151
|
Ansari MY, Khan NM, Ahmad N, Green J, Novak K, Haqqi TM. Genetic Inactivation of ZCCHC6 Suppresses Interleukin-6 Expression and Reduces the Severity of Experimental Osteoarthritis in Mice. Arthritis Rheumatol 2019; 71:583-593. [PMID: 30302948 DOI: 10.1002/art.40751] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/03/2018] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Cytokine expression is tightly regulated posttranscriptionally, but high levels of interleukin-6 (IL-6) in patients with osteoarthritis (OA) indicate that regulatory mechanisms are disrupted in this disorder. The enzyme ZCCHC6 (zinc-finger CCHC domain-containing protein 6; TUT-7) has been implicated in posttranscriptional regulation of inflammatory cytokine expression, but its role in OA pathogenesis is unknown. The present study was undertaken to investigate whether ZCCHC6 directs the expression of IL-6 and influences OA pathogenesis in vivo. METHODS Human and mouse chondrocytes were stimulated with recombinant IL-1β. Expression of ZCCHC6 in human chondrocytes was knocked down using small interfering RNAs. IL-6 transcript stability was determined by actinomycin D chase, and 3'-uridylation of microRNAs was determined by deep sequencing. Zcchc6-/- mice were produced by gene targeting. OA was surgically induced in the knee joints of mice, and disease severity was scored using a semiquantitative grading system. RESULTS ZCCHC6 was markedly up-regulated in damaged cartilage from human OA patients and from wild-type mice with surgically induced OA. Overexpression of ZCCHC6 induced the expression of IL-6, and its knockdown reduced IL-6 transcript stability and IL-1β-induced IL-6 expression in chondrocytes. Reintroduction of Zcchc6 in Zcchc6-/- mouse chondrocytes rescued the IL-1β-induced IL-6 expression. Knockdown of ZCCHC6 reduced the population of micro-RNA 26b (miR-26b) with 3'-uridylation by 60%. Zcchc6-/- mice with surgically induced OA produced low levels of IL-6 and exhibited reduced cartilage damage and synovitis in the joints. CONCLUSION These findings indicate that ZCCHC6 enhances IL-6 expression in chondrocytes through transcript stabilization and by uridylating miR-26b, which abrogates repression of IL-6. Inhibition of IL-6 expression and significantly reduced OA severity in Zcchc6-/- mice identify ZCCHC6 as a novel therapeutic target to inhibit disease pathogenesis.
Collapse
Affiliation(s)
| | | | - Nashrah Ahmad
- Northeast Ohio Medical University, Rootstown, and Kent State University, Kent, Ohio
| | | | | | | |
Collapse
|
152
|
Wang C, Yang Y, Zhang Y, Liu J, Yao Z, Zhang C. Protective effects of metformin against osteoarthritis through upregulation of SIRT3-mediated PINK1/Parkin-dependent mitophagy in primary chondrocytes. Biosci Trends 2018; 12:605-612. [PMID: 30584213 DOI: 10.5582/bst.2018.01263] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mitochondrial damage is involved in the pathogenesis of osteoarthritis. Metformin, one of the most common prescriptions for patients with type 2 diabetes, can reportedly activate Sirtuin 3 (SIRT3) expression which protects mitochondria from oxidative stress. In this study, we investigated the inhibitory property of metformin on mitochondrial damage by focusing on the interleukin-1 beta (IL-1β)-stimulated osteoarthritis model by using primary murine chondrocytes. Our results demonstrated that SIRT3 was downregulated in chondrocytes under IL-1β stimulation, where its expression was positively correlated with mitochondrial damage and reactive oxygen species (ROS) production. Metformin treatment upregulated SIRT3 expression and mitigated loss of cell viability and decreased the generation of mitochondria-induced ROS in chondrocytes stimulated with IL-1β. Metformin also attenuated IL-1β-induced expressions of catabolic genes such as matrix metalloproteinase-3 (MMP3) and MMP13 and enhanced the anabolic indicator Collagen Ⅱ. These effects were mediated by phosphatase and tensin homolog (PTEN)-induced putative kinase protein 1 (PINK1)/Parkin-dependent mitophagy and the autophagic elimination of damaged mitochondria. Further, the SIRT3 inhibitor 3-TYP effectively inhibited the initiation of mitophagy, as decreased expression of PINK1 and Parkin, decreased the LC3II/LC3I, enhanced the expression of MMP3 and MMP13, and decreased the expression of Collagen Ⅱ. Overall, our findings provide evidence that metformin suppresses IL-1β-induced oxidative and osteoarthritis-like inflammatory changes by enhancing the SIRT3/PINK1/Parkin signaling pathway, thereby indicating metformin's potential in prevention and treatment of osteoarthritic joint disease.
