151
|
Jhaveri SJ, Hynd MR, Dowell-Mesfin N, Turner JN, Shain W, Ober CK. Release of Nerve Growth Factor from HEMA Hydrogel-Coated Substrates and Its Effect on the Differentiation of Neural Cells. Biomacromolecules 2008; 10:174-83. [DOI: 10.1021/bm801101e] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shalin J. Jhaveri
- Department of Materials Science and Engineering and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 and Wadsworth Center, NYS Department of Health, Albany, New York 12201
| | - Matthew R. Hynd
- Department of Materials Science and Engineering and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 and Wadsworth Center, NYS Department of Health, Albany, New York 12201
| | - Natalie Dowell-Mesfin
- Department of Materials Science and Engineering and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 and Wadsworth Center, NYS Department of Health, Albany, New York 12201
| | - James N. Turner
- Department of Materials Science and Engineering and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 and Wadsworth Center, NYS Department of Health, Albany, New York 12201
| | - William Shain
- Department of Materials Science and Engineering and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 and Wadsworth Center, NYS Department of Health, Albany, New York 12201
| | - Christopher K. Ober
- Department of Materials Science and Engineering and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 and Wadsworth Center, NYS Department of Health, Albany, New York 12201
| |
Collapse
|
152
|
Quaglia F. Bioinspired tissue engineering: The great promise of protein delivery technologies. Int J Pharm 2008; 364:281-97. [DOI: 10.1016/j.ijpharm.2008.04.030] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/11/2008] [Accepted: 04/15/2008] [Indexed: 01/27/2023]
|
153
|
Karoubi G, Stewart DJ, Courtman DW. A population analysis of VEGF transgene expression and secretion. Biotechnol Bioeng 2008; 101:1083-93. [PMID: 18781692 DOI: 10.1002/bit.21993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The induction of therapeutic angiogenesis with gene therapy approaches has received considerable interest and some limited clinical success. A major drawback to this approach is a lack of understanding of the pharmacokinetics of therapeutic protein delivery. This has become increasingly more relevant as recent studies have illustrated a defined therapeutic window for angiogenic protein secretion into the local microenvironment. For cell based gene therapies, with cells widely distributed throughout the tissue, this implies that any individual cell must attain a specific secretion rate to produce a local angiogenic response. Here we report a reproducible technique enabling the study of growth factor secretion from individual cells following transient plasmid transfection. We demonstrate significant variability in single cell vascular endothelial growth factor (VEGF) secretion with the majority of total protein secretion arising from a small subpopulation of transfected cells. We demonstrate that VEGF secretion is linearly correlated to intracellular plasmid copy number and protein secretion does not appear to reach saturation within the cell population. The selection of gene therapy approaches that optimize individual cell secretion profiles may be essential for the development of effective gene therapies.
Collapse
Affiliation(s)
- Golnaz Karoubi
- Division of General Thoracic Surgery, University Hospital Berne, 35 Murtenstrasse, Berne CH3010, Switzerland.
| | | | | |
Collapse
|
154
|
VanAuker MD, Hood E. Delivery strategies to target therapies to inflammatory tissue. Expert Opin Drug Deliv 2008; 5:767-74. [PMID: 18590461 DOI: 10.1517/17425247.5.7.767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Inflammation plays a key role in many chronic disease processes as well as an acute role in injury and wound healing. Various cell types are recruited from the bloodstream to the inflamed site through adhesion molecules, cytokines, chemokines and others. OBJECTIVES This review examines many drug-targeting strategies that make use of these molecules or signaling pathways, and seeks to describe certain commonalities irrespective of the disease process or agent to be delivered. METHODS A survey of the literature, primarily within the last year, was performed. Search words included 'drug targeting' and 'inflammation' and of those, the scope was refined to include those studies that specifically sought to modify or ameliorate an aspect of the inflammatory process in the treatment of a disease. RESULTS/CONCLUSION Inflammation plays a key role in many diseases, and many similar targets (such as adhesion molecules) are the focus of the treatment of those diseases.
