151
|
|
152
|
Dulamea AO, Sirbu-Boeti MP, Bleotu C, Dragu D, Moldovan L, Lupescu I, Comi G. Autologous mesenchymal stem cells applied on the pressure ulcers had produced a surprising outcome in a severe case of neuromyelitis optica. Neural Regen Res 2016; 10:1841-5. [PMID: 26807122 PMCID: PMC4705799 DOI: 10.4103/1673-5374.165325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent studies provided evidence that mesenchymal stem cells (MSCs) have regenerative potential in cutaneous repair and profound immunomodulatory properties making them a candidate for therapy of neuroimmunologic diseases. Neuromyelitis optica (NMO) is an autoimmune, demyelinating central nervous system disorder characterized by a longitudinally extensive spinal cord lesion. A 46-year-old male diagnosed with NMO had relapses with paraplegia despite treatment and developed two stage IV pressure ulcers (PUs) on his legs. The patient consented for local application of autologous MSCs on PUs. MSCs isolated from the patient's bone marrow aspirate were multiplied in vitro during three passages and embedded in a tridimensional collagen-rich matrix which was applied on the PUs. Eight days after MSCs application the patient showed a progressive healing of PUs and improvement of disability. Two months later the patient was able to walk 20 m with bilateral assistance and one year later he started to walk without assistance. For 76 months the patient had no relapse and no adverse event was reported. The original method of local application of autologous BM-MSCs contributed to healing of PUs. For 6 years the patient was free of relapses and showed an improvement of disability. The association of cutaneous repair, sustained remission of NMO and improvement of disability might be explained by a promotion/optimization of recovery mechanisms in the central nervous system even if alternative hypothesis should be considered. Further studies are needed to assess the safety and efficacy of mesenchymal stem cells in NMO treatment.
Collapse
Affiliation(s)
- Adriana Octaviana Dulamea
- U.M.F. Carol Davila, 8 Bulevardul Eroii Sanitari, Bucharest, Sector 2, Romania; Department of Neurology, Fundeni Clinical Institute, 258 Soseaua Fundeni, Bucharest, Sector 5, Romania
| | - Mirela-Patricia Sirbu-Boeti
- U.M.F. Carol Davila, 8 Bulevardul Eroii Sanitari, Bucharest, Sector 2, Romania; Department of Neurology, Fundeni Clinical Institute, 258 Soseaua Fundeni, Bucharest, Sector 5, Romania
| | - Coralia Bleotu
- National Virology Institute Stefan S. Nicolau, 285 Mihai Bravu Avenue, Bucharest, Sector 3, PO 77, PO Box 201, Romania
| | - Denisa Dragu
- National Virology Institute Stefan S. Nicolau, 285 Mihai Bravu Avenue, Bucharest, Sector 3, PO 77, PO Box 201, Romania
| | - Lucia Moldovan
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, Bucharest, Sector 6, PO Box 17-16, Romania
| | - Ioana Lupescu
- U.M.F. Carol Davila, 8 Bulevardul Eroii Sanitari, Bucharest, Sector 2, Romania; Department of Neurology, Fundeni Clinical Institute, 258 Soseaua Fundeni, Bucharest, Sector 5, Romania
| | - Giancarlo Comi
- Universita Vita-Salute San Raffaele, 58 Via Olgettina, Milan, Italy
| |
Collapse
|
153
|
Gao F, Chiu SM, Motan DAL, Zhang Z, Chen L, Ji HL, Tse HF, Fu QL, Lian Q. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis 2016; 7:e2062. [PMID: 26794657 PMCID: PMC4816164 DOI: 10.1038/cddis.2015.327] [Citation(s) in RCA: 776] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/13/2015] [Accepted: 09/25/2015] [Indexed: 12/11/2022]
Abstract
The unique immunomodulatory properties of mesenchymal stem cells (MSCs) make them an invaluable cell type for the repair of tissue/ organ damage caused by chronic inflammation or autoimmune disorders. Although they hold great promise in the treatment of immune disorders such as graft versus host disease (GvHD) and allergic disorders, there remain many challenges to overcome before their widespread clinical application. An understanding of the biological properties of MSCs will clarify the mechanisms of MSC-based transplantation for immunomodulation. In this review, we summarize the preclinical and clinical studies of MSCs from different adult tissues, discuss the current hurdles to their use and propose the future development of pluripotent stem cell-derived MSCs as an approach to immunomodulation therapy.
Collapse
Affiliation(s)
- F Gao
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - S M Chiu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - D A L Motan
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Z Zhang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - L Chen
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - H-L Ji
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708, USA
| | - H-F Tse
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Q-L Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Q Lian
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
154
|
Hao F, Li A, Yu H, Liu M, Wang Y, Liu J, Liang Z. Enhanced Neuroprotective Effects of Combination Therapy with Bone Marrow-Derived Mesenchymal Stem Cells and Ginkgo biloba Extract (EGb761) in a Rat Model of Experimental Autoimmune Encephalomyelitis. Neuroimmunomodulation 2016; 23:41-57. [PMID: 26468875 DOI: 10.1159/000437429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 07/02/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES We investigated whether Ginkgo biloba extract (EGb761) can provide neuroprotective effects and enhance the efficacy of bone marrow-derived mesenchymal stem cells (BMSCs) in a rat model of experimental autoimmune encephalomyelitis (EAE). METHODS We examined the synergistic action of BMSCs combined with EGb761 treatment in EAE rats. The immunized rats received an intravenous injection of BMSCs or intraperitoneal administration of EGb761 or both on the day of the onset of clinical symptoms and for the following 21 days. Clinical severity scores were recorded daily and histopathological examination of the spinal cord and cytokine concentrations in the serum were studied on days 14 and 31 postimmunization. RESULTS Our results showed that combined treatment with BMSCs and EGb761 further decreased the disease severity, maximal clinical score and number of infiltrated mononuclear cells, especially CD3-positive T cells. We observed that the demyelination score and the density of axonal loss in the spinal cord were significantly reduced in mice receiving the combination therapy. The serum concentrations of the phosphorylated neurofilament heavy chain, tumor necrosis factor-α and interferon-γ were reduced in the combination-treatment group. CONCLUSION Our results suggest that combined treatment with BMSCs and EGb761 have a synergistic effect in rats with EAE by inhibiting the secretion of proinflammatory cytokines, demyelination and protecting axons and neurons.
Collapse
Affiliation(s)
- Fei Hao
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | | | | | | | | | | | | |
Collapse
|
155
|
Stem Cells for Multiple Sclerosis. Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
156
|
Ravanidis S, Bogie JFJ, Donders R, Craeye D, Mays RW, Deans R, Gijbels K, Bronckaers A, Stinissen P, Pinxteren J, Hellings N. Neuroinflammatory signals enhance the immunomodulatory and neuroprotective properties of multipotent adult progenitor cells. Stem Cell Res Ther 2015; 6:176. [PMID: 26377390 PMCID: PMC4573995 DOI: 10.1186/s13287-015-0169-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/26/2015] [Accepted: 08/26/2015] [Indexed: 01/06/2023] Open
Abstract
Introduction Stem cell-based therapies are currently widely explored as a tool to treat neuroimmune diseases. Multipotent adult progenitor cells (MAPC) have been suggested to have strong immunomodulatory and neuroprotective properties in several experimental models. In this study, we investigate whether MAPC are of therapeutic interest for neuroinflammatory disorders such as multiple sclerosis by evaluating their capacities to modulate crucial pathological features and gain insights into the molecular pathways involved. Methods Rat MAPC were treated with combinations of pro-inflammatory cytokines that are closely associated with neuroinflammatory conditions, a process called licensing. mRNA expression of immunomodulatory molecules, chemokines and chemokine receptors was investigated. The migratory potential of licensed rat MAPC towards a broad spectrum of chemokines was tested in a Transwell assay. Furthermore, the effect of licensing on the ability of rat MAPC to attract and suppress the proliferation of encephalitogenic T cells was assessed. Finally, neuroprotective properties of rat MAPC were determined in the context of protection from oxidative stress of oligodendrocytes. Therefore, rat MAPC were incubated with conditioned medium of OLN93 cells subjected to sublethal doses of hydrogen peroxide and the gene expression of neurotrophic factors was assessed. Results After licensing, a wide variety of immunomodulatory molecules and chemokines, including inducible nitric oxide synthase and fractalkine, were upregulated by rat MAPC. The migratory properties of rat MAPC towards various chemokines were also altered. In addition, rat MAPC were found to inhibit antigen-specific T-cell proliferation and this suppressive effect was further enhanced after pro-inflammatory treatment. This phenomenon was partially mediated through inducible nitric oxide synthase or cyclooxygenase-2. Activated rat MAPC secreted factors that led to attraction of myelin-specific T cells. Finally, exposure of rat MAPC to an in vitro simulated neurodegenerative environment induced the upregulation of mRNA levels of vascular endothelial growth factor and ciliary neurotrophic factor. Factors secreted by rat MAPC in response to this environment partially protected OLN93 cells from hydrogen peroxide-induced cell death. Conclusions Rat MAPC possess immune modulatory and neuroprotective properties which are enhanced in response to neuroinflammatory signals. These findings thereby warrant further research to evaluate MAPC transplantation as a therapeutic approach in diseases with an immunological and neurodegenerative component such as multiple sclerosis. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0169-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stylianos Ravanidis
- Hasselt University, Biomedical Research Institute/Transnational University Limburg, School of Life Sciences, Campus Diepenbeek, Agoralaan building C, 3590, Diepenbeek, Belgium.
| | - Jeroen F J Bogie
- Hasselt University, Biomedical Research Institute/Transnational University Limburg, School of Life Sciences, Campus Diepenbeek, Agoralaan building C, 3590, Diepenbeek, Belgium.
