151
|
Qiu ZR, Shuman S, Schwer B. An essential role for trimethylguanosine RNA caps in Saccharomyces cerevisiae meiosis and their requirement for splicing of SAE3 and PCH2 meiotic pre-mRNAs. Nucleic Acids Res 2011; 39:5633-46. [PMID: 21398639 PMCID: PMC3141232 DOI: 10.1093/nar/gkr083] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Tgs1 is the enzyme that converts m7G RNA caps to the 2,2,7-trimethylguanosine (TMG) caps characteristic of spliceosomal snRNAs. Fungi grow vegetatively without TMG caps, thereby raising the question of what cellular transactions, if any, are TMG cap-dependent. Here, we report that Saccharomyces cerevisiae Tgs1 methyltransferase activity is essential for meiosis. tgs1Δ cells are specifically defective in splicing PCH2 and SAE3 meiotic pre-mRNAs. The TMG requirement for SAE3 splicing is alleviated by two intron mutations: a UAUUAAC to UACUAAC change that restores a consensus branchpoint and disruption of a stem–loop encompassing the branchpoint. The TMG requirement for PCH2 splicing is alleviated by a CACUAAC to UACUAAC change restoring a consensus branchpoint and by shortening the PCH2 5′ exon. Placing the SAE3 and PCH2 introns within a HIS3 reporter confers Tgs1-dependent histidine prototrophy, signifying that the respective introns are portable determinants of TMG-dependent gene expression. Analysis of in vitro splicing in extracts of TGS1 versus tgs1Δ cells showed that SAE3 intron removal was enfeebled without TMG caps, whereas splicing of ACT1 was unaffected. Our findings illuminate a new mode of tunable splicing, a reliance on TMG caps for an essential developmental RNA transaction, and three genetically distinct meiotic splicing regulons in budding yeast.
Collapse
Affiliation(s)
- Zhicheng R Qiu
- Molecular Biology Program, Sloan-Kettering Institute and Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065 USA
| | | | | |
Collapse
|
152
|
Ren L, McLean JR, Hazbun TR, Fields S, Vander Kooi C, Ohi MD, Gould KL. Systematic two-hybrid and comparative proteomic analyses reveal novel yeast pre-mRNA splicing factors connected to Prp19. PLoS One 2011; 6:e16719. [PMID: 21386897 PMCID: PMC3046128 DOI: 10.1371/journal.pone.0016719] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 12/23/2010] [Indexed: 11/19/2022] Open
Abstract
Prp19 is the founding member of the NineTeen Complex, or NTC, which is a spliceosomal subcomplex essential for spliceosome activation. To define Prp19 connectivity and dynamic protein interactions within the spliceosome, we systematically queried the Saccharomyces cerevisiae proteome for Prp19 WD40 domain interaction partners by two-hybrid analysis. We report that in addition to S. cerevisiae Cwc2, the splicing factor Prp17 binds directly to the Prp19 WD40 domain in a 1:1 ratio. Prp17 binds simultaneously with Cwc2 indicating that it is part of the core NTC complex. We also find that the previously uncharacterized protein Urn1 (Dre4 in Schizosaccharomyces pombe) directly interacts with Prp19, and that Dre4 is conditionally required for pre-mRNA splicing in S. pombe. S. pombe Dre4 and S. cerevisiae Urn1 co-purify U2, U5, and U6 snRNAs and multiple splicing factors, and dre4Δ and urn1Δ strains display numerous negative genetic interactions with known splicing mutants. The S. pombe Prp19-containing Dre4 complex co-purifies three previously uncharacterized proteins that participate in pre-mRNA splicing, likely before spliceosome activation. Our multi-faceted approach has revealed new low abundance splicing factors connected to NTC function, provides evidence for distinct Prp19 containing complexes, and underscores the role of the Prp19 WD40 domain as a splicing scaffold.
