151
|
Fonseca D, Leal-Pinto SM, Roa-Cordero MV, Vargas JD, Moreno-Moreno EM, Macías MA, Suescun L, Muñoz-Castro Á, Hurtado JJ. Inhibition of C. albicans Dimorphic Switch by Cobalt(II) Complexes with Ligands Derived from Pyrazoles and Dinitrobenzoate: Synthesis, Characterization and Biological Activity. Int J Mol Sci 2019; 20:E3237. [PMID: 31266213 PMCID: PMC6651002 DOI: 10.3390/ijms20133237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/12/2019] [Accepted: 06/18/2019] [Indexed: 01/27/2023] Open
Abstract
Seven cobalt(II) complexes of pyrazole derivatives and dinitrobenzoate ligands were synthesized and characterized. The single-crystal X-ray diffraction structure was determined for one of the ligands and one of the complexes. The analysis and spectral data showed that all the cobalt complexes had octahedral geometries, which was supported by DFT calculations. The complexes and their free ligands were evaluated against fungal strains of Candida albicans and emerging non-albicans species and epimastigotes of Trypanosoma cruzi. We obtained antifungal activity with a minimum inhibitory concentration (MIC) ranging from 31.3 to 250 µg mL-1. The complexes were more active against C. krusei, showing MIC values between 31.25 and 62.5 µg mL-1. In addition, some ligands (L1-L6) and complexes (5 and Co(OAc)2 · 4H2O) significantly reduced the yeast to hypha transition of C. albicans at 500 µg mL-1 (inhibition ranging from 30 to 54%). Finally, the complexes and ligands did not present trypanocidal activity and were not toxic to Vero cells. Our results suggest that complexes of cobalt(II) with ligands derived from pyrazoles and dinitrobenzoate may be an attractive alternative for the treatment of diseases caused by fungi, especially because they target one of the most important virulence factors of C. albicans.
Collapse
Affiliation(s)
- Daniela Fonseca
- Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia
| | - Sandra M Leal-Pinto
- Grupo de Investigación en Manejo Clínico-CLINIUDES, Facultad de Ciencias de la Salud, Universidad de Santander, 680002 Bucaramanga, Colombia
| | - Martha V Roa-Cordero
- Grupo de Investigación en Manejo Clínico-CLINIUDES, Facultad de Ciencias de la Salud, Universidad de Santander, 680002 Bucaramanga, Colombia
| | - José D Vargas
- Grupo de Investigación en Manejo Clínico-CLINIUDES, Facultad de Ciencias de la Salud, Universidad de Santander, 680002 Bucaramanga, Colombia
| | - Erika M Moreno-Moreno
- Grupo de Investigación en Biotecnología Agroambiente y Salud-MICROBIOTA, Facultad de Ciencias de la Salud, Universidad de Santander, 680002 Bucaramanga, Colombia
| | - Mario A Macías
- Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia
| | - Leopoldo Suescun
- Cryssmat-Lab, DETEMA, Facultad de Química, Universidad de la República, Av. 18 de Julio 1824-1850, 11200 Montevideo, Uruguay
| | - Álvaro Muñoz-Castro
- Grupo de Química Inorgánica y Materiales Moleculares, Universidad Autónoma de Chile, El Llano Subercaseaux, Santiago 2801, Chile
| | - John J Hurtado
- Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia.