| | - Raf Donders
- Hasselt University, Biomedical Research Institute/Transnational University Limburg, School of Life Sciences, Campus Diepenbeek, Agoralaan building C, 3590, Diepenbeek, Belgium.
| | | | - Robert W Mays
- Department of Regenerative Medicine, Athersys Inc., Cleveland, OH, USA.
| | - Robert Deans
- Department of Regenerative Medicine, Athersys Inc., Cleveland, OH, USA.
| | | | - Annelies Bronckaers
- Hasselt University, Biomedical Research Institute/Transnational University Limburg, School of Life Sciences, Campus Diepenbeek, Agoralaan building C, 3590, Diepenbeek, Belgium.
| | - Piet Stinissen
- Hasselt University, Biomedical Research Institute/Transnational University Limburg, School of Life Sciences, Campus Diepenbeek, Agoralaan building C, 3590, Diepenbeek, Belgium.
| | | | - Niels Hellings
- Hasselt University, Biomedical Research Institute/Transnational University Limburg, School of Life Sciences, Campus Diepenbeek, Agoralaan building C, 3590, Diepenbeek, Belgium.
| |
Collapse
|
157
|
James RE, Hillis J, Adorján I, Gration B, Mundim MV, Iqbal AJ, Majumdar MM, Yates RL, Richards MMH, Goings GE, DeLuca GC, Greaves DR, Miller SD, Szele FG. Loss of galectin-3 decreases the number of immune cells in the subventricular zone and restores proliferation in a viral model of multiple sclerosis. Glia 2015; 64:105-21. [PMID: 26337870 DOI: 10.1002/glia.22906] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 12/30/2022]
Abstract
Multiple sclerosis (MS) frequently starts near the lateral ventricles, which are lined by subventricular zone (SVZ) progenitor cells that can migrate to lesions and contribute to repair. Because MS-induced inflammation may decrease SVZ proliferation and thus limit repair, we studied the role of galectin-3 (Gal-3), a proinflammatory protein. Gal-3 expression was increased in periventricular regions of human MS in post-mortem brain samples and was also upregulated in periventricular regions in a murine MS model, Theiler's murine encephalomyelitis virus (TMEV) infection. Whereas TMEV increased SVZ chemokine (CCL2, CCL5, CCL, and CXCL10) expression in wild type (WT) mice, this was inhibited in Gal-3(-/-) mice. Though numerous CD45+ immune cells entered the SVZ of WT mice after TMEV infection, their numbers were significantly diminished in Gal-3(-/-) mice. TMEV also reduced neuroblast and proliferative SVZ cell numbers in WT mice but this was restored in Gal-3(-/-) mice and was correlated with increased numbers of doublecortin+ neuroblasts in the corpus callosum. In summary, our data showed that loss of Gal-3 blocked chemokine increases after TMEV, reduced immune cell migration into the SVZ, reestablished SVZ proliferation and increased the number of progenitors in the corpus callosum. These results suggest Gal-3 plays a central role in modulating the SVZ neurogenic niche's response to this model of MS.
Collapse
Affiliation(s)
- Rachel E James
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3HS, United Kingdom
| | - James Hillis
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3HS, United Kingdom
| | - István Adorján
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3HS, United Kingdom
| | - Betty Gration
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3HS, United Kingdom
| | - Mayara V Mundim
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3HS, United Kingdom
| | - Asif J Iqbal
- Dunn School of Pathology, University of Oxford, Oxford, OX1 3HS, United Kingdom
| | - Moon-Moon Majumdar
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3HS, United Kingdom
| | - Richard L Yates
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3HS, United Kingdom
| | - Maureen M H Richards
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Gwendolyn E Goings
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Gabriele C DeLuca
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3HS, United Kingdom
| | - David R Greaves
- Dunn School of Pathology, University of Oxford, Oxford, OX1 3HS, United Kingdom
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Francis G Szele
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3HS, United Kingdom
| |
Collapse
|
158
|
Bessout R, Demarquay C, Moussa L, René A, Doix B, Benderitter M, Sémont A, Mathieu N. TH17 predominant T-cell responses in radiation-induced bowel disease are modulated by treatment with adipose-derived mesenchymal stromal cells. J Pathol 2015; 237:435-46. [PMID: 26177977 DOI: 10.1002/path.4590] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/23/2015] [Accepted: 06/30/2015] [Indexed: 12/12/2022]
Abstract
Radiation proctitis is an insidious disease associated with substantial morbidity and mortality. It may develop following the treatment of several cancers by radiotherapy when normal colorectal tissues are present in the irradiation field. There is no unified approach for the assessment and treatment of this disease, partly due to insufficient knowledge about the mechanism involved in the development of radiation proctitis. However, unresolved inflammation is hypothesized to have an important role in late side effects. This study aimed to analyse the involvement of specific immunity in colorectal damage developing after localized irradiation, and evaluate the benefit of immunomodulatory mesenchymal stromal cells isolated from adipose tissue (Ad-MSCs) for reduction of late side effects. Our experimental model of colorectal irradiation induced severe colonic mucosal damage and fibrosis that was associated with T-cell infiltration. Immune cell activation was investigated; adoptive transfer of T cells in nude rats showed stronger colonization by T cells isolated from irradiated rats. The predominant role of T cells in late radiation-induced damage and regeneration processes was highlighted by in vivo depletion experiments. Treatments using Ad-MSCs reduced T-cell infiltration in the colon and reduced established colonic damage as measured by histological score, functional circular muscle contractibility, and collagen deposition. Here, we have demonstrated for the first time the predominance of the TH17 population compared to TH1 and TH2 in radiation-induced bowel disease, and that this is reduced after Ad-MSC treatment. Additionally, we demonstrated in vitro that IL17 acts directly on colonic smooth muscle cells to induce expression of pro-inflammatory genes that could participate in the development of radiation-induced injury. Our data demonstrate that the TH17 population is specifically induced during development of radiation-induced side effects in the colon. Moreover, Ad-MSC treatment modulates the TH17 population and reduces the extracellular matrix remodelling process induced following irradiation.
Collapse
Affiliation(s)
- Raphaëlle Bessout
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LR2I, Fontenay-aux-Roses, France
| | - Christelle Demarquay
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LR2I, Fontenay-aux-Roses, France
| | - Lara Moussa
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LR2I, Fontenay-aux-Roses, France
| | - Alice René
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LR2I, Fontenay-aux-Roses, France
| | - Bastien Doix
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LR2I, Fontenay-aux-Roses, France
| | - Marc Benderitter
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LR2I, Fontenay-aux-Roses, France
| | - Alexandra Sémont
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LR2I, Fontenay-aux-Roses, France
| | - Noëlle Mathieu
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LR2I, Fontenay-aux-Roses, France
| |
Collapse
|
159
|
D'souza N, Rossignoli F, Golinelli G, Grisendi G, Spano C, Candini O, Osturu S, Catani F, Paolucci P, Horwitz EM, Dominici M. Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies. BMC Med 2015; 13:186. [PMID: 26265166 PMCID: PMC4534031 DOI: 10.1186/s12916-015-0426-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/17/2015] [Indexed: 02/07/2023] Open
Abstract
Regenerative medicine relying on cell and gene therapies is one of the most promising approaches to repair tissues. Multipotent mesenchymal stem/stromal cells (MSC), a population of progenitors committing into mesoderm lineages, are progressively demonstrating therapeutic capabilities far beyond their differentiation capacities. The mechanisms by which MSC exert these actions include the release of biomolecules with anti-inflammatory, immunomodulating, anti-fibrogenic, and trophic functions. While we expect the spectra of these molecules with a therapeutic profile to progressively expand, several human pathological conditions have begun to benefit from these biomolecule-delivering properties. In addition, MSC have also been proposed to vehicle genes capable of further empowering these functions. This review deals with the therapeutic properties of MSC, focusing on their ability to secrete naturally produced or gene-induced factors that can be used in the treatment of kidney, lung, heart, liver, pancreas, nervous system, and skeletal diseases. We specifically focus on the different modalities by which MSC can exert these functions. We aim to provide an updated understanding of these paracrine mechanisms as a prerequisite to broadening the therapeutic potential and clinical impact of MSC.
Collapse
Affiliation(s)
- Naomi D'souza
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Filippo Rossignoli
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Giulia Golinelli
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Giulia Grisendi
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Carlotta Spano
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Olivia Candini
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Satoru Osturu
- The Division of Hematology/Oncology/BMT, Nationwide Children's Hospital, Departments of Pediatrics and Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Fabio Catani
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Paolo Paolucci
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Edwin M Horwitz
- The Division of Hematology/Oncology/BMT, Nationwide Children's Hospital, Departments of Pediatrics and Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy.
| |
Collapse
|
160
|
Colpo GD, Ascoli BM, Wollenhaupt-Aguiar B, Pfaffenseller B, Silva EG, Cirne-Lima EO, Quevedo J, Kapczinski F, Rosa AR. Mesenchymal stem cells for the treatment of neurodegenerative and psychiatric disorders. AN ACAD BRAS CIENC 2015; 87:1435-49. [PMID: 26247151 DOI: 10.1590/0001-3765201520140619] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitor cells that have the capacity to differentiate into all lineages of mesodermal origin, e.g., cartilage, bone, and adipocytes. MSCs have been identified at different stages of development, including adulthood, and in different tissues, such as bone marrow, adipose tissue and umbilical cord. Recent studies have shown that MSCs have the ability to migrate to injured sites. In this regard, an important characteristic of MSCs is their immunomodulatory and anti-inflammatory effects. For instance, there is evidence that MSCs can regulate the immune system by inhibiting proliferation of T and B cells. Clinical interest in the use of MSCs has increased considerably over the past few years, especially because of the ideal characteristics of these cells for regenerative medicine. Therapies with MSCs have shown promising results neurodegenerative diseases, in addition to regulating inflammation, they can promote other beneficial effects, such as neuronal growth, decrease free radicals, and reduce apoptosis. Notwithstanding, despite the vast amount of research into MSCs in neurodegenerative diseases, the mechanism of action of MSCs are still not completely clarified, hindering the development of effective treatments. Conversely, studies in models of psychiatric disorders are scarce, despite the promising results of MSCs therapies in this field as well.
