151
|
Skotarczak B. Why are there several species of Borrelia burgdorferi sensu lato detected in dogs and humans? INFECTION GENETICS AND EVOLUTION 2014; 23:182-8. [DOI: 10.1016/j.meegid.2014.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/21/2014] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
|
152
|
High-throughput sequence typing reveals genetic differentiation and host specialization among populations of the Borrelia burgdorferi species complex that infect rodents. PLoS One 2014; 9:e88581. [PMID: 24533116 PMCID: PMC3922933 DOI: 10.1371/journal.pone.0088581] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/07/2014] [Indexed: 11/19/2022] Open
Abstract
Lyme disease is a zoonosis caused by various species belonging to the Borrelia burgdorferi bacterial species complex. These pathogens are transmitted by ticks and infect multiple, taxonomically distinct, host species. From an epidemiological perspective, it is important to determine whether genetic variants within the species complex are able to spread freely through the whole host community or, instead, if certain variants are restricted to particular hosts. To this end, we characterized the genotypes of members of the B. burgdorferi species complex; the bacteria were isolated from more than two hundred individuals captured in the wild and belonging to three different rodent host species. For each individual, we used a high-throughput approach to amplify and sequence rplB, a housekeeping gene, and ospC, which is involved in infection. This approach allowed us to evaluate the genetic diversity both within and among species in the B. burgdorferi species complex. Strong evidence of genetic differentiation among host species was revealed by both genes, even though they are, a priori, not constrained by the same selective pressures. These data are discussed in the context of the advancements made possible by multi-locus high-throughput sequencing and current knowledge of Lyme disease epidemiology.
Collapse
|
153
|
Calderaro A, Gorrini C, Piccolo G, Montecchini S, Buttrini M, Rossi S, Piergianni M, Arcangeletti MC, De Conto F, Chezzi C, Medici MC. Identification of Borrelia species after creation of an in-house MALDI-TOF MS database. PLoS One 2014; 9:e88895. [PMID: 24533160 PMCID: PMC3923052 DOI: 10.1371/journal.pone.0088895] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 01/13/2014] [Indexed: 01/11/2023] Open
Abstract
Lyme borreliosis (LB) is a multisystemic disease caused by Borrelia burgdorferi sensu lato (sl) complex transmitted to humans by Ixodes ticks. B. burgdorferi sl complex, currently comprising at least 19 genospecies, includes the main pathogenic species responsible for human disease in Europe: B. burgdorferi sensu stricto (ss), B. afzelii, and B. garinii. In this study, for the first time, MALDI-TOF MS was applied to Borrelia spp., supplementing the existing database, limited to the species B. burgdorferi ss, B.spielmanii and B. garinii, with the species B. afzelii, in order to enable the identification of all the species potentially implicated in LB in Europe. Moreover, we supplemented the database also with B. hermsii, which is the primary cause of tick-borne relapsing fever in western North America, B. japonica, circulating in Asia, and another reference strain of B. burgdorferi ss (B31 strain). The dendrogram obtained by analyzing the protein profiles of the different Borrelia species reflected Borrelia taxonomy, showing that all the species included in the Borrelia sl complex clustered in a unique branch, while Borrelia hermsii clustered separately. In conclusion, in this study MALDI-TOF MS proved a useful tool suitable for identification of Borrelia spp. both for diagnostic purpose and epidemiological surveillance.