Collapse
Affiliation(s)
- Liping Ren
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Janel R. McLean
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Tony R. Hazbun
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences and Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Stanley Fields
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences and Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Craig Vander Kooi
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Melanie D. Ohi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Kathleen L. Gould
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
153
|
Abstract
Nucleosomes containing histone variant H2A.Z (Htz1) serve to poise quiescent genes for activation and transcriptional initiation. However, little is known about their role in transcription elongation. Here we show that dominant mutations in the elongation genes SPT5 and SPT16 suppress the hypersensitivity of htz1Δ strains to drugs that inhibit elongation, indicating that Htz1 functions at the level of transcription elongation. Direct kinetic measurements of RNA polymerase II (Pol II) movement across the 9.5-kb GAL10p-VPS13 gene revealed that the elongation rate of polymerase is 24% slower in the absence of Htz1. We provide evidence for two nonexclusive mechanisms. First, we observed that both the phospho-Ser2 levels in the elongating isoform of Pol II and the loading of Spt5 and Elongator over the GAL1 open reading frame (ORF) depend on Htz1. Second, in the absence of Htz1, the density of nucleosome occupancy is increased over the GAL10p-VPS13 ORF and the chromatin is refractory to remodeling during active transcription. These results establish a mechanistic role for Htz1 in transcription elongation and suggest that Htz1-containing nucleosomes facilitate Pol II passage by affecting the correct assembly and modification status of Pol II elongation complexes and by favoring efficient nucleosome remodeling over the gene.
Collapse
|
154
|
Genetic analysis implicates the Set3/Hos2 histone deacetylase in the deposition and remodeling of nucleosomes containing H2A.Z. Genetics 2011; 187:1053-66. [PMID: 21288874 DOI: 10.1534/genetics.110.125419] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Histone variants and histone modification complexes act to regulate the functions of chromatin. In Saccharomyces cerevisiae the histone variant H2A.Z is encoded by HTZ1. Htz1 is dispensable for viability in budding yeast, but htz1Δ is synthetic sick or lethal with the null alleles of about 200 nonessential genes. One of the strongest of these interactions is with the deletion of SET3, which encodes a subunit of the Set3/Hos2 histone deacetylase complex. Little is known about the functions of Set3, and interpreting these genetic interactions remains a highly challenging task. Here we report the results of a forward genetic screen to identify bypass suppressors of the synthetic slow-growth phenotype of htz1Δ set3Δ. Among the identified loss-of-function suppressors are genes encoding subunits of the HDA1 deacetylase complex, the SWR1 complex, the H2B deubiquitination module of SAGA, the proteasome, Set1, and Sir3. This constellation of suppressor genes is uncommon among the global set of htz1Δ synthetic interactions. BDF1, AHC1, RMR1, and CYC8 were identified as high-copy suppressors. We also identified interactions with SLX5 and SLX8, encoding the sumoylation-targeted ubiquitin ligase complex. In the context of htz1Δ set3Δ, suppressors in the SWR1 and the H2B deubiquitination complexes show strong functional similarity, as do suppressors in the silencing genes and the proteasome. Surprisingly, while both htz1Δ set3Δ and swr1Δ set3Δ have severe slow-growth phenotypes, the htz1Δ swr1Δ set3Δ triple mutant grows relatively well. We propose that Set3 has previously unrecognized functions in the dynamic deposition and remodeling of nucleosomes containing H2A.Z.