Collapse
Affiliation(s)
- Gabriela D Colpo
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Center at Houston, Houston, TX, US
| | - Bruna M Ascoli
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BR
| | - Bianca Wollenhaupt-Aguiar
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BR
| | - Bianca Pfaffenseller
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BR
| | - Emily G Silva
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BR
| | - Elizabeth O Cirne-Lima
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BR
| | - João Quevedo
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Center at Houston, Houston, TX, US
| | - Flávio Kapczinski
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BR
| | - Adriane R Rosa
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BR
| |
Collapse
|
161
|
|
162
|
Harris VK, Sadiq SA. Stem cell therapy in multiple sclerosis: a future perspective. Neurodegener Dis Manag 2015; 5:167-70. [DOI: 10.2217/nmt.15.6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
| | - Saud A Sadiq
- Tisch MS Research Center of New York, New York, NY 10019, USA
| |
Collapse
|
163
|
Abstract
Adoptive cell transfer is an intervention in which autologous immune cells that have been expanded ex vivo are re-introduced to mitigate a pathological process. Tregs, mesenchymal stromal cells, dendritic cells, macrophages and myeloid-derived suppressor cells have been transferred in diverse immune-mediated diseases, and Tregs have been the focus of investigations in autoimmune hepatitis. Transferred Tregs have improved histological findings in animal models of autoimmune hepatitis and autoimmune cholangitis. Key challenges relate to discrepant findings among studies, phenotypic instability of the transferred population, uncertain side effects and possible need for staged therapy involving anti-inflammatory drugs. Future investigations must resolve issues about the purification, durability and safety of these cells and consider alternative populations if necessary.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street S.W, Rochester, MN 55905, USA
| |
Collapse
|
164
|
All-Trans Retinoic Acid Improves the Effects of Bone Marrow-Derived Mesenchymal Stem Cells on the Treatment of Ankylosing Spondylitis: An In Vitro Study. Stem Cells Int 2015; 2015:484528. [PMID: 26124839 PMCID: PMC4466433 DOI: 10.1155/2015/484528] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/11/2015] [Accepted: 03/11/2015] [Indexed: 12/29/2022] Open
Abstract
Previous studies have demonstrated the immunosuppressive effects of both all-trans retinoic acid (ATRA) and mesenchymal stem cells (MSCs). The present study aimed to assess the immunoregulatory effects of ATRA on MSCs in the treatment of ankylosing spondylitis (AS). Bone marrow-derived MSCs from healthy donors were pretreated with ATRA and cocultured with CD3/28-activated peripheral blood mononuclear cells (PBMCs) derived from AS patients. Frequencies of Th17 and regulatory T (Treg) cells were analyzed using flow cytometry. The secretion and the mRNA level of key cytokines were measured with cytometric bead array and quantitative real-time PCR, respectively. ATRA pretreatment increased interleukin-6 (IL-6) secretion of MSCs. Th17 and Treg subset populations were increased and reduced by ATRA-pretreated MSCs, respectively. ATRA-pretreated MSCs significantly decreased not only the vital pathogenic cytokine in AS, tumor necrosis factor-α (TNF-α), but also AS-boosting factors interleukin-17 (IL-17A) and interferon-γ (IFN-γ). These results indicated that IL-6 may be a potential protective factor in AS and highlighted the promising role of ATRA in improving the efficacy of MSC-based treatment of AS.
Collapse
|
165
|
Kim N, Cho SG. New strategies for overcoming limitations of mesenchymal stem cell-based immune modulation. Int J Stem Cells 2015; 8:54-68. [PMID: 26019755 PMCID: PMC4445710 DOI: 10.15283/ijsc.2015.8.1.54] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 05/04/2015] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have rapidly been applied in a broad field of immune-mediated disorders since the first successful clinical use of MSCs for treatment of graft-versus-host disease. Despite the lack of supporting data, expectations that MSCs could potentially treat most inflammatory conditions led to rushed application and development of commercialized products. Today, both pre-clinical and clinical studies present mixed results for MSC therapy and the discrepancy between expected and actual efficacy of MSCs in various diseases has evoked a sense of discouragement. Therefore, we believe that MSC therapy may now be at a critical milestone for re-evaluation and re-consideration. In this review, we summarize the current status of MSC-based clinical trials and focus on the discrepancy between expected and actual outcome of MSC therapy from bench to bedside. Importantly, we discuss the underlying limitations of MSCs and suggest a new guideline for MSC therapy in hopes of improving their therapeutic efficacy.
Collapse
Affiliation(s)
- Nayoun Kim
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine, Seoul, Korea ; Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, Seoul, Korea
| | - Seok-Goo Cho
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine, Seoul, Korea ; Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, Seoul, Korea ; Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|
166
|
Ghasemi-Mobarakeh L, Prabhakaran MP, Tian L, Shamirzaei-Jeshvaghani E, Dehghani L, Ramakrishna S. Structural properties of scaffolds: Crucial parameters towards stem cells differentiation. World J Stem Cells 2015; 7:728-744. [PMID: 26029344 PMCID: PMC4444613 DOI: 10.4252/wjsc.v7.i4.728] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/18/2014] [Accepted: 03/05/2015] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering is a multidisciplinary field that applies the principles of engineering and life-sciences for regeneration of damaged tissues. Stem cells have attracted much interest in tissue engineering as a cell source due to their ability to proliferate in an undifferentiated state for prolonged time and capability of differentiating to different cell types after induction. Scaffolds play an important role in tissue engineering as a substrate that can mimic the native extracellular matrix and the properties of scaffolds have been shown to affect the cell behavior such as the cell attachment, proliferation and differentiation. Here, we focus on the recent reports that investigated the various aspects of scaffolds including the materials used for scaffold fabrication, surface modification of scaffolds, topography and mechanical properties of scaffolds towards stem cells differentiation effect. We will present a more detailed overview on the effect of mechanical properties of scaffolds on stem cells fate.
Collapse
|
167
|
Hinden L, Shainer R, Almogi-Hazan O, Or R. Ex Vivo Induced Regulatory Human/Murine Mesenchymal Stem Cells as Immune Modulators. Stem Cells 2015; 33:2256-67. [DOI: 10.1002/stem.2026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/29/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Liad Hinden
- Department of Bone Marrow Transplantation; Hadassah-Hebrew University Medical Center; Jerusalem Israel
| | - Reut Shainer
- Department of Bone Marrow Transplantation; Hadassah-Hebrew University Medical Center; Jerusalem Israel
| | - Osnat Almogi-Hazan
- Department of Bone Marrow Transplantation; Hadassah-Hebrew University Medical Center; Jerusalem Israel
| | - Reuven Or
- Department of Bone Marrow Transplantation; Hadassah-Hebrew University Medical Center; Jerusalem Israel
| |
Collapse
|
168
|
Agadi S, Shetty AK. Concise Review: Prospects of Bone Marrow Mononuclear Cells and Mesenchymal Stem Cells for Treating Status Epilepticus and Chronic Epilepsy. Stem Cells 2015; 33:2093-103. [PMID: 25851047 DOI: 10.1002/stem.2029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/16/2015] [Indexed: 12/22/2022]
Abstract
Mononuclear cells (MNCs) and mesenchymal stem cells (MSCs) derived from the bone marrow and other sources have received significant attention as donor cells for treating various neurological disorders due to their robust neuroprotective and anti-inflammatory effects. Moreover, it is relatively easy to procure these cells from both autogenic and allogenic sources. Currently, there is considerable interest in examining the usefulness of these cells for conditions such as status epilepticus (SE) and chronic epilepsy. A prolonged seizure activity in SE triggers neurodegeneration in the limbic brain areas, which elicits epileptogenesis and evolves into a chronic epileptic state. Because of their potential for providing neuroprotection, diminishing inflammation and curbing epileptogenesis, early intervention with MNCs or MSCs appears attractive for treating SE as such effects may restrain the development of chronic epilepsy typified by spontaneous seizures and learning and memory impairments. Delayed administration of these cells after SE may also be useful for easing spontaneous seizures and cognitive dysfunction in chronic epilepsy. This concise review evaluates the current knowledge and outlook pertaining to MNC and MSC therapies for SE and chronic epilepsy. In the first section, the behavior of these cells in animal models of SE and their efficacy to restrain neurodegeneration, inflammation, and epileptogenesis are discussed. The competence of these cells for suppressing seizures and improving cognitive function in chronic epilepsy are conferred in the next section. The final segment ponders issues that need to be addressed to pave the way for clinical application of these cells for SE and chronic epilepsy.