Collapse
Affiliation(s)
- Adriana Calderaro
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Surgery, University of Parma, Parma, Italy
- * E-mail:
| | - Chiara Gorrini
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giovanna Piccolo
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Surgery, University of Parma, Parma, Italy
| | - Sara Montecchini
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mirko Buttrini
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Surgery, University of Parma, Parma, Italy
| | - Sabina Rossi
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Surgery, University of Parma, Parma, Italy
| | - Maddalena Piergianni
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Surgery, University of Parma, Parma, Italy
| | - Maria Cristina Arcangeletti
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Surgery, University of Parma, Parma, Italy
| | - Flora De Conto
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carlo Chezzi
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Surgery, University of Parma, Parma, Italy
| | - Maria Cristina Medici
- Unit of Microbiology and Virology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
154
|
Rudenko N, Golovchenko M, Belfiore NM, Grubhoffer L, Oliver JH. Divergence of Borrelia burgdorferi sensu lato spirochetes could be driven by the host: diversity of Borrelia strains isolated from ticks feeding on a single bird. Parasit Vectors 2014; 7:4. [PMID: 24383476 PMCID: PMC3892016 DOI: 10.1186/1756-3305-7-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 12/18/2013] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The controversy surrounding the potential impact of birds in spirochete transmission dynamics and their capacity to serve as a reservoir has existed for a long time. The majority of analyzed bird species are able to infect larval ticks with Borrelia. Dispersal of infected ticks due to bird migration is a key to the establishment of new foci of Lyme borreliosis. The dynamics of infection in birds supports the mixing of different species, the horizontal exchange of genetic information, and appearance of recombinant genotypes. METHODS Four Borrelia burgdorferi sensu lato strains were cultured from Ixodes minor larvae and four strains were isolated from Ixodes minor nymphs collected from a single Carolina Wren (Thryothorus ludovicianus). A multilocus sequence analysis that included 16S rRNA, a 5S-23S intergenic spacer region, a 16S-23S internal transcribed spacer, flagellin, p66, and ospC separated 8 strains into 3 distinct groups. Additional multilocus sequence typing of 8 housekeeping genes, clpA, clpX, nifS, pepX, pyrG, recG, rplB, and uvrA was used to resolve the taxonomic status of bird-associated strains. RESULTS Results of analysis of 14 genes confirmed that the level of divergence among strains is significantly higher than what would be expected for strains within a single species. The presence of cross-species recombination was revealed: Borrelia burgdorferi sensu stricto housekeeping gene nifS was incorporated into homologous locus of strain, previously assigned to B. americana. CONCLUSIONS Genetically diverse Borrelia strains are often found within the same tick or same vertebrate host, presenting a wide opportunity for genetic exchange. We report the cross-species recombination that led to incorporation of a housekeeping gene from the B. burgdorferi sensu stricto strain into a homologous locus of another bird-associated strain. Our results support the hypothesis that recombination maintains a majority of sequence polymorphism within Borrelia populations because of the re-assortment of pre-existing sequence variants. Even if our findings of broad genetic diversity among 8 strains cultured from ticks that fed on a single bird could be the exception rather than the rule, they support the theory that the diversity and evolution of LB spirochetes is driven mainly by the host.
Collapse
Affiliation(s)
- Nataliia Rudenko
- Biology Centre AS CR, Institute of Parasitology, České Budějovice, 37005, Czech Republic.
| | | | | | | | | |
Collapse
|
155
|
Stupica D, Stanek G, Strle F. Lyme Borreliosis. Emerg Infect Dis 2014. [DOI: 10.1016/b978-0-12-416975-3.00024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
156
|
Heylen D, Sprong H, van Oers K, Fonville M, Leirs H, Matthysen E. Are the specialized bird ticks, Ixodes arboricola and I. frontalis, competent vectors for Borrelia burgdorferi sensu lato? Environ Microbiol 2013; 16:1081-9. [PMID: 24237635 DOI: 10.1111/1462-2920.12332] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/05/2013] [Indexed: 11/30/2022]
Abstract
Our study tested whether two European bird-specialized ticks, Ixodes arboricola and I. frontalis, can act as vectors in the transmission cycles of Borrelia burgdorferi s.l. The ticks have contrasting ecologies but share songbird hosts (such as the great tit, Parus major) with the generalist I. ricinus which may therefore act as a bridging vector. In the first phase of the experiment, we obtained Borrelia-infected ornithophilic nymphs by exposing larvae to great tits that had previously been exposed to I. ricinus nymphs carrying a community of genospecies (Borrelia garinii, valaisiana, afzelii, burgdorferi s.s., spielmanii). Skin samples showed that birds selectively amplified B. garinii and B. valaisiana. The spirochetes were transmitted to the ornithophilic ticks and survived moulting, leading to infection rates of 16% and 27% in nymphs of I. arboricola and I. frontalis respectively. In the second phase, pathogen-free great tits were exposed to the Borrelia-infected ornithophilic nymphs. None of these ticks were able to infect the birds, as indicated by the tissue samples. Analysis of xenodiagnostic I. ricinus larvae found no evidence for co-feeding or systemic transmission of B. burgdorferi s.l. These outcomes do not support the occurrence of enzootic cycles of Borrelia burgdorferi s.l. involving songbirds and their specialized ornithophilic ticks.
