151
|
Kalita NK, Ganguli JN. Hibiscus sabdariffa L. leaf extract mediated green synthesis of silver nanoparticles and its use in catalytic reduction of 4-nitrophenol. INORG NANO-MET CHEM 2016. [DOI: 10.1080/15533174.2016.1218506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
152
|
Novel mesoporous Gd 3+ doped Cr 2 O 3 nanomaterials: Synthesis, characterization, catalytic and antitumor applications. ADV POWDER TECHNOL 2016. [DOI: 10.1016/j.apt.2016.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
153
|
Feng Y, Panwar N, Tng DJH, Tjin SC, Wang K, Yong KT. The application of mesoporous silica nanoparticle family in cancer theranostics. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.04.019] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
154
|
Wang Q, Coffinier Y, Li M, Boukherroub R, Szunerits S. Light-Triggered Release of Biomolecules from Diamond Nanowire Electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6515-6523. [PMID: 27244476 DOI: 10.1021/acs.langmuir.6b00734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The controlled release of biomolecules from a substrate surface is a challenging task. Photocleavable linkers appear as attractive candidates for light-triggered delivery. We show here the possibility of creating photoactivable diamond nanowire interfaces, from which molecules can be photochemically released upon irradiation at 365 nm for several minutes. The approach is based on the covalent modification of boron-doped diamond nanowires (BDD NWs) with o-nitrobenzyl containing ligands, to which different biomolecules can be attached via amide bond formation. The photodecomposition reaction and the subsequent release of small proteins such as lysozyme or enzymes such as horseradish peroxidase (HRP) are investigated using electrochemical impedance spectroscopy. Using a colorimetric assay, we demonstrate that, while complete cleavage of HRP was achieved upon irradiation for 10 min at 1 W cm(-2), this exposure time resulted in a partial loss of enzymatic activity.
Collapse
Affiliation(s)
- Qian Wang
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR CNRS 8520, Lille 1 University , Avenue Poincaré-BP60069, 59652 Villeneuve d'Ascq, France
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University , Jinan 250061, China
| | - Yannick Coffinier
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR CNRS 8520, Lille 1 University , Avenue Poincaré-BP60069, 59652 Villeneuve d'Ascq, France
| | - Musen Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University , Jinan 250061, China
| | - Rabah Boukherroub
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR CNRS 8520, Lille 1 University , Avenue Poincaré-BP60069, 59652 Villeneuve d'Ascq, France
| | - Sabine Szunerits
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR CNRS 8520, Lille 1 University , Avenue Poincaré-BP60069, 59652 Villeneuve d'Ascq, France
| |
Collapse
|
155
|
Mavuso S, Choonara YE, Marimuthu T, Kumar P, du Toit LC, Kondiah PPD, Pillay V. A dual pH/Redox responsive copper-ligand nanoliposome bioactive complex for the treatment of chronic inflammation. Int J Pharm 2016; 509:348-359. [PMID: 27269194 DOI: 10.1016/j.ijpharm.2016.05.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/25/2016] [Accepted: 05/29/2016] [Indexed: 01/12/2023]
Abstract
A novel dual pH/redox-responsive polymeric nanoliposome system (NLs) loaded with a copper-liganded bioactive complex was prepared and designed as a controlled delivery system for the management of inflammation. The NLs were synthesised after preparation of the copper-glyglycine-prednisolone succinate] ([(Cu(glygly)(PS)]) complex, and the dual pH/redox responsive biopolymer respectively. The methodology undertaken for the development of the drug delivery system involved coordination of the bioactive to Copper (II), preparation of dual pH/redox responsive biopolymer, and the synthesis of dual pH/redox nanoliposomes. Characterisations of the prepared copper-liganded bioactive [Copper-glyglycine-prednisolone succinate] ([(Cu(glygly)(PS)]) complex, dual pH/redox responsive biopolymer (Eudragit E100-cystamine) and [(Cu(glygly)(PS)]-loaded NLs were carried out using spectroscopic and physicochemical techniques. Results indicated a high inflammatory/oxidant inhibitory activity of [Cu(glygly)(PS)] in comparison to the free PS drug. The [Cu(glygly)(PS)] complex exhibited a significant free radical-scavenging activity (60.1±1.2%) and lipoxygenase (LOX-5) inhibitory activity (36.6±1.3%) in comparison to PS which resulted in activity of 4.4±1.4% and inhibition of 6.1±2.6% respectively. The [Cu(glygly)(PS)] loaded NLs demonstrated low release profiles of 22.9±5.4% in 6h at pH 7.4, in comparison to a significant accelerated release at pH 5 in a reducing environment of 75.9±3.7% over 6h duration. Results suggest that the novel copper-liganded bioactive delivery system with controlled drug release mechanism could serve as a potential drug delivery system candidate in the management of inflammation.