Collapse
Affiliation(s)
- Satish Agadi
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, Temple, Texas, USA.,Department of Pediatrics, McLane's Children's Hospital, Baylor Scott & White Health, Temple, Texas, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, Temple, Texas, USA.,Research Service, Olin E. Teague Veterans Affairs Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USA.,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA
| |
Collapse
|
169
|
Allogeneic Mesenchymal Stem Cell Therapy Outcomes for Three Patients with Spinal Muscular Atrophy Type 1. Am J Phys Med Rehabil 2015; 94:410-5. [DOI: 10.1097/phm.0000000000000309] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
170
|
Mallucci G, Peruzzotti-Jametti L, Bernstock JD, Pluchino S. The role of immune cells, glia and neurons in white and gray matter pathology in multiple sclerosis. Prog Neurobiol 2015; 127-128:1-22. [PMID: 25802011 PMCID: PMC4578232 DOI: 10.1016/j.pneurobio.2015.02.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/24/2014] [Accepted: 02/27/2015] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis is one of the most common causes of chronic neurological disability beginning in early to middle adult life. Multiple sclerosis is idiopathic in nature, yet increasing correlative evidence supports a strong association between one's genetic predisposition, the environment and the immune system. Symptoms of multiple sclerosis have primarily been shown to result from a disruption in the integrity of myelinated tracts within the white matter of the central nervous system. However, recent research has also highlighted the hitherto underappreciated involvement of gray matter in multiple sclerosis disease pathophysiology, which may be especially relevant when considering the accumulation of irreversible damage and progressive disability. This review aims at providing a comprehensive overview of the interplay between inflammation, glial/neuronal damage and regeneration throughout the course of multiple sclerosis via the analysis of both white and gray matter lesional pathology. Further, we describe the common pathological mechanisms underlying both relapsing and progressive forms of multiple sclerosis, and analyze how current (as well as future) treatments may interact and/or interfere with its pathology. Understanding the putative mechanisms that drive disease pathogenesis will be key in helping to develop effective therapeutic strategies to prevent, mitigate, and treat the diverse morbidities associated with multiple sclerosis.
Collapse
Affiliation(s)
- Giulia Mallucci
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute and NIHR Biomedical Research Centre, University of Cambridge, CB2 0PY, UK
- Department of Brain and Behavioural Sciences, National Neurological Institute C. Mondino, University of Pavia, 27100 Pavia, Italy
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute and NIHR Biomedical Research Centre, University of Cambridge, CB2 0PY, UK
| | - Joshua D. Bernstock
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute and NIHR Biomedical Research Centre, University of Cambridge, CB2 0PY, UK
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bldg10/Rm5B06, MSC 1401, 10 Center Drive, Bethesda, MD 20892, USA
| | - Stefano Pluchino
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute and NIHR Biomedical Research Centre, University of Cambridge, CB2 0PY, UK
| |
Collapse
|
171
|
Luk F, de Witte SFH, Bramer WM, Baan CC, Hoogduijn MJ. Efficacy of immunotherapy with mesenchymal stem cells in man: a systematic review. Expert Rev Clin Immunol 2015; 11:617-36. [DOI: 10.1586/1744666x.2015.1029458] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
172
|
De Oliveira GLV, De Lima KWA, Colombini AM, Pinheiro DG, Panepucci RA, Palma PVB, Brum DG, Covas DT, Simões BP, De Oliveira MC, Donadi EA, Malmegrim KCR. Bone Marrow Mesenchymal Stromal Cells Isolated from Multiple Sclerosis Patients have Distinct Gene Expression Profile and Decreased Suppressive Function Compared with Healthy Counterparts. Cell Transplant 2015; 24:151-65. [DOI: 10.3727/096368913x675142] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system, due to an immune reaction against myelin proteins. Multipotent mesenchymal stromal cells (MSCs) present immunosuppressive effects and have been used for the treatment of autoimmune diseases. In our study, gene expression profile and in vitro immunomodulatory function tests were used to compare bone marrow-derived MSCs obtained from MS patients, at pre- and postautologous hematopoietic stem cell transplantation (AHSCT) with those from healthy donors. Patient MSCs comparatively exhibited i) senescence in culture; ii) similar osteogenic and adipogenic differentiation potential; iii) decreased expression of CD105, CD73, CD44, and HLA-A/B/C molecules; iv) distinct transcription at pre-AHSCT compared with control MSCs, yielding 618 differentially expressed genes, including the downregulation of TGFB1 and HGF genes and modulation of the FGF and HGF signaling pathways; v) reduced antiproliferative effects when pre-AHSCT MSCs were cocultured with allogeneic T-lymphocytes; vi) decreased secretion of IL-10 and TGF-β in supernatants of both cocultures (pre- and post-AHSCT MSCs); and vii) similar percentages of regulatory cells recovered after MSC cocultures. The transcriptional profile of patient MSCs isolated 6 months posttransplantation was closer to pre-AHSCT samples than from healthy MSCs. Considering that patient MSCs exhibited phenotypic changes, distinct transcriptional profile and functional defects implicated in MSC immunomodulatory and immunosuppressive activity, we suggest that further MS clinical studies should be conducted using allogeneic bone marrow MSCs derived from healthy donors. We also demonstrated that treatment of MS patients with AHSCT does not reverse the transcriptional and functional alterations observed in patient MSCs.
Collapse
Affiliation(s)
- Gislane L. V. De Oliveira
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Kalil W. A. De Lima
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Amanda M. Colombini
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Daniel G. Pinheiro
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo A. Panepucci
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Patrícia V. B. Palma
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Doralina G. Brum
- Department of Neurology, Psychology and Psychiatry, School of Medicine of Botucatu, University of State of São Paulo (UNESP), Botucatu, São Paulo, Brazil
| | - Dimas T. Covas
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Belinda P. Simões
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Maria C. De Oliveira
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Eduardo A. Donadi
- Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Kelen C. R. Malmegrim
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
173
|
Gharibi T, Ahmadi M, Seyfizadeh N, Jadidi-Niaragh F, Yousefi M. Immunomodulatory characteristics of mesenchymal stem cells and their role in the treatment of multiple sclerosis. Cell Immunol 2015; 293:113-21. [PMID: 25596473 DOI: 10.1016/j.cellimm.2015.01.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 12/31/2014] [Accepted: 01/02/2015] [Indexed: 12/12/2022]
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory neurodegenerative disease of central nervous system (CNS). Although the main cause of MS is not clear, studies suggest that MS is an autoimmune disease which attacks myelin sheath of neurons. There are different therapeutic regimens for MS patients including interferon (IFN)-β, glatiramer acetate (GA), and natalizumab. However, such therapies are not quite effective and are associated with some side effects. So which, there is no complete therapeutic method for MS patients. Regarding the potent immunomodulatory effects of mesenchymal stem cells (MSCs) and their ameliorative effects in experimental autoimmune encephalopathy (EAE), it seems that MSCs may be a new therapeutic method in MS therapy. MSC transplantation is an approach to regulate the immune system in the region of CNS lesions. In this review, we have tried to discuss about the immunomodulatory properties of MSCs and their therapeutic mechanisms in MS patients.
Collapse
Affiliation(s)
- Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Seyfizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
174
|
Harada K, Kawai S, Wen-an X, liang X, Sonomoto M, Shinonaga Y, Abe Y, Ohura K, Wanghong Z, Arita K. Alterations in Deciduous Dental Pulp Cells Cultured with Serum-free Medium. J HARD TISSUE BIOL 2015. [DOI: 10.2485/jhtb.24.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kyoko Harada
- Department of Pediatric Dentistry, Osaka Dental University
| | - Saki Kawai
- Department of Pediatric Dentistry, Osaka Dental University
| | - Xu Wen-an
- Department of Pediatric Dentistry, School of Stomatology Southern Medical University
| | - Xu liang
- Department of Pediatric Dentistry, School of Stomatology Southern Medical University
| | - Mie Sonomoto
- Department of Pediatric Dentistry, Osaka Dental University
| | | | - Yoko Abe
- Department of Pediatric Dentistry, Osaka Dental University
| | | | - Zhao Wanghong
- Department of Pediatric Dentistry, School of Stomatology Southern Medical University
| | - Kenji Arita
- Department of Pediatric Dentistry, Osaka Dental University
| |
Collapse
|
175
|
Strong AL, Shi Z, Strong MJ, Miller DFB, Rusch DB, Buechlein AM, Flemington EK, McLachlan JA, Nephew KP, Burow ME, Bunnell BA. Effects of the endocrine-disrupting chemical DDT on self-renewal and differentiation of human mesenchymal stem cells. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:42-8. [PMID: 25014179 PMCID: PMC4286277 DOI: 10.1289/ehp.1408188] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 07/10/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND Although the global use of the endocrine-disrupting chemical DDT has decreased, its persistence in the environment has resulted in continued human exposure. Accumulating evidence suggests that DDT exposure has long-term adverse effects on development, yet the impact on growth and differentiation of adult stem cells remains unclear. OBJECTIVES Human mesenchymal stem cells (MSCs) exposed to DDT were used to evaluate the impact on stem cell biology. METHODS We assessed DDT-treated MSCs for self-renewal, proliferation, and differentiation potential. Whole genome RNA sequencing was performed to assess gene expression in DDT-treated MSCs. RESULTS MSCs exposed to DDT formed fewer colonies, suggesting a reduction in self-renewal potential. DDT enhanced both adipogenic and osteogenic differentiation, which was confirmed by increased mRNA expression of glucose transporter type 4 (GLUT4), lipoprotein lipase (LpL), peroxisome proliferator-activated receptor gamma (PPARγ), leptin, osteonectin, core binding factor 1 (CBFA1), and FBJ murine osteosarcoma viral oncogene homolog (c-Fos). Expression of factors in DDT-treated cells was similar to that in estrogen-treated MSCs, suggesting that DDT may function via the estrogen receptor (ER)-mediated pathway. The coadministration of ICI 182,780 blocked the effects of DDT. RNA sequencing revealed 121 genes and noncoding RNAs to be differentially expressed in DDT-treated MSCs compared with controls cells. CONCLUSION Human MSCs provide a powerful biological system to investigate and identify the molecular mechanisms underlying the effects of environmental agents on stem cells and human health. MSCs exposed to DDT demonstrated profound alterations in self-renewal, proliferation, differentiation, and gene expression, which may partially explain the homeostatic imbalance and increased cancer incidence among those exposed to long-term EDCs.
