151
|
Abstract
Malignant gliomas are the most common primary brain tumor found in adults. Unfortunately, the prognosis for these type of tumors remains dismal despite aggressive treatment with surgical resection, radiation and chemotherapy. Therefore, therapeutics aimed at disrupting the angiogenesis of these tumors is being utilized in to improve survival outcomes and quality of life. This paper reviews the history of antiangiogenic agents in malignant gliomas, discusses the FDA approval of bevacizumab as monotherapy in recurrent glioblastoma and the subsequent controversy, and analyzes the most recent newly diagnosed trials of RTOG 0825 and AVAglio. Additionally, the results of the latest trials with antiangiogenic agents and possible biomarkers are reviewed. Multiple questions remain regarding the potential benefit of antiangiogenic treatments in patients with glioblastoma. Future clinical trials should be designed to learn more about these drugs, to optimize their future use.
Collapse
|
152
|
Clavo B, Robaina F, Jorge IJ, Cabrera R, Ruiz-Egea E, Szolna A, Otermin E, Llontop P, Carames MA, Santana-Rodríguez N, Sminia P. Spinal cord stimulation as adjuvant during chemotherapy and reirradiation treatment of recurrent high-grade gliomas. Integr Cancer Ther 2014; 13:513-9. [PMID: 25228535 DOI: 10.1177/1534735414550037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AIMS Relapsed high-grade gliomas (HGGs) have poor prognoses and there is no standard treatment. HGGs have ischemia/hypoxia associated and, as such, drugs and oxygen have low access, with increased resistance to chemotherapy and radiotherapy. Tumor hypoxia modification can improve outcomes and overall survival in some patients with these tumors. In previous works, we have described that cervical spinal cord stimulation can modify tumor microenvironment in HGG by increasing tumor blood flow, oxygenation, and metabolism. The aim of this current, preliminary, nonrandomized, study was to assess the clinical effect of spinal cord stimulation during brain reirradiation and chemotherapy deployed for the treatment of recurrent HGG; the hypothesis being that an improvement in oxygenated blood supply would facilitate enhanced delivery of the scheduled therapy. MATERIALS AND METHODS Seven patients had spinal cord stimulation applied during the scheduled reirradiation and chemotherapy for the treatment of recurrent HGG (6 anaplastic gliomas and 1 glioblastoma). Median dose of previous irradiation was 60 Gy (range = 56-72 Gy) and median dose of reirradiation was 46 Gy (range = 40-46 Gy). Primary end point of the study was overall survival (OS) following confirmation of HGG relapse. RESULTS From the time of diagnosis of last tumor relapse before reirradiation, median OS was 39 months (95% CI = 0-93) for the overall study group: 39 months (95% CI = 9-69) for those with anaplastic gliomas and 16 months for the patient with glioblastoma. Posttreatment, doses of corticosteroids was significantly decreased (P = .026) and performance status significantly improved (P = .046). CONCLUSIONS Spinal cord stimulation during reirradiation and chemotherapy is feasible and well tolerated. In our study, spinal cord stimulation was associated with clinical improvement and longer survival than previously reported in recurrent anaplastic gliomas. Spinal cord stimulation as adjuvant during chemotherapy and reirradiation in relapsed HGGs merits further research.
Collapse
Affiliation(s)
- Bernardino Clavo
- Dr Negrín University Hospital, Las Palmas, Spain ICIC (Canary Islands Institute for Cancer Research), Las Palmas, Spain GICOR (Grupo de Investigación Clínica en Oncología Radioterápica), Madrid, Spain
| | - Francisco Robaina
- Dr Negrín University Hospital, Las Palmas, Spain ICIC (Canary Islands Institute for Cancer Research), Las Palmas, Spain
| | | | | | | | - Adam Szolna
- Dr Negrín University Hospital, Las Palmas, Spain
| | | | | | | | | | - Peter Sminia
- VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
153
|
Omuro A, Beal K, Gutin P, Karimi S, Correa DD, Kaley TJ, DeAngelis LM, Chan TA, Gavrilovic IT, Nolan C, Hormigo A, Lassman AB, Mellinghoff I, Grommes C, Reiner AS, Panageas KS, Baser RE, Tabar V, Pentsova E, Sanchez J, Barradas-Panchal R, Zhang J, Faivre G, Brennan CW, Abrey LE, Huse JT. Phase II study of bevacizumab, temozolomide, and hypofractionated stereotactic radiotherapy for newly diagnosed glioblastoma. Clin Cancer Res 2014; 20:5023-31. [PMID: 25107913 DOI: 10.1158/1078-0432.ccr-14-0822] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE Bevacizumab is associated with decreased vascular permeability that allows for more aggressive radiotherapy schedules. We conducted a phase II trial in newly diagnosed glioblastoma utilizing a novel hypofractionated stereotactic radiotherapy (HFSRT) schedule combined with temozolomide and bevacizumab. EXPERIMENTAL DESIGN Patients with tumor volume ≤60 cc were treated with HFSRT (6 × 6 Gy to contrast enhancement and 6 × 4 Gy to FLAIR hyperintensity with dose painting) combined with concomitant/adjuvant temozolomide and bevacizumab at standard doses. Primary endpoint was 1-year overall survival (OS): promising = 70%; nonpromising = 50%; α = 0.1; β = 0.1. RESULTS Forty patients were enrolled (median age: 55 years; methylated MGMT promoter: 23%; unmethylated: 70%). The 1-year OS was 93% [95% confidence interval (CI), 84-100] and median OS was 19 months. The median PFS was 10 months, with no pseudo-progression observed. The objective response rate (ORR) was 57%. Analysis of The Cancer Genome Atlas glioblastoma transcriptional subclasses (Nanostring assay) suggested patients with a proneural phenotype (26%) fared worse (ORR = 14%, vs. 77% for other subclasses; P = 0.009). Dynamic susceptibility-contrast perfusion MRI showed marked decreases in relative cerebral blood volume over time (P < 0.0001) but had no prognostic value, whereas higher baseline apparent diffusion coefficient (ADC) ratios and persistent hypermetabolism at the 6-month FDG-PET predicted poor OS (P = 0.05 and 0.0001, respectively). Quality-of-life (FACT-BR-4) and neuropsychological test scores were stable over time, although some domains displayed transient decreases following HFSRT. CONCLUSIONS This aggressive radiotherapy schedule was safe and more convenient for patients, achieving an OS that is comparable with historical controls. Analysis of advanced neuroimaging parameters suggests ADC and FDG-PET as potentially useful biomarkers, whereas tissue correlatives uncovered the poor prognosis associated with the proneural signature in non-IDH-1-mutated glioblastoma.
Collapse
Affiliation(s)
- Antonio Omuro
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, New York.
| | - Kathryn Beal
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Philip Gutin
- Department of Neurosurgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Sasan Karimi
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Denise D Correa
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Thomas J Kaley
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Lisa M DeAngelis
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Timothy A Chan
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York. Department of Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Igor T Gavrilovic
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Craig Nolan
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Adilia Hormigo
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Andrew B Lassman
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Ingo Mellinghoff
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, New York. Department of Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Christian Grommes
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Anne S Reiner
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Katherine S Panageas
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Raymond E Baser
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Elena Pentsova
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Juan Sanchez
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | | | - Jianan Zhang
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Geraldine Faivre
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Cameron W Brennan
- Department of Neurosurgery, Memorial Sloan-Kettering Cancer Center, New York, New York. Department of Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Lauren E Abrey
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Jason T Huse
- Department of Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York. Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| |
Collapse
|
154
|
Wuthrick EJ, Curran WJ, Camphausen K, Lin A, Glass J, Evans J, Andrews DW, Axelrod R, Shi W, Werner-Wasik M, Haacke EM, Hillman GG, Dicker AP. A pilot study of hypofractionated stereotactic radiation therapy and sunitinib in previously irradiated patients with recurrent high-grade glioma. Int J Radiat Oncol Biol Phys 2014; 90:369-75. [PMID: 25104067 DOI: 10.1016/j.ijrobp.2014.05.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 01/04/2023]
Abstract
PURPOSE/OBJECTIVE(S) Angiogenic blockade with irradiation may enhance the therapeutic ratio of radiation therapy (RT) through vascular normalization. We sought to determine the safety and toxicity profile of continuous daily-dosed sunitinib when combined with hypofractionated stereotactic RT (fSRT) for recurrent high-grade gliomas (rHGG). METHODS AND MATERIALS Eligible patients had malignant high-grade glioma that recurred or progressed after primary surgery and RT. All patients received a minimum of a 10-day course of fSRT, had World Health Organization performance status of 0 to 1, and a life expectancy of >3 months. During fSRT, sunitinib was administered at 37.5 mg daily. The primary endpoint was acute toxicity, and response was assessed via serial magnetic resonance imaging. RESULTS Eleven patients with rHGG were enrolled. The fSRT doses delivered ranged from 30 to 42 Gy in 2.5- to 3.75-Gy fractions. The median follow-up time was 40 months. Common acute toxicities included hematologic disorders, fatigue, hypertension, and elevated liver transaminases. Sunitinib and fSRT were well tolerated. One grade 4 mucositis toxicity occurred, and no grade 4 or 5 hypertensive events or intracerebral hemorrhages occurred. One patient had a nearly complete response, and 4 patients had stable disease for >9 months. Two patients (18%) remain alive and progression-free >3 years from enrollment. The 6-month progression-free survival was 45%. CONCLUSIONS Sunitinib at a daily dose of 37.5 mg given concurrently with hypofractionated stereotactic reirradiation for rHGG yields acceptable toxicities and an encouraging 6-month progression-free survival.
