151
|
Wu SJ, Luo J, O'Neil KT, Kang J, Lacy ER, Canziani G, Baker A, Huang M, Tang QM, Raju TS, Jacobs SA, Teplyakov A, Gilliland GL, Feng Y. Structure-based engineering of a monoclonal antibody for improved solubility. Protein Eng Des Sel 2010; 23:643-51. [PMID: 20543007 DOI: 10.1093/protein/gzq037] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein aggregation is of great concern to pharmaceutical formulations and has been implicated in several diseases. We engineered an anti-IL-13 monoclonal antibody CNTO607 for improved solubility. Three structure-based engineering approaches were employed in this study: (i) modifying the isoelectric point (pI), (ii) decreasing the overall surface hydrophobicity and (iii) re-introducing an N-linked carbohydrate moiety within a complementarity-determining region (CDR) sequence. A mutant was identified with a modified pI that had a 2-fold improvement in solubility while retaining the binding affinity to IL-13. Several mutants with decreased overall surface hydrophobicity also showed moderately improved solubility while maintaining a similar antigen affinity. Structural studies combined with mutagenesis data identified an aggregation 'hot spot' in heavy-chain CDR3 (H-CDR3) that contains three residues ((99)FHW(100a)). The same residues, however, were found to be essential for high affinity binding to IL-13. On the basis of the spatial proximity and germline sequence, we reintroduced the consensus N-glycosylation site in H-CDR2 which was found in the original antibody, anticipating that the carbohydrate moiety would shield the aggregation 'hot spot' in H-CDR3 while not interfering with antigen binding. Peptide mapping and mass spectrometric analysis revealed that the N-glycosylation site was generally occupied. This variant showed greatly improved solubility and bound to IL-13 with affinity similar to CNTO607 without the N-linked carbohydrate. All three engineering approaches led to improved solubility and adding an N-linked carbohydrate to the CDR was the most effective route for enhancing the solubility of CNTO607.
Collapse
Affiliation(s)
- Sheng-Jiun Wu
- Biologics Research, Centocor R&D, 145 King of Prussia Radnor, PA 19087-4557, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Nick Pace C, Huyghues-Despointes BMP, Fu H, Takano K, Scholtz JM, Grimsley GR. Urea denatured state ensembles contain extensive secondary structure that is increased in hydrophobic proteins. Protein Sci 2010; 19:929-43. [PMID: 20198681 PMCID: PMC2868236 DOI: 10.1002/pro.370] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 02/08/2010] [Indexed: 11/07/2022]
Abstract
The goal of this article is to gain a better understanding of the denatured state ensemble (DSE) of proteins through an experimental and computational study of their denaturation by urea. Proteins unfold to different extents in urea and the most hydrophobic proteins have the most compact DSE and contain almost as much secondary structure as folded proteins. Proteins that unfold to the greatest extent near pH 7 still contain substantial amounts of secondary structure. At low pH, the DSE expands due to charge-charge interactions and when the net charge per residue is high, most of the secondary structure is disrupted. The proteins in the DSE appear to contain substantial amounts of polyproline II conformation at high urea concentrations. In all cases considered, including staph nuclease, the extent of unfolding by urea can be accounted for using the data and approach developed in the laboratory of Wayne Bolen (Auton et al., Proc Natl Acad Sci 2007; 104:15317-15323).
Collapse
Affiliation(s)
- C Nick Pace
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA.
| | | | | | | | | | | |
Collapse
|
153
|
Truong MY, Dutta NK, Choudhury NR, Kim M, Elvin CM, Hill AJ, Thierry B, Vasilev K. A pH-responsive interface derived from resilin-mimetic protein Rec1-resilin. Biomaterials 2010; 31:4434-46. [DOI: 10.1016/j.biomaterials.2010.02.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 02/08/2010] [Indexed: 10/19/2022]
|
154
|
Derewenda ZS. Application of protein engineering to enhance crystallizability and improve crystal properties. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:604-15. [PMID: 20445236 PMCID: PMC3089013 DOI: 10.1107/s090744491000644x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 02/18/2010] [Indexed: 01/05/2023]
Abstract
Until recently, protein crystallization has mostly been regarded as a stochastic event over which the investigator has little or no control. With the dramatic technological advances in synchrotron-radiation sources and detectors and the equally impressive progress in crystallographic software, including automated model building and validation, crystallization has increasingly become the rate-limiting step in X-ray diffraction studies of macromolecules. However, with the advent of recombinant methods it has also become possible to engineer target proteins and their complexes for higher propensity to form crystals with desirable X-ray diffraction qualities. As most proteins that are under investigation today are obtained by heterologous overexpression, these techniques hold the promise of becoming routine tools with the potential to transform classical crystallization screening into a more rational high-success-rate approach. This article presents an overview of protein-engineering methods designed to enhance crystallizability and discusses a number of examples of their successful application.