Collapse
|
155
|
Epistatic relationships reveal the functional organization of yeast transcription factors. Mol Syst Biol 2011; 6:420. [PMID: 20959818 DOI: 10.1038/msb.2010.77] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 08/27/2010] [Indexed: 11/09/2022] Open
Abstract
The regulation of gene expression is, in large part, mediated by interplay between the general transcription factors (GTFs) that function to bring about the expression of many genes and site-specific DNA-binding transcription factors (STFs). Here, quantitative genetic profiling using the epistatic miniarray profile (E-MAP) approach allowed us to measure 48 391 pairwise genetic interactions, both negative (aggravating) and positive (alleviating), between and among genes encoding STFs and GTFs in Saccharomyces cerevisiae. This allowed us to both reconstruct regulatory models for specific subsets of transcription factors and identify global epistatic patterns. Overall, there was a much stronger preference for negative relative to positive genetic interactions among STFs than there was among GTFs. Negative genetic interactions, which often identify factors working in non-essential, redundant pathways, were also enriched for pairs of STFs that co-regulate similar sets of genes. Microarray analysis demonstrated that pairs of STFs that display negative genetic interactions regulate gene expression in an independent rather than coordinated manner. Collectively, these data suggest that parallel/compensating relationships between regulators, rather than linear pathways, often characterize transcriptional circuits.
Collapse
|
156
|
Hou L, Wang L, Qian M, Li D, Tang C, Zhu Y, Deng M, Li F. Modular analysis of the probabilistic genetic interaction network. ACTA ACUST UNITED AC 2011; 27:853-9. [PMID: 21278184 PMCID: PMC3051332 DOI: 10.1093/bioinformatics/btr031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Motivation: Epistatic Miniarray Profiles (EMAP) has enabled the mapping of large-scale genetic interaction networks; however, the quantitative information gained from EMAP cannot be fully exploited since the data are usually interpreted as a discrete network based on an arbitrary hard threshold. To address such limitations, we adopted a mixture modeling procedure to construct a probabilistic genetic interaction network and then implemented a Bayesian approach to identify densely interacting modules in the probabilistic network. Results: Mixture modeling has been demonstrated as an effective soft-threshold technique of EMAP measures. The Bayesian approach was applied to an EMAP dataset studying the early secretory pathway in Saccharomyces cerevisiae. Twenty-seven modules were identified, and 14 of those were enriched by gold standard functional gene sets. We also conducted a detailed comparison with state-of-the-art algorithms, hierarchical cluster and Markov clustering. The experimental results show that the Bayesian approach outperforms others in efficiently recovering biologically significant modules. Contact:dengmh@pku.edu.cn; fangtingli@pku.edu.cn; zhuyp@hupo.org.cn Supplementary Information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Lin Hou
- School of Mathematical Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Rodríguez-Navarro S, Hurt E. Linking gene regulation to mRNA production and export. Curr Opin Cell Biol 2011; 23:302-9. [PMID: 21227675 DOI: 10.1016/j.ceb.2010.12.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 12/01/2010] [Accepted: 12/02/2010] [Indexed: 01/30/2023]
Abstract
Regulation of gene expression can occur at many different levels. One important step in the gene expression process is the transport of mRNA from the nucleus to the cytoplasm. In recent years, studies have described how nuclear mRNA export depends on the steps preceding and following transport through nuclear pore complexes. These include gene activation, transcription, mRNA processing and mRNP assembly and disassembly. In this review, we summarise recent insights into the links between these steps in the gene expression cascade.
Collapse
|
158
|
Qiu ZR, Schwer B, Shuman S. Determinants of Nam8-dependent splicing of meiotic pre-mRNAs. Nucleic Acids Res 2011; 39:3427-45. [PMID: 21208980 PMCID: PMC3082912 DOI: 10.1093/nar/gkq1328] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nam8, a component of yeast U1 snRNP, is optional for mitotic growth but required during meiosis, because Nam8 collaborates with Mer1 to promote splicing of essential meiotic mRNAs AMA1, MER2 and MER3. Here, we identify SPO22 and PCH2 as novel targets of Nam8-dependent meiotic splicing. Whereas SPO22 splicing is co-dependent on Mer1, PCH2 is not. The SPO22 intron has a non-consensus 5′ splice site (5′SS) that dictates its Nam8/Mer1-dependence. SPO22 splicing relies on Mer1 recognition, via its KH domain, of an intronic enhancer 5′-AYACCCUY. Mutagenesis of KH and the enhancer highlights Arg214 and Gln243 and the CCC triplet as essential for Mer1 activity. The Nam8-dependent PCH2 pre-mRNA has a consensus 5′SS and lacks a Mer1 enhancer. For PCH2, a long 5′ exon and a non-consensus intron branchpoint dictate Nam8-dependence. Our results implicate Nam8 in two distinct meiotic splicing regulons. Nam8 is composed of three RRM domains, flanked by N-terminal leader and C-terminal tail segments. The leader, tail and RRM1 are dispensable for splicing meiotic targets and unnecessary for vegetative Nam8 function in multiple synthetic lethal genetic backgrounds. Nam8 activity is enfeebled by alanine mutations in the putative RNA binding sites of the RRM2 and RRM3 domains.