Collapse
Affiliation(s)
- Simphiwe Mavuso
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Pierre P D Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa.
| |
Collapse
|
156
|
Abd-Elrahman AA, El Nabarawi MA, Hassan DH, Taha AA. Ketoprofen mesoporous silica nanoparticles SBA-15 hard gelatin capsules: preparation and in vitro/in vivo characterization. Drug Deliv 2016; 23:3387-3398. [PMID: 27167529 DOI: 10.1080/10717544.2016.1186251] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
SBA-15 is used to enhance the bioavailability of poorly soluble ketoprofen (KP) through stabilization of its amorphous state. Additionally, the current work provides a complete in vitro and in vivo study on preformulated KP-SBA-15 sample and formulated KP-SBA-15 in hard gelatin capsule. Loading of KP was done by a novel method called immersion-rotavapor method. KP was quantified by extraction and thermal gravimetric analysis (TGA). Characterization of the loaded SBA-15 sample was done by high resolution transmission electron microscopy (HRTEM), small angle X-ray diffraction (SAXRD), nitrogen adsorption/desorption isotherms, differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy and dissolution profiles. The loaded sample was formulated in hard gelatin capsule. The anti-inflammatory and analgesic studies were carried out on 24 adult male albino rats. TGA and extraction results showed 54.4 wt% of drug incorporated. Characterization of KP-SBA-15 sample confirmed the successful encapsulation of KP into the carrier pores in a molecular amorphous state. Additionally, loading of KP did not affect the mesoporous internal structure. During the first 5 min, the dissolution study showed very high release rates; nearly 50% of KP was released. These results were reflected on the in vivo study resulting in 82% inhibition in edema after 1 h and maximum analgesia after 30 min from the administration of the formulated sample. SBA-15 mesoporous silica nanoparticle proved to be a very promising drug delivery carrier that can be used as a facile way to enhance the bioavailability of poorly soluble drugs.
Collapse
Affiliation(s)
- Ahmed A Abd-Elrahman
- a Department of Pharmaceutics and Industrial Pharmacy , College of Pharmacy, Cairo University , Cairo , Egypt and
| | - Mohamed A El Nabarawi
- a Department of Pharmaceutics and Industrial Pharmacy , College of Pharmacy, Cairo University , Cairo , Egypt and
| | - Doaa H Hassan
- b Department of Pharmaceutics and Industrial Pharmacy , College of Pharmacy, Misr University for Science and Technology , Sixth of October City, Giza , Egypt
| | - Amal A Taha
- b Department of Pharmaceutics and Industrial Pharmacy , College of Pharmacy, Misr University for Science and Technology , Sixth of October City, Giza , Egypt
| |
Collapse
|
157
|
Bioactive glass nanoparticles designed for multiple deliveries of lithium ions and drugs: Curative and restorative bone treatment. Eur J Pharm Sci 2016; 91:243-50. [PMID: 27155253 DOI: 10.1016/j.ejps.2016.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 02/02/2023]
Abstract
Lithium modified bioactive glass nanoparticles were prepared for multiple deliveries of lithium ions and drugs. The particle size, structure and thermal behavior of nanoparticles were analyzed using TEM, FTIR and DSC respectively. The porosity% and specific surface area of glass nanoparticles were about 68.6% and 224.92 (m(2)/g), respectively. The in vitro bioactivity evaluation in SBF revealed that glass nanoparticles were capable of inducing apatite layer over their surfaces. This could be considered as a good indicator for their future abilities to regenerate bone tissue in vivo. Also, lithium ions were released from glass nanoparticles via diffusion controlled process which could activate Wnt signaling pathway and enhance osteogenesis. As a final point, the possibility of utilizing the glass nanoparticles as a controlled delivery device for vancomycin or 5-FU was verified. Fitting vancomycin or 5-FU release profiles to various mathematical models pointed out that both drugs were released by a diffusion-controlled mode.