Collapse
Affiliation(s)
- Dieter Heylen
- Department of Biology, University of Antwerp, Evolutionary Ecology Group, Belgium
| | | | | | | | | | | |
Collapse
|
157
|
Ivanova LB, Tomova A, González-Acuña D, Murúa R, Moreno CX, Hernández C, Cabello J, Cabello C, Daniels TJ, Godfrey HP, Cabello FC. Borrelia chilensis, a new member of the Borrelia burgdorferi sensu lato complex that extends the range of this genospecies in the Southern Hemisphere. Environ Microbiol 2013; 16:1069-80. [PMID: 24148079 DOI: 10.1111/1462-2920.12310] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 10/12/2013] [Indexed: 11/28/2022]
Abstract
Borrelia burgdorferi sensu lato (s.l.), transmitted by Ixodes spp. ticks, is the causative agent of Lyme disease. Although Ixodes spp. ticks are distributed in both Northern and Southern Hemispheres, evidence for the presence of B. burgdorferi s.l. in South America apart from Uruguay is lacking. We now report the presence of culturable spirochetes with flat-wave morphology and borrelial DNA in endemic Ixodes stilesi ticks collected in Chile from environmental vegetation and long-tailed rice rats (Oligoryzomys longicaudatus). Cultured spirochetes and borrelial DNA in ticks were characterized by multilocus sequence typing and by sequencing five other loci (16S and 23S ribosomal genes, 5S-23S intergenic spacer, flaB, ospC). Phylogenetic analysis placed this spirochete as a new genospecies within the Lyme borreliosis group. Its plasmid profile determined by polymerase chain reaction and pulsed-field gel electrophoresis differed from that of B. burgdorferi B31A3. We propose naming this new South American member of the Lyme borreliosis group B. chilensis VA1 in honor of its country of origin.
Collapse
Affiliation(s)
- Larisa B Ivanova
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Mongodin EF, Casjens SR, Bruno JF, Xu Y, Drabek EF, Riley DR, Cantarel BL, Pagan PE, Hernandez YA, Vargas LC, Dunn JJ, Schutzer SE, Fraser CM, Qiu WG, Luft BJ. Inter- and intra-specific pan-genomes of Borrelia burgdorferi sensu lato: genome stability and adaptive radiation. BMC Genomics 2013; 14:693. [PMID: 24112474 PMCID: PMC3833655 DOI: 10.1186/1471-2164-14-693] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/26/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lyme disease is caused by spirochete bacteria from the Borrelia burgdorferi sensu lato (B. burgdorferi s.l.) species complex. To reconstruct the evolution of B. burgdorferi s.l. and identify the genomic basis of its human virulence, we compared the genomes of 23 B. burgdorferi s.l. isolates from Europe and the United States, including B. burgdorferi sensu stricto (B. burgdorferi s.s., 14 isolates), B. afzelii (2), B. garinii (2), B. "bavariensis" (1), B. spielmanii (1), B. valaisiana (1), B. bissettii (1), and B. "finlandensis" (1). RESULTS Robust B. burgdorferi s.s. and B. burgdorferi s.l. phylogenies were obtained using genome-wide single-nucleotide polymorphisms, despite recombination. Phylogeny-based pan-genome analysis showed that the rate of gene acquisition was higher between species than within species, suggesting adaptive speciation. Strong positive natural selection drives the sequence evolution of lipoproteins, including chromosomally-encoded genes 0102 and 0404, cp26-encoded ospC and b08, and lp54-encoded dbpA, a07, a22, a33, a53, a65. Computer simulations predicted rapid adaptive radiation of genomic groups as population size increases. CONCLUSIONS Intra- and inter-specific pan-genome sizes of B. burgdorferi s.l. expand linearly with phylogenetic diversity. Yet gene-acquisition rates in B. burgdorferi s.l. are among the lowest in bacterial pathogens, resulting in high genome stability and few lineage-specific genes. Genome adaptation of B. burgdorferi s.l. is driven predominantly by copy-number and sequence variations of lipoprotein genes. New genomic groups are likely to emerge if the current trend of B. burgdorferi s.l. population expansion continues.