| |
Collapse
|
152
|
|
153
|
Bezerra NVF, Brito ACM, Medeiros MMD, França Leite KL, Bezerra IM, Almeida LFD, Aires CP, Cavalcanti YW. Glucose supplementation effect on the acidogenicity, viability, and extracellular matrix of
Candida
single‐ and dual‐species biofilms. ACTA ACUST UNITED AC 2019; 10:e12412. [DOI: 10.1111/jicd.12412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 02/12/2019] [Indexed: 12/25/2022]
Affiliation(s)
| | - Arella C. M. Brito
- School of Dentistry Federal University of Paraíba João Pessoa Paraíba Brazil
| | | | | | - Isis M. Bezerra
- School of Dentistry Federal University of Paraíba João Pessoa Paraíba Brazil
| | - Leopoldina F. D. Almeida
- Department of Clinical and Social Dentistry Federal University of Paraíba João Pessoa Paraíba Brazil
| | - Carolina P. Aires
- Department of Physics, and Chemistry University of São Paulo Ribeirão Preto Paraíba Brazil
| | - Yuri W. Cavalcanti
- Department of Clinical and Social Dentistry Federal University of Paraíba João Pessoa Paraíba Brazil
| |
Collapse
|
154
|
The influence of N and S poles of static magnetic field (SMF) on Candida albicans hyphal formation and antifungal activity of amphotericin B. Folia Microbiol (Praha) 2019; 64:727-734. [PMID: 30788802 PMCID: PMC6861703 DOI: 10.1007/s12223-019-00686-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/23/2019] [Indexed: 12/27/2022]
Abstract
Due to the increasing number of Candida albicans’ infections and the resistance of this pathogenic fungus to drugs, new therapeutic strategies are sought. One of such strategies may be the use of static magnetic field (SMF). C. albicans cultures were subjected to static magnetic field of the induction 0.5 T in the presence of fluconazole and amphotericin B. We identified a reduction of C. albicans hyphal length. Also, a statistically significant additional effect on the viability of C. albicans was revealed when SMF was combined with the antimycotic drug amphotericin B. The synergistic effect of this antimycotic and SMF may be due to the fact that amphotericin B binds to ergosterol in plasma membrane and SMF similarly to MF could influence domain orientation in plasma membrane (PM).
Collapse
|
155
|
PINTO ANACAROLINAC, ROCHA DEBORAA, MORAES DANIELCDE, JUNQUEIRA MARIAL, FERREIRA-PEREIRA ANTONIO. Candida albicans Clinical Isolates from a Southwest Brazilian Tertiary Hospital Exhibit MFS-mediated Azole Resistance Profile. ACTA ACUST UNITED AC 2019; 91:e20180654. [DOI: 10.1590/0001-3765201920180654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022]
|
156
|
The susceptibility of Candida albicans strains to selected anticancer drugs and flucytosine, relevance of the presence of self-splicing intron in 25S rDNA. J Mycol Med 2018; 29:39-43. [PMID: 30545669 DOI: 10.1016/j.mycmed.2018.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/08/2018] [Accepted: 11/20/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND The presence of intron 25S allows to divide the Candida albicans species into three subclasses (A, B, C). Intronless and intron harboring strains were reported to have different susceptibility to some drugs, for example to flucytosine and bleomycin. OBJECTIVES In this paper we tested the activity of selected antineoplastic agents, bleomycin, mitomycin C, dactinomycin and fluorouracil as well as antifungal drug flucytosine against 49 C. albicans isolates. Twenty-four strains used in this work contained intron, whereas twenty-five were intronless. METHODS The minimal inhibitory concentrations were determined by the standard microdilution method according to EUCAST. RESULTS All of the tested agents showed antifungal activity. Bleomycin was the strongest with an average minimal inhibitory concentration [MIC] of 15.5mg/L (range: 2-32), while the highest MIC was found for dactinomycin: 172.14mg/L (range: 128-256). Intron harboring strains seem to be more susceptible to bleomycin and flucytosine; however, differences were not statistically significant. The only two strains with elevated MICs for flucytosine were intronless. In contrast, the MIC of 5-fluorouracil was more than two times lower in intron harbouring strains comparing to intronless strains (P-value=0.0124). We found that the addition of folinate significantly increased the susceptibility of intronless strains to fluorouracil. MIC of fluorouracil decreased in this group from 58.24 (range: 16-256) to 16,78mg/L (2-64) after the supplementation of folinate. CONCLUSION The antifungal potential of tested substances, especially the simultaneous action of fluorouracil and folinate (combination used in oncology), is encouraging further research.