Collapse
Affiliation(s)
- Zygmunt S Derewenda
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908-0736, USA.
| |
Collapse
|
155
|
Tadeo X, López-Méndez B, Trigueros T, Laín A, Castaño D, Millet O. Structural basis for the aminoacid composition of proteins from halophilic archea. PLoS Biol 2009; 7:e1000257. [PMID: 20016684 PMCID: PMC2780699 DOI: 10.1371/journal.pbio.1000257] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 11/05/2009] [Indexed: 11/24/2022] Open
Abstract
In order to survive in highly saline environments, proteins from halophilic archea have evolved with biased amino acid compositions that have the capacity to reduce contacts with the solvent. Proteins from halophilic organisms, which live in extreme saline conditions, have evolved to remain folded at very high ionic strengths. The surfaces of halophilic proteins show a biased amino acid composition with a high prevalence of aspartic and glutamic acids, a low frequency of lysine, and a high occurrence of amino acids with a low hydrophobic character. Using extensive mutational studies on the protein surfaces, we show that it is possible to decrease the salt dependence of a typical halophilic protein to the level of a mesophilic form and engineer a protein from a mesophilic organism into an obligate halophilic form. NMR studies demonstrate complete preservation of the three-dimensional structure of extreme mutants and confirm that salt dependency is conferred exclusively by surface residues. In spite of the statistically established fact that most halophilic proteins are strongly acidic, analysis of a very large number of mutants showed that the effect of salt on protein stability is largely independent of the total protein charge. Conversely, we quantitatively demonstrate that halophilicity is directly related to a decrease in the accessible surface area. Life on earth exhibits an enormous adaptive capacity and living organisms can be found even in extreme environments. The halophilic archea are a group of microorganisms that grow best in highly salted lakes (with KCl concentrations between 2 and 6 molar). To avoid osmotic shock, halophilic archea have the same ionic strength inside their cells as outside. All their macromolecules, including the proteins, have therefore adapted to remain folded and functional under such ionic strength conditions. As a result, the amino acid composition of proteins adapted to a hypersaline environment is very characteristic: they have an abundance of negatively charged residues combined with a low frequency of lysines. In this study, we have investigated the relationship between this biased amino-acid composition and protein stability. Three model proteins – one from a strict halophile, its homolog from a mesophile and a totally unrelated protein from a mesophile - have been largely redesigned by site-directed mutagenesis, and the resulting mutants have been characterized structurally and thermodynamically. Our results show that amino acids with short side-chains (like aspartic and glutamic acid) are preferred to the longer lysine because they succeed in reducing the interaction surface between the protein and the solvent, which is beneficial in an environment where water is in limited availability because it also has to hydrate the salt ions.