Collapse
Affiliation(s)
- Chenzhong Wang
- Department of Orthopedic surgery, Zhongshan Hospital, Fudan University
| | - Yi Yang
- Department of Orthopedic surgery, Zhongshan Hospital, Fudan University
| | - Yueqi Zhang
- Department of Orthopedic surgery, Zhongshan Hospital, Fudan University
| | - Jinyu Liu
- Department of Orthopedic surgery, Zhongshan Hospital, Fudan University
| | - Zhenjun Yao
- Department of Orthopedic surgery, Zhongshan Hospital, Fudan University
| | - Chi Zhang
- Department of Orthopedic surgery, Zhongshan Hospital, Fudan University
| |
Collapse
|
153
|
Chen LY, Wang Y, Terkeltaub R, Liu-Bryan R. Activation of AMPK-SIRT3 signaling is chondroprotective by preserving mitochondrial DNA integrity and function. Osteoarthritis Cartilage 2018; 26:1539-1550. [PMID: 30031925 PMCID: PMC6202232 DOI: 10.1016/j.joca.2018.07.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/11/2018] [Accepted: 07/02/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE In osteoarthritis (OA), articular chondrocytes manifest mitochondrial damage, including mitochondrial DNA 4977-bp (mtDNA4977) deletion that impairs mitochondrial function. OA chondrocytes have decreased activity of AMPK, an energy biosensor that promotes mitochondrial biogenesis. Here, we tested if pharmacologic AMPK activation, via downstream activation of predominately mitochondrially localized sirtuin 3 (SIRT3), reverses existing decreases in mitochondrial DNA (mtDNA) integrity and function in human OA chondrocytes and limits mouse knee OA development. DESIGN We assessed mtDNA integrity and function including the common mtDNA4977 deletion and mtDNA content, mitochondrial reactive oxygen species (mtROS) generation, oxygen consumption and intracellular ATP levels. Phosphorylation of AMPKα, expression and activity of SIRT3, acetylation and expression of the mitochondrial antioxidant enzyme SOD2 and DNA repair enzyme 8-oxoguanine glycosylase (OGG1), and expression of subunits of mitochondrial respiratory complexes were examined. We assessed effect of pharmacologic activation of AMPK on age-related spontaneous mouse knee OA. RESULTS The mtDNA4977 deletion was detected in both OA chondrocytes and menadione-treated normal chondrocytes, associated with increased mtROS, decreased SIRT3, and increased acetylation of SOD2 and OGG1. AMPKα1 deficient chondrocytes exhibited significantly reduced SIRT3 activity. AMPK pharmacologic activation attenuated existing mtDNA4977 deletion and improved mitochondrial functions in OA chondrocytes via SIRT3 by reducing acetylation and increasing expression of SOD2 and OGG1, and limited aging-associated mouse knee OA development and progression. CONCLUSIONS AMPK activation, via SIRT3, limits oxidative stress and improves mtDNA integrity and function in OA chondrocytes. These effects likely contribute to chondroprotective effects of AMPK activity.