Collapse
Affiliation(s)
- Michael D VanAuker
- Department of Chemical and Biomedical Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA.
| | | |
Collapse
|
155
|
Abstract
Synthetic polymer coatings are used extensively in modern medical devices and implants because of their material versatility and processability. These coatings are designed for specific applications by controlling composition and physical and chemical properties, and they can be formed into a variety of complex structures and shapes. However, implantation of these materials into the body elicits a strong inflammatory host response that significantly limits the integration and biological performance of devices. Biomaterial-mediated inflammation is a complex reaction involving protein adsorption, leukocyte recruitment and activation, secretion of inflammatory mediators, and fibrous encapsulation of the implant. Significant research efforts have focused on modifying material properties using various anti-inflammatory polymeric surface coatings to generate more biocompatible implants. This minireview provides a brief background on the events of biomaterial-mediated inflammation and highlights various approaches used for modifying material surfaces to modulate inflammatory responses. These include both passive and active strategies, such as nonfouling surface treatments and delivery of anti-inflammatory agents, respectively. Novel approaches will be needed to extend the in vivo lifetime and performance of devices and reduce the need for multiple implantation surgeries.
Collapse
Affiliation(s)
- Amanda W. Bridges
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Andrés J. García
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
156
|
Onuki Y, Bhardwaj U, Papadimitrakopoulos F, Burgess DJ. A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response. J Diabetes Sci Technol 2008; 2:1003-15. [PMID: 19885290 PMCID: PMC2769826 DOI: 10.1177/193229680800200610] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, a variety of devices (drug-eluting stents, artificial organs, biosensors, catheters, scaffolds for tissue engineering, heart valves, etc.) have been developed for implantation into patients. However, when such devices are implanted into the body, the body can react to these in a number of different ways. These reactions can result in an unexpected risk for patients. Therefore, it is important to assess and optimize the biocompatibility of implantable devices. To date, numerous strategies have been investigated to overcome body reactions induced by the implantation of devices. This review focuses on the foreign body response and the approaches that have been taken to overcome this. The biological response following device implantation and the methods for biocompatibility evaluation are summarized. Then the risks of implantable devices and the challenges to overcome these problems are introduced. Specifically, the challenges used to overcome the functional loss of glucose sensors, restenosis after stent implantation, and calcification induced by implantable devices are discussed.
Collapse
Affiliation(s)
- Yoshinori Onuki
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | - Upkar Bhardwaj
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | | | - Diane J. Burgess
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
157
|
Bhardwaj U, Papadimitrakopoulos F, Burgess DJ. A review of the development of a vehicle for localized and controlled drug delivery for implantable biosensors. J Diabetes Sci Technol 2008; 2:1016-29. [PMID: 19885291 PMCID: PMC2769817 DOI: 10.1177/193229680800200611] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A major obstacle to the development of implantable biosensors is the foreign body response (FBR) that results from tissue trauma during implantation and the continuous presence of the implant in the body. The in vivo stability and functionality of biosensors are compromised by damage to sensor components and decreased analyte transport to the sensor. This paper summarizes research undertaken by our group since 2001 to control the FBR toward implanted sensors. Localized and sustained delivery of the anti-inflammatory drug, dexamethasone, and the angiogenic growth factor, vascular endothelial growth factor (VEGF), was utilized to inhibit inflammation as well as fibrosis and provide a stable tissue-device interface without producing systemic adverse effects. The drug-loaded polylactic-co-glycolic acid (PLGA) microspheres were embedded in a polyvinyl alcohol (PVA) hydrogel composite to fabricate a drug-eluting, permeable external coating for implantable devices. The composites were fabricated using the freeze-thaw cycle method and had mechanical properties similar to soft body tissue. Dexamethasone-loaded microsphere/hydrogel composites were able to provide anti-inflammatory protection, preventing the FBR. Moreover, concurrent release of dexamethasone with VEGF induced neoangiogenesis in addition to providing anti-inflammatory protection. Sustained release of dexamethasone is required for the entire sensor lifetime, as a delayed inflammatory response developed after depletion of the drug from the composites. These studies have shown the potential of PLGA microsphere/PVA hydrogel-based composites as drug-eluting external coatings for implantable biosensors.