Collapse
Affiliation(s)
- Amy L Strong
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
|
177
|
Shroff G. Human embryonic stem cell for the treatment of multiple sclerosis: A case report. ACTA ACUST UNITED AC 2015. [DOI: 10.5348/crint-2015-15-cr-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
178
|
Therapeutic strategies in multiple sclerosis: a focus on neuroprotection and repair and relevance to schizophrenia. Schizophr Res 2015; 161:94-101. [PMID: 24893901 DOI: 10.1016/j.schres.2014.04.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/04/2014] [Accepted: 04/11/2014] [Indexed: 02/04/2023]
Abstract
Multiple sclerosis is the leading nontraumatic cause of neurologic disability in young adults. The need to prevent neurodegeneration and promote repair in multiple sclerosis (MS) has gained increasing interest in the last decade leading to the search and development of pharmacological agents and non-pharmacologic strategies able to target not only the inflammatory but also the neurodegenerative component of the disease. This paper will provide an overview of the therapeutics currently employed in MS, with a focus on their potential neuroprotective effects and on the MRI methods employed to detect and monitor in-vivo neuroprotection and repair and the relevance of this information to schizophrenia investigation and treatment.
Collapse
|
179
|
Llufriu S, Sepúlveda M, Blanco Y, Marín P, Moreno B, Berenguer J, Gabilondo I, Martínez-Heras E, Sola-Valls N, Arnaiz JA, Andreu EJ, Fernández B, Bullich S, Sánchez-Dalmau B, Graus F, Villoslada P, Saiz A. Randomized placebo-controlled phase II trial of autologous mesenchymal stem cells in multiple sclerosis. PLoS One 2014; 9:e113936. [PMID: 25436769 PMCID: PMC4250058 DOI: 10.1371/journal.pone.0113936] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/29/2014] [Indexed: 12/23/2022] Open
Abstract
Objective Uncontrolled studies of mesenchymal stem cells (MSCs) in multiple sclerosis suggested some beneficial effect. In this randomized, double-blind, placebo-controlled, crossover phase II study we investigated their safety and efficacy in relapsing-remitting multiple sclerosis patients. Efficacy was evaluated in terms of cumulative number of gadolinium-enhancing lesions (GEL) on magnetic resonance imaging (MRI) at 6 months and at the end of the study. Methods Patients unresponsive to conventional therapy, defined by at least 1 relapse and/or GEL on MRI scan in past 12 months, disease duration 2 to 10 years and Expanded Disability Status Scale (EDSS) 3.0–6.5 were randomized to receive IV 1–2×106 bone-marrow-derived-MSCs/Kg or placebo. After 6 months, the treatment was reversed and patients were followed-up for another 6 months. Secondary endpoints were clinical outcomes (relapses and disability by EDSS and MS Functional Composite), and several brain MRI and optical coherence tomography measures. Immunological tests were explored to assess the immunomodulatory effects. Results At baseline 9 patients were randomized to receive MSCs (n = 5) or placebo (n = 4). One patient on placebo withdrew after having 3 relapses in the first 5 months. We did not identify any serious adverse events. At 6 months, patients treated with MSCs had a trend to lower mean cumulative number of GEL (3.1, 95% CI = 1.1–8.8 vs 12.3, 95% CI = 4.4–34.5, p = 0.064), and at the end of study to reduced mean GEL (−2.8±5.9 vs 3±5.4, p = 0.075). No significant treatment differences were detected in the secondary endpoints. We observed a non-significant decrease of the frequency of Th1 (CD4+ IFN-γ+) cells in blood of MSCs treated patients. Conclusion Bone-marrow-MSCs are safe and may reduce inflammatory MRI parameters supporting their immunomodulatory properties. ClinicalTrials.gov NCT01228266
Collapse
Affiliation(s)
- Sara Llufriu
- Center of Neuroimmunology, Service of Neurology, Hospital Clinic and Institut d′Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - María Sepúlveda
- Center of Neuroimmunology, Service of Neurology, Hospital Clinic and Institut d′Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Yolanda Blanco
- Center of Neuroimmunology, Service of Neurology, Hospital Clinic and Institut d′Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Pedro Marín
- Hemotherapy Service, CDB, Hospital Clínic, Barcelona, Spain
| | - Beatriz Moreno
- Center of Neuroimmunology, Service of Neurology, Hospital Clinic and Institut d′Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Joan Berenguer
- Service of Neurorradiology, Hospital Clinic and Institut d′Investigació Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Iñigo Gabilondo
- Center of Neuroimmunology, Service of Neurology, Hospital Clinic and Institut d′Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Eloy Martínez-Heras
- Center of Neuroimmunology, Service of Neurology, Hospital Clinic and Institut d′Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Nuria Sola-Valls
- Center of Neuroimmunology, Service of Neurology, Hospital Clinic and Institut d′Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | | | - Enrique J. Andreu
- Cell Therapy Area, Clinica Universitaria de Navarra, Pamplona, Spain
| | - Begoña Fernández
- Center of Neuroimmunology, Service of Neurology, Hospital Clinic and Institut d′Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Santi Bullich
- Center of Neuroimmunology, Service of Neurology, Hospital Clinic and Institut d′Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Bernardo Sánchez-Dalmau
- Center of Neuroimmunology, Service of Neurology, Hospital Clinic and Institut d′Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Service of Ophtalmology, Hospital Clinic, Barcelona, Spain
| | - Francesc Graus
- Center of Neuroimmunology, Service of Neurology, Hospital Clinic and Institut d′Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Pablo Villoslada
- Center of Neuroimmunology, Service of Neurology, Hospital Clinic and Institut d′Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Albert Saiz
- Center of Neuroimmunology, Service of Neurology, Hospital Clinic and Institut d′Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
180
|
Immunosuppressive capabilities of mesenchymal stromal cells are maintained under hypoxic growth conditions and after gamma irradiation. Cytotherapy 2014; 17:152-62. [PMID: 25453724 DOI: 10.1016/j.jcyt.2014.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 09/29/2014] [Accepted: 10/07/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND AIMS The discovery of regenerative and immunosuppressive capacities of mesenchymal stromal cells (MSCs) raises hope for patients with tissue-damaging or severe, treatment-refractory autoimmune disorders. We previously presented a method to expand human MSCs in a bioreactor under standardized Good Manufacturing Practice conditions. Now we characterized the impact of critical treatment conditions on MSCs with respect to immunosuppressive capabilities and proliferation. METHODS MSC proliferation and survival after γ irradiation were determined by 5-carboxyfluorescein diacetate N-succinimidyl ester and annexinV/4',6-diamidino-2-phenylindole (DAPI) staining, respectively. T-cell proliferation assays were used to assess the effect of γ irradiation, passaging, cryopreservation, post-thaw equilibration time and hypoxia on T-cell suppressive capacities of MSCs. Quantitative polymerase chain reaction and β-galactosidase staining served as tools to investigate differences between immunosuppressive and non-immunosuppressive MSCs. RESULTS γ irradiation of MSCs abrogated their proliferation while vitality and T-cell inhibitory capacity were preserved. Passaging and long cryopreservation time decreased the T-cell suppressive function of MSCs, and postthaw equilibration time of 5 days restored this capability. Hypoxic culture markedly increased MSC proliferation without affecting their T-cell-suppressive capacity and phenotype. Furthermore, T-cell suppressive MSCs showed higher CXCL12 expression and less β-galactosidase staining than non-suppressive MSCs. DISCUSSION We demonstrate that γ irradiation is an effective strategy to abrogate MSC proliferation without impairing the cells' immunosuppressive function. Hypoxia significantly enhanced MSC expansion, allowing for transplantation of MSCs with low passage number. In summary, our optimized MSC expansion protocol successfully addressed the issues of safety and preservation of immunosuppressive MSC function after ex vivo expansion for therapeutic purposes.
Collapse
|
181
|
Therapeutic approaches to disease modifying therapy for multiple sclerosis in adults: An Australian and New Zealand perspective Part 2 New and emerging therapies and their efficacy. J Clin Neurosci 2014; 21:1847-56. [DOI: 10.1016/j.jocn.2014.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/28/2014] [Indexed: 12/16/2022]
|
182
|
Bone marrow stromal cells as immunomodulators. A primer for dermatologists. J Dermatol Sci 2014; 77:11-20. [PMID: 25476233 DOI: 10.1016/j.jdermsci.2014.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/29/2014] [Accepted: 10/15/2014] [Indexed: 02/07/2023]
Abstract
Bone marrow stromal cells (BMSCs, also known as mesenchymal stem cells or MSCs) represent a unique cell population in the bone marrow with a long-known function to support hematopoiesis and replace skeletal tissues. The recent discovery that BMSCs also possess potent immunoregulatory features attracted a great deal of attention from stem cell biologists, immunologists and clinicians of different specialties worldwide. Initial clinical experience along with several animal models suggested that intravenously delivered BMSCs are able to regulate a wide variety of host immune cells and act in a way that is beneficial for the recipient in a variety of diseases. The role of the present review is to give a short introduction to the biology of BMSCs and to summarize our current understanding of how BMSCs modulate the immune system with special emphasis on available clinical data. Considering the audience of this journal we will also attempt to guide dermatologists in choosing the right skin conditions where BMSCs might be considered as a therapeutic alternative.