Collapse
|
157
|
Roscetto E, Contursi P, Vollaro A, Fusco S, Notomista E, Catania MR. Antifungal and anti-biofilm activity of the first cryptic antimicrobial peptide from an archaeal protein against Candida spp. clinical isolates. Sci Rep 2018; 8:17570. [PMID: 30514888 PMCID: PMC6279838 DOI: 10.1038/s41598-018-35530-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/29/2018] [Indexed: 01/20/2023] Open
Abstract
Candida species cause cutaneous and systemic infections with a high mortality rate, especially in immunocompromised patients. The emergence of resistance to the most common antifungal drugs, also due to biofilm formation, requires the development of alternative antifungal agents. The antimicrobial peptide VLL-28, isolated from an archaeal transcription factor, shows comparable antifungal activity against 10 clinical isolates of Candida spp. Using a fluoresceinated derivative of this peptide, we found that VLL-28 binds to the surface of planktonic cells. This observation suggested that it could exert its antifungal activity by damaging the cell wall. In addition, analyses performed on biofilms via confocal microscopy revealed that VLL-28 is differentially active on all the strains tested, with C. albicans and C. parapsilosis being the most sensitive ones. Notably, VLL-28 is the first example of an archaeal antimicrobial peptide that is active towards Candida spp. Thus, this points to archaeal microorganisms as a possible reservoir of novel antifungal agents.
Collapse
Affiliation(s)
- Emanuela Roscetto
- Section of Clinical Microbiology, Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Patrizia Contursi
- Department of Biology, University of Naples Federico II, Campus of Monte S. Angelo, Via Cinthia, 80126, Naples, Italy.
| | - Adriana Vollaro
- Section of Clinical Microbiology, Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Salvatore Fusco
- Department of Biology, University of Naples Federico II, Campus of Monte S. Angelo, Via Cinthia, 80126, Naples, Italy
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, Campus of Monte S. Angelo, Via Cinthia, 80126, Naples, Italy
| | - Maria Rosaria Catania
- Section of Clinical Microbiology, Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| |
Collapse
|
158
|
Wangsanut T, Tobin JM, Rolfes RJ. Functional Mapping of Transcription Factor Grf10 That Regulates Adenine-Responsive and Filamentation Genes in Candida albicans. mSphere 2018; 3:e00467-18. [PMID: 30355670 PMCID: PMC6200990 DOI: 10.1128/msphere.00467-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023] Open
Abstract
Grf10, a homeodomain-containing transcription factor, regulates adenylate and one-carbon metabolism and morphogenesis in the human fungal pathogen Candida albicans Here, we identified functional domains and key residues involved in transcription factor activity using one-hybrid and mutational analyses. We localized activation domains to the C-terminal half of the Grf10 protein by one-hybrid analysis and identified motifs using bioinformatic analyses; one of the characterized activation domains (AD1) responded to temperature. The LexA-Grf10 fusion protein activated the lexAop-HIS1 reporter in an adenine-dependent fashion, and this activation was independent of Bas1, showing that the adenine limitation signal is transmitted directly to Grf10. Overexpression of LexA-Grf10 led to filamentation, and this required a functioning homeodomain, consistent with Grf10 controlling the expression of key filamentation genes; filamentation induced by LexA-Grf10 overexpression was independent of adenine levels and Bas1. Alanine substitutions were made within the conserved interaction regions (IR) of LexA-Grf10 and Grf10 to investigate roles in transcription. In LexA-Grf10, the D302A mutation activated transcription constitutively, and the E305A mutation was regulated by adenine. When these mutations were introduced into the native gene locus, the D302A mutation was unable to complement the ADE phenotype and did not promote filamentation under hypha-inducing conditions; the E305A mutant behaved as the native gene with respect to the ADE phenotype and was partially defective in inducing hyphae. These results demonstrate allele-specific responses with respect to the different phenotypes, consistent with perturbations in the ability of Grf10 to interact with multiple partner proteins.IMPORTANCE Metabolic adaptation and morphogenesis are essential for Candida albicans, a major human fungal pathogen, to survive and infect diverse body sites in the mammalian host. C. albicans utilizes transcription factors to tightly control the transcription of metabolic genes and morphogenesis genes. Grf10, a critical homeodomain transcription factor, controls purine and one-carbon metabolism in response to adenine limitation, and Grf10 is necessary for the yeast-to-hypha morphological switching, a known virulence factor. Here, we carried out one-hybrid and mutational analyses to identify functional domains of Grf10. Our results show that Grf10 separately regulates metabolic and morphogenesis genes, and it contains a conserved protein domain for protein partner interaction, allowing Grf10 to control the transcription of multiple distinct pathways. Our findings contribute significantly to understanding the role and mechanism of transcription factors that control multiple pathogenic traits in C. albicans.
