selective forces that have conserved residues involved in lipid II binding and diversified residues at the surface of oyster defensins that could improve electrostatic interactions with the bacterial membranes.
Collapse
Affiliation(s)
- Paulina Schmitt
- CNRS, Ifremer, IRD, and Université Montpellier 2, UMR 5119, Laboratoire Ecosystèmes Lagunaires, Place Eugène Bataillon, CC80, 34095 Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|