Collapse
Affiliation(s)
- Xavier Tadeo
- Structural Biology Unit, CIC bioGUNE, Derio, Spain
- Institute of Research in Biomedicine, Parc Científic de Barcelona, Barcelona, Spain
| | | | | | - Ana Laín
- Structural Biology Unit, CIC bioGUNE, Derio, Spain
| | | | - Oscar Millet
- Structural Biology Unit, CIC bioGUNE, Derio, Spain
- * E-mail:
| |
Collapse
|
156
|
Dutta NK, Choudhury NR, Truong MY, Kim M, Elvin CM, Hill AJ. Physical approaches for fabrication of organized nanostructure of resilin-mimetic elastic protein rec1-resilin. Biomaterials 2009; 30:4868-76. [DOI: 10.1016/j.biomaterials.2009.06.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 06/05/2009] [Indexed: 10/20/2022]
|
157
|
Wang X, Das TK, Singh SK, Kumar S. Potential aggregation prone regions in biotherapeutics: A survey of commercial monoclonal antibodies. MAbs 2009; 1:254-67. [PMID: 20065649 DOI: 10.4161/mabs.1.3.8035] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aggregation of a biotherapeutic is of significant concern and judicious process and formulation development is required to minimize aggregate levels in the final product. Aggregation of a protein in solution is driven by intrinsic and extrinsic factors. In this work we have focused on aggregation as an intrinsic property of the molecule. We have studied the sequences and Fab structures of commercial and non-commercial antibody sequences for their vulnerability towards aggregation by using sequence based computational tools to identify potential aggregation-prone motifs or regions. The mAbs in our dataset contain 2 to 8 aggregation-prone motifs per heavy and light chain pair. Some of these motifs are located in variable domains, primarily in CDRs. Most aggregation-prone motifs are rich in beta branched aliphatic and aromatic residues. Hydroxyl-containing Ser/Thr residues are also found in several aggregation-prone motifs while charged residues are rare. The motifs found in light chain CDR3 are glutamine (Q)/asparagine (N) rich. These motifs are similar to the reported aggregation promoting regions found in prion and amyloidogenic proteins that are also rich in Q/N, aliphatic and aromatic residues. The implication is that one possible mechanism for aggregation of mAbs may be through formation of cross-beta structures and fibrils. Mapping on the available Fab-receptor/antigen complex structures reveals that these motifs in CDRs might also contribute significantly towards receptor/antigen binding. Our analysis identifies the opportunity and tools for simultaneous optimization of the therapeutic protein sequence for potency and specificity while reducing vulnerability towards aggregation.
Collapse
Affiliation(s)
- Xiaoling Wang
- Pharmaceutical R & D, Global Biologics, Pfizer Global Research & Development, Chesterfield, MO 63017, USA
| | | | | | | |
Collapse
|
158
|
Pace CN, Grimsley GR, Scholtz JM. Protein ionizable groups: pK values and their contribution to protein stability and solubility. J Biol Chem 2009; 284:13285-9. [PMID: 19164280 PMCID: PMC2679426 DOI: 10.1074/jbc.r800080200] [Citation(s) in RCA: 313] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structure, stability, solubility, and function of proteins depend on their net charge and on the ionization state of the individual residues. Consequently, biochemists are interested in the pK values of the ionizable groups in proteins and how these pK values depend on their environment. We review what has been learned about pK values of ionizable groups in proteins from experimental studies and discuss the important contributions they make to protein stability and solubility.
Collapse
Affiliation(s)
- C Nick Pace
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843, USA.
| | | | | |
Collapse
|
159
|
Garg A, Tisdale AW, Haidari E, Kokkoli E. Targeting colon cancer cells using PEGylated liposomes modified with a fibronectin-mimetic peptide. Int J Pharm 2009; 366:201-10. [PMID: 18835580 PMCID: PMC2660894 DOI: 10.1016/j.ijpharm.2008.09.016] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 09/05/2008] [Accepted: 09/06/2008] [Indexed: 11/24/2022]
Abstract
Integrin alpha(5)beta(1) is expressed on several types of cancer cells, including colon cancer, and plays an important role in tumor growth and metastasis. The ability to target the integrin alpha(5)beta(1) using an appropriate drug delivery nano-vector can significantly help in inhibiting tumor growth, reducing tumor metastasis, and decreasing deleterious side effects associated with different cancer therapies. Liposomes are nano-sized phospholipid bilayer vesicles that have been extensively studied as drug delivery carriers. The goal of this study is to design stealth liposomes (liposomes covered with polyethylene glycol (PEG)) that will target colon cancer cells that express the integrin alpha(5)beta(1). The PEG provides a steric barrier allowing the liposomes to circulate in the blood and the functionalizing moiety, PR_b peptide, will specifically recognize and bind to alpha(5)beta(1) expressing cells. PR_b is a novel peptide sequence that mimics the cell adhesion domain of fibronectin, and includes four building blocks, RGDSP (the primary recognition site for alpha(5)beta(1)), PHSRN (the synergy site for alpha(5)beta(1)), a (SG)(5) linker, and a KSS spacer. In this study we have demonstrated that by varying the amount of PEG (PEG750 or PEG2000) and PR_b on the liposomal interface we can engineer nano-vectors that bind to CT26.WT, HCT116, and RKO colon cancer cells in a specific manner and are internalized through most likely alpha(5)beta(1)-mediated endocytosis. GRGDSP-targeted stealth liposomes bind to colon cancer cells and internalize, but they have much lesser efficiency than PR_b-targeted stealth liposomes, and more importantly they are not as specific since many integrins bind to RGD peptides. PR_b-targeted stealth liposomes are as cytotoxic as free 5-Fluorouracil (5-FU) and exert the highest cytotoxicity on CT26.WT cells compared to GRGDSP-targeted stealth liposomes and non-targeted stealth liposomes. Thus, the proposed targeted delivery system has the great potential to deliver a therapeutic load directly to colon cancer cells, in an efficient and specific manner.