Collapse
|
183
|
Fransson M, Piras E, Wang H, Burman J, Duprez I, Harris RA, LeBlanc K, Magnusson PU, Brittebo E, Loskog ASI. Intranasal delivery of central nervous system-retargeted human mesenchymal stromal cells prolongs treatment efficacy of experimental autoimmune encephalomyelitis. Immunology 2014; 142:431-41. [PMID: 24588452 DOI: 10.1111/imm.12275] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/17/2014] [Accepted: 02/17/2014] [Indexed: 12/17/2022] Open
Abstract
Treatment with mesenchymal stromal cells (MSCs) is currently of interest for a number of diseases including multiple sclerosis. MSCs are known to target inflamed tissues, but in a therapeutic setting their systemic administration will lead to few cells reaching the brain. We hypothesized that MSCs may target the brain upon intranasal administration and persist in central nervous system (CNS) tissue if expressing a CNS-targeting receptor. To demonstrate proof of concept, MSCs were genetically engineered to express a myelin oligodendrocyte glycoprotein-specific receptor. Engineered MSCs retained their immunosuppressive capacity, infiltrated into the brain upon intranasal cell administration, and were able to significantly reduce disease symptoms of experimental autoimmune encephalomyelitis (EAE). Mice treated with CNS-targeting MSCs were resistant to further EAE induction whereas non-targeted MSCs did not give such persistent effects. Histological analysis revealed increased brain restoration in engineered MSC-treated mice. In conclusion, MSCs can be genetically engineered to target the brain and prolong therapeutic efficacy in an EAE model.
Collapse
Affiliation(s)
- Moa Fransson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Abstract
The modern treatment era for multiple sclerosis (MS) began in 1993 with the approval of the first disease-modifying agent. Since then the field has greatly expanded, with 10 therapies currently approved to treat MS. These treatments are effective to reduce relapses and changes on MRI, and slow disability. However, despite these medications some patients continue to have exacerbations, accumulate disability, and develop progressive disease due to partial effectiveness. New molecules with novel mechanisms of action and targets are being explored. Hopefully these agents will yield even greater efficacy without significant safety concerns. As more aggressive therapies are available to treat MS, the goals and expectations of treatment are also likely to change. Some of the emerging therapies, including alemtuzumab, daclizumab, rituximab, ocrelizumab, laquinimod, estriol, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins), vitamin D, and stem cell transplantation, will be discussed in this chapter. In the future, therapies with different mechanisms may be combined, but this will need to be evaluated in clinical trials. Neuroprotection and repair definitely warrant further study. The future of MS treatment is very exciting, especially as our armamentarium expands.
Collapse
|
185
|
Srijaya TC, Ramasamy TS, Kasim NHA. Advancing stem cell therapy from bench to bedside: lessons from drug therapies. J Transl Med 2014; 12:243. [PMID: 25182194 PMCID: PMC4163166 DOI: 10.1186/s12967-014-0243-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 08/26/2014] [Indexed: 12/20/2022] Open
Abstract
The inadequacy of existing therapeutic tools together with the paucity of organ donors have always led medical researchers to innovate the current treatment methods or to discover new ways to cure disease. Emergence of cell-based therapies has provided a new framework through which it has given the human world a new hope. Though relatively a new concept, the pace of advancement clearly reveals the significant role that stem cells will ultimately play in the near future. However, there are numerous uncertainties that are prevailing against the present setting of clinical trials related to stem cells: like the best route of cell administration, appropriate dosage, duration and several other applications. A better knowledge of these factors can substantially improve the effectiveness of disease cure or organ repair using this latest therapeutic tool. From a certain perspective, it could be argued that by considering certain proven clinical concepts and experience from synthetic drug system, we could improve the overall efficacy of cell-based therapies. In the past, studies on synthetic drug therapies and their clinical trials have shown that all the aforementioned factors have critical ascendancy over its therapeutic outcomes. Therefore, based on the knowledge gained from synthetic drug delivery systems, we hypothesize that by employing many of the clinical approaches from synthetic drug therapies to this new regenerative therapeutic tool, the efficacy of stem cell-based therapies can also be improved.
Collapse
Affiliation(s)
| | - Thamil Selvee Ramasamy
- />Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Noor Hayaty Abu Kasim
- />Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
186
|
Wang X, Kimbrel EA, Ijichi K, Paul D, Lazorchak AS, Chu J, Kouris NA, Yavanian GJ, Lu SJ, Pachter JS, Crocker SJ, Lanza R, Xu RH. Human ESC-derived MSCs outperform bone marrow MSCs in the treatment of an EAE model of multiple sclerosis. Stem Cell Reports 2014; 3:115-30. [PMID: 25068126 PMCID: PMC4110787 DOI: 10.1016/j.stemcr.2014.04.020] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 02/09/2023] Open
Abstract
Current therapies for multiple sclerosis (MS) are largely palliative, not curative. Mesenchymal stem cells (MSCs) harbor regenerative and immunosuppressive functions, indicating a potential therapy for MS, yet the variability and low potency of MSCs from adult sources hinder their therapeutic potential. MSCs derived from human embryonic stem cells (hES-MSCs) may be better suited for clinical treatment of MS because of their unlimited and stable supply. Here, we show that hES-MSCs significantly reduce clinical symptoms and prevent neuronal demyelination in a mouse experimental autoimmune encephalitis (EAE) model of MS, and that the EAE disease-modifying effect of hES-MSCs is significantly greater than that of human bone-marrow-derived MSCs (BM-MSCs). Our evidence also suggests that increased IL-6 expression by BM-MSCs contributes to the reduced anti-EAE therapeutic activity of these cells. A distinct ability to extravasate and migrate into inflamed CNS tissues may also be associated with the robust therapeutic effects of hES-MSCs on EAE. hES-MSCs show increased anti-EAE effects relative to adult human BM-MSCs hES-MSCs express fewer proinflammatory cytokines than BM-MSCs hES-MSCs enter the CNS more efficiently than BM-MSCs in EAE
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA ; ImStem Biotechnology, Inc., 400 Farmington Avenue, Farmington, CT 06030, USA
| | - Erin A Kimbrel
- Advanced Cell Technology, 33 Locke Drive, Marlborough, MA 01752, USA
| | - Kumiko Ijichi
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Debayon Paul
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Adam S Lazorchak
- ImStem Biotechnology, Inc., 400 Farmington Avenue, Farmington, CT 06030, USA
| | - Jianlin Chu
- Advanced Cell Technology, 33 Locke Drive, Marlborough, MA 01752, USA
| | - Nicholas A Kouris
- Advanced Cell Technology, 33 Locke Drive, Marlborough, MA 01752, USA
| | | | - Shi-Jiang Lu
- Advanced Cell Technology, 33 Locke Drive, Marlborough, MA 01752, USA
| | - Joel S Pachter
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Robert Lanza
- Advanced Cell Technology, 33 Locke Drive, Marlborough, MA 01752, USA
| | - Ren-He Xu
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA ; ImStem Biotechnology, Inc., 400 Farmington Avenue, Farmington, CT 06030, USA ; Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
187
|
Clinical applications of mesenchymal stem cells in chronic diseases. Stem Cells Int 2014; 2014:306573. [PMID: 24876848 PMCID: PMC4021690 DOI: 10.1155/2014/306573] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 12/13/2022] Open
Abstract
Extraordinary progress in understanding several key features of stem cells has been made in the last ten years, including definition of the niche, and identification of signals regulating mobilization and homing as well as partial understanding of the mechanisms controlling self-renewal, commitment, and differentiation. This progress produced invaluable tools for the development of rational cell therapy protocols that have yielded positive results in preclinical models of genetic and acquired diseases and, in several cases, have entered clinical experimentation with positive outcome. Adult mesenchymal stem cells (MSCs) are nonhematopoietic cells with multilineage potential to differentiate into various tissues of mesodermal origin. They can be isolated from bone marrow and other tissues and have the capacity to extensively proliferate in vitro. Moreover, MSCs have also been shown to produce anti-inflammatory molecules which can modulate humoral and cellular immune responses. Considering their regenerative potential and immunoregulatory effect, MSC therapy is a promising tool in the treatment of degenerative, inflammatory, and autoimmune diseases. It is obvious that much work remains to be done to increase our knowledge of the mechanisms regulating development, homeostasis, and tissue repair and thus to provide new tools to implement the efficacy of cell therapy trials.
Collapse
|
188
|
Abstract
The last 20 years have seen major progress in the treatment of relapsing-remitting multiple sclerosis (RRMS) using a variety of drugs targeting immune dysfunction. In contrast, all clinical trials of such agents in primary progressive multiple sclerosis (PPMS) have failed and there is limited evidence of their efficacy in secondary progressive disease. Evolving concepts of the complex interplay between inflammatory and neurodegenerative processes across the course of multiple sclerosis (MS) may explain this discrepancy. This paper will provide an up-to-date overview of the rationale and results of the published clinical trials that have sought to alter the trajectory of both primary and secondary MS, considering studies involving drugs with a primary immune target and also those aiming for neuroprotection. Future areas of study will be discussed, building on these results combined with the experience of treating RRMS and new concepts emerging from laboratory science and animal models.
Collapse
Affiliation(s)
- Giancarlo Comi
- Department of Neurology, Università Vita-Salute San Raffaele, Italy
| |
Collapse
|
189
|
Tang K, Xiao X, Liu D, Shen Y, Chen Y, Wang Y, Li B, Yu F, Ma D, Yan J, Liang H, Yang D, Weng J. Autografting of bone marrow mesenchymal stem cells alleviates streptozotocin‑induced diabetes in miniature pigs: real-time tracing with MRI in vivo. Int J Mol Med 2014; 33:1469-76. [PMID: 24714958 PMCID: PMC4055443 DOI: 10.3892/ijmm.2014.1729] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 03/31/2014] [Indexed: 02/03/2023] Open
Abstract
Cellular replacement therapy for diabetes mellitus (DM) has received much attention. In this study, we investigated the effect of transplantation of autologous bone marrow-derived mesenchymal stem cells (ABMSCs) in streptozotocin (STZ)-induced diabetic miniature pigs. Miniature pig BMSCs were cultured, labeled with superparamagnetic iron oxide (SPIO) and transplanted into the pancreas of diabetic miniature pigs through targeted intervention. Blood glucose levels, intravenous and oral glucose tolerance test (OGTT), serum insulin, C-peptide and islets histology were analyzed. These transplanted cells were then identified by magnetic resonance imaging (MRI). The results showed that transplantation of ABMSCs reversed STZ-induced diabetes in miniature pigs. Blood glucose levels, intravenous, OGTT, serum insulin and C-peptide were significantly recovered in the diabetic minipigs with the autologous BMSC (DMAB) transplantation group. In addition, the number of islets was significantly increased in this group compared to the diabetic minipig control (DMC) group with conventional therapy. These data suggested the implantation of autologous BMSCs for type 1 diabetes treatment can partially restore the function of islet β cells and maintain blood glucose homeostasis. Transplanted autologous BMSCs may improve islet repairing by differentiating for new islets and change pancreatic microcirculation and be identified in a real-time manner using MRI in vivo.