Collapse
Affiliation(s)
- Emmanuel F Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Melničáková J, Derdáková M, Barák I. A system to simultaneously detect tick-borne pathogens based on the variability of the 16S ribosomal genes. Parasit Vectors 2013; 6:269. [PMID: 24330462 PMCID: PMC3850910 DOI: 10.1186/1756-3305-6-269] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/12/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND DNA microarrays can be used to quickly and sensitively identify several different pathogens in one step. Our previously developed DNA microarray, based on the detection of variable regions in the 16S rDNA gene (rrs), which are specific for each selected bacterial genus, allowed the concurrent detection of Borrelia spp., Anaplasma spp., Francisella spp., Rickettsia spp. and Coxiella spp. METHODS In this study, we developed a comprehensive detection system consisting of a second generation DNA microarray and quantitative PCRs. New oligonucleotide capture probes specific for Borrelia burgdorferi s.l. genospecies and Candidatus Neoehrlichia mikurensis were included. This new DNA microarray system required substantial changes in solution composition, hybridization conditions and post-hybridization washes. RESULTS This second generation chip displayed high specificity and sensitivity. The specificity of the capture probes was tested by hybridizing the DNA microarrays with Cy5-labeled, PCR-generated amplicons encoding the rrs genes of both target and non-target bacteria. The detection limit was determined to be 10(3) genome copies, which corresponds to 1-2 pg of DNA. A given sample was evaluated as positive if its mean fluorescence was at least 10% of the mean fluorescence of a positive control. Those samples with fluorescence close to the threshold were further analyzed using quantitative PCRs, developed to identify Francisella spp., Rickettsia spp. and Coxiella spp. Like the DNA microarray, the qPCRs were based on the genus specific variable regions of the rrs gene. No unspecific cross-reactions were detected. The detection limit for Francisella spp. was determined to be only 1 genome copy, for Coxiella spp. 10 copies, and for Rickettsia spp., 100 copies. CONCLUSIONS Our detection system offers a rapid method for the comprehensive identification of tick-borne bacteria, which is applicable to clinical samples. It can also be used to identify both pathogenic and endosymbiontic bacteria in ticks for eco-epidemiological studies, tick laboratory colony testing, and many other applications.
Collapse
|
160
|
Margos G, Piesman J, Lane RS, Ogden NH, Sing A, Straubinger RK, Fingerle V. Borrelia kurtenbachii sp. nov., a widely distributed member of the Borrelia burgdorferi sensu lato species complex in North America. Int J Syst Evol Microbiol 2013; 64:128-130. [PMID: 24048870 DOI: 10.1099/ijs.0.054593-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lyme borreliosis group spirochaetes are parasitic bacteria transmitted by vector ticks of the genus Ixodes and distributed mainly between 40° and 60° northern latitudes. Since Borrelia burgdorferi sensu stricto (hereinafter, B. burgdorferi) was described in the north-eastern USA during the early 1980s, an increasing diversity has been noted within the species complex. Here, we describe a novel genomic species, Borrelia kurtenbachii sp. nov. (type strain 25015(T) = ATCC BAA-2495(T) = DSM 26572(T)), that is prevalent in transmission cycles among vector ticks and reservoir hosts in North America. Confirmation of the presence of this species in Europe awaits further investigation.
Collapse
Affiliation(s)
- Gabriele Margos
- Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764 Oberschleissheim, Germany.,Nationale Reference Centre for Borrelia, Veterinärstr. 2, 85764 Oberschleissheim, Germany.,LMU Munich, Department for Infectious Diseases and Zoonoses, Faculty of Veterinary Medicine, Veterinärstr. 13, 80359 Munich, Germany
| | - Joseph Piesman
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Ft. Collins, CO 80521, USA
| | - Robert S Lane
- Department of Environmental Science, Policy and Management, Division of Organisms and Environment, University of California, Berkeley, California 94720, USA
| | - Nicholas H Ogden
- Zoonoses Division, Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Ottawa, Canada
| | - Andreas Sing
- Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764 Oberschleissheim, Germany
| | - Reinhard K Straubinger
- LMU Munich, Department for Infectious Diseases and Zoonoses, Faculty of Veterinary Medicine, Veterinärstr. 13, 80359 Munich, Germany
| | - Volker Fingerle
- Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764 Oberschleissheim, Germany.,Nationale Reference Centre for Borrelia, Veterinärstr. 2, 85764 Oberschleissheim, Germany
| |
Collapse
|
161
|