Collapse
Affiliation(s)
- Upkar Bhardwaj
- School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | | | - Diane J. Burgess
- School of Pharmacy, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
158
|
Kenneth Ward W. A review of the foreign-body response to subcutaneously-implanted devices: the role of macrophages and cytokines in biofouling and fibrosis. J Diabetes Sci Technol 2008; 2:768-77. [PMID: 19885259 PMCID: PMC2769792 DOI: 10.1177/193229680800200504] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The biological response to implanted biomaterials in mammals is a complex series of events that involves many biochemical pathways. Shortly after implantation, fibrinogen and other proteins bind to the device surface, a process known as biofouling. Macrophages then bind to receptors on the proteins, join into multinucleated giant cells, and release transforming growth factor beta and other inflammatory cytokines. In response to these signals, quiescent fibroblasts are transformed into myofibroblasts, which synthesize procollagen via activation of Smad mediators. The procollagen becomes crosslinked after secretion into the extracellular space. Mature crosslinked collagen and other extracellular matrix proteins gradually contribute to formation of a hypocellular dense fibrous capsule that becomes impermeable or hypopermeable to many compounds. Porous substrates and angiogenic growth factors can stimulate formation of microvessels, which to some extent can maintain analyte delivery to implanted sensors. However, stimulation by vascular endothelial growth factor alone may lead to formation of leaky, thin-walled, immature vessels. Other growth factors are most probably needed to act upon these immature structures to create more robust vessels.During implantation of foreign bodies, the foreign-body response is difficult to overcome, and thousands of biomaterials have been tested. Biomimicry (i.e., creating membranes whose chemical structure mimics natural cellular compounds) may diminish the response, but as of this writing, it has not been possible to create a stealth material that circumvents the ability of the mammalian surveillance systems to distinguish foreign from self.
Collapse
Affiliation(s)
- W Kenneth Ward
- Legacy Clinical Research and Technology Center and Oregon Health and Science University, Portland, Oregon, USA.
| |
Collapse
|
159
|
Murua A, Portero A, Orive G, Hernández RM, de Castro M, Pedraz JL. Cell microencapsulation technology: towards clinical application. J Control Release 2008; 132:76-83. [PMID: 18789985 DOI: 10.1016/j.jconrel.2008.08.010] [Citation(s) in RCA: 268] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 08/06/2008] [Indexed: 12/12/2022]
Abstract
The pharmacokinetic properties of a drug can be significantly improved by the delivery process. Scientists have understood that developing suitable drug delivery systems that release the therapeutically active molecule at the level and dose it is needed and during the optimal time represents a major advance in the field. Cell microencapsulation is an alternative approach for the sustained delivery of therapeutic agents. This technology is based on the immobilization of different types of cells within a polymeric matrix surrounded by a semipermeable membrane for the long-term release of therapeutics. As a result, encapsulated cells are isolated from the host immune system while allowing exchange of nutrients and waste and release of the therapeutic agents. The versatility of this approach has stimulated its use in the treatment of numerous medical diseases including diabetes, cancer, central nervous system diseases and endocrinological disorders among others. The aim of this review article is to give an overview on the current state of the art of the use of cell encapsulation technology as a controlled drug delivery system. The most important advantages of this type of "living" drug release strategy are highlighted, but also its limitations pointed out, and the major challenges to be addressed in the forthcoming years are described.
Collapse
Affiliation(s)
- Ainhoa Murua
- Faculty of Pharmacy, Laboratory of Pharmacy and Pharmaceutical Technology, University of the Basque Country, Vitoria-Gasteiz, Spain
| | | | | | | | | | | |
Collapse
|
160
|
Weng L, Ivanova ND, Zakhaleva J, Chen W. In vitro and in vivo suppression of cellular activity by guanidinoethyl disulfide released from hydrogel microspheres composed of partially oxidized hyaluronan and gelatin. Biomaterials 2008; 29:4149-56. [PMID: 18678403 DOI: 10.1016/j.biomaterials.2008.07.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 07/15/2008] [Indexed: 11/17/2022]
Abstract
This paper describes the preparation of oxidized hyaluronan crosslinked gelatin microspheres for drug delivery. Microspheres were prepared by a modified water-in-oil-emulsion crosslinking method, where three-dimensional crosslinked hydrogel microspheres formed in the absence of any extraneous crosslinker. SEM analyses of the microspheres showed rough surfaces in their dried state with an average diameter of 90 microm. Lyophilization of fully swollen microspheres revealed a highly porous structure. Guanidinoethyl disulfide (GED) was used as a model drug for incorporation into the microspheres; encapsulation of GED was confirmed by HPLC. There was an inverse correlation between the diameters of the microspheres with their GED loading. Macrophage was used as a model cell to evaluate the in vitro efficacy of GED release from the microspheres. The in vivo efficacy of the microspheres was further validated in a mouse full-thickness transcutaneous dermal wound model through suppression of cell infiltration.