Collapse
|
158
|
Antoniou AI, Pepe DA, Aiello D, Siciliano C, Athanassopoulos CM. Chemoselective Protection of Glutathione in the Preparation of Bioconjugates: The Case of Trypanothione Disulfide. J Org Chem 2016; 81:4353-8. [DOI: 10.1021/acs.joc.6b00300] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Antonia I. Antoniou
- Synthetic
Organic Chemistry Laboratory, Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | - Dionissia A. Pepe
- Synthetic
Organic Chemistry Laboratory, Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | | | | | | |
Collapse
|
159
|
Sharma M, Sharma R, Jain DK. Nanotechnology Based Approaches for Enhancing Oral Bioavailability of Poorly Water Soluble Antihypertensive Drugs. SCIENTIFICA 2016; 2016:8525679. [PMID: 27239378 PMCID: PMC4867069 DOI: 10.1155/2016/8525679] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/16/2016] [Accepted: 03/31/2016] [Indexed: 05/31/2023]
Abstract
Oral administration is the most convenient route among various routes of drug delivery as it offers high patient compliance. However, the poor aqueous solubility and poor enzymatic/metabolic stability of drugs are major limitations in successful oral drug delivery. There are several approaches to improve problems related to hydrophobic drugs. Among various approaches, nanotechnology based drug delivery system has potential to overcome the challenges associated with the oral route of administration. Novel drug delivery systems are available in many areas of medicine. The application of these systems in the treatment of hypertension continues to broaden. The present review focuses on various nanocarriers available in oral drug administration for improving solubility profile, dissolution, and consequently bioavailability of hydrophobic antihypertensive drugs.
Collapse
Affiliation(s)
- Mayank Sharma
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Indore, India
| | - Rajesh Sharma
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Indore, India
| | | |
Collapse
|
160
|
van Gisbergen MW, Cebula M, Zhang J, Ottosson-Wadlund A, Dubois L, Lambin P, Tew KD, Townsend DM, Haenen GRMM, Drittij-Reijnders MJ, Saneyoshi H, Araki M, Shishido Y, Ito Y, Arnér ESJ, Abe H, Morgenstern R, Johansson K. Chemical Reactivity Window Determines Prodrug Efficiency toward Glutathione Transferase Overexpressing Cancer Cells. Mol Pharm 2016; 13:2010-25. [PMID: 27093577 DOI: 10.1021/acs.molpharmaceut.6b00140] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glutathione transferases (GSTs) are often overexpressed in tumors and frequently correlated to bad prognosis and resistance against a number of different anticancer drugs. To selectively target these cells and to overcome this resistance we previously have developed prodrugs that are derivatives of existing anticancer drugs (e.g., doxorubicin) incorporating a sulfonamide moiety. When cleaved by GSTs, the prodrug releases the cytostatic moiety predominantly in GST overexpressing cells, thus sparing normal cells with moderate enzyme levels. By modifying the sulfonamide it is possible to control the rate of drug release and specifically target different GSTs. Here we show that the newly synthesized compounds, 4-acetyl-2-nitro-benzenesulfonyl etoposide (ANS-etoposide) and 4-acetyl-2-nitro-benzenesulfonyl doxorubicin (ANS-DOX), function as prodrugs for GSTA1 and MGST1 overexpressing cell lines. ANS-DOX, in particular, showed a desirable cytotoxic profile by inducing toxicity and DNA damage in a GST-dependent manner compared to control cells. Its moderate conversion of 500 nmol/min/mg, as catalyzed by GSTA1, seems hereby essential since the more reactive 2,4-dinitrobenzenesulfonyl doxorubicin (DNS-DOX) (14000 nmol/min/mg) did not display a preference for GSTA1 overexpressing cells. DNS-DOX, however, effectively killed GSTP1 (20 nmol/min/mg) and MGST1 (450 nmol/min/mg) overexpressing cells as did the less reactive 4-mononitrobenzenesulfonyl doxorubicin (MNS-DOX) in a MGST1-dependent manner (1.5 nmol/min/mg) as shown previously. Furthermore, we show that