Pangrácová L, Derdáková M, Pekárik L, Hviščová I, Víchová B, Stanko M, Hlavatá H, Peťko B. Ixodes ricinus abundance and its infection with the tick-borne pathogens in urban and suburban areas of Eastern Slovakia. Parasit Vectors 2013; 6:238. [PMID: 23952975 PMCID: PMC3751762 DOI: 10.1186/1756-3305-6-238] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/14/2013] [Indexed: 12/02/2022] Open
Abstract
Background Raising abundance of ticks and tick-borne diseases in Europe is the result of multiple factors including climate changes and human activities. Herein, we investigated the presence and seasonal activity of Ixodes ricinus ticks from 10 urban and suburban sites in two different geographical areas of southeastern and northeastern Slovakia during 2008–2010. Our aim was to study the abundance of ticks in correlation with the environmental factors and their infection with Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Neoehrlichia mikurensis. Methods Questing I. ricinus ticks were collected from ten urban and suburban sites in Eastern Slovakia. A total of 670 ticks were further analysed for the presence of B. burgdorferi s.l., A. phagocytophilum and N. mikurensis by molecular methods. Tick site and environmental relations were analysed using General Linear Models (LM). The differences between the number of Lyme borreliosis cases between the Košice and Bardejov regions during a ten-year period were tested by Wilcoxon matched pairs test. Results In total, 2921 (1913 nymphs, 1008 adults) I. ricinus ticks were collected from 10 study sites during the main questing season. Tick activity and relative abundance differed between locations and months. Temperature and humidity were the main factors affecting the tick abundance and questing activity. Out of 670 examined ticks, 10.15% were infected with spirochetes from B. burgdorferi s.l. complex (represented by B. afzelii, B. garinii, B.valaisiana and B. burgdorferi s.s.), 2.69% with the A. phagocytophilum and 2.39% with N. mikurensis. The number of Lyme borreliosis cases per 100,000 inhabitants in the Bardejov region was significantly higher than in the Košice region. Conclusions Our data indicate that the risk of infection with tick-borne pathogens in Eastern Slovakia is common since 15.2% of ticks were infected at least with one of the tested microorganisms. Even though the abundance of ticks was affected by the microclimatic conditions and the prevalence of pathogens differed between the habitats, the infection risk for humans is also affected by human activities leading to an increased contact with infected ticks.
Collapse
|
162
|
Coipan EC, Jahfari S, Fonville M, Maassen CB, van der Giessen J, Takken W, Takumi K, Sprong H. Spatiotemporal dynamics of emerging pathogens in questing Ixodes ricinus. Front Cell Infect Microbiol 2013; 3:36. [PMID: 23908971 PMCID: PMC3726834 DOI: 10.3389/fcimb.2013.00036] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 07/09/2013] [Indexed: 12/03/2022] Open
Abstract
Ixodes ricinus transmits Borrelia burgdorferi sensu lato, the etiological agent of Lyme disease. Previous studies have also detected Rickettsia helvetica, Anaplasma phagocytophilum, Neoehrlichia mikurensis, and several Babesia species in questing ticks in The Netherlands. In this study, we assessed the acarological risk of exposure to several tick-borne pathogens (TBPs), in The Netherlands. Questing ticks were collected monthly between 2006 and 2010 at 21 sites and between 2000 and 2009 at one other site. Nymphs and adults were analysed individually for the presence of TBPs using an array-approach. Collated data of this and previous studies were used to generate, for each pathogen, a presence/absence map and to further analyse their spatiotemporal variation. R. helvetica (31.1%) and B. burgdorferi sensu lato (11.8%) had the highest overall prevalence and were detected in all areas. N. mikurensis (5.6%), A. phagocytophilum (0.8%), and Babesia spp. (1.7%) were detected in most, but not all areas. The prevalences of pathogens varied among the study areas from 0 to 64%, while the density of questing ticks varied from 1 to 179/100 m2. Overall, 37% of the ticks were infected with at least one pathogen and 6.3% with more than one pathogen. One-third of the Borrelia-positive ticks were infected with at least one other pathogen. Coinfection of B. afzelii with N. mikurensis and with Babesia spp. occurred significantly more often than single infections, indicating the existence of mutual reservoir hosts. Alternatively, coinfection of R. helvetica with either B. afzelii or N. mikurensis occurred significantly less frequent. The diversity of TBPs detected in I. ricinus in this study and the frequency of their coinfections with B. burgdorferi s.l., underline the need to consider them when evaluating the risks of infection and subsequently the risk of disease following a tick bite.