Collapse
Affiliation(s)
- Evan J Wuthrick
- Department of Radiation Oncology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Walter J Curran
- Department of Radiation Oncology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Kevin Camphausen
- Department of Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Alexander Lin
- Department of Radiation Oncology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jon Glass
- Department of Neurological Surgery, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - James Evans
- Department of Neurological Surgery, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - David W Andrews
- Department of Neurological Surgery, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Rita Axelrod
- Department of Medical Oncology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Wenyin Shi
- Department of Radiation Oncology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Maria Werner-Wasik
- Department of Radiation Oncology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - E Mark Haacke
- Department of Radiology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan; Department of Biomedical Engineering, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Gilda G Hillman
- Department of Radiation Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Adam P Dicker
- Department of Radiation Oncology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
155
|
Archavlis E, Tselis N, Birn G, Ulrich P, Zamboglou N. Combined salvage therapies for recurrent glioblastoma multiforme: evaluation of an interdisciplinary treatment algorithm. J Neurooncol 2014; 119:387-95. [DOI: 10.1007/s11060-014-1500-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/04/2014] [Indexed: 11/24/2022]
|
156
|
Niyazi M, Flieger M, Ganswindt U, Combs SE, Belka C. Validation of the prognostic Heidelberg re-irradiation score in an independent mono-institutional patient cohort. Radiat Oncol 2014; 9:128. [PMID: 24893775 PMCID: PMC4083332 DOI: 10.1186/1748-717x-9-128] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 03/30/2014] [Indexed: 01/08/2023] Open
Abstract
Purpose Re-irradiation has been shown to be a valid option with proven efficacy for recurrent high-grade glioma patients. Overall, up to now it is unclear which patients might be optimal candidates for a second course of irradiation. A recently reported prognostic score developed by Combs et al. may guide treatment decisions and thus, our mono-institutional cohort served as validation set to test its relevance for clinical practice. Patients and methods The prognostic score is built upon histology, age (< 50 vs. ≥ 50 years) and the time between initial radiotherapy and re-irradiation (≤ 12 vs. > 12 months). This score was initially introduced to distinguish patients with excellent (0 points), good (1 point), moderate (2 points) and poor (3–4 points) post-recurrence survival (PRS) after re-irradiation. Median prescribed radiation dose during re-treatment of recurrent malignant glioma was 36 Gy in 2 Gy single fractions. A substantial part of the patients was additionally treated with bevacizumab (10 mg/kg intravenously at d1 and d15 during re-irradiation). Results 88 patients (initially 61 WHO IV, 20 WHO III, 7 WHO II) re-irradiated in a single institution were retrospectively analyzed. Median follow-up was 30 months and median PRS of the entire patient cohort 7 months. Seventy-one patients (80.7%) received bevacizumab. PRS was significantly increased in patients receiving bevacizumab (8 vs. 6 months, p = 0.027, log-rank test). KPS, age, MGMT methylation status, sex, WHO grade and the Heidelberg score showed no statistically significant influence on neither PR-PFS nor PRS. Conclusion In our cohort which was mainly treated with bevacizumab the usefulness of the Heidelberg score could not be confirmed probably due to treatment heterogeneity; it can be speculated that larger multicentric data collections are needed to derive a more reliable score.
Collapse
Affiliation(s)
| | | | | | | | - Claus Belka
- Department of Radiation Oncology, University of Munich, Marchioninistr, 15, 81377 Munich, Germany.
| |
Collapse
|
157
|
Wang Y, Wang E, Pan L, Dai J, Zhang N, Wang X, Liu X, Mei G, Sheng X. A new strategy of CyberKnife treatment system based radiosurgery followed by early use of adjuvant bevacizumab treatment for brain metastasis with extensive cerebral edema. J Neurooncol 2014; 119:369-76. [DOI: 10.1007/s11060-014-1488-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 05/19/2014] [Indexed: 10/25/2022]
|
158
|
Bevacizumab and wound-healing complications: mechanisms of action, clinical evidence, and management recommendations for the plastic surgeon. Ann Plast Surg 2014; 71:434-40. [PMID: 22868316 DOI: 10.1097/sap.0b013e31824e5e57] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reflecting the growing understanding of vascular endothelial growth factor (VEGF) in cancer survival and growth, the anti-VEGF antibody bevacizumab (Avastin) is increasingly used to treat advanced malignancy. However, because VEGF also mediates proper wound healing, bevacizumab may lead to potentially severe wound-healing complications (WHCs). Because bevacizumab expands in use, the plastic surgeon will increasingly be entrusted to manage such WHCs successfully. Therefore, this review summarizes the pathophysiological evidence, systematically reviews the available clinical evidence, and provides management guidelines for bevacizumab-related WHCs. Bevacizumab produces WHCs by disrupting vasodilation, increased vascular permeability, and angiogenesis. Current clinical evidence suggests that bevacizumab may increase WHC risk. This risk seems higher with neoadjuvant than adjuvant bevacizumab use and may be decreased by extending the bevacizumab-surgery interval. Further research is required to quantify the exact bevacizumab-related WHC incidence and optimize the bevacizumab-surgery interval. We propose management guidelines for bevacizumab-related WHCs by indication that should be integrated with clinical judgment, input from the oncology team, and patient wishes when making therapeutic decisions.
Collapse
|
159
|
The role of radiotherapy in the management of progressive glioblastoma. J Neurooncol 2014; 118:489-99. [DOI: 10.1007/s11060-013-1337-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 12/28/2013] [Indexed: 11/26/2022]
|
160
|
Khasraw M, Ameratunga M, Grommes C. Bevacizumab for the treatment of high-grade glioma: an update after phase III trials. Expert Opin Biol Ther 2014; 14:729-40. [PMID: 24655021 DOI: 10.1517/14712598.2014.898060] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Gliomas are highly vascular and rich in VEGF, which promotes angiogenesis. Bevacizumab is a monoclonal antibody against VEGF, inhibiting angiogenesis by preventing receptor activation. Early Phase II clinical trials using bevacizumab in both newly diagnosed and recurrent high-grade gliomas (HGG) showed promising results, but these have not been confirmed in recent Phase III trials. This review is an update including recently reported Phase II and III study results. AREAS COVERED This is a review of clinical trials investigating bevacizumab in newly diagnosed and recurrent HGG with a focus on outcome results. A future perspective about the expected future role of bevacizumab is given. Bevacizumab efficacy, safety and tolerability, the combination of radiation and bevacizumab, as well as the use of bevacizumab to treat pseudoprogression are discussed. Further criteria of response evaluation needed to be adjusted in the age of antiangiogenic therapy are also discussed. EXPERT OPINION Bevacizumab has been shown to be safe and tolerable in HGG. In the recurrent disease setting, bevacizumab might offer clinical benefits and is currently approved as a single agent for this indication. Although clinical trials demonstrate a prolonged progression-free survival (PFS) in bevacizumab-treated HGG, a benefit on overall survival has not been demonstrated. Research so far shows that bevacizumab appears to prolong PFS in newly diagnosed glioblastoma. Available data do not demonstrate a survival benefit in newly diagnosed patients. In the recurrent setting, there is no adequately powered randomized clinical trial to address whether there is a PFS or survival benefit with bevacizumab. Bevacizumab has also been introduced into other settings in neuro-oncology, including concurrent administration with re-irradiation for recurrent HGG.
Collapse
Affiliation(s)
- Mustafa Khasraw
- Geelong Hospital, Andrew Love Cancer Centre , 70 Swanston Street, Geelong, VIC 3220 , Australia +61 3 42152700 ; +61 3 42152836 ;
| | | | | |
Collapse
|
161
|
Turner DC, Navid F, Daw NC, Mao S, Wu J, Santana VM, Neel M, Rao B, Willert JR, Loeb DM, Harstead KE, Throm SL, Freeman BB, Stewart CF. Population pharmacokinetics of bevacizumab in children with osteosarcoma: implications for dosing. Clin Cancer Res 2014; 20:2783-92. [PMID: 24637635 DOI: 10.1158/1078-0432.ccr-13-2364] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE To describe sources of interindividual variability in bevacizumab disposition in pediatric patients and explore associations among bevacizumab pharmacokinetics and clinical wound healing outcomes. EXPERIMENTAL DESIGN Before tumor resection, three doses of bevacizumab (15 mg/kg) were administered to patients (median age, 12.2 years) enrolled in a multi-institutional osteosarcoma trial. Serial sampling for bevacizumab pharmacokinetics was obtained from 27 patients. A population pharmacokinetic model was fit to the data, and patient demographics and clinical chemistry values were systematically tested as predictive covariates on model parameters. Associations between bevacizumab exposure and wound healing status were evaluated by logistic regression. RESULTS Bevacizumab concentration-time data were adequately described by a two-compartment model. Pharmacokinetic parameter estimates were similar to those previously reported in adults, with a long median (range) terminal half-life of 12.2 days (8.6 to 32.4 days) and a volume of distribution indicating confinement primarily to the vascular space, 49.1 mL/kg (27.1 to 68.3 mL/kg). Body composition was a key determinant of bevacizumab exposure, as body mass index percentile was significantly (P < 0.05) correlated to body-weight normalized clearance and volume of distribution. Furthermore, bevacizumab exposure before primary tumor resection was associated with increased risk of major wound healing complications after surgery (P < 0.05). CONCLUSION A population pharmacokinetic model for bevacizumab was developed, which demonstrated that variability in bevacizumab exposure using weight-based dosing is related to body composition. Bevacizumab dosage scaling using ideal body weight would provide an improved dosing approach in children by minimizing pharmacokinetic variability and reducing likelihood of major wound healing complications.