the mechanism of these prodrugs involves a reduction in GSH levels as well as inhibition of the redox regulatory enzyme thioredoxin reductase 1 (TrxR1) by virtue of their electrophilic sulfonamide moiety. TrxR1 is upregulated in many tumors and associated with resistance to chemotherapy and poor patient prognosis. Additionally, the prodrugs potentially acted as a general shuttle system for DOX, by overcoming resistance mechanisms in cells. Here we propose that GST-dependent prodrugs require a conversion rate "window" in order to selectively target GST overexpressing cells, while limiting their effects on normal cells. Prodrugs are furthermore a suitable system to specifically target GSTs and to overcome various drug resistance mechanisms that apply to the parental drug.
Collapse
Affiliation(s)
- Marike W van Gisbergen
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet , SE 17177 Stockholm, Sweden.,Department of Radiation Oncology (MaastRO Lab), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center , Universiteitssingel 50/23, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Marcus Cebula
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet , SE 17177 Stockholm, Sweden
| | - Jie Zhang
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet , SE 17177 Stockholm, Sweden.,Departments of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina 29425, United States
| | - Astrid Ottosson-Wadlund
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet , SE 17177 Stockholm, Sweden
| | - Ludwig Dubois
- Department of Radiation Oncology (MaastRO Lab), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center , Universiteitssingel 50/23, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Philippe Lambin
- Department of Radiation Oncology (MaastRO Lab), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center , Universiteitssingel 50/23, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Kenneth D Tew
- Departments of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina 29425, United States
| | - Danyelle M Townsend
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina , Charleston, South Carolina 29425, United States
| | - Guido R M M Haenen
- Department of Toxicology, NUTRIM-School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Center , Universiteitssingel 50/23, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Marie-José Drittij-Reijnders
- Department of Toxicology, NUTRIM-School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Center , Universiteitssingel 50/23, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Hisao Saneyoshi
- Nano Medical Engineering Laboratory, Discovery Research Institute, RIKEN 2-1 , Hirosawa, Wako-Shi, Saitama 351-0198, Japan
| | - Mika Araki
- Nano Medical Engineering Laboratory, Discovery Research Institute, RIKEN 2-1 , Hirosawa, Wako-Shi, Saitama 351-0198, Japan
| | - Yuko Shishido
- Department of Chemistry, Graduate School of Science, Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, Discovery Research Institute, RIKEN 2-1 , Hirosawa, Wako-Shi, Saitama 351-0198, Japan
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , SE-171 77 Stockholm, Sweden
| | - Hiroshi Abe
- Nano Medical Engineering Laboratory, Discovery Research Institute, RIKEN 2-1 , Hirosawa, Wako-Shi, Saitama 351-0198, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Ralf Morgenstern
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet , SE 17177 Stockholm, Sweden
| | - Katarina Johansson
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , SE-171 77 Stockholm, Sweden
| |
Collapse
|
161
|
Qi M, Zhang K, Li S, Wu J, Pham-Huy C, Diao X, Xiao D, He H. Superparamagnetic Fe3O4 nanoparticles: synthesis by a solvothermal process and functionalization for a magnetic targeted curcumin delivery system. NEW J CHEM 2016. [DOI: 10.1039/c5nj02441b] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Different functionalized Fe3O4 nanoparticles were fabricated for constructing magnetic targeted carriers for curcumin to improve its hydrophilicity and bioavailability.