Collapse
Affiliation(s)
| | - Joshua M Tobin
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Ronda J Rolfes
- Department of Biology, Georgetown University, Washington, DC, USA
| |
Collapse
|
159
|
Kleerebezem M, Binda S, Bron PA, Gross G, Hill C, van Hylckama Vlieg JE, Lebeer S, Satokari R, Ouwehand AC. Understanding mode of action can drive the translational pipeline towards more reliable health benefits for probiotics. Curr Opin Biotechnol 2018; 56:55-60. [PMID: 30296737 DOI: 10.1016/j.copbio.2018.09.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/28/2018] [Accepted: 09/07/2018] [Indexed: 12/18/2022]
Abstract
The different levels of knowledge described in a translational pipeline (the connection of molecular mechanisms with pre-clinical physiological and human health effects) are not complete for many probiotics. At present, we are not in a position to fully understand the mechanistic basis of many well established probiotic health benefits which, in turn, limits our ability to use mechanisms to predict which probiotics are likely to be effective in any given population. Here we suggest that this concept of a translation pipeline connecting mechanistic insights to probiotic efficacy can support the selection and production of improved probiotic products. Such a conceptual pipeline would also provide a framework for the design of clinical trials to convincingly demonstrate the benefit of probiotics to human health in well-defined subpopulations.
Collapse
Affiliation(s)
- Michiel Kleerebezem
- Host Microbe Interactomics Group, Wageningen University, Wageningen, The Netherlands.
| | - Sylvie Binda
- Danone Nutricia Research, Centre Daniel Carasso, Palaiseau, France
| | | | - Gabriele Gross
- Innovative Health Sciences, Reckitt Benckiser, Nijmegen, The Netherlands
| | - Colin Hill
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Reetta Satokari
- Immunobiology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Arthur C Ouwehand
- Global Health and Nutrition Sciences, DuPont Nutrition and Health, Kantvik, Finland
| |
Collapse
|
160
|
Epidemiología de las micosis invasoras: un paisaje en continuo cambio. Rev Iberoam Micol 2018; 35:171-178. [DOI: 10.1016/j.riam.2018.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/25/2018] [Accepted: 07/24/2018] [Indexed: 12/17/2022] Open
|
161
|
Gupta P, Gupta S, Sharma M, Kumar N, Pruthi V, Poluri KM. Effectiveness of Phytoactive Molecules on Transcriptional Expression, Biofilm Matrix, and Cell Wall Components of Candida glabrata and Its Clinical Isolates. ACS OMEGA 2018; 3:12201-12214. [PMID: 31459295 PMCID: PMC6645245 DOI: 10.1021/acsomega.8b01856] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/14/2018] [Indexed: 05/20/2023]
Abstract
Toxicity challenges by antifungal arsenals and emergence of multidrug resistance scenario has posed a serious threat to global community. To cope up with this alarming situation, phytoactive molecules are richest, safest, and most effective source of broad spectrum antimicrobial compounds. In the present investigation, six phytoactive molecules [cinnamaldehyde (CIN), epigallocatechin, vanillin, eugenol (EUG), furanone, and epigallocatechin gallate] were studied against Candida glabrata and its clinical isolates. Among these, CIN and EUG which are active components of cinnamon and clove essential oils, respectively, exhibited maximum inhibition against planktonic growth of C. glabrata at a concentration of 64 and 128 μg mL-1, respectively. These two molecules effectively inhibited and eradicated approximately 80% biofilm of C. glabrata and its clinical isolates from biomaterials. CIN and EUG increased reactive oxygen species generation, cell lysis, and ergosterol content in plasma membrane and reduced virulence attributes (phospholipase and proteinase) as well as catalase activity of C. glabrata cells. Reduction of mitochondrial membrane potential with increased release of cytochrome c from mitochondria to cytosol indicated initiation of early apoptosis in CIN- and EUG-treated C. glabrata cells. Transcriptional analysis showed that multidrug transporter (CDR1) and ergosterol biosynthesis genes were downregulated in the presence of CIN, while getting upregulated in EUG-treated cells. Interestingly, genes such as 1,3-β-glucan synthase (FKS1), GPI-anchored protein (KRE1), and sterol importer (AUS1) were downregulated upon treatment of CIN/EUG. These results provided molecular-level insights about the antifungal mechanism of CIN and EUG against C. glabrata including its resistant clinical isolate. The current data established that CIN and EUG can be potentially formulated in new antifungal strategies.