Collapse
Affiliation(s)
- David C Turner
- Authors' Affiliations: Departments of Pharmaceutical Sciences, Oncology, Biostatistics, and Surgery; Preclinical Pharmacokinetic Shared Resource, St. Jude Children's Research Hospital; Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; Division of Pediatrics, MD Anderson Cancer Center, Houston, Texas; Department of Pediatrics, Stanford School of Medicine, Palo Alto, California; and Department of Oncology, Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Fariba Navid
- Authors' Affiliations: Departments of Pharmaceutical Sciences, Oncology, Biostatistics, and Surgery; Preclinical Pharmacokinetic Shared Resource, St. Jude Children's Research Hospital; Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; Division of Pediatrics, MD Anderson Cancer Center, Houston, Texas; Department of Pediatrics, Stanford School of Medicine, Palo Alto, California; and Department of Oncology, Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MarylandAuthors' Affiliations: Departments of Pharmaceutical Sciences, Oncology, Biostatistics, and Surgery; Preclinical Pharmacokinetic Shared Resource, St. Jude Children's Research Hospital; Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; Division of Pediatrics, MD Anderson Cancer Center, Houston, Texas; Department of Pediatrics, Stanford School of Medicine, Palo Alto, California; and Department of Oncology, Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Najat C Daw
- Authors' Affiliations: Departments of Pharmaceutical Sciences, Oncology, Biostatistics, and Surgery; Preclinical Pharmacokinetic Shared Resource, St. Jude Children's Research Hospital; Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; Division of Pediatrics, MD Anderson Cancer Center, Houston, Texas; Department of Pediatrics, Stanford School of Medicine, Palo Alto, California; and Department of Oncology, Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Shenghua Mao
- Authors' Affiliations: Departments of Pharmaceutical Sciences, Oncology, Biostatistics, and Surgery; Preclinical Pharmacokinetic Shared Resource, St. Jude Children's Research Hospital; Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; Division of Pediatrics, MD Anderson Cancer Center, Houston, Texas; Department of Pediatrics, Stanford School of Medicine, Palo Alto, California; and Department of Oncology, Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Jianrong Wu
- Authors' Affiliations: Departments of Pharmaceutical Sciences, Oncology, Biostatistics, and Surgery; Preclinical Pharmacokinetic Shared Resource, St. Jude Children's Research Hospital; Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; Division of Pediatrics, MD Anderson Cancer Center, Houston, Texas; Department of Pediatrics, Stanford School of Medicine, Palo Alto, California; and Department of Oncology, Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Victor M Santana
- Authors' Affiliations: Departments of Pharmaceutical Sciences, Oncology, Biostatistics, and Surgery; Preclinical Pharmacokinetic Shared Resource, St. Jude Children's Research Hospital; Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; Division of Pediatrics, MD Anderson Cancer Center, Houston, Texas; Department of Pediatrics, Stanford School of Medicine, Palo Alto, California; and Department of Oncology, Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MarylandAuthors' Affiliations: Departments of Pharmaceutical Sciences, Oncology, Biostatistics, and Surgery; Preclinical Pharmacokinetic Shared Resource, St. Jude Children's Research Hospital; Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; Division of Pediatrics, MD Anderson Cancer Center, Houston, Texas; Department of Pediatrics, Stanford School of Medicine, Palo Alto, California; and Department of Oncology, Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Michael Neel
- Authors' Affiliations: Departments of Pharmaceutical Sciences, Oncology, Biostatistics, and Surgery; Preclinical Pharmacokinetic Shared Resource, St. Jude Children's Research Hospital; Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; Division of Pediatrics, MD Anderson Cancer Center, Houston, Texas; Department of Pediatrics, Stanford School of Medicine, Palo Alto, California; and Department of Oncology, Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Bhaskar Rao
- Authors' Affiliations: Departments of Pharmaceutical Sciences, Oncology, Biostatistics, and Surgery; Preclinical Pharmacokinetic Shared Resource, St. Jude Children's Research Hospital; Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; Division of Pediatrics, MD Anderson Cancer Center, Houston, Texas; Department of Pediatrics, Stanford School of Medicine, Palo Alto, California; and Department of Oncology, Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Jennifer Reikes Willert
- Authors' Affiliations: Departments of Pharmaceutical Sciences, Oncology, Biostatistics, and Surgery; Preclinical Pharmacokinetic Shared Resource, St. Jude Children's Research Hospital; Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; Division of Pediatrics, MD Anderson Cancer Center, Houston, Texas; Department of Pediatrics, Stanford School of Medicine, Palo Alto, California; and Department of Oncology, Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - David M Loeb
- Authors' Affiliations: Departments of Pharmaceutical Sciences, Oncology, Biostatistics, and Surgery; Preclinical Pharmacokinetic Shared Resource, St. Jude Children's Research Hospital; Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; Division of Pediatrics, MD Anderson Cancer Center, Houston, Texas; Department of Pediatrics, Stanford School of Medicine, Palo Alto, California; and Department of Oncology, Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - K Elaine Harstead
- Authors' Affiliations: Departments of Pharmaceutical Sciences, Oncology, Biostatistics, and Surgery; Preclinical Pharmacokinetic Shared Resource, St. Jude Children's Research Hospital; Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; Division of Pediatrics, MD Anderson Cancer Center, Houston, Texas; Department of Pediatrics, Stanford School of Medicine, Palo Alto, California; and Department of Oncology, Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Stacy L Throm
- Authors' Affiliations: Departments of Pharmaceutical Sciences, Oncology, Biostatistics, and Surgery; Preclinical Pharmacokinetic Shared Resource, St. Jude Children's Research Hospital; Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; Division of Pediatrics, MD Anderson Cancer Center, Houston, Texas; Department of Pediatrics, Stanford School of Medicine, Palo Alto, California; and Department of Oncology, Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Burgess B Freeman
- Authors' Affiliations: Departments of Pharmaceutical Sciences, Oncology, Biostatistics, and Surgery; Preclinical Pharmacokinetic Shared Resource, St. Jude Children's Research Hospital; Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; Division of Pediatrics, MD Anderson Cancer Center, Houston, Texas; Department of Pediatrics, Stanford School of Medicine, Palo Alto, California; and Department of Oncology, Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Clinton F Stewart
- Authors' Affiliations: Departments of Pharmaceutical Sciences, Oncology, Biostatistics, and Surgery; Preclinical Pharmacokinetic Shared Resource, St. Jude Children's Research Hospital; Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; Division of Pediatrics, MD Anderson Cancer Center, Houston, Texas; Department of Pediatrics, Stanford School of Medicine, Palo Alto, California; and Department of Oncology, Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| |
Collapse
|
162
|
Orth M, Lauber K, Niyazi M, Friedl AA, Li M, Maihöfer C, Schüttrumpf L, Ernst A, Niemöller OM, Belka C. Current concepts in clinical radiation oncology. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:1-29. [PMID: 24141602 PMCID: PMC3935099 DOI: 10.1007/s00411-013-0497-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 10/05/2013] [Indexed: 05/04/2023]
Abstract
Based on its potent capacity to induce tumor cell death and to abrogate clonogenic survival, radiotherapy is a key part of multimodal cancer treatment approaches. Numerous clinical trials have documented the clear correlation between improved local control and increased overall survival. However, despite all progress, the efficacy of radiation-based treatment approaches is still limited by different technological, biological, and clinical constraints. In principle, the following major issues can be distinguished: (1) The intrinsic radiation resistance of several tumors is higher than that of the surrounding normal tissue, (2) the true patho-anatomical borders of tumors or areas at risk are not perfectly identifiable, (3) the treatment volume cannot be adjusted properly during a given treatment series, and (4) the individual heterogeneity in terms of tumor and normal tissue responses toward irradiation is immense. At present, research efforts in radiation oncology follow three major tracks, in order to address these limitations: (1) implementation of molecularly targeted agents and 'omics'-based screening and stratification procedures, (2) improvement of treatment planning, imaging, and accuracy of dose application, and (3) clinical implementation of other types of radiation, including protons and heavy ions. Several of these strategies have already revealed promising improvements with regard to clinical outcome. Nevertheless, many open questions remain with individualization of treatment approaches being a key problem. In the present review, the current status of radiation-based cancer treatment with particular focus on novel aspects and developments that will influence the field of radiation oncology in the near future is summarized and discussed.
Collapse
Affiliation(s)
- Michael Orth
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Kirsten Lauber
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Anna A. Friedl
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Minglun Li
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Cornelius Maihöfer
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Lars Schüttrumpf
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Anne Ernst
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Olivier M. Niemöller
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
- Present Address: Clinic for Radiation Oncology, St. Elisabeth Hospital Ravensburg, Ravensburg, Germany
| | - Claus Belka
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
163
|
Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, Carpentier AF, Hoang-Xuan K, Kavan P, Cernea D, Brandes AA, Hilton M, Abrey L, Cloughesy T. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014; 370:709-22. [PMID: 24552318 DOI: 10.1056/nejmoa1308345] [Citation(s) in RCA: 1856] [Impact Index Per Article: 168.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Standard therapy for newly diagnosed glioblastoma is radiotherapy plus temozolomide. In this phase 3 study, we evaluated the effect of the addition of bevacizumab to radiotherapy-temozolomide for the treatment of newly diagnosed glioblastoma. METHODS We randomly assigned patients with supratentorial glioblastoma to receive intravenous bevacizumab (10 mg per kilogram of body weight every 2 weeks) or placebo, plus radiotherapy (2 Gy 5 days a week; maximum, 60 Gy) and oral temozolomide (75 mg per square meter of body-surface area per day) for 6 weeks. After a 28-day treatment break, maintenance bevacizumab (10 mg per kilogram intravenously every 2 weeks) or placebo, plus temozolomide (150 to 200 mg per square meter per day for 5 days), was continued for six 4-week cycles, followed by bevacizumab monotherapy (15 mg per kilogram intravenously every 3 weeks) or placebo until the disease progressed or unacceptable toxic effects developed. The coprimary end points were investigator-assessed progression-free survival and overall survival. RESULTS A total of 458 patients were assigned to the bevacizumab group, and 463 patients to the placebo group. The median progression-free survival was longer in the bevacizumab group than in the placebo group (10.6 months vs. 6.2 months; stratified hazard ratio for progression or death, 0.64; 95% confidence interval [CI], 0.55 to 0.74; P<0.001). The benefit with respect to progression-free survival was observed across subgroups. Overall survival did not differ significantly between groups (stratified hazard ratio for death, 0.88; 95% CI, 0.76 to 1.02; P=0.10). The respective overall survival rates with bevacizumab and placebo were 72.4% and 66.3% at 1 year (P=0.049) and 33.9% and 30.1% at 2 years (P=0.24). Baseline health-related quality of life and performance status were maintained longer in the bevacizumab group, and the glucocorticoid requirement was lower. More patients in the bevacizumab group than in the placebo group had grade 3 or higher adverse events (66.8% vs. 51.3%) and grade 3 or higher adverse events often associated with bevacizumab (32.5% vs. 15.8%). CONCLUSIONS The addition of bevacizumab to radiotherapy-temozolomide did not improve survival in patients with glioblastoma. Improved progression-free survival and maintenance of baseline quality of life and performance status were observed with bevacizumab; however, the rate of adverse events was higher with bevacizumab than with placebo. (Funded by F. Hoffmann-La Roche; ClinicalTrials.gov number, NCT00943826.).