Collapse
Affiliation(s)
- Man Qi
- Department of Analytical Chemistry
- School of Sciences
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Kai Zhang
- Department of Analytical Chemistry
- School of Sciences
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Siqiao Li
- Department of Analytical Chemistry
- School of Sciences
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jianrong Wu
- Department of Analytical Chemistry
- School of Sciences
- China Pharmaceutical University
- Nanjing 210009
- China
| | | | - Xintong Diao
- Department of Analytical Chemistry
- School of Sciences
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Deli Xiao
- Department of Analytical Chemistry
- School of Sciences
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Hua He
- Department of Analytical Chemistry
- School of Sciences
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
162
|
Zeinabad HA, Kachooei E, Saboury AA, Kostova I, Attar F, Vaezzadeh M, Falahati M. Thermodynamic and conformational changes of protein toward interaction with nanoparticles: a spectroscopic overview. RSC Adv 2016. [DOI: 10.1039/c6ra16422f] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nanoparticles (NPs) in different forms have been widely used in medicine and pharmaceutics for diagnosis and drug delivery.
Collapse
Affiliation(s)
- Hojjat Alizadeh Zeinabad
- Department of Nanotechnology
- Faculty of Advance Science and Technology
- Pharmaceutical Sciences Branch
- Islamic Azad University (IAUPS)
- Tehran
| | - Ehsan Kachooei
- Institute of Biochemistry and Biophysics
- University of Tehran
- Tehran
- Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics
- University of Tehran
- Tehran
- Iran
| | - Irena Kostova
- Department of Chemistry
- Faculty of Pharmacy
- Medical University
- Sofia 1000
- Bulgaria
| | - Farnoosh Attar
- Department of Biology
- Faculty of Food Industry & Agriculture
- Standard Research Institute (SRI)
- Karaj
- Iran
| | - Mahsa Vaezzadeh
- Department of Biology
- Research and Science Branch
- Islamic Azad University
- Tehran
- Iran
| | - Mojtaba Falahati
- Department of Nanotechnology
- Faculty of Advance Science and Technology
- Pharmaceutical Sciences Branch
- Islamic Azad University (IAUPS)
- Tehran
| |
Collapse
|
163
|
Roopmani P, Sethuraman S, Satheesh S, Maheswari Krishnan U. The metamorphosis of vascular stents: passive structures to smart devices. RSC Adv 2016. [DOI: 10.1039/c5ra19109b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The role of nanotechnology enabled techniques in the evolution of vascular stents.
Collapse
Affiliation(s)
- Purandhi Roopmani
- Centre for Nanotechnology and Advanced Biomaterials (CeNTAB)
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur-613 401
- India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology and Advanced Biomaterials (CeNTAB)
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur-613 401
- India
| | - Santhosh Satheesh
- Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER)
- Department of Cardiology
- Pondicherry-605 006
- India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology and Advanced Biomaterials (CeNTAB)
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur-613 401
- India
| |
Collapse
|
164
|
Bioactivity of noble metal nanoparticles decorated with biopolymers and their application in drug delivery. Int J Pharm 2015; 496:159-72. [DOI: 10.1016/j.ijpharm.2015.10.059] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/10/2015] [Accepted: 10/25/2015] [Indexed: 12/19/2022]
|
165
|
Lukowiak MC, Thota BN, Haag R. Dendritic core–shell systems as soft drug delivery nanocarriers. Biotechnol Adv 2015; 33:1327-41. [DOI: 10.1016/j.biotechadv.2015.03.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/19/2015] [Accepted: 03/22/2015] [Indexed: 12/29/2022]
|
166
|
Debele TA, Peng S, Tsai HC. Drug Carrier for Photodynamic Cancer Therapy. Int J Mol Sci 2015; 16:22094-136. [PMID: 26389879 PMCID: PMC4613299 DOI: 10.3390/ijms160922094] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/17/2015] [Accepted: 08/20/2015] [Indexed: 12/16/2022] Open
Abstract
Photodynamic therapy (PDT) is a non-invasive combinatorial therapeutic modality using light, photosensitizer (PS), and oxygen used for the treatment of cancer and other diseases. When PSs in cells are exposed to specific wavelengths of light, they are transformed from the singlet ground state (S₀) to an excited singlet state (S₁-Sn), followed by intersystem crossing to an excited triplet state (T₁). The energy transferred from T₁ to biological substrates and molecular oxygen, via type I and II reactions, generates reactive oxygen species, (¹O₂, H₂O₂, O₂*, HO*), which causes cellular damage that leads to tumor cell death through necrosis or apoptosis. The solubility, selectivity, and targeting of photosensitizers are important factors that must be considered in PDT. Nano-formulating PSs with organic and inorganic nanoparticles poses as potential strategy to satisfy the requirements of an ideal PDT system. In this review, we summarize several organic and inorganic PS carriers that have been studied to enhance the efficacy of photodynamic therapy against cancer.