Collapse
Affiliation(s)
- Zhicheng R Qiu
- Sloan-Kettering Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | |
Collapse
|
159
|
Babu M, Gagarinova A, Greenblatt J, Emili A. Array-based synthetic genetic screens to map bacterial pathways and functional networks in Escherichia coli. Methods Mol Biol 2011; 765:125-153. [PMID: 21815091 DOI: 10.1007/978-1-61779-197-0_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cellular processes are carried out through a series of molecular interactions. Various experimental approaches can be used to investigate these functional relationships on a large-scale. Recently, the power of investigating biological systems from the perspective of genetic (gene-gene or epistatic) interactions has been evidenced by the ability to elucidate novel functional relationships. Examples of functionally related genes include genes that buffer each other's function or impinge on the same biological process. Genetic interactions have traditionally been investigated in bacteria by combining pairs of mutations (e.g., gene deletions) and assessing deviation of the phenotype of each double mutant from an expected neutral (or no interaction) phenotype. Fitness is a particularly convenient phenotype to measure: when the double mutant grows faster or slower than expected, the two mutated genes are said to show alleviating or aggravating interactions, respectively. The most commonly used neutral model assumes that the fitness of the double mutant is equal to the product of individual single mutant fitness. A striking genetic interaction is exemplified by the loss of two nonessential genes that buffer each other in performing an essential biological function: deleting only one of these genes produces no detectable fitness defect; however, loss of both genes simultaneously results in systems failure, leading to synthetic sickness or lethality. Systematic large-scale genetic interaction screens have been used to generate functional maps for model eukaryotic organisms, such as yeast, to describe the functional organization of gene products into pathways and protein complexes within a cell. They also reveal the modular arrangement and cross talk of pathways and complexes within broader functional neighborhoods (Dixon et al., Annu Rev Genet 43:601-625, 2009). Here, we present a high-throughput quantitative Escherichia coli Synthetic Genetic Array (eSGA) screening procedure, which we developed to systematically infer genetic interactions by scoring growth defects among large numbers of double mutants in a classic Gram-negative bacterium. The eSGA method exploits the rapid colony growth, ease of genetic manipulation, and natural efficient genetic exchange via conjugation of laboratory E. coli strains. Replica pinning is used to grow and mate arrayed sets of single gene mutant strains and to select double mutants en masse. Strain fitness, which is used as the eSGA readout, is quantified by the digital imaging of the plates and subsequent measuring and comparing single and double mutant colony sizes. While eSGA can be used to screen select mutants to probe the functions of individual genes, using eSGA more broadly to collect genetic interaction data for many combinations of genes can help reconstruct a functional interaction network to reveal novel links and components of biological pathways as well as unexpected connections between pathways. A variety of bacterial systems can be investigated, wherein the genes impinge on a essential biological process (e.g., cell wall assembly, ribosome biogenesis, chromosome replication) that are of interest from the perspective of drug development (Babu et al., Mol Biosyst 12:1439-1455, 2009). We also show how genetic interactions generated by high-throughput eSGA screens can be validated by manual small-scale genetic crosses and by genetic complementation and gene rescue experiments.