Collapse
Affiliation(s)
- Lihui Weng
- Department of Biomedical Engineering, T18-030 Health Sciences Center, State University of New York-Stony Brook, Stony Brook, NY 11794-8181, USA
| | | | | | | |
Collapse
|
161
|
Zolnik BS, Burgess DJ. Evaluation of in vivo–in vitro release of dexamethasone from PLGA microspheres. J Control Release 2008; 127:137-45. [DOI: 10.1016/j.jconrel.2008.01.004] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 12/28/2007] [Accepted: 01/08/2008] [Indexed: 10/22/2022]
|
162
|
Yoon SJ, Kim SH, Ha HJ, Ko YK, So JW, Kim MS, Yang YI, Khang G, Rhee JM, Lee HB. Reduction of Inflammatory Reaction of Poly(D,L-Lactic-Co-Glycolic Acid) Using Demineralized Bone Particles. Tissue Eng Part A 2008; 14:539-47. [DOI: 10.1089/tea.2007.0129] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sun Jung Yoon
- BK-21 Polymer BIN Fusion Research Team, Chonbuk National University, Jeonju, Korea
| | - Soon Hee Kim
- BK-21 Polymer BIN Fusion Research Team, Chonbuk National University, Jeonju, Korea
| | - Hyun Jung Ha
- BK-21 Polymer BIN Fusion Research Team, Chonbuk National University, Jeonju, Korea
| | - Youn Kyung Ko
- BK-21 Polymer BIN Fusion Research Team, Chonbuk National University, Jeonju, Korea
| | - Jung Won So
- BK-21 Polymer BIN Fusion Research Team, Chonbuk National University, Jeonju, Korea
| | - Moon Suk Kim
- NanoBiomaterials Lab, Korea Research Institute of Chemical Technology, Daejeon, Korea
| | - Young Il Yang
- Department of Pathology, College of Medicine, Inje University, Busan, Korea
| | - Gilson Khang
- BK-21 Polymer BIN Fusion Research Team, Chonbuk National University, Jeonju, Korea
| | - John M. Rhee
- BK-21 Polymer BIN Fusion Research Team, Chonbuk National University, Jeonju, Korea
| | - Hai Bang Lee
- NanoBiomaterials Lab, Korea Research Institute of Chemical Technology, Daejeon, Korea
| |
Collapse
|
163
|
Abstract
Awareness of the regulatory environment is fundamental to understanding the biological assessment of biomaterials and medical devices. Medical devices are a diverse and heterogenous group of medical products and technologies defined by the lack of chemical action or requirement for metabolism. Regional activity and the Global Harmonization Task Force are now working on harmonizing the categorization and testing of medical devices. The International Organization for Standardization (ISO) has published 19 standards for biological evaluation. ISO 10993 standards are generally accepted outright or as an alternative to most national regulatory directives or acts, although Japan and the United States require more stringency in some tests. Type of materials, intended use, and risk are the basis for drafting testing programs for biomaterials and medical devices. With growth of the medical device industry and advent of new biomaterials and technologies, the need for toxicologic pathologists in safety (biocompatibility) and efficacy (conditions of use) evaluation of moderate- to high-risk devices is expanding. Preclinical evaluation of biomaterials and medical devices increasingly requires a basic understanding of materials science and bioengineering to facilitate interpretation of complex interface reactions between biomaterials, cellular and secretory factors, and vascular and tissue responses that modulate success or failure of medical devices.
Collapse
Affiliation(s)
- JoAnn C. L. Schuh
- From Applied Veterinary Pathobiology PLLC, Bainbridge Island, Washington, USA
| |
Collapse
|