Collapse
Affiliation(s)
- Olivier L Chinot
- From Aix-Marseille University, Assistance Publique-Hôpitaux de Marseille, Service de Neuro-Oncologie, Centre Hospitaliere Universitaire Timone, Marseille (O.L.C.), UFR de Santé, Médecine et Biologie Humaine, Bobigny (A.F.C.), and Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Avicenne, Service de Neurologie, Université Paris 13 (A.F.C.), and AP-HP, Université Pierre-et-Marie-Curie, Group Hospitalier Pitié-Salpêtrière (K.H.-X.), Paris - all in France; University Hospital of Heidelberg, Department of Neurooncology, and German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany (W.W.); Princess Margaret Hospital, Toronto (W.M.), and McGill University, Montreal (P.K.) - both in Canada; Regional Cancer Center, Stockholm Gotland, Karolinska, Stockholm, and the Department of Radiation Sciences and Oncology, Umeå University, Umeå - both in Sweden (R.H.); the Royal Marsden National Health Service Foundation Trust, Sutton, Surrey, United Kingdom (F.S.); Saitama Medical University, Saitama, Japan (R.N.); Oncology Institute "Ion Chiricuta," Cluj-Napoca, Romania (D.C.); Medical Oncology Department, Azienda Unità Sanitaria Locale, Bologna, Italy (A.A.B.); F. Hoffmann-La Roche, Basel, Switzerland (M.H., L.A.); and University of California, Los Angeles, Los Angeles (T.C.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Flieger M, Ganswindt U, Schwarz SB, Kreth FW, Tonn JC, la Fougère C, Ertl L, Linn J, Herrlinger U, Belka C, Niyazi M. Re-irradiation and bevacizumab in recurrent high-grade glioma: an effective treatment option. J Neurooncol 2014; 117:337-45. [PMID: 24504501 DOI: 10.1007/s11060-014-1394-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 01/26/2014] [Indexed: 02/06/2023]
Abstract
Re-irradiation has been shown to be a meaningful option for recurrent high-grade glioma (HGG) patients. Furthermore, bevacizumab exerts certain activity in combination with chemotherapy/as monotherapy and was safely tested in combination with radiotherapy in several previous studies. To our knowledge, this is the largest cohort of patients treated with both re-irradiation and bevacizumab to date. After receiving standard radiotherapy (with or without TMZ) patients with recurrent HGG were treated with bevacizumab (10 mg/kg intravenously at d1 and d15) during re-irradiation. Median prescribed radiation dose during re-treatment was 36 Gy, conventionally fractionated. Datasets of 71 re-irradiated patients were retrospectively analyzed. Patients either received bevacizumab (N = 57) or not (N = 14; other substances (N = 4) and sole radiation (N = 10)). In patients receiving bevacizumab, both post-recurrence survival (PRS) (median 8.6 vs. 5.7 months; p = 0.003, log-rank test) and post-recurrence progression-free survival (PR-PFS, 5.6 vs. 2.5 months; p = 0.005, log-rank test; PFS-6 42.1 % for the bevacizumab group) were significantly increased which was confirmed by multivariate analysis. KPS, re-surgery, MGMT methylation status, sex, WHO grade, tumor volume and age were no significant predictors for neither PR-PFS nor PRS (univariate analysis). Re-irradiation with bevacizumab remains a feasible and highly effective treatment schedule. Studies on further salvage strategies and timing of sequential treatment options versus observation are warranted.
Collapse
Affiliation(s)
- Maya Flieger
- Department of Radiation Oncology, University of Munich, Marchioninistr. 15, 81377, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Chandramohan V, Mitchell DA, Johnson LA, Sampson JH, Bigner DD. Antibody, T-cell and dendritic cell immunotherapy for malignant brain tumors. Future Oncol 2014; 9:977-90. [PMID: 23837761 DOI: 10.2217/fon.13.47] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Modest improvement in brain tumor patient survival has been achieved through advances in surgical, adjuvant radiation and chemotherapeutic strategies. However, these traditional approaches have been unsuccessful in permanently controlling these aggressive tumors, with recurrence being quite common. Hence, there is a need for novel therapeutic approaches that specifically target the molecularly diverse brain tumor cell population. The ability of the immune system to recognize altered tumor cells while avoiding surrounding normal cells offers an enormous advantage over the nonspecific nature of the conventional treatment schemes. Therefore, immunotherapy represents a promising approach that may supplement the standard therapies in eliminating the residual brain tumor cells. This review summarizes different immunotherapeutic approaches currently being tested for malignant brain tumor treatment.
Collapse
|
166
|
Magnuson W, Ian Robins H, Mohindra P, Howard S. Large volume reirradiation as salvage therapy for glioblastoma after progression on bevacizumab. J Neurooncol 2014; 117:133-9. [PMID: 24469853 DOI: 10.1007/s11060-014-1363-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/06/2014] [Indexed: 10/25/2022]
Abstract
Outcomes after bevacizumab failure for recurrent glioblastoma (GBM) are poor. Our analysis of 16 phase II trials (n = 995) revealed a median overall survival (OS) of 3.8 months (±1.0 month SD) after bevacizumab failure with no discernible activity of salvage chemotherapy. Thus, the optimal treatment for disease progression after bevacizumab has yet to be elucidated. This study evaluated the efficacy of reirradiation for patients with GBM after progression on bevacizumab. An IRB approved retrospective (2/2008-5/2013) analysis was performed of 23 patients with recurrent GBM (after standard radiotherapy/temozolomide) treated with bevacizumab (10 mg/kg) every 2 weeks until progression (median age 53 years; median KPS 80; median progression free survival on bevacizumab 3.7 months). Within 7-14 days of progression on bevacizumab, patients initiated reirradiation to a dose of 54 Gy in 27 fractions using pulsed-reduced dose rate (PRDR) radiotherapy. The median planning target volume was 424 cm(3). At the start of reirradiation, bevacizumab (10 mg/kg) was given every 4 weeks for two additional cycles. The median OS and 6 month OS after bevacizumab failure was 6.9 months and 65 %, respectively. Reirradiation was well tolerated with no symptomatic grade 3-4 toxicities. Favorable outcomes of reirradiation after bevacizumab failure in patients with recurrent GBM suggest its role as a treatment option for large volume recurrences not amenable to stereotactic radiosurgery. As PRDR is easily accomplished from a technological standpoint, we are in the process of expanding this approach to a multi-institutional cooperative group trial.
Collapse
Affiliation(s)
- William Magnuson
- Department of Radiation Oncology, University of Wisconsin, Madison, WI, USA
| | | | | | | |
Collapse
|
167
|
Trevisan E, Bertero L, Bosa C, Magistrello M, Pellerino A, Rudà R, Soffietti R. Antiangiogenic therapy of brain tumors: the role of bevacizumab. Neurol Sci 2014; 35:507-14. [DOI: 10.1007/s10072-014-1627-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/03/2014] [Indexed: 12/18/2022]
|
168
|
Miyatake SI, Kawabata S, Hiramatsu R, Furuse M, Kuroiwa T, Suzuki M. Boron neutron capture therapy with bevacizumab may prolong the survival of recurrent malignant glioma patients: four cases. Radiat Oncol 2014; 9:6. [PMID: 24387301 PMCID: PMC3923505 DOI: 10.1186/1748-717x-9-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/02/2014] [Indexed: 11/30/2022] Open
Abstract
Background and importance Recurrent malignant gliomas (RMGs) are very difficult to control, and no standard treatments have been established for them. We performed boron neutron capture therapy (BNCT) for patients with RMG. BNCT enables high-dose particle radiation to be applied selectively to tumor cells. However, RMG cases generally receive nearly 60 Gy X-ray irradiation prior to re-irradiation by BNCT. Therefore, even with tumor-selective particle radiation BNCT, radiation necrosis in the brain and symptomatic pseudoprogression may develop. In four of our recent patients with RMG after BNCT, we applied the anti-VEGF antibody bevacizumab to treat two pathological entities. This approach appeared to prolong survival. Here we present the case reports of these four consecutive patients with RMG and discuss the novel use of bevacizumab in this context. Clinical presentation Four patients with RMGs were treated with BNCT at our institutes. Upon the referral for BNCT, they were assessed as belonging to the recursive partitioning analysis (RPA) class 3 (n = 3 patients) or RPA class 4 (n = 1 patient) (the RPA classification for RMG was advocated by Carson et al. in 2007). The estimated median survival times for RPA classes 3 and 4 were 3.8 and 10.8 months, respectively, after some treatment at the recurrence. We applied BNCT for these four patients and administered bevacizumab when the lesions were considered radiation necrosis or symptomatic pseudoprogression. The class 3 patients survived after the BNCT for 14, 16.5 and > 23 months, and the class 4 patient survived > 26 months, with favorable improvements in clinical symptoms. Conclusion BNCT with the addition of bevacizumab for radiation necrosis or symptomatic pseudoprogression improved the clinical symptoms and prolonged the survival in RMG patients.
Collapse
|
169
|
Bow H, Hwang LS, Schildhaus N, Xing J, Murray L, Salditch Q, Ye X, Zhang Y, Weingart J, Brem H, Tyler B. Local delivery of angiogenesis-inhibitor minocycline combined with radiotherapy and oral temozolomide chemotherapy in 9L glioma. J Neurosurg 2013; 120:662-9. [PMID: 24359008 DOI: 10.3171/2013.11.jns13556] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Over the past several years, there has been increasing interest in combining angiogenesis inhibitors with radiotherapy and temozolomide chemotherapy in the treatment of glioblastoma. Although the US FDA approved bevacizumab for the treatment of glioblastoma in 2009, the European Medicines Agency rejected its use due to its questionable impact on patient survival. One factor contributing to the failure of angiogenesis inhibitors to increase overall patient survival may be their inability to cross the blood-brain barrier. Here the authors examined in a 9L glioma model whether intracranial polymer-based delivery of the angiogenesis inhibitor minocycline potentiates the effects of both radiotherapy and temozolomide chemotherapy in increasing median survival. The authors also investigated whether the relative timing of minocycline polymer implantation with respect to radiotherapy affects the efficacy of radiotherapy. METHODS Minocycline was incorporated into the biodegradable polymer polyanhydride poly(1,3-bis-[p-carboxyphenoxy propane]-co-[sebacic anhydride]) (CPP:SA) at a ratio of 50:50 by weight. Female Fischer 344 rats were implanted with 9L glioma on Day 0. The minocycline polymer was then implanted on either Day 3 or Day 5 posttumor implantation. Cohorts of rats were exposed to 20 Gy focal radiation on Day 5 or were administered oral temozolomide (50 mg/kg daily) on Days 5-9. RESULTS Both minocycline polymer implantations on Days 3 and 5 increased survival from 14 days to 19 days (p < 0.001 vs control). Treatment with a combination of both minocycline polymer and radiotherapy on Day 5 resulted in a 139% increase in median survival compared with treatment with radiotherapy alone (p < 0.005). There was not a statistically significant difference in median survival between the group that received minocycline implanted on the same day as radiotherapy and the group that received minocycline polymer 2 days prior to radiotherapy. Lastly, treatment with a combination of minocycline polymer with oral temozolomide resulted in a 38% extension of median survival compared with treatment of oral temozolomide alone (p < 0.001). CONCLUSIONS These results show that minocycline delivered locally potentiates the effects of both radiotherapy and oral temozolomide in increasing median survival in a rodent glioma model. More generally, these results suggest that traditional therapy in combination with local, as opposed to systemic, delivery of angiogenesis inhibitors may be able to increase median survival for patients with glioblastoma.