Collapse
Affiliation(s)
- Mohan Babu
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
160
|
Array-based synthetic genetic screens to map bacterial pathways and functional networks in Escherichia coli. Methods Mol Biol 2011; 781:99-126. [PMID: 21877280 DOI: 10.1007/978-1-61779-276-2_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cellular processes are carried out through a series of molecular interactions. Various experimental approaches can be used to investigate these functional relationships on a large-scale. Recently, the power of investigating biological systems from the perspective of genetic (gene-gene, or epistatic) interactions has been evidenced by the ability to elucidate novel functional relationships. Examples of functionally related genes include genes that buffer each other's function or impinge on the same biological process. Genetic interactions have traditionally been investigated in bacteria by combining pairs of mutations (for example, gene deletions) and assessing deviation of the phenotype of each double mutant from an expected neutral (or no interaction) phenotype. Fitness is a particularly convenient phenotype to measure: when the double mutant grows faster or slower than expected, the two mutated genes are said to show alleviating or aggravating interactions, respectively. The most commonly used neutral model assumes that the fitness of the double mutant is equal to the product of individual single mutant fitness. A striking genetic interaction is exemplified by the loss of two nonessential genes that buffer each other in performing an essential biological function: deleting only one of these genes produces no detectable fitness defect; however, loss of both genes simultaneously results in systems failure, leading to synthetic sickness or lethality. Systematic large-scale genetic interaction screens have been used to generate functional maps for model eukaryotic organisms, such as yeast, to describe the functional organization of gene products into pathways and protein complexes within a cell. They also reveal the modular arrangement and cross-talk of pathways and complexes within broader functional neighborhoods (Dixon et al. Annu Rev Genet 43:601-625, 2009). Here, we present a high-throughput quantitative Escherichia coli synthetic genetic array (eSGA) screening procedure, which we developed to systematically infer genetic interactions by scoring growth defects among large numbers of double mutants in a classic gram-negative bacterium. The eSGA method exploits the rapid colony growth, ease of genetic manipulation, and natural efficient genetic exchange via conjugation of laboratory E. coli strains. Replica pinning is used to grow and mate arrayed sets of single-gene mutant strains as well as to select double mutants en mass. Strain fitness, which is used as the eSGA readout, is quantified by the digital imaging of the plates and subsequent measuring and comparing single and double mutant colony sizes. While eSGA can be used to screen select mutants to probe the functions of individual genes; using eSGA more broadly to collect genetic interaction data for many combinations of genes can help reconstruct a functional interaction network to reveal novel links and components of biological pathways as well as unexpected connections between pathways. A variety of bacterial systems can be investigated, wherein the genes impinge on a essential biological process (e.g., cell wall assembly, ribosome biogenesis, chromosome replication) that are of interest from the perspective of drug development (Babu et al. Mol Biosyst 12:1439-1455, 2009). We also show how genetic interactions generated by high-throughput eSGA screens can be validated by manual small-scale genetic crosses and by genetic complementation and gene rescue experiments.
Collapse
|
161
|
New suppressors of THO mutations identify Thp3 (Ypr045c)-Csn12 as a protein complex involved in transcription elongation. Mol Cell Biol 2010; 31:674-85. [PMID: 21149575 DOI: 10.1128/mcb.01188-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Formation of a ribonucleoprotein particle (mRNP) competent for export requires the coupling of transcription with mRNA processing and RNA export. A key link between these processes is provided by the THO complex. To progress in our understanding of this coupling, we have performed a search for suppressors of the transcription defect caused by the hpr1Δ mutation. This has permitted us to identify mutations in the genes for the RNA polymerase II mediator component Med10, the Sch9 protein kinase, and the Ypr045c protein. We report a role in transcription elongation for Ypr045c (Thp3) and the Csn12 component of the COP9 signalosome. Thp3 and Csn12 form a complex that is recruited to transcribed genes. Their mutations suppress the gene expression defects of THO complex mutants involved in mRNP biogenesis and export and show defects in mRNA accumulation. Transcription elongation impairment of thp3Δ mutants is shown by in vivo transcript run-on analysis performed in G-less systems. Thp3-Csn12 establishes a novel link between transcription and mRNA processing that opens new perspectives on our understanding of gene expression and reveals novel functions for a component of the COP9 signalosome. Thp3-Csn12 also copurifies with ribosomal proteins, which opens the possibility that it has other functions in addition to transcription.