Collapse
Affiliation(s)
| | | | - Robert Terkeltaub
- VA San Diego Healthcare System, San Diego, CA,Dept. of Medicine, UC San Diego
| | - Ru Liu-Bryan
- VA San Diego Healthcare System, San Diego, CA,Dept. of Medicine, UC San Diego,To Whom Correspondence should be addressed: Ru Liu-Bryan PhD, VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA 92161. Telephone: 858 552 8585. Fax: 858 552 7425,
| |
Collapse
|
154
|
Zhang Z, Xu T, Chen J, Shao Z, Wang K, Yan Y, Wu C, Lin J, Wang H, Gao W, Zhang X, Wang X. Parkin-mediated mitophagy as a potential therapeutic target for intervertebral disc degeneration. Cell Death Dis 2018; 9:980. [PMID: 30250268 PMCID: PMC6155159 DOI: 10.1038/s41419-018-1024-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/26/2018] [Accepted: 09/03/2018] [Indexed: 12/11/2022]
Abstract
Intervertebral disc degeneration (IDD) is a complicated pathological condition blamed for low back pain. Mitochondrion is of vital importance for cellular homeostasis, and mitochondrial dysfunction is considered to be one of the major causes of cellular damage. Mitophagy is a cellular process to eliminate impaired mitochondria and showed protective effects in various diseases; however, its role in IDD is still not clear. Here, we explore the role of Parkin-mediated mitophagy in IDD. In this study, we found that Parkin was upregulated in degenerative nucleus pulposus (NP) tissues in vivo as well as in TNF-α stimulated NP cells in vitro. Knockdown of Parkin by siRNA showed that Parkin is crucial for apoptosis and mitochondrion homeostasis in NP cells. Further study showed that upregulation of Parkin by salidroside may eliminate impaired mitochondria and promote the survival of NP cells through activation of mitophagy in vitro. In in vivo study, we found that salidroside could inhibit the apoptosis of NP cells and ameliorate the progression of IDD. These results suggested that Parkin is involved in the pathogenesis of IDD and may be a potential therapeutic target for IDD.
Collapse
Affiliation(s)
- Zengjie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou, 325027, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tianzhen Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou, 325027, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Third Affiliated Hospital and Ruian People's Hospital of Wenzhou Medical University, Wansong Road 108#, Ruian, Zhejiang Province, China
| | - Jiaoxiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou, 325027, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhenxuan Shao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou, 325027, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ke Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou, 325027, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yingchao Yan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou, 325027, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Congcong Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou, 325027, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jialiang Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou, 325027, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haoli Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou, 325027, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou, 325027, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou, 325027, Zhejiang Province, China. .,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China. .,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China. .,Chinese Orthopaedic Regenerative Medicine Society, Ruian, China.
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, West Xueyuan Road 109#, Wenzhou, 325027, Zhejiang Province, China. .,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China. .,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
156
|
Vinatier C, Domínguez E, Guicheux J, Caramés B. Role of the Inflammation-Autophagy-Senescence Integrative Network in Osteoarthritis. Front Physiol 2018; 9:706. [PMID: 29988615 PMCID: PMC6026810 DOI: 10.3389/fphys.2018.00706] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis is the most common musculoskeletal disease causing chronic disability in adults. Studying cartilage aging, chondrocyte senescence, inflammation, and autophagy mechanisms have identified promising targets and pathways with clinical translatability potential. In this review, we highlight the most recent mechanistic and therapeutic preclinical models of aging with particular relevance in the context of articular cartilage and OA. Evidence supporting the role of metabolism, nuclear receptors and transcription factors, cell senescence, and circadian rhythms in the development of musculoskeletal system degeneration assure further translational efforts. This information might be useful not only to propose hypothesis and advanced models to study the molecular mechanisms underlying joint degeneration, but also to translate our knowledge into novel disease-modifying therapies for OA.