Collapse
|
170
|
Han K, Ren M, Wick W, Abrey L, Das A, Jin J, Reardon DA. Progression-free survival as a surrogate endpoint for overall survival in glioblastoma: a literature-based meta-analysis from 91 trials. Neuro Oncol 2013; 16:696-706. [PMID: 24335699 PMCID: PMC3984546 DOI: 10.1093/neuonc/not236] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background The aim of this study was to determine correlations between progression-free survival (PFS) and the objective response rate (ORR) with overall survival (OS) in glioblastoma and to evaluate their potential use as surrogates for OS. Method Published glioblastoma trials reporting OS and ORR and/or PFS with sufficient detail were included in correlative analyses using weighted linear regression. Results Of 274 published unique glioblastoma trials, 91 were included. PFS and OS hazard ratios were strongly correlated; R2 = 0.92 (95% confidence interval [CI], 0.71–0.99). Linear regression determined that a 10% PFS risk reduction would yield an 8.1% ± 0.8% OS risk reduction. R2 between median PFS and median OS was 0.70 (95% CI, 0.59–0.79), with a higher value in trials using Response Assessment in Neuro-Oncology (RANO; R2 = 0.96, n = 8) versus Macdonald criteria (R2 = 0.70; n = 83). No significant differences were demonstrated between temozolomide- and bevacizumab-containing regimens (P = .10) or between trials using RANO and Macdonald criteria (P = .49). The regression line slope between median PFS and OS was significantly higher in newly diagnosed versus recurrent disease (0.58 vs 0.35, P = .04). R2 for 6-month PFS with 1-year OS and median OS were 0.60 (95% CI, 0.37–0.77) and 0.64 (95% CI, 0.42–0.77), respectively. Objective response rate and OS were poorly correlated (R2 = 0.22). Conclusion In glioblastoma, PFS and OS are strongly correlated, indicating that PFS may be an appropriate surrogate for OS. Compared with OS, PFS offers earlier assessment and higher statistical power at the time of analysis.
Collapse
Affiliation(s)
- Kelong Han
- Genentech, South San Francisco, California (K.H., M.R., A.D., J.J.); University Medical Center & DKFZ, Heidelberg, Germany (W.W.); F. Hoffmann-La Roche, Basel, Switzerland (L.A.); Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (D.A.R.)
| | | | | | | | | | | | | |
Collapse
|
171
|
Na A, Haghigi N, Drummond KJ. Cerebral radiation necrosis. Asia Pac J Clin Oncol 2013; 10:11-21. [PMID: 24175987 DOI: 10.1111/ajco.12124] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2013] [Indexed: 11/26/2022]
Abstract
Cerebral radiation-induced injury ranges from acute reversible edema to late irreversible radiation necrosis (RN). Cerebral RN is poorly responsive to treatment, is associated with permanent neurological deficits and occasionally progresses to death. We review the literature regarding cerebral RN after radiotherapy for various brain and head and neck lesions and discuss its clinical features, imaging characteristics, pathophysiology and treatment. For new enhancing lesions on computed tomography or magnetic resonance imaging, apart from tumor progression or recurrence, RN needs to be considered in the differential diagnosis. Further studies are required to design chemoradiotherapy protocols that are effective in treating tumors while minimizing risk of RN. Current available treatments for RN, steroid and surgery, only relieve the mass effect. None of the experimental treatments to date have consistently been shown to reverse the pathologic process of RN.
Collapse
Affiliation(s)
- Angelika Na
- Department of Neurosurgery, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
172
|
Ogura K, Mizowaki T, Arakawa Y, Sakanaka K, Miyamoto S, Hiraoka M. Efficacy of salvage stereotactic radiotherapy for recurrent glioma: impact of tumor morphology and method of target delineation on local control. Cancer Med 2013; 2:942-9. [PMID: 24403268 PMCID: PMC3892399 DOI: 10.1002/cam4.154] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 01/17/2023] Open
Abstract
In this study, we assessed the efficacy of salvage stereotactic radiotherapy (SRT) for recurrent glioma. From August 2008 to December 2012, 30 patients with recurrent glioma underwent salvage SRT. The initial histological diagnoses were World Health Organization (WHO) grades II, III, and IV in 6, 9, and 15 patients, respectively. Morphologically, the type of recurrence was classified as diffuse or other. Two methods of clinical target delineation were used: A, a contrast-enhancing tumor; or B, a contrast-enhancing tumor with a 3–10-mm margin and/or surrounding fluid attenuation inversion recovery (FLAIR) high-intensity areas. The prescribed dose was 22.5–35 Gy delivered in five fractions at an isocenter using a dynamic conformal arc technique. The overall survival (OS) and local control probability (LCP) after SRT were calculated using the Kaplan–Meier method. A univariate analysis was used to test the effect of clinical variables on OS/LCP. The median follow-up period was 272 days after SRT. The OS and LCP were 83% and 56% at 6 months after SRT, respectively. Morphologically, the tumor type correlated significantly with both OS and LCP (P = 0.006 and <0.001, respectively). The method of target delineation also had a significant influence on LCP (P = 0.016). Grade 3 radiation necrosis was observed in two patients according to Common Terminology Criteria for Adverse Events, version 3. Salvage SRT was safe and effective for recurrent glioma, especially non-diffuse recurrences. Improved local control might be obtained by adding a margin to contrast-enhancing tumors or including increased FLAIR high-intensity areas.
Collapse
Affiliation(s)
- Kengo Ogura
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Kawahara-cho Shogoin Sakyo-ku, Kyoto, 606-8507, Japan
| | | | | | | | | | | |
Collapse
|
173
|
|
174
|
Scaringi C, Enrici RM, Minniti G. Combining molecular targeted agents with radiation therapy for malignant gliomas. Onco Targets Ther 2013; 6:1079-95. [PMID: 23966794 PMCID: PMC3745290 DOI: 10.2147/ott.s48224] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The expansion in understanding the molecular biology that characterizes cancer cells has led to the rapid development of new agents to target important molecular pathways associated with aberrant activation or suppression of cellular signal transduction pathways involved in gliomagenesis, including epidermal growth factor receptor, vascular endothelial growth factor receptor, mammalian target of rapamycin, and integrins signaling pathways. The use of antiangiogenic agent bevacizumab, epidermal growth factor receptor tyrosine kinase inhibitors gefitinib and erlotinib, mammalian target of rapamycin inhibitors temsirolimus and everolimus, and integrin inhibitor cilengitide, in combination with radiation therapy, has been supported by encouraging preclinical data, resulting in a rapid translation into clinical trials. Currently, the majority of published clinical studies on the use of these agents in combination with radiation and cytotoxic therapies have shown only modest survival benefits at best. Tumor heterogeneity and genetic instability may, at least in part, explain the poor results observed with a single-target approach. Much remains to be learned regarding the optimal combination of targeted agents with conventional chemoradiation, including the use of multipathways-targeted therapies, the selection of patients who may benefit from combined treatments based on molecular biomarkers, and the verification of effective blockade of signaling pathways.
Collapse
Affiliation(s)
- Claudia Scaringi
- Department of Radiation Oncology, Sant'Andrea Hospital, University Sapienza, Rome, Italy
| | | | | |
Collapse
|
175
|
Cabrera AR, Cuneo KC, Desjardins A, Sampson JH, McSherry F, Herndon JE, Peters KB, Allen K, Hoang JK, Chang Z, Craciunescu O, Vredenburgh JJ, Friedman HS, Kirkpatrick JP. Concurrent Stereotactic Radiosurgery and Bevacizumab in Recurrent Malignant Gliomas: A Prospective Trial. Int J Radiat Oncol Biol Phys 2013; 86:873-9. [DOI: 10.1016/j.ijrobp.2013.04.029] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/09/2013] [Accepted: 04/12/2013] [Indexed: 02/08/2023]
|
176
|
Kirkpatrick JP, Yin FF, Sampson JH. Radiotherapy and Radiosurgery for Tumors of the Central Nervous System. Surg Oncol Clin N Am 2013; 22:445-61. [DOI: 10.1016/j.soc.2013.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
177
|
Gil-Gil MJ, Mesia C, Rey M, Bruna J. Bevacizumab for the treatment of glioblastoma. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2013; 7:123-35. [PMID: 23843722 PMCID: PMC3682734 DOI: 10.4137/cmo.s8503] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glioblastoma (GBM) or grade IV glioma is the most common primary brain tumor in adults. Standard treatment median overall survival (OS) is only 14–15 months and less than 10% of patients will survive 5 years after diagnosis. There is no standard treatment in recurrent GBM and OS ranges from 3 to 9 months. GBM is 1 of the most vascularized human tumors and GBM cells produce vascular endothelial growth factor (VEGF). Bevacizumab, a humanized monoclonal antibody against VEGF, has demonstrated activity in vitro and in phase II trials in relapse, as well as in 1 phase III trial as first line therapy. Bevacizumab also improves quality of life for patients suffering GBM. This paper reviews the mechanism of action of bevacizumab, its metabolism and pharmacokinetic profile. It summarizes the clinical studies in recurrent and newly diagnosed GBM, its potential side effects and complications and its place in therapy.
Collapse
Affiliation(s)
- Miguel J Gil-Gil
- Neurooncology Unit and Medical Oncology Department, Institut Català d'Oncologia-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | |
Collapse
|
178
|
Ingrisch M, Sourbron S. Tracer-kinetic modeling of dynamic contrast-enhanced MRI and CT: a primer. J Pharmacokinet Pharmacodyn 2013. [PMID: 23563847 DOI: 10.1007/s10928-013-939315-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Dynamic contrast-enhanced computed tomography (DCE-CT) and magnetic resonance imaging (DCE-MRI) are functional imaging techniques. They aim to characterise the microcirculation by applying the principles of tracer-kinetic analysis to concentration-time curves measured in individual image pixels. In this paper, we review the basic principles of DCE-MRI and DCE-CT, with a specific emphasis on the use of tracer-kinetic modeling. The aim is to provide an introduction to the field for a broader audience of pharmacokinetic modelers. In a first part, we first review the key aspects of data acquisition in DCE-CT and DCE-MRI, including a review of basic measurement strategies, a discussion on the relation between signal and concentration, and the problem of measuring reference data in arterial blood. In a second part, we define the four main parameters that can be measured with these techniques and review the most common tracer-kinetic models that are used in this field. We first discuss the models for the capillary bed and then define the most general four-parameter models used today: the two-compartment exchange model, the tissue-homogeneity model, the "adiabatic approximation to the tissue-homogeneity model" and the distributed-parameter model. In simpler tissue types or when the data quality is inadequate to resolve all the features of the more complex models, it is often necessary to resort to simpler models, which are special cases of the general models and hence have less parameters. We discuss the most common of these special cases, i.e. the uptake models, the extended Tofts model, and the one-compartment model. Models for two specific tissue types, liver and kidney, are discussed separately. We conclude with a review of practical aspects of DCE-CT and DCE-MRI data analysis, including the problem of identifying a suitable model for any given data set, and a brief discussion of the application of tracer-kinetic modeling in the context of drug development. Here, an important application of DCE techniques is the derivation of quantitative imaging biomarkers for the assessment of effects of targeted therapeutics on tumors.