Collapse
Affiliation(s)
- Kuanxiao Tang
- Department of Endocrinology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xiaoyan Xiao
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Dayue Liu
- Department of Vascular Surgery and Radiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yunfeng Shen
- Department of Endocrinology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yingming Chen
- Department of Vascular Surgery and Radiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yu Wang
- Department of Vascular Surgery and Radiology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Baoying Li
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Fei Yu
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Dedong Ma
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jinhua Yan
- Department of Endocrinology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Hua Liang
- Department of Endocrinology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Daizhi Yang
- Department of Endocrinology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jianping Weng
- Department of Endocrinology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
190
|
Abstract
Multiple sclerosis (MS) is a presumed autoimmune disorder of the central nervous system, resulting in inflammatory demyelination and axonal and neuronal injury. New diagnostic criteria that incorporate magnetic resonance imaging have resulted in earlier and more accurate diagnosis of MS. Several immunomodulatory and immunosuppressive therapeutic agents are available for relapsing forms of MS, which allow individualized treatment based upon the benefits and risks. Disease-modifying therapies introduced in the 1990s, the beta-interferons and glatiramer acetate, have an established track record of efficacy and safety, although they require administration via injection. More recently, monoclonal antibodies have been engineered to act through specific mechanisms such as blocking alpha-4 integrin interactions (natalizumab) or lysing cells bearing specific markers, for example CD52 (alemtuzumab) or CD20 (ocrelizumab and ofatumumab). These agents can be highly efficacious, but sometimes have serious potential complications (natalizumab is associated with progressive multifocal leukoencephalopathy; alemtuzumab is associated with the development of new autoimmune disorders). Three new oral therapies (fingolimod, teriflunomide and dimethyl fumarate, approved for MS treatment from 2010 onwards) provide efficacy, tolerability and convenience; however, as yet, there are no long-term postmarketing efficacy and safety data in a general MS population. Because of this lack of long-term data, in some cases, therapy is currently initiated with the older, safer injectable medications, but patients are monitored closely with the plan to switch therapies if there is any indication of a suboptimal response or intolerance or lack of adherence to the initial therapy. For patients with MS who present with highly inflammatory and potentially aggressive disease, the benefit-to-risk ratio may support initiating therapy using a drug with greater potential efficacy despite greater risks (e.g. fingolimod or natalizumab if JC virus antibody-negative). The aim of this review is to discuss the clinical benefits, mechanisms of action, safety profiles and monitoring strategies of current MS disease-modifying therapies in clinical practice and of those expected to enter the market in the near future.
Collapse
Affiliation(s)
- A H Cross
- Department of Neurology, Washington University, St. Louis, MO, USA
| | | |
Collapse
|
191
|
Mancías-Guerra C, Marroquín-Escamilla AR, González-Llano O, Villarreal-Martínez L, Jaime-Pérez JC, García-Rodríguez F, Valdés-Burnes SL, Rodríguez-Romo LN, Barrera-Morales DC, Sánchez-Hernández JJ, Cantú-Rodríguez OG, Gutiérrez-Aguirre CH, Gómez-De León A, Elizondo-Riojas G, Salazar-Riojas R, Gómez-Almaguer D. Safety and tolerability of intrathecal delivery of autologous bone marrow nucleated cells in children with cerebral palsy: an open-label phase I trial. Cytotherapy 2014; 16:810-20. [PMID: 24642016 DOI: 10.1016/j.jcyt.2014.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND AIMS Cerebral palsy (CP) is related to severe perinatal hypoxia with permanent brain damage in nearly 50% of surviving preterm infants. Cell therapy is a potential therapeutic option for CP by several mechanisms, including immunomodulation through cytokine and growth factor secretion. METHODS In this phase I open-label clinical trial, 18 pediatric patients with CP were included to assess the safety of autologous bone marrow-derived total nucleated cell (TNC) intrathecal and intravenous injection after stimulation with granulocyte colony-stimulating factor. Motor, cognitive, communication, personal-social and adaptive areas were evaluated at baseline and 1 and 6 months after the procedure through the use of the Battelle Developmental Inventory. Magnetic resonance imaging was performed at baseline and 6 months after therapy. This study was registered in ClinicaTrials.gov (NCT01019733). RESULTS A median of 13.12 × 10(8) TNCs (range, 4.83-53.87) including 10.02 × 10(6) CD34+ cells (range, 1.02-29.9) in a volume of 7 mL (range, 4-10.5) was infused intrathecally. The remaining cells from the bone marrow aspirate were administered intravenously; 6.01 × 10(8) TNCs (range, 1.36-17.85), with 3.39 × 10(6) cells being CD34+. Early adverse effects included headache, vomiting, fever and stiff neck occurred in three patients. No serious complications were documented. An overall 4.7-month increase in developmental age according to the Battelle Developmental Inventory, including all areas of evaluation, was observed (±SD 2.63). No MRI changes at 6 months of follow-up were found. CONCLUSIONS Subarachnoid placement of autologous bone marrow-derived TNC in children with CP is a safe procedure. The results suggest a possible increase in neurological function.
Collapse
Affiliation(s)
- Consuelo Mancías-Guerra
- Hematology Service, Internal Medicine Department, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México.
| | - Alma Rosa Marroquín-Escamilla
- Neuropediatrics Department, Hospital Universitario "Dr. José Eleuterio González," Universidad Autónoma de Nuevo León, Monterrey, México
| | - Oscar González-Llano
- Hematology Service, Internal Medicine Department, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - Laura Villarreal-Martínez
- Hematology Service, Internal Medicine Department, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - José Carlos Jaime-Pérez
- Hematology Service, Internal Medicine Department, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - Fernando García-Rodríguez
- Hematology Service, Internal Medicine Department, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - Sagrario Lisete Valdés-Burnes
- Hematology Service, Internal Medicine Department, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - Laura Nely Rodríguez-Romo
- Hematology Service, Internal Medicine Department, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - Dinorah Catalina Barrera-Morales
- Hematology Service, Internal Medicine Department, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | | | - Olga Graciela Cantú-Rodríguez
- Hematology Service, Internal Medicine Department, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - César Homero Gutiérrez-Aguirre
- Hematology Service, Internal Medicine Department, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - Andrés Gómez-De León
- Hematology Service, Internal Medicine Department, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - Guillermo Elizondo-Riojas
- Radiology and Imaging Department, Hospital Universitario "Dr. José Eleuterio González," Universidad Autónoma de Nuevo León, Monterrey, México
| | - Rosario Salazar-Riojas
- Hematology Service, Internal Medicine Department, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - David Gómez-Almaguer
- Hematology Service, Internal Medicine Department, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| |
Collapse
|
192
|
Reynolds G, Cooles FAH, Isaacs JD, Hilkens CMU. Emerging immunotherapies for rheumatoid arthritis. Hum Vaccin Immunother 2014; 10:822-37. [PMID: 24535556 DOI: 10.4161/hv.27910] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Novel treatments in development for rheumatoid arthritis target 3 broad areas: cytokines, cells, and signaling pathways. Therapies from each domain share common advantages (for example previously demonstrated efficacy, potential long-term immunomodulation, and oral administration respectively) that have stimulated research in each area but also common obstacles to their development. In this review recent progress in each area will be discussed alongside the factors that have impeded their path to clinical use.
Collapse
Affiliation(s)
- Gary Reynolds
- Institute of Cellular Medicine; Musculoskeletal Research Group; Newcastle University; Newcastle upon Tyne, Tyne and Wear UK
| | - Faye A H Cooles
- Institute of Cellular Medicine; Musculoskeletal Research Group; Newcastle University; Newcastle upon Tyne, Tyne and Wear UK
| | - John D Isaacs
- Institute of Cellular Medicine; Musculoskeletal Research Group; Newcastle University; Newcastle upon Tyne, Tyne & Wear UK
| | - Catharien M U Hilkens
- Institute of Cellular Medicine; Musculoskeletal Research Group; Newcastle University; Newcastle upon Tyne, Tyne & Wear UK
| |
Collapse
|
193
|
Chen X, Gan Y, Li W, Su J, Zhang Y, Huang Y, Roberts AI, Han Y, Li J, Wang Y, Shi Y. The interaction between mesenchymal stem cells and steroids during inflammation. Cell Death Dis 2014; 5:e1009. [PMID: 24457953 PMCID: PMC4040685 DOI: 10.1038/cddis.2013.537] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 10/31/2013] [Indexed: 01/18/2023]
Abstract
Mesenchymal stem cells (MSCs) are believed to exert their regenerative effects through differentiation and modulation of inflammatory responses. However, the relationship between the severity of inflammation and stem cell-mediated tissue repair has not been formally investigated. In this study, we applied different concentrations of dexamethasone (Dex) to anti-CD3-activated splenocyte cultured with or without MSCs. As expected, Dex exhibited a classical dose-dependent inhibition of T-cell proliferation. Surprisingly, although MSCs also blocked T-cell proliferation, the presence of Dex unexpectedly showed a dose-dependent reversion of T-cell proliferation. This effect of Dex was found to be exerted through interfering STAT1 phosphorylation-prompted expression of inducible nitric oxide synthase (iNOS). Interestingly, inflammation-induced chemokines in MSCs was unaffected. To test the role of inflammation severity in stem cell-mediated tissue repair, we employed mice with carbon tetrachloride-induced advanced liver fibrosis and found that although MSCs alone were effective, concurrent administration of Dex abrogated the therapeutic effects of MSCs on fibrin deposition, serum levels of bilirubin, albumin, and aminotransferases, as well as T-lymphocyte infiltration, especially IFN-γ(+)CD4(+) and IL-17A(+)CD4(+)T cells. Likewise, iNOS(-/-) MSCs, which produce chemokines but not nitric oxide under inflammatory conditions, are ineffective in treating advanced liver fibrosis. Therefore, inflammation has a critical role in MSC-mediated tissue repair. In addition, concomitant application of MSCs with steroids should be avoided.