Collapse
Affiliation(s)
- Elena Claudia Coipan
- Centre for Infectious Disease Control, National Institute for Public Health and Environment-RIVM, Bilthoven, Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Tveten AK. Prevalence of Borrelia burgdorferi sensu stricto, Borrelia afzelii, Borrelia garinii, and Borrelia valaisiana in Ixodes ricinus ticks from the northwest of Norway. ACTA ACUST UNITED AC 2013; 45:681-7. [DOI: 10.3109/00365548.2013.799288] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
164
|
Multilocus sequence analysis of Borrelia burgdorferi s.l. in Russia. Ticks Tick Borne Dis 2013; 4:275-9. [DOI: 10.1016/j.ttbdis.2013.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 11/18/2022]
|
165
|
Coipan EC, Fonville M, Tijsse-Klasen E, van der Giessen JWB, Takken W, Sprong H, Takumi K. Geodemographic analysis of Borrelia burgdorferi sensu lato using the 5S-23S rDNA spacer region. INFECTION GENETICS AND EVOLUTION 2013; 17:216-22. [PMID: 23602839 DOI: 10.1016/j.meegid.2013.04.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Lyme borreliosis is the predominant tick-borne disease in the Northern hemisphere, with considerable heterogeneity in clinical manifestations. Here, we evaluated one genetic marker for its use in population genetic based analysis. For that we collected molecular and epidemiological records of Borrelia burgdorferi sensu lato isolates from ticks, animals and humans at various sites in The Netherlands and worldwide. METHODS The 5S-23S rDNA (rrfA-rrlB) intergenic spacer region (IGS) from 291 Dutch Borrelia positive ticks was sequenced and compared to Borrelia sequences from GenBank. We estimated several population genetic measures to test the neutrality of the marker. We also assessed the ability of this marker to discriminate between Eurasian Borrelieae at a finer geographical resolution, and to detect population expansion per genospecies. RESULTS The most prevalent genospecies in The Netherlands was Borrelia afzelii, whereas Borrelia garinii, B. burgdorferi sensu stricto, Borrelia spielmanii and Borrelia valaisiana were found less frequently. The result of the Ewens-Watterson-Slatkin test was consistent with neutral selection of IGS region. Estimated pairwise fixation indices (Fst) were significantly different from zero between The Netherlands, the rest of Europe, Russia and Asia for B. afzelii and Borrelia garinii. Estimated Fu's Fs were significantly negative for B. afzelii and B. garinii. CONCLUSIONS At least seven B. burgdorferi s.l. genospecies circulate in Ixodes ricinus population in The Netherlands. The population genetic analyses of IGS region can resolve subpopulations within a genospecies and detect a large excess of rare genetic variants at the genospecies level. A genetic trace of population expansion for B. afzelii and B. garinii is consistent with the reported increase in Lyme borreliosis incidence in European countries.
Collapse
Affiliation(s)
- Elena Claudia Coipan
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and Environment, RIVM, PO Box 1, 3720 BA Bilthoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
166
|
The formins FMNL1 and mDia1 regulate coiling phagocytosis of Borrelia burgdorferi by primary human macrophages. Infect Immun 2013; 81:1683-95. [PMID: 23460512 DOI: 10.1128/iai.01411-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Spirochetes of the Borrelia burgdorferi sensu lato complex are the causative agent of Lyme borreliosis, a tick-borne infectious disease primarily affecting the skin, nervous system, and joints. During infection, macrophages and dendritic cells are the first immune cells to encounter invading borreliae. Phagocytosis and intracellular processing of Borrelia by these cells is thus decisive for the eventual outcome of infection. Phagocytic uptake of Borrelia by macrophages proceeds preferentially through coiling phagocytosis, which is characterized by actin-rich unilateral pseudopods that capture and enwrap spirochetes. Actin-dependent growth of these pseudopods necessitates de novo nucleation of actin filaments, which is regulated by actin-nucleating factors such as Arp2/3 complex. Here, we demonstrate that, in addition, also actin-regulatory proteins of the formin family are important for uptake of borreliae by primary human macrophages. Using immunofluorescence, live-cell imaging, and ratiometric analysis, we find specific enrichment of the formins FMNL1 and mDia1 at macrophage pseudopods that are in contact with borreliae. Consistently, small interfering RNA (siRNA)-mediated knockdown of FMNL1 or mDia1 leads to decreased formation of Borrelia-induced pseudopods and to decreased internalization of borreliae by macrophages. Our results suggest that macrophage coiling phagocytosis is a complex process involving several actin nucleation/regulatory factors. They also point specifically to the formins mDia1 and FMNL1 as novel regulators of spirochete uptake by human immune cells.