Collapse
Affiliation(s)
- Michael Ingrisch
- Institute for Clinical Radiology, Ludwig-Maximilians University Hospital Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | | |
Collapse
|
179
|
Chinot OL. Bevacizumab-based therapy in relapsed glioblastoma: rationale and clinical experience to date. Expert Rev Anticancer Ther 2013; 12:1413-27. [PMID: 23249106 DOI: 10.1586/era.12.128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Relapsed glioblastoma (GBM) has an extremely poor prognosis and remains an invariably fatal disease, with a median overall survival of 6-7 months. Despite numerous clinical trials over the past 20-30 years, treatment options for relapsed GBM remain limited. In recent years, significant research efforts have focused on the use of antiangiogenic therapies for the treatment of GBM. Bevacizumab is a humanized monoclonal antibody that specifically inhibits the proangiogenic VEGF, with well-established clinical efficacy in a number of solid malignancies, which is now under investigation for the treatment of GBM. In this review, we discuss the available data regarding bevacizumab-based therapy in relapsed GBM, highlighting its potential and ongoing challenges in this difficult-to-treat disease.
Collapse
Affiliation(s)
- Olivier L Chinot
- Aix-Marseille University, Assistance Publique-Hopitaux de Marseille, Centre Hospitalo-Universitaire Timone, Service de Neuro-Oncologie, 13008 Marseille, France.
| |
Collapse
|
180
|
Koga T, Saito N. Efficacy and limitations of stereotactic radiosurgery in the treatment of glioblastoma. Neurol Med Chir (Tokyo) 2013; 52:548-52. [PMID: 22976136 DOI: 10.2176/nmc.52.548] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment of recurrent glioblastoma is still challenging. Stereotactic radiosurgery has been accepted as a treatment option for recurrent glioblastoma after standard chemotherapy and irradiation. However, the efficacy of stereotactic radiosurgery at recurrence has been limited, mainly due to the highly infiltrative nature of the tumor which makes the lesion difficult to define as the target. To enhance the efficacy of stereotactic radiosurgery, several methods of targeting based on neuroimaging technology such as positron emission tomography and magnetic resonance imaging have been adopted to irradiate as many of the viable tumor cells as possible and showed some enhanced efficacy. In a trial of intensified treatment by extending the irradiation field, improvement of local control did not result in longer survival. Radiation-induced adverse event is another problem after stereotactic radiosurgery for recurrent glioblastoma because almost all patients underwent irradiation as a part of the initial treatment. To overcome the side effects associated with re-irradiation, use of bevacizumab, a humanized monoclonal antibody to vascular endothelial growth factor, has shown some efficacy. Advances in irradiation technology, neuroimaging, and adjuvant treatment are needed to enhance the efficacy of stereotactic radiosurgery for recurrent glioblastoma and reduce the morbidity associated with irradiation.
Collapse
Affiliation(s)
- Tomoyuki Koga
- Department of Neurosurgery, The University of Tokyo Hospital, Japan.
| | | |
Collapse
|
181
|
Bloch O, Safaee M, Sun MZ, Butowski NA, McDermott MW, Berger MS, Aghi MK, Parsa AT. Disseminated progression of glioblastoma after treatment with bevacizumab. Clin Neurol Neurosurg 2013; 115:1795-801. [PMID: 23706614 DOI: 10.1016/j.clineuro.2013.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/17/2013] [Accepted: 04/27/2013] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Reports of glioblastoma (GBM) progression following treatment with bevacizumab indicate that a subset of patients develop disseminated, often minimally enhancing tumors that differ from the typical pattern of focal recurrence. We have reviewed our institutional experience with bevacizumab for GBM to evaluate the prognostic factors and outcomes of patients with disseminated progression. PATIENTS AND METHODS Medical records of patients treated for GBM at the University of California San Francisco from 2005 to 2009 were reviewed. Patients receiving bevacizumab for focal disease were evaluated and imaging was reviewed to identify patients who progressed in a disseminated pattern. Tumor and treatment factors were compared between focal and disseminated progressors to identify predictive factors for dissemination. Clinical outcomes were compared between progression groups. RESULTS Seventy-one patients received adjuvant bevacizumab at some point in their disease course in addition to surgical resection and standard chemoradiotherapy. Of these, 12 patients (17%) had disseminated progression after bevacizumab. There were no differences in patient demographics, surgical treatment, or bevacizumab administration between disseminated and focal progressors. Length of bevacizumab treatment for disseminated progressors trended toward increased time (7.4 vs. 5.4 months) but was not statistically significant (p=0.1). Although progression-free survival and overall survival did not differ significantly between progression groups (median survival from progression was 3.8 vs. 4.6 months, p=0.5), over 30% of focal progressors had a subsequent resection and enrollment in a surgically based clinical trial, whereas none of the disseminated progressors had further surgical intervention. Compared to previously published reports of GBM dissemination with and without prior bevacizumab treatment, our patients had a rate of disease dissemination similar to the baseline rate observed in patients treated without bevacizumab. CONCLUSION The risk of dissemination does not appear to be considerably increased due to the use of bevacizumab, and the pattern of disease at progression does not affect subsequent survival. Therefore, the risk of dissemination should not influence the decision to treat with bevacizumab, especially for recurrent disease.
Collapse
Affiliation(s)
- Orin Bloch
- Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, CA 94143-0112, USA
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Rinne ML, Lee EQ, Nayak L, Norden AD, Beroukhim R, Wen PY, Reardon DA. Update on bevacizumab and other angiogenesis inhibitors for brain cancer. Expert Opin Emerg Drugs 2013; 18:137-53. [PMID: 23668489 DOI: 10.1517/14728214.2013.794784] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Primary and metastatic brain tumors remain a major challenge. The most common primary adult malignant brain tumor, glioblastoma (GBM), confers a dismal prognosis as does the development of CNS metastases for most systemic malignancies. Anti-angiogenic therapy has been a major clinical research focus in neuro-oncology over the past 5 years. AREAS COVERED Culmination of this work includes US FDA accelerated approval of bevacizumab for recurrent GBM and the completion of two placebo-controlled Phase III studies of bevacizumab for newly diagnosed GBM. A multitude of anti-angiogenics are in evaluation for neuro-oncology patients but none has thus far surpassed the therapeutic benefit of bevacizumab. EXPERT OPINION These agents demonstrate adequate safety and the majority of GBM patients derive benefit. Furthermore, their anti-permeability effect can substantially decrease tumor-associated edema leading to stable or improved neurologic function and quality of life. In particular, anti-angiogenics significantly prolong progression-free survival - a noteworthy achievement in the context of infiltrative and destructive brain tumors like GBM; however, in a manner analogous to other cancers, their impact on overall survival for GBM patients is modest at best. Despite substantial clinical research efforts, many fundamental questions regarding anti-angiogenic agents in brain tumor patients remain unanswered.
Collapse
Affiliation(s)
- Mikael L Rinne
- Dana-Farber/Brigham and Women's Cancer Center, Center for Neuro-Oncology, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
183
|
To combine or not combine: the role of radiotherapy and targeted agents in the treatment for renal cell carcinoma. World J Urol 2013; 32:59-67. [DOI: 10.1007/s00345-013-1068-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/26/2013] [Indexed: 12/23/2022] Open
|
184
|
McKenzie JT, Guarnaschelli JN, Vagal AS, Warnick RE, Breneman JC. Hypofractionated stereotactic radiotherapy for unifocal and multifocal recurrence of malignant gliomas. J Neurooncol 2013; 113:403-9. [PMID: 23589034 DOI: 10.1007/s11060-013-1126-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 03/31/2013] [Indexed: 01/13/2023]
Abstract
To evaluate the efficacy and safety of stereotactic radiotherapy (SRT) for unifocal and multifocal recurrence of malignant gliomas. Between June 2007 and October 2010, 35 consecutive patients with 47 recurrent lesions were treated with salvage SRT at the University of Cincinnati. Thirty-three patients treated had a diagnosis of high grade glioma, four Grade III and twenty-nine Grade IV, while two patients initially were diagnosed with grade II tumors but recurred as high grade lesions. All patients had previously received a median dose of 59.4 Gy. Twenty-six patients were treated for a single lesion, and nine patients were treated for multiple lesions. Using SRT, patients were re-treated with a median total dose of 30 Gy in a median of five fractions. Median survival from diagnosis was 22 months and median survival following SRT was 8.6 months. The median survival following SRT for those patients treated for multifocal recurrence was 7.9 versus 10 months for those treated for unifocal recurrence (p = 0.7). Multivariate analysis showed local control of the SRT treated lesion(s) 6 months after SRT was associated with a significant improvement in survival (p ≤ 0.01). All patients tolerated their treatment well and completed their prescribed SRT as planned. Three patients (9 %) were felt to possibly have developed radiation necrosis following therapy. SRT was both well tolerated and efficacious with the local control provided by SRT resulting in improved overall survival. This benefit also seems to be apparent for patients with multi-focal recurrence.