Collapse
|
162
|
Costanzo M, Baryshnikova A, Myers CL, Andrews B, Boone C. Charting the genetic interaction map of a cell. Curr Opin Biotechnol 2010; 22:66-74. [PMID: 21111604 DOI: 10.1016/j.copbio.2010.11.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 11/01/2010] [Indexed: 12/23/2022]
Abstract
Genome sequencing projects have revealed a massive catalog of genes and astounding genetic diversity in a variety of organisms. We are now faced with the formidable challenge of assigning functions to thousands of genes, and how to use this information to understand how genes interact and coordinate cell function. Studies indicate that the majority of eukaryotic genes are dispensable, highlighting the extensive buffering of genomes against genetic and environmental perturbations. Such robustness poses a significant challenge to those seeking to understand the wiring diagram of the cell. Genome-scale screens for genetic interactions are an effective means to chart the network that underlies this functional redundancy. A complete atlas of genetic interactions offers the potential to assign functions to most genes identified by whole genome sequencing projects and to delineate a functional wiring diagram of the cell. Perhaps more importantly, mapping genetic networks on a large-scale will shed light on the general principles and rules governing genetic networks and provide valuable information regarding the important but elusive relationship between genotype and phenotype.
Collapse
Affiliation(s)
- Michael Costanzo
- Banting and Best Department of Medical Research and Department of Molecular Genetics, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
163
|
McKay SL, Johnson TL. A bird's-eye view of post-translational modifications in the spliceosome and their roles in spliceosome dynamics. MOLECULAR BIOSYSTEMS 2010; 6:2093-102. [PMID: 20672149 PMCID: PMC4065859 DOI: 10.1039/c002828b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pre-mRNA splicing, the removal of noncoding intron sequences from the pre-mRNA, is a critical reaction in eukaryotic gene expression. Pre-mRNA splicing is carried out by a remarkable macromolecular machine, the spliceosome, which undergoes dynamic rearrangements of its RNA and protein components to assemble its catalytic center. While significant progress has been made in describing the "moving parts" of this machine, the mechanisms by which spliceosomal proteins mediate the ordered rearrangements within the spliceosome remain elusive. Here we explore recent evidence from proteomics studies revealing extensive post-translational modification of splicing factors. While the functional significance of most of these modifications remains to be characterized, we describe recent studies in which the roles of specific post-translational modifications of splicing factors have been characterized. These examples illustrate the importance of post-translational modifications in spliceosome dynamics.
Collapse
Affiliation(s)
- Susannah L. McKay
- Division of Biological Sciences, Molecular Biology Section MC-0377, 9500 Gilman Drive, La Jolla, CA 92093-0377, USA
| | - Tracy L. Johnson
- Division of Biological Sciences, Molecular Biology Section MC-0377, 9500 Gilman Drive, La Jolla, CA 92093-0377, USA
| |
Collapse
|
164
|
van Opijnen T, Camilli A. Genome-wide fitness and genetic interactions determined by Tn-seq, a high-throughput massively parallel sequencing method for microorganisms. CURRENT PROTOCOLS IN MICROBIOLOGY 2010; Chapter 1:Unit1E.3. [PMID: 21053251 PMCID: PMC3877651 DOI: 10.1002/9780471729259.mc01e03s19] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The lagging annotation of bacterial genomes and the inherent genetic complexity of many phenotypes is hindering the discovery of new drug targets and the development of new antimicrobials and vaccines. Here we present the method Tn-seq, with which it has become possible to quantitatively determine fitness for most genes in a microorganism and to screen for quantitative genetic interactions on a genome-wide scale and in a high-throughput fashion. Tn-seq can thus direct studies in the annotation of genes and untangle complex phenotypes. The method is based on the construction of a saturated Mariner transposon insertion library. After library selection, changes in frequency of each insertion mutant are determined by sequencing of the flanking regions en masse. These changes are used to calculate each mutant's fitness. The method has been developed for the Gram-positive bacterium Streptococcus pneumoniae, a causative agent of pneumonia and meningitis; however, due to the wide activity of the Mariner transposon, Tn-seq can be applied to many different microbial species.