Collapse
Affiliation(s)
- Ashish Garg
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455
| | - Alison W. Tisdale
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455
| | - Eman Haidari
- Department of Chemistry, and Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455
| | - Efrosini Kokkoli
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455
| |
Collapse
|
160
|
Xie X, Pashkov I, Gao X, Guerrero JL, Yeates TO, Tang Y. Rational improvement of simvastatin synthase solubility in Escherichia coli leads to higher whole-cell biocatalytic activity. Biotechnol Bioeng 2008; 102:20-8. [PMID: 18988191 DOI: 10.1002/bit.22028] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Simvastatin is the active pharmaceutical ingredient of the blockbuster cholesterol lowering drug Zocor. We have previously developed an Escherichia coli based whole-cell biocatalytic platform towards the synthesis of simvastatin sodium salt (SS) starting from the precursor monacolin J sodium salt (MJSS). The centerpiece of the biocatalytic approach is the simvastatin synthase LovD, which is highly prone to misfolding and aggregation when overexpressed from E. coli. Increasing the solubility of LovD without decreasing its catalytic activity can therefore elevate the performance of the whole-cell biocatalyst. Using a combination of homology structural prediction and site-directed mutagenesis, we identified two cysteine residues in LovD that are responsible for nonspecific intermolecular crosslinking, which leads to oligomer formation and protein aggregation. Replacement of Cys40 and Cys60 with alanine residues resulted in marked gain in both protein solubility and whole-cell biocatalytic activities. Further mutagenesis experiments converting these two residues to small or polar natural amino acids showed that C40A and C60N are the most beneficial, affording 27% and 26% increase in whole cell activities, respectively. The double mutant C40A/C60N combines the individual improvements and displayed approximately 50% increase in protein solubility and whole-cell activity. Optimized fed-batch high-cell-density fermentation of the double mutant in an E. coli strain engineered for simvastatin production quantitatively (>99%) converted 45 mM MJSS to SS within 18 h, which represents a significant improvement over the performance of wild-type LovD under identical conditions. The high efficiency of the improved whole-cell platform renders the biocatalytic synthesis of SS an attractive substitute over the existing semisynthetic routes.
Collapse
Affiliation(s)
- Xinkai Xie
- Department of Chemical and Biomolecular Engineering, University of California, 5531 Boelter Hall, 420 Westwood Plaza, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
161
|
Dolenc J, Baron R, Missimer JH, Steinmetz MO, van Gunsteren WF. Exploring the conserved water site and hydration of a coiled-coil trimerisation motif: a MD simulation study. Chembiochem 2008; 9:1749-56. [PMID: 18553323 DOI: 10.1002/cbic.200800096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The solvent structure and dynamics around ccbeta-p, a 17-residue peptide that forms a parallel three-stranded alpha-helical coiled coil in solution, was analysed through 10 ns explicit solvent molecular dynamics (MD) simulations at 278 and 330 K. Comparison with two corresponding simulations of the monomeric form of ccbeta-p was used to investigate the changes of hydration upon coiled-coil formation. Pronounced peaks in the solvent density distribution between residues Arg8 and Glu13 of neighbouring helices show the presence of water bridges between the helices of the ccbeta-p trimer; this is in agreement with the water sites observed in X-ray crystallography experiments. Interestingly, this water site is structurally conserved in many three-stranded coiled coils and, together with the Arg and Glu residues, forms part of a motif that determines three-stranded coiled-coil formation. Our findings show that little direct correlation exists between the solvent density distribution and the temporal ordering of water around the trimeric coiled coil. The MD-calculated effective residence times of up to 40 ps show rapid exchange of surface water molecules with the bulk phase, and indicate that the solvent distribution around biomolecules requires interpretation in terms of continuous density distributions rather than in terms of discrete molecules of water. Together, our study contributes to understanding the principles of three-stranded coiled-coil formation.