Collapse
Affiliation(s)
- Joshua T McKenzie
- Department of Radiation Oncology, Precision Radiotherapy, University of Cincinnati, West Chester, OH, USA
| | | | | | | | | |
Collapse
|
185
|
Ingrisch M, Sourbron S. Tracer-kinetic modeling of dynamic contrast-enhanced MRI and CT: a primer. J Pharmacokinet Pharmacodyn 2013; 40:281-300. [PMID: 23563847 DOI: 10.1007/s10928-013-9315-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/22/2013] [Indexed: 12/19/2022]
Abstract
Dynamic contrast-enhanced computed tomography (DCE-CT) and magnetic resonance imaging (DCE-MRI) are functional imaging techniques. They aim to characterise the microcirculation by applying the principles of tracer-kinetic analysis to concentration-time curves measured in individual image pixels. In this paper, we review the basic principles of DCE-MRI and DCE-CT, with a specific emphasis on the use of tracer-kinetic modeling. The aim is to provide an introduction to the field for a broader audience of pharmacokinetic modelers. In a first part, we first review the key aspects of data acquisition in DCE-CT and DCE-MRI, including a review of basic measurement strategies, a discussion on the relation between signal and concentration, and the problem of measuring reference data in arterial blood. In a second part, we define the four main parameters that can be measured with these techniques and review the most common tracer-kinetic models that are used in this field. We first discuss the models for the capillary bed and then define the most general four-parameter models used today: the two-compartment exchange model, the tissue-homogeneity model, the "adiabatic approximation to the tissue-homogeneity model" and the distributed-parameter model. In simpler tissue types or when the data quality is inadequate to resolve all the features of the more complex models, it is often necessary to resort to simpler models, which are special cases of the general models and hence have less parameters. We discuss the most common of these special cases, i.e. the uptake models, the extended Tofts model, and the one-compartment model. Models for two specific tissue types, liver and kidney, are discussed separately. We conclude with a review of practical aspects of DCE-CT and DCE-MRI data analysis, including the problem of identifying a suitable model for any given data set, and a brief discussion of the application of tracer-kinetic modeling in the context of drug development. Here, an important application of DCE techniques is the derivation of quantitative imaging biomarkers for the assessment of effects of targeted therapeutics on tumors.
Collapse
Affiliation(s)
- Michael Ingrisch
- Institute for Clinical Radiology, Ludwig-Maximilians University Hospital Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | | |
Collapse
|
186
|
Nieder C, Andratschke NH, Grosu AL. Increasing frequency of reirradiation studies in radiation oncology: systematic review of highly cited articles. Am J Cancer Res 2013; 3:152-158. [PMID: 23593538 PMCID: PMC3623835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/27/2013] [Indexed: 06/02/2023] Open
Abstract
OBJECTIVES Identification of the most influential scientific publications and directions of mainstream reirradiation research. METHODS A systematic search of the database Scopus (Elsevier B.V., www.scopus.com) was performed, which focused on the time period 1998-2010. Patterns of citation were analysed (total number of citations accumulated independently of their origin and proportion of highly cited articles, arbitrarily defined as those with ≥50 citations). RESULTS Up to 64 articles were published each year. Numbers increased over time, especially after the year 2007. Among all 76 articles with at least 50 citations, 28 (37%) focused on head and neck cancer, 27 (36%) on brain tumours including metastases, and 5 (7%) on bone metastases. Most articles evaluated external beam approaches while 10 (13%) focused on brachytherapy. Many of the often quoted publications reported on stereotactic and/or intensity-modulated radiotherapy. Two (3%) reported on randomised clinical studies and 10 (13%) on non-randomised prospective clinical studies (single institution or cooperative group). Only two articles (3%) reported on experimental animal studies. CONCLUSIONS The number of published reirradiation studies has increased in recent years. Many studies examined highly conformal and precise radiotherapy, in particular of brain and head and neck tumours. Given that few randomised clinical trials were published, efforts to increase this type of research activity are warranted.
Collapse
Affiliation(s)
- Carsten Nieder
- Department of Oncology and Palliative Medicine, Nordland Hospital8092 Bodø, Norway
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Tromsø9038 Tromsø, Norway
| | | | - Anca L Grosu
- Department of Radiation Oncology, University Hospital Freiburg79106 Freiburg, Germany
| |
Collapse
|
187
|
Jo J, Schiff D, Purow B. Angiogenic inhibition in high-grade gliomas: past, present and future. Expert Rev Neurother 2013; 12:733-47. [PMID: 22650175 DOI: 10.1586/ern.12.53] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High-grade gliomas, especially glioblastoma (GBM), are among the most aggressive and vascularized tumors. Angiogenesis plays a significant role in tumor growth and survival, and thus offers a target for anticancer treatment. Bevacizumab, a humanized monoclonal antibody against VEGF, was approved by the US FDA as a single agent for the treatment of recurrent glioblastoma. Significant radiographic response and progression-free survival were seen with bevacizumab treatment. However, benefits to overall survival remain undetermined. Other antiangiogenic strategies targeting VEGF, VEGF receptor (VEGFR) and other angiogenic factors have also been examined. Tumor progression after antiangiogenic treatment is inevitable, and effective salvage therapy is yet to be identified. Mechanisms of resistance to antiangiogenic therapy include activation of alternative proangiogenic pathways and increased tumor invasion. Strategies targeting these escape mechanisms are currently being investigated. The use of antiangiogenic drugs is generally well tolerated, although rare and potentially life-threatening adverse effects have been identified. With the striking antipermeability effect of anti-VEGF inhibitors, assessment of true tumor response has become a challenge. The Response Assessment in Neuro-Oncology Working Group has developed new criteria for clinical trials in patients with high-grade glioma. Identification of neuroimaging advances and biologic markers will greatly enhance treatment strategies for these patients.
Collapse
Affiliation(s)
- Jasmin Jo
- Department of Neurology, Division of Neuro-Oncology, University of Virginia, Charlottesville, VA 22908-0432, USA
| | | | | |
Collapse
|
188
|
Miyatake SI, Furuse M, Kawabata S, Maruyama T, Kumabe T, Kuroiwa T, Ono K. Bevacizumab treatment of symptomatic pseudoprogression after boron neutron capture therapy for recurrent malignant gliomas. Report of 2 cases. Neuro Oncol 2013; 15:650-5. [PMID: 23460324 DOI: 10.1093/neuonc/not020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Bevacizumab, an anti-vascular endothelial growth factor antibody, has been used for the treatment of radiation necrosis. Thus far, however, there has been no definitive report on its use for the treatment of symptomatic pseudoprogression. Here we report 2 cases of successful treatment with bevacizumab for symptomatic pseudoprogression after boron neutron capture therapy (BNCT) was applied for recurrent malignant gliomas. METHODS Two recurrent malignant gliomas received BNCT. Both cases were treated with intravenous administration of bevacizumab at the deterioration that seemed to be symptomatic pseudoprogression. RESULTS The first case was recurrent glioblastoma multiforme and the second was recurrent anaplastic oligoastrocytoma. Both cases recurred after standard chemoradiotherapy and were referred to our institute for BNCT, which is tumor-selective particle radiation. Just prior to neutron irradiation, PET with an amino acid tracer was applied in each case to confirm tumor recurrence. Both cases showed deterioration in symptoms, as well as on MRI, at intervals of 4 months and 2 months, respectively, after BNCT. For the first case, a second PET was applied in order to confirm no increase in tracer uptake. We diagnosed both cases as symptomatic pseudoprogression and started the intravenous administration of 5 mg/kg bevacizumab biweekly with 6 cycles. Both cases responded well to this, showing rapid and dramatic improvement in neuroimaging and clinical symptoms. No tumor progression was observed 8 months after BNCT. CONCLUSIONS Bevacizumab showed marked effects on symptomatic pseudoprogression after BNCT. BNCT combined with bevacizumab may prolong the survival of patients with recurrent malignant gliomas.
Collapse
Affiliation(s)
- Shin-Ichi Miyatake
- Department of Neurosurgery, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka 569-8686, Japan.
| | | | | | | | | | | | | |
Collapse
|
189
|
Re-irradiation with and without bevacizumab as salvage therapy for recurrent or progressive high-grade gliomas. J Neurooncol 2013; 112:133-9. [DOI: 10.1007/s11060-013-1044-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/01/2013] [Indexed: 10/27/2022]
|
190
|
Weller M, Cloughesy T, Perry JR, Wick W. Standards of care for treatment of recurrent glioblastoma--are we there yet? Neuro Oncol 2013; 15:4-27. [PMID: 23136223 PMCID: PMC3534423 DOI: 10.1093/neuonc/nos273] [Citation(s) in RCA: 569] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/17/2012] [Indexed: 12/21/2022] Open
Abstract
Newly diagnosed glioblastoma is now commonly treated with surgery, if feasible, or biopsy, followed by radiation plus concomitant and adjuvant temozolomide. The treatment of recurrent glioblastoma continues to be a moving target as new therapeutic principles enrich the standards of care for newly diagnosed disease. We reviewed PubMed and American Society of Clinical Oncology abstracts from January 2006 to January 2012 to identify clinical trials investigating the treatment of recurrent or progressive glioblastoma with nitrosoureas, temozolomide, bevacizumab, and/or combinations of these agents. At recurrence, a minority of patients are eligible for second surgery or reirradiation, based on appropriate patient selection. In temozolomide-pretreated patients, progression-free survival rates at 6 months of 20%-30% may be achieved either with nitrosoureas, temozolomide in various dosing regimens, or bevacizumab. Combination regimens among these agents or with other drugs have not produced evidence for superior activity but commonly produce more toxicity. More research is needed to better define patient profiles that predict benefit from the limited therapeutic options available after the current standard of care has failed.
Collapse
Affiliation(s)
- Michael Weller
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, CH-8091 Zurich, Switzerland.
| | | | | | | |
Collapse
|
191
|
Hypofractionated stereotactic radiotherapy and continuous low-dose temozolomide in patients with recurrent or progressive malignant gliomas. J Neurooncol 2012; 111:187-94. [DOI: 10.1007/s11060-012-0999-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/31/2012] [Indexed: 02/06/2023]
|
192
|
Katsoulakis E, Beal K, Yamada Y. Image guidance in malignant gliomas: a focused strategy. CNS Oncol 2012; 1:131-6. [PMID: 25057863 DOI: 10.2217/cns.12.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The standard of care for malignant gliomas is maximal surgical cytoreduction followed by concurrent chemoradiation and adjuvant chemotherapy with temozolomide. Chemotherapy adds a modest improvement in overall survival. Unfortunately, tumor recurrence is the rule and typically occurs at the initial site of disease. Salvage reirradiation may be a useful approach in selected patients with recurrent glioblastoma. Image-guided technology coupled with highly conformal treatment planning techniques have allowed the safe delivery of high-dose radiotherapy in the setting of tumor recurrence. Defining the optimal combination of hypofractionated stereotactic radiotherapy with chemotherapy is under investigation. In this perspective, we examine the role of image guidance in malignant gliomas.