Collapse
Affiliation(s)
- Payal Gupta
- Department
of Biotechnology, Indian Institute of Technology
Roorkee, Roorkee 247667, Uttarakhand, India
| | - Sonam Gupta
- Department
of Biotechnology, Indian Institute of Technology
Roorkee, Roorkee 247667, Uttarakhand, India
| | - Meenakshi Sharma
- Department
of Biotechnology, Indian Institute of Technology
Roorkee, Roorkee 247667, Uttarakhand, India
| | - Navin Kumar
- Department
of Biotechnology, Graphic Era Deemed to
be University, Dehradun 248002, Uttarakhand, India
| | - Vikas Pruthi
- Department
of Biotechnology, Indian Institute of Technology
Roorkee, Roorkee 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department
of Biotechnology, Indian Institute of Technology
Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
162
|
The continuous changes in the aetiology and epidemiology of invasive candidiasis: from familiar Candida albicans to multiresistant Candida auris. Int Microbiol 2018; 21:107-119. [PMID: 30810955 DOI: 10.1007/s10123-018-0014-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 01/12/2023]
Abstract
Recent changes in the aetiology and epidemiology of invasive candidiasis have serious implications for current and future diagnosis, treatment and prognosis. The aim of the current review was to discuss the epidemiology of invasive candidiasis, the distribution of Candida species in different regions of the world, the medical concerns of the changing aetiology and the emergence of antifungal resistance. Overall burden of invasive candidiasis remains high, especially in vulnerable persons, such as the elderly, immunosuppressed or debilitated patients. Moreover, there is a progressive shift in the aetiology of invasive candidiasis from Candida albicans to other species of Candida, probably related to the increased use of azole drugs with a clear trend towards increased antifungal resistance. Finally, the emergence and rise of multiresistant species, such as Candida auris or Candida glabrata, is a major threat making necessary invasive candidiasis worldwide surveillances. These changes have serious implications for the diagnosis, treatment and prognosis of invasive candidiasis. Updated knowledge of the current local epidemiology of invasive candidiasis is critical for the clinical management.
Collapse
|
163
|
Van Dijck P, Sjollema J, Cammue BPA, Lagrou K, Berman J, d’Enfert C, Andes DR, Arendrup MC, Brakhage AA, Calderone R, Cantón E, Coenye T, Cos P, Cowen LE, Edgerton M, Espinel-Ingroff A, Filler SG, Ghannoum M, Gow NA, Haas H, Jabra-Rizk MA, Johnson EM, Lockhart SR, Lopez-Ribot JL, Maertens J, Munro CA, Nett JE, Nobile CJ, Pfaller MA, Ramage G, Sanglard D, Sanguinetti M, Spriet I, Verweij PE, Warris A, Wauters J, Yeaman MR, Zaat SA, Thevissen K. Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms. MICROBIAL CELL (GRAZ, AUSTRIA) 2018; 5:300-326. [PMID: 29992128 PMCID: PMC6035839 DOI: 10.15698/mic2018.07.638] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022]
Abstract
Unlike superficial fungal infections of the skin and nails, which are the most common fungal diseases in humans, invasive fungal infections carry high morbidity and mortality, particularly those associated with biofilm formation on indwelling medical devices. Therapeutic management of these complex diseases is often complicated by the rise in resistance to the commonly used antifungal agents. Therefore, the availability of accurate susceptibility testing methods for determining antifungal resistance, as well as discovery of novel antifungal and antibiofilm agents, are key priorities in medical mycology research. To direct advancements in this field, here we present an overview of the methods currently available for determining (i) the susceptibility or resistance of fungal isolates or biofilms to antifungal or antibiofilm compounds and compound combinations; (ii) the in vivo efficacy of antifungal and antibiofilm compounds and compound combinations; and (iii) the in vitro and in vivo performance of anti-infective coatings and materials to prevent fungal biofilm-based infections.