Collapse
Affiliation(s)
- Jozica Dolenc
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, 8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
162
|
Talley K, Ng C, Shoppell M, Kundrotas P, Alexov E. On the electrostatic component of protein-protein binding free energy. PMC BIOPHYSICS 2008; 1:2. [PMID: 19351424 PMCID: PMC2666630 DOI: 10.1186/1757-5036-1-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 11/05/2008] [Indexed: 01/02/2023]
Abstract
Calculations of electrostatic properties of protein-protein complexes are usually done within framework of a model with a certain set of parameters. In this paper we present a comprehensive statistical analysis of the sensitivity of the electrostatic component of binding free energy (DeltaDeltaGel) with respect with different force fields (Charmm, Amber, and OPLS), different values of the internal dielectric constant, and different presentations of molecular surface (different values of the probe radius). The study was done using the largest so far set of entries comprising 260 hetero and 2148 homo protein-protein complexes extracted from a previously developed database of protein complexes (ProtCom). To test the sensitivity of the energy calculations with respect to the structural details, all structures were energy minimized with corresponding force field, and the energies were recalculated. The results indicate that the absolute value of the electrostatic component of the binding free energy (DeltaDeltaGel) is very sensitive to the force field parameters, the minimization procedure, the values of the internal dielectric constant, and the probe radius. Nevertheless our results indicate that certain trends in DeltaDeltaGel behavior are much less sensitive to the calculation parameters. For instance, the fraction of the homo-complexes, for which the electrostatics was found to oppose binding, is 80% regardless of the force fields and parameters used. For the hetero-complexes, however, the percentage of the cases for which electrostatics opposed binding varied from 43% to 85%, depending on the protocol and parameters employed. A significant correlation was found between the effects caused by raising the internal dielectric constant and decreasing the probe radius. Correlations were also found among the results obtained with different force fields. However, despite of the correlations found, the absolute DeltaDeltaGel calculated with different force field parameters could differ more than tens of kcal/mol in some cases. Set of rules of obtaining confident predictions of absolute DeltaDeltaGel and DeltaDeltaGel sign are provided in the conclusion section.PACS codes: 87.15.A-, 87.15. km.
Collapse
Affiliation(s)
- Kemper Talley
- Computational Biophysics and Bioinformatics, Department of Physics, Clemson University, Clemson, SC 29634, USA
| | - Carmen Ng
- James Byrnes High School, Duncan, SC 29334, USA
| | - Michael Shoppell
- South Carolina Governor School for Science and Mathematics, Hartsville, SC 29550, USA
| | - Petras Kundrotas
- Computational Biophysics and Bioinformatics, Department of Physics, Clemson University, Clemson, SC 29634, USA
- Center for Bioinformatics, The University of Kansas, Lawrence, KS 66047, USA
| | - Emil Alexov
- Computational Biophysics and Bioinformatics, Department of Physics, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
163
|
Trevino SR, Scholtz J, Pace C. Measuring and Increasing Protein Solubility. J Pharm Sci 2008; 97:4155-66. [DOI: 10.1002/jps.21327] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
164
|
Anion Binding Mediated Precipitation of a Peptibody. Pharm Res 2008; 26:152-60. [DOI: 10.1007/s11095-008-9722-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 08/28/2008] [Indexed: 10/21/2022]
|
165
|