Collapse
Affiliation(s)
- Tim van Opijnen
- Tufts University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
165
|
Jaimovich A, Rinott R, Schuldiner M, Margalit H, Friedman N. Modularity and directionality in genetic interaction maps. Bioinformatics 2010; 26:i228-36. [PMID: 20529911 PMCID: PMC2881382 DOI: 10.1093/bioinformatics/btq197] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Motivation: Genetic interactions between genes reflect functional relationships caused by a wide range of molecular mechanisms. Large-scale genetic interaction assays lead to a wealth of information about the functional relations between genes. However, the vast number of observed interactions, along with experimental noise, makes the interpretation of such assays a major challenge. Results: Here, we introduce a computational approach to organize genetic interactions and show that the bulk of observed interactions can be organized in a hierarchy of modules. Revealing this organization enables insights into the function of cellular machineries and highlights global properties of interaction maps. To gain further insight into the nature of these interactions, we integrated data from genetic screens under a wide range of conditions to reveal that more than a third of observed aggravating (i.e. synthetic sick/lethal) interactions are unidirectional, where one gene can buffer the effects of perturbing another gene but not vice versa. Furthermore, most modules of genes that have multiple aggravating interactions were found to be involved in such unidirectional interactions. We demonstrate that the identification of external stimuli that mimic the effect of specific gene knockouts provides insights into the role of individual modules in maintaining cellular integrity. Availability: We designed a freely accessible web tool that includes all our findings, and is specifically intended to allow effective browsing of our results (http://compbio.cs.huji.ac.il/GIAnalysis). Contact:maya.schuldiner@weizmann.ac.il; hanahm@ekmd.huji.ac.il; nir@cs.huji.ac.il Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ariel Jaimovich
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
166
|
Abstract
tRNA biology has come of age, revealing an unprecedented level of understanding and many unexpected discoveries along the way. This review highlights new findings on the diverse pathways of tRNA maturation, and on the formation and function of a number of modifications. Topics of special focus include the regulation of tRNA biosynthesis, quality control tRNA turnover mechanisms, widespread tRNA cleavage pathways activated in response to stress and other growth conditions, emerging evidence of signaling pathways involving tRNA and cleavage fragments, and the sophisticated intracellular tRNA trafficking that occurs during and after biosynthesis.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| | | |
Collapse
|
167
|
Structure characterization of the 26S proteasome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1809:67-79. [PMID: 20800708 DOI: 10.1016/j.bbagrm.2010.08.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Revised: 08/17/2010] [Accepted: 08/19/2010] [Indexed: 01/27/2023]
Abstract
In all eukaryotic cells, 26S proteasome plays an essential role in the process of ATP-dependent protein degradation. In this review, we focus on structure characterization of the 26S proteasome. Although the progress towards a high-resolution structure of the 26S proteasome has been slow, the recently solved structures of various proteasomal subcomplexes have greatly enhanced our understanding of this large machinery. In addition to having an ATP-dependent proteolytic function, the 26S proteasome is also involved in many non-proteolytic cellular activities, which are often mediated by subunits in its 19S regulatory complex. Thus, we include a detailed discussion of the structures of 19S subunits, including proteasomal ATPases, ubiquitin receptors, deubiquitinating enzymes and subunits that contain PCI domain. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!