Collapse
Affiliation(s)
- X Chen
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Gan
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - W Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Su
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Huang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - A I Roberts
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School-Rutgers Biomedical and Health Sciences, New Brunswick, NJ, USA
| | - Y Han
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Shi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School-Rutgers Biomedical and Health Sciences, New Brunswick, NJ, USA
| |
Collapse
|
194
|
Transplantation of autologous adipose stem cells lacks therapeutic efficacy in the experimental autoimmune encephalomyelitis model. PLoS One 2014; 9:e85007. [PMID: 24465465 PMCID: PMC3897387 DOI: 10.1371/journal.pone.0085007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 11/27/2013] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS), characterized by chronic inflammation, demyelination, and axonal damage, is a complicated neurological disease of the human central nervous system. Recent interest in adipose stromal/stem cell (ASCs) for the treatment of CNS diseases has promoted further investigation in order to identify the most suitable ASCs. To investigate whether MS affects the biologic properties of ASCs and whether autologous ASCs from MS-affected sources could serve as an effective source for stem cell therapy, cells were isolated from subcutaneous inguinal fat pads of mice with established experimental autoimmune encephalomyelitis (EAE), a murine model of MS. ASCs from EAE mice and their syngeneic wild-type mice were cultured, expanded, and characterized for their cell morphology, surface antigen expression, osteogenic and adipogenic differentiation, colony forming units, and inflammatory cytokine and chemokine levels in vitro. Furthermore, the therapeutic efficacy of the cells was assessed in vivo by transplantation into EAE mice. The results indicated that the ASCs from EAE mice displayed a normal phenotype, typical MSC surface antigen expression, and in vitro osteogenic and adipogenic differentiation capacity, while their osteogenic differentiation capacity was reduced in comparison with their unafflicted control mice. The ASCs from EAE mice also demonstrated increased expression of pro-inflammatory cytokines and chemokines, specifically an elevation in the expression of monocyte chemoattractant protein-1 and keratin chemoattractant. In vivo, infusion of wild type ASCs significantly ameliorate the disease course, autoimmune mediated demyelination and cell infiltration through the regulation of the inflammatory responses, however, mice treated with autologous ASCs showed no therapeutic improvement on the disease progression.
Collapse
|
195
|
Siciliano C, Ibrahim M, Scafetta G, Napoletano C, Mangino G, Pierelli L, Frati G, De Falco E. Optimization of the isolation and expansion method of human mediastinal-adipose tissue derived mesenchymal stem cells with virally inactivated GMP-grade platelet lysate. Cytotechnology 2013; 67:165-74. [PMID: 24306273 DOI: 10.1007/s10616-013-9667-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 11/08/2013] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are adult multipotent cells currently employed in several clinical trials due to their immunomodulating, angiogenic and repairing features. The adipose tissue is certainly considered an eligible source of MSCs. Recently, putative adipose tissue derived MSCs (ADMSCs) have been isolated from the mediastinal depots. However, very little is known about the properties, the function and the potential of human mediastinal ADMSCs (hmADMSCs). However, the lack of standardized methodologies to culture ADMSCs prevents comparison across. Herein for the first time, we report a detailed step by step description to optimize the isolation and the expansion methodology of hmADMSCs using a virally inactivated good manufacturing practice (GMP)-grade platelet lysate, highlighting the critical aspects of the procedure and providing useful troubleshooting suggestions. Our approach offers a reproducible system which could provide standardization across laboratories. Moreover, our system is time and cost effective, and it can provide a reproducible source of adipose stem cells to enable future studies to unravel new insights regard this promising stem cell population.
Collapse
Affiliation(s)
- Camilla Siciliano
- Department of Medical-Surgical Science and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome "Sapienza", C.so della Repubblica 79, 04100, Latina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
196
|
Hammadi AA, Marino A, Farhan S. Clinical response of 277 patients with spinal cord injury to stem cell therapy in iraq. Int J Stem Cells 2013; 5:76-8. [PMID: 24298358 DOI: 10.15283/ijsc.2012.5.1.76] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2012] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Spinal cord injury is a common neurological problem secondary to car accidents, war injuries and other causes, it may lead to varying degrees of neurological disablement, and apart from physiotherapy there is no available treatment to regain neurological function loss. Our aim is to find a new method using autologous hematopoietic stem cells to gain some of the neurologic functions lost after spinal cord injury. METHODS AND RESULTS 277 patients suffering from spinal cord injury were submitted to an intrathecally treatment with peripheral stem cells. The cells were harvested from the peripheral blood after a treatment with G-CSF and then concentrated to 4∼ 6 ml. 43% of the patients improved; ASIA score shifted from A to B in 88 and from A to C in 32. The best results were achieved in patients treated within one year from the injury. CONCLUSIONS Since mesenchymal cells increase in the peripheral blood after G-CSF stimulation, a peripheral blood harvest seems easier and cheaper than mesenchymal cell cultivation prior to injection. It seems reasonable treatment for spinal cord injury.
Collapse
|
197
|
Hammadi AMA, Marino A, Farhan S. Clinical outcome of 50 progressive multiple sclerosis patients treated with cellular therapy in iraq. Int J Stem Cells 2013; 4:113-5. [PMID: 24298343 DOI: 10.15283/ijsc.2011.4.2.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2011] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Multiple Sclerosis is a disease characterized by multifocal areas of demyelination in the brain and spinal cord, with associated inflammatory cell infiltrates, reactive gliosis, and axonal degeneration. It typically presents in young adults with episodic neurologic dysfunction, our aim is to find new simple method to treat multiple sclerosis by hematopoietic stem cells derived from peripheral blood. METHODS AND RESULTS 50 patients suffering from multiple sclerosis worsening despite pharmacological treatment were treated by means of several intrathecal injections of peripheral blood cells harvested by aphaeresis after G-CSF(granulocyte colony stimulating factor) treatment. 24 patients (48% ) had a reduction of EDSS score. 8 patients had a relapse, but it was milder than usual and more easily controlled by cortisone. CONCLUSIONS Since mesenchymal cells increase in the peripheral blood after G-CSF stimulation, a peripheral blood harvest seems easier and cheaper than mesenchymal cells cultivation prior to the injection. It seems a reasonable treatment for progressive multiple sclerosis.
Collapse
|
198
|
Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med 2013; 45:e54. [PMID: 24232253 PMCID: PMC3849579 DOI: 10.1038/emm.2013.94] [Citation(s) in RCA: 849] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/22/2013] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are partially defined by their ability to differentiate into tissues including bone, cartilage and adipose in vitro, but it is their trophic, paracrine and immunomodulatory functions that may have the greatest therapeutic impact in vivo. Unlike pharmaceutical treatments that deliver a single agent at a specific dose, MSCs are site regulated and secrete bioactive factors and signals at variable concentrations in response to local microenvironmental cues. Significant progress has been made in understanding the biochemical and metabolic mechanisms and feedback associated with MSC response. The anti-inflammatory and immunomodulatory capacity of MSC may be paramount in the restoration of localized or systemic conditions for normal healing and tissue regeneration. Allogeneic MSC treatments, categorized as a drug by regulatory agencies, have been widely pursued, but new studies demonstrate the efficacy of autologous MSC therapies, even for individuals affected by a disease state. Safety and regulatory concerns surrounding allogeneic cell preparations make autologous and minimally manipulated cell therapies an attractive option for many regenerative, anti-inflammatory and autoimmune applications.
Collapse
|
199
|
Intrathecal Mesenchymal Stem Cell Therapy in Multiple Sclerosis: A Follow-Up Study for Five Years After Injection. ARCHIVES OF NEUROSCIENCE 2013. [DOI: 10.5812/archneurosci.13687] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
200
|
Jung S, Panchalingam KM, Wuerth RD, Rosenberg L, Behie LA. Large-scale production of human mesenchymal stem cells for clinical applications. Biotechnol Appl Biochem 2013; 59:106-20. [PMID: 23586791 DOI: 10.1002/bab.1006] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/30/2012] [Indexed: 02/06/2023]
Abstract
Human mesenchymal stem cells (hMSCs) have many potential applications in tissue engineering and regenerative medicine. Currently, hMSCs are generated through conventional static adherent cultures in the presence of fetal bovine serum (FBS) for clinical applications (e.g., multiple sclerosis). However, these methods are not appropriate to meet the expected future demand for quality-assured hMSCs for human therapeutic use. Hence, it is imperative to develop an effective hMSC production system, which should be controllable, reproducible, and scalable. To this end, efforts have been made by several international research groups to develop (i) alternative media either by replacing FBS with human-sourced supplements (such as human serum or platelet lysate) or by identifying defined serum-free formulations consisting of key growth/attachment factors, and (ii) controlled bioreactor protocols. In this regard, we review here current hMSC production technologies and future perspectives toward efficient methods for the generation of clinically relevant numbers of hMSC therapeutics.
Collapse
Affiliation(s)
- Sunghoon Jung
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|