Collapse
|
167
|
Abstract
Late-onset Alzheimer's disease (AD) is the most prevalent cause of dementia among older adults, yet more than a century of research has not determined why this disease develops. One prevailing hypothesis is that late-onset AD is caused by infectious pathogens, an idea widely studied in both humans and experimental animal models. This review examines the infectious AD etiology hypothesis and summarizes existing evidence associating infectious agents with AD in humans. The various mechanisms through which different clinical and subclinical infections could cause or promote the progression of AD are considered, as is the concordance between putative infectious agents and the epidemiology of AD. We searched the PubMed, Web of Science, and EBSCO databases for research articles pertaining to infections and AD and systematically reviewed the evidence linking specific infectious pathogens to AD. The evidence compiled from the literature linking AD to an infectious cause is inconclusive, but the amount of evidence suggestive of an association is too substantial to ignore. Epidemiologic, clinical, and basic science studies that could improve on current understanding of the associations between AD and infections and possibly uncover ways to control this highly prevalent and debilitating disease are suggested.
Collapse
Affiliation(s)
| | - Robert Wallace
- Correspondence to Dr. Robert Wallace, Department of Epidemiology, College of Public Health, The University of Iowa, 105 River St. Iowa City, IA 52242 (e-mail: )
| |
Collapse
|
168
|
Tijsse-Klasen E, Pandak N, Hengeveld P, Takumi K, Koopmans MPG, Sprong H. Ability to cause erythema migrans differs between Borrelia burgdorferi sensu lato isolates. Parasit Vectors 2013; 6:23. [PMID: 23339549 PMCID: PMC3599126 DOI: 10.1186/1756-3305-6-23] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 01/09/2013] [Indexed: 11/25/2022] Open
Abstract
Background Lyme borreliosis is a tick-borne disease caused by Borrelia burgdorferi sensu lato. The variety of characteristic and non-specific clinical manifestations is partially explained by its genetic diversity. We investigated the ability of B. burgdorferi sl isolates to cause erythema migrans. Methods The genetic constellation of isolates from ticks was compared to isolates found in erythema migrans. PCR and sequence analysis was performed on the plasmid-encoded ospC and the chromosomal 5S-23S rDNA spacer region (IGS). Results Seven different B. burgdorferi sl genospecies were identified in 152 borrelia isolates from ticks and erythema migrans biopsies. B afzelii (51%) and B. garinii (27%) were the most common in ticks. From the 44 sequences obtained from erythema migrans samples 42 were B. afzelii, one B. garinii and one B. bavariensis. Significant associations with erythema migrans formation were found for four IGS and two ospC types. Five from 45 ospC types were associated with more than one genospecies. Conclusions B. burgdorferi sl isolates differ in their propensity to cause erythema migrans. These differences were also found within genospecies. In other words, although B. afzelii was mostly associated with erythema migrans, some B. afzelii isolates had a low ability to cause erythema migrans. Our data further support the occurrence of plasmid exchange between borrelia genospecies under natural conditions.
Collapse
Affiliation(s)
- Ellen Tijsse-Klasen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), P,O, Box 1, 3720BA, Bilthoven, Netherlands.
| | | | | | | | | | | |
Collapse
|
169
|
Kean IR, Irvine KL. Lyme disease: aetiopathogenesis, factors for disease development and control. Inflammopharmacology 2012; 21:101-11. [DOI: 10.1007/s10787-012-0156-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/18/2012] [Indexed: 11/25/2022]
|
170
|
Almeida LA, Araujo R. Highlights on molecular identification of closely related species. INFECTION GENETICS AND EVOLUTION 2012; 13:67-75. [PMID: 22982158 DOI: 10.1016/j.meegid.2012.08.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/06/2012] [Accepted: 08/08/2012] [Indexed: 10/27/2022]
Abstract
The term "complex" emerged in the literature at the beginning of the genomic era associated to taxonomy and grouping organisms that belong to different species but exhibited similar patterns according to their morphological, physiological and/or other phenotypic features. DNA-DNA hybridization values ~70% and high identity on 16S rRNA gene sequences were recommended for species delineation. Electrophoretic methods showed in some cases to be useful for species identification and population structure but the reproducibility was questionable. Later, the implementation of polyphasic approaches involving phenotypic and molecular methods brought new insights into the analysis of population structure and phylogeny of several "species complexes", allowing the identification of new closely related species. Likewise, the introduction of multilocus sequence typing and sequencing analysis of several genes offered an evolutionary perspective to the term "species complex". Several centres worldwide have recently released increasing genetic information on distinct microbial species. A brief review will be presented to highlight the definition of "species complex" for selected microorganisms, mainly the prokaryotic Acinetobacter calcoaceticus -Acinetobacter baumannii, Borrelia burgdorferi sensu lato, Burkholderia cepacia, Mycobacterium tuberculosis and Nocardia asteroides complexes, and the eukaryotic Aspergillus fumigatus, Leishmania donovani and Saccharomyces sensu stricto complexes. The members of these complexes may show distinct epidemiology, pathogenicity and susceptibility, turning critical their correct identification. Dynamics of prokaryotic and eukaryotic genomes can be very distinct and the term "species complex" should be carefully extended.