Collapse
Affiliation(s)
- Tilahun Ayane Debele
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 106 Taipei, Taiwan.
| | - Sydney Peng
- Department of Chemical Engineering, National Tsing Hua University, 300 Hsinchu, Taiwan.
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 106 Taipei, Taiwan.
| |
Collapse
|
167
|
Lambreva MD, Lavecchia T, Tyystjärvi E, Antal TK, Orlanducci S, Margonelli A, Rea G. Potential of carbon nanotubes in algal biotechnology. PHOTOSYNTHESIS RESEARCH 2015; 125:451-71. [PMID: 26113435 DOI: 10.1007/s11120-015-0168-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/15/2015] [Indexed: 05/21/2023]
Abstract
A critical mass of knowledge is emerging on the interactions between plant cells and engineered nanomaterials, revealing the potential of plant nanobiotechnology to promote and support novel solutions for the development of a competitive bioeconomy. This knowledge can foster the adoption of new methodological strategies to empower the large-scale production of biomass from commercially important microalgae. The present review focuses on the potential of carbon nanotubes (CNTs) to enhance photosynthetic performance of microalgae by (i) widening the spectral region available for the energy conversion reactions and (ii) increasing the tolerance of microalgae towards unfavourable conditions occurring in mass production. To this end, current understanding on the mechanisms of uptake and localization of CNTs in plant cells is discussed. The available ecotoxicological data were used in an attempt to assess the feasibility of CNT-based applications in algal biotechnology, by critically correlating the experimental conditions with the observed adverse effects. Furthermore, main structural and physicochemical properties of single- and multi-walled CNTs and common approaches for the functionalization and characterization of CNTs in biological environment are presented. Here, we explore the potential that nanotechnology can offer to enhance functions of algae, paving the way for a more efficient use of photosynthetic algal systems in the sustainable production of energy, biomass and high-value compounds.
Collapse
Affiliation(s)
- Maya Dimova Lambreva
- Institute of Crystallography, National Research Council of Italy, Via Salaria Km 29.300, 00015, Monterotondo Scalo, RM, Italy,
| | | | | | | | | | | | | |
Collapse
|
168
|
Poly(4-vinylpyridinium)hydrogensulfate as an efficient and convenient catalyst for a three-component synthesis of 7-methyl-10-aryl-10H-5,8-dioxa-benzo[b]fluoren-9,11-diones. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-014-1625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
169
|
Folate-conjugated nanoparticles as a potent therapeutic approach in targeted cancer therapy. Tumour Biol 2015; 36:5727-42. [PMID: 26142733 DOI: 10.1007/s13277-015-3706-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/22/2015] [Indexed: 01/01/2023] Open
Abstract
The selective and efficient drug delivery to tumor cells can remarkably improve different cancer therapeutic approaches. There are several nanoparticles (NPs) which can act as a potent drug carrier for cancer therapy. However, the specific drug delivery to cancer cells is an important issue which should be considered before designing new NPs for in vivo application. It has been shown that cancer cells over-express folate receptor (FR) in order to improve their growth. As normal cells express a significantly lower levels of FR compared to tumor cells, it seems that folate molecules can be used as potent targeting moieties in different nanocarrier-based therapeutic approaches. Moreover, there is evidence which implies folate-conjugated NPs can selectively deliver anti-tumor drugs into cancer cells both in vitro and in vivo. In this review, we will discuss about the efficiency of different folate-conjugated NPs in cancer therapy.