Craig JA, Rexeisen EL, Mardilovich A, Shroff K, Kokkoli E. Effect of linker and spacer on the design of a fibronectin-mimetic peptide evaluated via cell studies and AFM adhesion forces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:10282-10292. [PMID: 18693703 DOI: 10.1021/la702434p] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The design of a fibronectin-mimetic peptide that specifically binds to the alpha 5beta 1 integrin has been widely studied because of this integrin's participation in many physiological and pathological processes. A promising design for such a peptide includes both the primary binding site RGD and the synergy site PHSRN connected by a linker and extended off of a surface by a spacer. Our original hypothesis was that the degree of hydrophobicity/hydrophilicity between the two sequences (RGD and PHSRN) in fibronectin is an important parameter in designing a fibronectin-mimetic peptide (Mardilovich, A.; Kokkoli, E. Biomacromolecules 2004, 5, 950-957). A peptide-amphiphile, PR_b, that was previously designed in our laboratory employed a hydrophobic tail connected to the N terminus of a peptide headgroup that was composed of a spacer, the synergy site sequence, a linker mimicking both the distance and hydrophobicity/hydrophilicity present in the native protein fibronectin (thus presenting an overall "neutral" linker), and finally the primary binding sequence. Even though our previous work (Mardilovich, A.; Craig, J. A.; McCammon, M. Q.; Garg, A.; Kokkoli, E. Langmuir 2006, 22, 3259-3264) demonstrated that PR_b is a promising sequence compared to fibronectin, this is the first study that tests our hypothesis by comparing PR_b to other peptides with hydrophobic or hydrophilic linkers. Furthermore, different peptide-amphiphiles were designed that could be used to study the effect of building blocks systematically, such as the peptide headgroup linker length and hydrophobicity/hydrophilicity as well as the headgroup spacer length on integrin adhesion. Circular dichroism spectroscopy was first employed, and the collected spectra demonstrated that only one peptide-amphiphile exhibited a secondary structure. Their surface topography was evaluated by taking atomic force microscopy (AFM) images of Langmuir-Blodgett peptide-amphiphile membranes supported on mica. Their adhesion was first evaluated with AFM force measurements between the different sequences and an AFM tip functionalized with purified integrins. The amphiphiles were further characterized via 1-12 h cell studies that examined human umbilical vein endothelial cell adhesion and extracellular matrix fibronectin production. The AFM studies were in good agreement with the cell studies. Overall, the adhesion studies validated our hypothesis and demonstrated for the first time that a "neutral" linker, which more closely mimics the cell adhesion domain of fibronectin, supports higher levels of adhesion compared to other peptide designs with a hydrophobic or hydrophilic linker or even fibronectin. Neutral linker lengths that were within the distance found between PHSRN and RGD in fibronectin performed equally well. However, the 10 amino acid neutral linker gave slightly better cell adhesion than did the control fibronectin at all times. Also, a short spacer was shown to give higher adhesion than other sequences with no spacer or a longer spacer, suggesting that a short spacer is necessary to extend the sequence further away from the interface. In conclusion, this work outlines a logical approach that can be applied for the rational design of any protein-mimetic peptide with two binding sites.
Collapse
Affiliation(s)
- Jennifer A Craig
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
166
|
Abstract
Solubility plays a major role in protein purification, and has serious implications in many diseases. We studied the effects of pH and mutations on protein solubility by calculating the transfer free energy from the condensed phase to the solution phase. The condensed phase was modeled as an implicit solvent, with a dielectric constant lower than that of water. To account for the effects of pH, the protonation states of titratable side chains were sampled by running constant-pH molecular dynamics simulations. Conformations were then selected for calculations of the electrostatic solvation energy: once for the condensed phase, and once for the solution phase. The average transfer free energy from the condensed phase to the solution phase was found to predict reasonably well the variations in solubility of ribonuclease Sa and insulin with pH. This treatment of electrostatic contributions combined with a similar approach for nonelectrostatic contributions led to a quantitative rationalization of the effects of point mutations on the solubility of ribonuclease Sa. This study provides valuable insights into the physical basis of protein solubility.