Collapse
Affiliation(s)
- Lígia A Almeida
- IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| | | |
Collapse
|
171
|
Co-infection of Borrelia afzelii and Bartonella spp. in bank voles from a suburban forest. Comp Immunol Microbiol Infect Dis 2012; 35:583-9. [PMID: 22898354 DOI: 10.1016/j.cimid.2012.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/19/2012] [Accepted: 07/24/2012] [Indexed: 11/21/2022]
Abstract
We report the molecular detection of Borrelia afzelii (11%) and Bartonella spp. (56%) in 447 bank voles trapped in a suburban forest in France. Adult voles were infected by significantly more Borrelia afzelii than juveniles (p<0.001), whereas no significant difference was detected in the prevalence of Bartonella spp. between young and adult individuals (p=0.914). Six percent of the animals were co-infected by both bacteria. Analysis of the bank vole carrier status for either pathogen indicated that co-infections occur randomly (p=0.94, CI(95)=[0.53; 1.47]). Sequence analysis revealed that bank voles were infected by a single genotype of Borrelia afzelii and by 32 different Bartonella spp. genotypes, related to three known species specific to rodents (B. taylorii, B. grahamii and B. doshiae) and also two as yet unidentified Bartonella species. Our findings confirm that rodents harbor high levels of potential human pathogens; therefore, widespread surveillance should be undertaken in areas where humans may encounter rodents.
Collapse
|
172
|
Phylogeography of Lyme borreliosis-group spirochetes and methicillin-resistant Staphylococcus aureus. Parasitology 2012; 139:1952-65. [PMID: 22617338 DOI: 10.1017/s0031182012000741] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have revolutionized understanding the global epidemiology of many medically relevant bacteria utilizing a number, mostly seven, of housekeeping genes. A more recent introduction, single nucleotide polymorphisms (SNPs), constitutes an even more powerful tool for bacterial typing, population genetic studies and phylogeography. The introduction of massive parallel sequencing has made genome re-sequencing and SNP discovery more economical for investigations of microbial organisms. In this paper we review phylogeographic studies on Lyme borreliosis (LB)-group spirochetes and methicillin-resistant Staphylococcus aureus (MRSA). Members of the LB-group spirochetes are tick-transmitted zoonotic bacteria that have many hosts and differ in their degree of host specialism, constituting a highly complex system. MRSA is a directly transmitted pathogen that may be acquired by contact with infected people, animals or MRSA-contaminated objects. For the LB-group spirochetes, MLSA has proved a powerful tool for species assignment and phylogeographic investigations while for S. aureus, genome-wide SNP data have been used to study the very short-term evolution of two important MRSA lineages, ST239 and ST225. These data are detailed in this review.
Collapse
|
173
|
Abstract
The current diversity of life on earth is the product of macroevolutionary processes that have shaped the dynamics of diversification. Although the tempo of diversification has been studied extensively in macroorganisms, much less is known about the rates of diversification in the exceedingly diverse and species-rich microbiota. Decreases in diversification rates over time, a signature of explosive radiations, are commonly observed in plant and animal lineages. However, the few existing analyses of microbial lineages suggest that the tempo of diversification in prokaryotes may be fundamentally different. Here, we use multilocus and genomic sequence data to test hypotheses about the rate of diversification in a well-studied pathogenic bacterial lineage, Borrelia burgdorferi sensu lato (sl). Our analyses support the hypothesis that an explosive radiation of lineages occurred near the origin of the clade, followed by a sharp decay in diversification rates. These results suggest that explosive radiations may be a general feature of evolutionary history across the tree of life.
Collapse
Affiliation(s)
- Hélène Morlon
- Center for Applied Mathematics, UMR 7641 CNRS, Ecole Polytechnique, 91128 Palaiseau, France.
| | | | | | | |
Collapse
|