Collapse
|
170
|
Lai J, Shah BP, Zhang Y, Yang L, Lee KB. Real-Time Monitoring of ATP-Responsive Drug Release Using Mesoporous-Silica-Coated Multicolor Upconversion Nanoparticles. ACS NANO 2015; 9:5234-45. [PMID: 25859611 PMCID: PMC5808884 DOI: 10.1021/acsnano.5b00641] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Stimuli-responsive drug delivery vehicles have garnered immense interest in recent years due to unparalleled progress made in material science and nanomedicine. However, the development of stimuli-responsive devices with integrated real-time monitoring capabilities is still in its nascent stage because of the limitations of imaging modalities. In this paper, we describe the development of a polypeptide-wrapped mesoporous-silica-coated multicolor upconversion nanoparticle (UCNP@MSN) as an adenosine triphosphate (ATP)-responsive drug delivery system (DDS) for long-term tracking and real-time monitoring of drug release. Our UCNP@MSN with multiple emission peaks in UV-NIR wavelength range was functionalized with zinc-dipicolylamine analogue (TDPA-Zn(2+)) on its exterior surface and loaded with small-molecule drugs like chemotherapeutics in interior mesopores. The drugs remained entrapped within the UCNP-MSNs when the nanoparticles were wrapped with a compact branched polypeptide, poly(Asp-Lys)-b-Asp, because of multivalent interactions between Asp moieties present in the polypeptide and the TDPA-Zn(2+) complex present on the surface of UCNP-MSNs. This led to luminescence resonance energy transfer (LRET) from the UCNPs to the entrapped drugs, which typically have absorption in UV-visible range, ultimately resulting in quenching of UCNP emission in UV-visible range while retaining their strong NIR emission. Addition of ATP led to a competitive displacement of the surface bound polypeptide by ATP due to its higher affinity to TDPA-Zn(2+), which led to the release of the entrapped drugs and subsequent elimination of LRET. Monitoring of such ATP-triggered ratiometric changes in LRET allowed us to monitor the release of the entrapped drugs in real-time. Given these results, we envision that our proposed UCNP@MSN-polypeptide hybrid nanoparticle has great potential for stimuli-responsive drug delivery as well as for monitoring biochemical changes taking place in live cancer and stem cells.
Collapse
|
171
|
Balaji A, Vellayappan MV, John AA, Subramanian AP, Jaganathan SK, Supriyanto E, Razak SIA. An insight on electrospun-nanofibers-inspired modern drug delivery system in the treatment of deadly cancers. RSC Adv 2015. [DOI: 10.1039/c5ra07595e] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
This review gives an insight into the process of electrospinning, its essential parameters, the types of drug incorporation and the works reported on common dreadful cancers.