Collapse
|
167
|
Schwab T, Skegro D, Mayans O, Sterner R. A Rationally Designed Monomeric Variant of Anthranilate Phosphoribosyltransferase from Sulfolobus solfataricus is as Active as the Dimeric Wild-type Enzyme but Less Thermostable. J Mol Biol 2008; 376:506-16. [DOI: 10.1016/j.jmb.2007.11.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 11/14/2007] [Accepted: 11/23/2007] [Indexed: 11/28/2022]
|
168
|
Tryptophan fluorescence reveals the presence of long-range interactions in the denatured state of ribonuclease Sa. Biophys J 2007; 94:2288-96. [PMID: 18065473 DOI: 10.1529/biophysj.107.116954] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Characterizing the denatured state ensemble is crucial to understanding protein stability and the mechanism of protein folding. The aim of this research was to see if fluorescence could be used to gain new information on the denatured state ensemble. Ribonuclease Sa (RNase Sa) contains no Trp residues. We made five variants of RNase Sa by adding Trp residues at locations where they are found in other members of the microbial ribonuclease family. To better understand the protein denatured state, we also studied the fluorescence properties of the following peptides: N-acetyl-Trp-amide (NATA), N-acetyl-Ala-Trp-Ala-amide (AWA), N-acetyl-Ala-Ala-Trp-Ala-Ala-amide (AAWAA), and the five pentapeptides with the same sequence as the Trp substitution sites in RNase Sa. The major conclusions are: 1), the wavelength of maximum fluorescence intensity, lambda(max), does not differ significantly for the peptides and the denatured proteins; 2), the fluorescence intensity at lambda(max), I(F), differs significantly for the five Trp containing variants of RNase Sa; 3), the I(F) differences for the denatured proteins are mirrored in the peptides, showing that the short-range effects giving rise to the I(F) differences in the peptides are also present in the proteins; 4) the I(F) values for the denatured proteins are more than 30% greater than for the peptides, showing the presence of long-range effects in the proteins; 5), fluorescence quenching of Trp by acrylamide and iodide is more than 50% greater in the peptides than in the denatured proteins, showing that long-range effects limit the accessibility of the quenchers to the Trp side chains in the proteins; and 6), these results show that nonlocal effects in the denatured states of proteins influence Trp fluorescence and accessibility significantly.
Collapse
|
169
|
Trevino SR, Schaefer S, Scholtz JM, Pace CN. Increasing protein conformational stability by optimizing beta-turn sequence. J Mol Biol 2007; 373:211-8. [PMID: 17765922 PMCID: PMC2084202 DOI: 10.1016/j.jmb.2007.07.061] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 07/20/2007] [Accepted: 07/26/2007] [Indexed: 10/23/2022]
Abstract
Protein conformational stability is an important concern in many fields. Here, we describe a strategy for significantly increasing conformational stability by optimizing beta-turn sequence. Proline and glycine residues are statistically preferred at several beta-turn positions, presumably because their unique side-chains contribute favorably to conformational stability in certain beta-turn positions. However, beta-turn sequences often deviate from preferred proline or preferred glycine. Therefore, our strategy involves replacing non-proline and non-glycine beta-turn residues with preferred proline or preferred glycine residues. Here, we develop guidelines for selecting appropriate mutations, and present results for five mutations (S31P, S42G, S48P, T76P, and Q77G) that significantly increase the conformational stability of RNase Sa. The increases in stability ranged from 0.7 kcal/mol to 1.3 kcal/mol. The strategy was successful in overlapping or isolated beta-turns, at buried (up to 50%) or completely exposed sites, and at relatively flexible or inflexible sites. Considering the significant number of beta-turn residues in every globular protein and the frequent deviation of beta-turn sequences from preferred proline and preferred glycine residues, this simple, efficient strategy will be useful for increasing the conformational stability of proteins.
Collapse
Affiliation(s)
- Saul R. Trevino
- Molecular and Cellular Medicine Department, Texas A&M University System Health Science Center, College Station, Texas 77843
| | - Stephanie Schaefer
- Division of Math and Natural Science, Marian College of Fond du Lac, Fond du Lac, Wisconsin 54935
| | - J. Martin Scholtz
- Molecular and Cellular Medicine Department, Texas A&M University System Health Science Center, College Station, Texas 77843
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
- *To whom correspondence should be addressed: Molecular and Cellular Medicine Department, Texas A&M System Health Science Center, College Station, TX 77843-1114. Tel.: 979-845-0828 (JMS), 979-845-1788 (CNP); Fax: 979-847-9481; E-mail: ,
| | - C. Nick Pace
- Molecular and Cellular Medicine Department, Texas A&M University System Health Science Center, College Station, Texas 77843
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
- *To whom correspondence should be addressed: Molecular and Cellular Medicine Department, Texas A&M System Health Science Center, College Station, TX 77843-1114. Tel.: 979-845-0828 (JMS), 979-845-1788 (CNP); Fax: 979-847-9481; E-mail: ,
| |
Collapse
|