Collapse
Affiliation(s)
- Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- KU Leuven Laboratory of Molecular Cell Biology, Leuven, Belgium
| | - Jelmer Sjollema
- University of Groningen, University Medical Center Groningen, Department of BioMedical Engineering, Groningen, The Netherlands
| | - Bruno P. A. Cammue
- Centre for Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Department of Plant Systems Biology, VIB, Ghent, Belgium
| | - Katrien Lagrou
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- Clinical Department of Laboratory Medicine and National Reference Center for Mycosis, UZ Leuven, Belgium
| | - Judith Berman
- School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Christophe d’Enfert
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - David R. Andes
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Maiken C. Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Axel A. Brakhage
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Dept. Microbiology and Molecular Biology, Friedrich Schiller University Jena, Institute of Microbiology, Jena, Germany
| | - Richard Calderone
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington DC, USA
| | - Emilia Cantón
- Severe Infection Research Group: Medical Research Institute La Fe (IISLaFe), Valencia, Spain
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- ESCMID Study Group for Biofilms, Switzerland
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Belgium
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Mira Edgerton
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY USA
| | | | - Scott G. Filler
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Mahmoud Ghannoum
- Center for Medical Mycology, Department of Dermatology, University Hospitals Cleveland Medical Center and Case Western Re-serve University, Cleveland, OH, USA
| | - Neil A.R. Gow
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Hubertus Haas
- Biocenter - Division of Molecular Biology, Medical University Innsbruck, Innsbruck, Austria
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry; Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, USA
| | - Elizabeth M. Johnson
- National Infection Service, Public Health England, Mycology Reference Laboratory, Bristol, UK
| | | | | | - Johan Maertens
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium and Clinical Department of Haematology, UZ Leuven, Leuven, Belgium
| | - Carol A. Munro
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jeniel E. Nett
- University of Wisconsin-Madison, Departments of Medicine and Medical Microbiology & Immunology, Madison, WI, USA
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, USA
| | - Michael A. Pfaller
- Departments of Pathology and Epidemiology, University of Iowa, Iowa, USA
- JMI Laboratories, North Liberty, Iowa, USA
| | - Gordon Ramage
- ESCMID Study Group for Biofilms, Switzerland
- College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne
| | - Maurizio Sanguinetti
- Institute of Microbiology, Università Cattolica del Sacro Cuore, IRCCS-Fondazione Policlinico "Agostino Gemelli", Rome, Italy
| | - Isabel Spriet
- Pharmacy Dpt, University Hospitals Leuven and Clinical Pharmacology and Pharmacotherapy, Dpt. of Pharmaceutical and Pharma-cological Sciences, KU Leuven, Belgium
| | - Paul E. Verweij
- Center of Expertise in Mycology Radboudumc/CWZ, Radboud University Medical Center, Nijmegen, the Netherlands (omit "Nijmegen" in Radboud University Medical Center)
| | - Adilia Warris
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Joost Wauters
- KU Leuven-University of Leuven, University Hospitals Leuven, Department of General Internal Medicine, Herestraat 49, B-3000 Leuven, Belgium
| | - Michael R. Yeaman
- Geffen School of Medicine at the University of California, Los Angeles, Divisions of Molecular Medicine & Infectious Diseases, Har-bor-UCLA Medical Center, LABioMed at Harbor-UCLA Medical Center
| | - Sebastian A.J. Zaat
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Am-sterdam, Netherlands
| | - Karin Thevissen
- Centre for Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|