Collapse
Affiliation(s)
- A. Balaji
- IJN-UTM Cardiovascular Engineering Centre
- Faculty of Biosciences and Medical Engineering
- Universiti Teknologi Malaysia
- Johor Bahru 81310
- Malaysia
| | - M. V. Vellayappan
- IJN-UTM Cardiovascular Engineering Centre
- Faculty of Biosciences and Medical Engineering
- Universiti Teknologi Malaysia
- Johor Bahru 81310
- Malaysia
| | - A. A. John
- IJN-UTM Cardiovascular Engineering Centre
- Faculty of Biosciences and Medical Engineering
- Universiti Teknologi Malaysia
- Johor Bahru 81310
- Malaysia
| | - A. P. Subramanian
- IJN-UTM Cardiovascular Engineering Centre
- Faculty of Biosciences and Medical Engineering
- Universiti Teknologi Malaysia
- Johor Bahru 81310
- Malaysia
| | - S. K. Jaganathan
- IJN-UTM Cardiovascular Engineering Centre
- Faculty of Biosciences and Medical Engineering
- Universiti Teknologi Malaysia
- Johor Bahru 81310
- Malaysia
| | - Eko Supriyanto
- IJN-UTM Cardiovascular Engineering Centre
- Faculty of Biosciences and Medical Engineering
- Universiti Teknologi Malaysia
- Johor Bahru 81310
- Malaysia
| | - S. I. A. Razak
- IJN-UTM Cardiovascular Engineering Centre
- Faculty of Biosciences and Medical Engineering
- Universiti Teknologi Malaysia
- Johor Bahru 81310
- Malaysia
| |
Collapse
|
172
|
Yin F, Zhang B, Zeng S, Lin G, Tian J, Yang C, Wang K, Xu G, Yong KT. Folic acid-conjugated organically modified silica nanoparticles for enhanced targeted delivery in cancer cells and tumor in vivo. J Mater Chem B 2015; 3:6081-6093. [DOI: 10.1039/c5tb00587f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Folic acid-conjugated fluorescent silica nanoparticles with biocompatibility and high-selectivity show great potential forin vivotumor imaging.
Collapse
Affiliation(s)
- Feng Yin
- School of Electrical and Electronic Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Butian Zhang
- School of Electrical and Electronic Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Shuwen Zeng
- School of Electrical and Electronic Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
- CINTRA CNRS/NTU/THALES
| | - Guimiao Lin
- The key lab of Biomedical Engineering and Research Institute of Uropoiesis and Reproduction
- School of Medical Sciences
- Shenzhen University
- Shenzhen
- China
| | - Jinglin Tian
- The key lab of Biomedical Engineering and Research Institute of Uropoiesis and Reproduction
- School of Medical Sciences
- Shenzhen University
- Shenzhen
- China
| | - Chengbin Yang
- School of Electrical and Electronic Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Kuan Wang
- Nanomedicine Program and Institute of Biological Chemistry
- Academia Sinica
- Nankang
- Taiwan
| | - Gaixia Xu
- CINTRA CNRS/NTU/THALES
- UMI 3288
- Singapore
- Singapore
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| |
Collapse
|
173
|
Enrique MA, Mariana OR, Mirshojaei SF, Ahmadi A. Multifunctional radiolabeled nanoparticles: strategies and novel classification of radiopharmaceuticals for cancer treatment. J Drug Target 2014; 23:191-201. [DOI: 10.3109/1061186x.2014.988216] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
174
|
Aslani F, Bagheri S, Muhd Julkapli N, Juraimi AS, Hashemi FSG, Baghdadi A. Effects of engineered nanomaterials on plants growth: an overview. ScientificWorldJournal 2014; 2014:641759. [PMID: 25202734 PMCID: PMC4150468 DOI: 10.1155/2014/641759] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/05/2014] [Indexed: 12/12/2022] Open
Abstract
Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level.
Collapse
Affiliation(s)
- Farzad Aslani
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Samira Bagheri
- Nanotechnology and Catalysis Research Centre (NANOCAT), University Malaya, IPS Building, 50603 Kuala Lumpur, Malaysia
| | | | - Abdul Shukor Juraimi
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | | | - Ali Baghdadi
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
175
|
Aswin K, Sheik Mansoor S, Logaiya K, Sudhan SPN, Saleem Malik V, Ramadoss H. Reusable silica-bonded S-sulfonic acid catalyst for three-component synthesis of 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromenes and 2-amino-4H-pyrans in aqueous ethanol. RESEARCH ON CHEMICAL INTERMEDIATES 2013. [DOI: 10.1007/s11164-013-1111-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|