Collapse
Affiliation(s)
- Evangelia Katsoulakis
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
193
|
Abu-Hejleh T, Mezhir JJ, Goodheart MJ, Halfdanarson TR. Incidence and management of gastrointestinal perforation from bevacizumab in advanced cancers. Curr Oncol Rep 2012; 14:277-84. [PMID: 22532266 DOI: 10.1007/s11912-012-0238-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bevacizumab (Avastin™, Genentech) is a monoclonal antibody that deactivates the vascular endothelial growth factor leading to disruption of vital cancer signaling pathways and inhibition of angiogenesis which results in its anti-tumor activity. The use of bevacizumab in treating cancers has steadily increased since it was initially approved by the Food and Drug Administration for metastatic colorectal cancer. Clinical trials have revealed that bevacizumab has serious side effects, including spontaneous bowel perforation, which can occur in patients who have no involvement of the gastrointestinal tract by cancer. Although risk factors for bevacizumab-associated bowel perforation have been identified, it is still unclear which patients are specifically at risk for this complication. The management of bevacizumab-induced bowel perforation depends on the clinical presentation and the goals of care set by the treating physicians and the patient.
Collapse
Affiliation(s)
- Taher Abu-Hejleh
- Department of Internal Medicine, Division of Hematology, Oncology, and Bone Marrow Transplantation, The University of Iowa Hospitals and Clinics, 200 Hawkins Dr., C32 GH, Iowa City, IA 52242-1081, USA.
| | | | | | | |
Collapse
|
194
|
McNamara MG, Mason WP. Antiangiogenic therapies in glioblastoma multiforme. Expert Rev Anticancer Ther 2012; 12:643-54. [PMID: 22594899 DOI: 10.1586/era.12.35] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal of adult gliomas. The prognosis for the great majority of patients with GBM is poor as almost all tumors recur following optimal surgical resection, radiation and standard chemotherapy, resulting in rapid disease-related death. The standard of care for recurrent GBM has not been clearly established. GBMs are highly vascularized brain tumors and growth has been shown to be angiogenesis dependent, thus stimulating interest in developing antiangiogenic therapeutic strategies. Antiangiogenic agents are the most promising novel agents in development for GBM but to date have not substantially changed overall survival. Future antiangiogenic strategies designed to overcome limitations of current antiangiogenic agents will likely involve the use of agent combinations that target pathways mediating resistance to antiangiogenic agents and tumor invasion.
Collapse
Affiliation(s)
- Mairéad G McNamara
- Pencer Brain Tumor Centre, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario, Canada
| | | |
Collapse
|
195
|
Grimm SA, Chamberlain MC. State of the art and perspectives in the treatment of glioblastoma. CNS Oncol 2012; 1:49-70. [PMID: 25054300 PMCID: PMC6176827 DOI: 10.2217/cns.12.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor. Cures are rare and median survival varies from several to 22 months. Standard treatment for good performance patients consists of maximal safe surgical resection followed by radiotherapy with concurrent temozolomide (TMZ) chemotherapy and six cycles of postradiotherapy TMZ. At recurrence, treatment options include repeat surgery (with or without Gliadel wafer placement), reirradiation or systemic therapy. Most patients with good performance status are treated with cytotoxic chemotherapy or targeted biologic therapy following or in lieu of repeat surgery. Cytotoxic chemotherapy options include nitrosoureas, rechallenge with TMZ, platins, phophoramides and topoisomerase inhibitors, although efficacy is limited. Despite the intense effort of developing biologic agents that target angiogenesis and growth and proliferative pathways, bevacizumab is the only agent that has shown efficacy in clinical trials. It was awarded accelerated approval in the USA after demonstrating an impressive radiographic response in two open-label, prospective Phase II studies. Two randomized, Phase III trials of upfront bevacizumab have completed and may demonstrate survival benefit; however, results are pending at this time. Given the limited treatment options at tumor recurrence, consideration for enrollment on a clinical trial is encouraged.
Collapse
Affiliation(s)
- Sean A Grimm
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marc C Chamberlain
- Department of Neurology & Neurological Surgery, Seattle Cancer Care Alliance, Fred Hutchinson Cancer Research Center, University of Washington, 825 Eastlake Avenue E, PO Box 19023, MS-G4940, Seattle, WA 98109-1023, USA
| |
Collapse
|
196
|
Usychkin S, Calvo F, dos Santos MA, Samblás J, de Urbina DO, Bustos JC, Diaz JAG, Sallabanda K, Sanz A, Yélamos C, Peraza C, Delgado JM, Marsiglia H. Intra-operative electron beam radiotherapy for newly diagnosed and recurrent malignant gliomas: feasibility and long-term outcomes. Clin Transl Oncol 2012; 15:33-8. [PMID: 22855176 DOI: 10.1007/s12094-012-0892-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/06/2012] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Intra-operative electron beam radiotherapy (IOERT) is an alternative to dose escalation for the treatment of central nervous system tumors. The objective of this study was to describe the feasibility and long-term outcomes of IOERT in the treatment of primary and recurrent gliomas. MATERIALS AND METHODS From January 1992 through December 2002, all patients treated with IOERT at the Hospital San Francisco de Asis, Madrid/Spain were retrospectively reviewed. The selection criteria included patients with superficial tumors, KPS >70 % and lesions <6 cm. Irradiation was administered in one section. The prescribed dose considered the amount of post-resection residual tumor, previous radiotherapy and the tolerance level of brain structures exposed to IOERT. RESULTS There were 17 patients (53 %) with newly diagnosed malignant brain gliomas and 15 patients with recurrent tumors. The delivered dose varied from 8 to 20 Gy (median 12.5 Gy) for primary and from 8 to 16 Gy (median 10 Gy) for recurrent tumors. The median overall survival for the entire cohort was 13 months (14 and 10.4 months for the primary and recurrent, respectively). Three patients presented with radionecrosis, one patient with osteomyelitis at the craniotomy bone flap, one with intracerebral hemorrhage, and another patient experienced a pulmonary embolism. CONCLUSIONS IOERT is a feasible technique and can be viewed as a tool in the treatment of newly diagnosed or recurrent brain gliomas.
Collapse
|
197
|
Shapiro LQ, Beal K, Goenka A, Karimi S, Iwamoto FM, Yamada Y, Zhang Z, Lassman AB, Abrey LE, Gutin PH. Patterns of failure after concurrent bevacizumab and hypofractionated stereotactic radiation therapy for recurrent high-grade glioma. Int J Radiat Oncol Biol Phys 2012; 85:636-42. [PMID: 22765876 DOI: 10.1016/j.ijrobp.2012.05.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 05/17/2012] [Accepted: 05/18/2012] [Indexed: 02/07/2023]
Abstract
PURPOSE Concurrent bevacizumab with hypofractionated stereotactic radiation therapy (HSRT) is safe and effective for the treatment of recurrent high-grade gliomas (HGG). The objective of this study was to characterize the patterns of failure after this treatment regimen. METHODS AND MATERIALS Twenty-four patients with recurrent enhancing HGG were previously treated on an institutional review board-approved protocol of concurrent bevacizumab and reirradiation. Patients received 30 Gy in 5 fractions to the recurrent tumor with HSRT. Brain magnetic resonance imaging (MRI) was performed every 2 cycles, and bevacizumab was continued until clinical or radiographic tumor progression according to the criteria of Macdonald et al. MRI at the time of progression was fused to the HSRT treatment plan, and the location of recurrence was classified on the basis of volume within the 95% isodose line. Outcomes based on patient characteristics, tumor grade, recurrence pattern, and best response to treatment were analyzed by the Kaplan-Meier method. RESULTS Twenty-two patients experienced either clinical or radiographic progression. Recurrent tumor was enhancing in 15 (71.4%) and nonenhancing in 6 (28.6%) patients. Eleven patients (52.4%) had recurrence within the radiation field, 5 patients (23.8%) had marginal recurrence, and 5 patients had recurrence outside the radiation field. Pattern of enhancement and location of failure did not correlate with overall survival or progression-free survival. Radiographic response was the only variable to significantly correlate with progression-free survival. CONCLUSIONS Despite the promising initial response seen with the addition of HSRT to bevacizumab as salvage treatment for recurrent HGG, approximately half of patients ultimately still experience failure within the radiation field. The rate of local failure with the addition of HSRT seems to be lower than that seen with bevacizumab alone in the salvage setting. Our data underscore the radioresistance of HGG and the need for better salvage treatments.
Collapse
Affiliation(s)
- Lauren Q Shapiro
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Molecular Characteristics and Pathways of Avastin for the Treatment of Glioblastoma Multiforme. Neurosurg Clin N Am 2012; 23:417-27. [DOI: 10.1016/j.nec.2012.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
199
|
Schmidt B, Lee HJ, Ryeom S, Yoon SS. Combining Bevacizumab with Radiation or Chemoradiation for Solid Tumors: A Review of the Scientific Rationale, and Clinical Trials. ACTA ACUST UNITED AC 2012; 1:169-179. [PMID: 24977113 DOI: 10.2174/2211552811201030169] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Radiation therapy or the combination of radiation and chemotherapy is an important component in the local control of many tumor types including glioblastoma, rectal cancer, and pancreatic cancer. The addition of anti-angiogenic agents to chemotherapy is now standard treatment for a variety of metastatic cancers including colorectal cancer and non-squamous cell lung cancer. Anti-angiogenic agents can increase the efficacy of radiation or chemoradiation for primary tumors through mechanisms such as vascular normalization and augmentation of endothelial cell injury. The most commonly used anti-angiogenic drug, bevacizumab, is a humanized monoclonal antibody that binds and neutralizes vascular endothelial growth factor A (VEGF-A). Dozens of preclinical studies nearly uniformly demonstrate that inhibition of VEGF-A or its receptors potentiates the effects of radiation therapy against solid tumors, and this potentiation is generally independent of the type or schedule of radiation and timing of VEGF-A inhibitor delivery. There are now several clinical trials combining bevacizumab with radiation or chemoradiation for the local control of various primary, recurrent, and metastatic tumors, and many of these early trials show encouraging results. Some added toxicities occur with the delivery of bevacizumab but common toxicities such as hypertension and proteinuria are generally easily managed while severe toxicities are rare. In the future, bevacizumab and other anti-angiogenic agents may become common additions to radiation and chemoradiation regimens for tumors that are difficult to locally control.
Collapse
Affiliation(s)
- Benjamin Schmidt
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hae-June Lee
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sandra Ryeom
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sam S Yoon
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA ; Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
200
|
Murovic JA, Chang SD. Outcomes after stereotactic radiosurgery and various adjuvant treatments for recurrent glioblastoma multiforme: a current literature review and comparison of multiple factors that impact outcome. World Neurosurg 2012; 78:588-91. [PMID: 22705758 DOI: 10.1016/j.wneu.2012.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 06/11/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Judith A Murovic
- Department of Neurosurgery, Stanford University Medical Center, Stanford, California, USA
| | | |
Collapse
|