Collapse
Affiliation(s)
- Claire Vinatier
- INSERM, UMR 1229, Regenerative Medicine and Skeleton, University of Nantes, ONIRIS, Nantes, France.,University of Nantes, UFR Odontologie, Nantes, France
| | - Eduardo Domínguez
- Biofarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jerome Guicheux
- INSERM, UMR 1229, Regenerative Medicine and Skeleton, University of Nantes, ONIRIS, Nantes, France.,University of Nantes, UFR Odontologie, Nantes, France.,CHU Nantes, PHU4 OTONN, Nantes, France
| | - Beatriz Caramés
- Grupo de Biología del Cartílago, Servicio de Reumatología. Instituto de Investigación Biomédica de A Coruña, Complexo Hospitalario Universitario de A Coruña, Sergas, A Coruña, Spain
| |
Collapse
|
158
|
Khan NM, Ahmad I, Haqqi TM. Nrf2/ARE pathway attenuates oxidative and apoptotic response in human osteoarthritis chondrocytes by activating ERK1/2/ELK1-P70S6K-P90RSK signaling axis. Free Radic Biol Med 2018; 116:159-171. [PMID: 29339024 PMCID: PMC5815915 DOI: 10.1016/j.freeradbiomed.2018.01.013] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/20/2022]
Abstract
Nrf2, a redox regulated transcription factor, has recently been shown to play a role in cartilage integrity but the mechanism remains largely unknown. Osteoarthritis (OA) is a multifactorial disease in which focal degradation of cartilage occurs. Here, we studied whether Nrf2 exerts chondroprotective effects by suppressing the oxidative stress and apoptosis in IL-1β stimulated human OA chondrocytes. Expression of Nrf2 and its target genes HO-1, NQO1 and SOD2 was significantly high in OA cartilage compared to normal cartilage and was also higher in damaged area compared to smooth area of OA cartilage of the same patient. Human chondrocytes treated with IL-1β resulted in robust Nrf2/ARE reporter activity, which was inhibited by pretreatment with antioxidants indicating that Nrf2 activity was due to IL-1β-induced ROS generation. Ectopic expression of Nrf2 significantly suppressed the IL-1β-induced generation of ROS while Nrf2 knockdown significantly increased the basal as well as IL-1β-induced ROS levels in OA chondrocytes. Further, Nrf2 activation significantly inhibited the IL-1β-induced activation of extrinsic and intrinsic apoptotic pathways as determined by inhibition of DNA fragmentation, activation of Caspase-3,-8,-9, cleavage of PARP, release of cytochrome-c, suppression of mitochondrial dysfunction and mitochondrial ROS production in OA chondrocytes. Nrf2 over-expression in OA chondrocytes increased the expression of anti-apoptotic proteins while pro-apoptotic proteins were suppressed. Importantly, Nrf2 over-expression activated ERK1/2 and its downstream targets-ELK1, P70S6K and P90RSK and suppressed the IL-1β-induced apoptosis whereas inhibition of ERK1/2 activation abrogated the protective effects of Nrf2 in OA chondrocytes. Taken together, our data demonstrate that Nrf2 is a stress response protein in OA chondrocytes with anti-oxidative and anti-apoptotic function and acts via activation of ERK1/2/ELK1-P70S6K-P90RSK signaling axis. These activities of Nrf2 make it a promising candidate for the development of novel therapies for the management of OA.
Collapse
Affiliation(s)
- Nazir M Khan
- Department of Anatomy & Neurobiology, Northeast Ohio Medical University, 4209 St Rt 44, Rootstown, OH 44272, USA
| | - Imran Ahmad
- Department of Anatomy & Neurobiology, Northeast Ohio Medical University, 4209 St Rt 44, Rootstown, OH 44272, USA
| | - Tariq M Haqqi
- Department of Anatomy & Neurobiology, Northeast Ohio Medical University, 4209 St Rt 44, Rootstown, OH 44272, USA.
| |
Collapse
|