Collapse
|
168
|
Kwak J, Workman JL, Lee D. The proteasome and its regulatory roles in gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1809:88-96. [PMID: 20723625 DOI: 10.1016/j.bbagrm.2010.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 07/30/2010] [Accepted: 08/07/2010] [Indexed: 12/21/2022]
Abstract
Cumulative evidence indicates that the proteasome, which is mainly known as a protein-degrading machine, is very essential for gene expression. Destructive functions of the proteasome, i.e., ubiquitin-dependent proteolytic activity, are significant for activator localization, activator destruction, co-activator/repressor destruction and PIC disassembly. Non-proteolytic functions of the proteasome are important for recruitment of activators and co-activators to promoters, ubiquitin-dependent histone modification, transcription elongation and possibly maturation of mRNA via the facilitation of mRNA export from the nucleus to the cytoplasm. In this review, we discuss how the proteasome regulates transcription at numerous stages during gene expression. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!
Collapse
Affiliation(s)
- Jaechan Kwak
- Department of Biological Sciences, KAIST, Yuseong-Gu, Daejeon, 305-701, Korea
| | | | | |
Collapse
|
169
|
Alamgir M, Erukova V, Jessulat M, Azizi A, Golshani A. Chemical-genetic profile analysis of five inhibitory compounds in yeast. BMC CHEMICAL BIOLOGY 2010; 10:6. [PMID: 20691087 PMCID: PMC2925817 DOI: 10.1186/1472-6769-10-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 08/06/2010] [Indexed: 11/10/2022]
Abstract
Background Chemical-genetic profiling of inhibitory compounds can lead to identification of their modes of action. These profiles can help elucidate the complex interactions between small bioactive compounds and the cell machinery, and explain putative gene function(s). Results Colony size reduction was used to investigate the chemical-genetic profile of cycloheximide, 3-amino-1,2,4-triazole, paromomycin, streptomycin and neomycin in the yeast Saccharomyces cerevisiae. These compounds target the process of protein biosynthesis. More than 70,000 strains were analyzed from the array of gene deletion mutant yeast strains. As expected, the overall profiles of the tested compounds were similar, with deletions for genes involved in protein biosynthesis being the major category followed by metabolism. This implies that novel genes involved in protein biosynthesis could be identified from these profiles. Further investigations were carried out to assess the activity of three profiled genes in the process of protein biosynthesis using relative fitness of double mutants and other genetic assays. Conclusion Chemical-genetic profiles provide insight into the molecular mechanism(s) of the examined compounds by elucidating their potential primary and secondary cellular target sites. Our follow-up investigations into the activity of three profiled genes in the process of protein biosynthesis provided further evidence concerning the usefulness of chemical-genetic analyses for annotating gene functions. We termed these genes TAE2, TAE3 and TAE4 for translation associated elements 2-4.
Collapse
Affiliation(s)
- Md Alamgir
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, K1 S 5B6, ON, Canada.
| | | | | | | | | |
Collapse
|
170
|
Deletion of Swm2p selectively impairs trimethylation of snRNAs by trimethylguanosine synthase (Tgs1p). FEBS Lett 2010; 584:3299-304. [PMID: 20621096 DOI: 10.1016/j.febslet.2010.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/30/2010] [Accepted: 07/02/2010] [Indexed: 11/23/2022]
Abstract
The 5' cap trimethylation of small nuclear (snRNAs) and several nucleolar RNAs (snoRNAs) by trimethylguanosine synthase 1 (Tgs1p) is required for efficient pre-mRNA splicing. The previously uncharacterised protein Swm2p interacted with Tgs1p in yeast two-hybrid screens. In the present study we show that Swm2p interacts with the N-terminus of Tgs1p and its deletion impairs pre-mRNA splicing and pre-rRNA processing. The trimethylation of spliceosomal snRNAs and the U3 snoRNA, but not other snoRNAs, was abolished in the absence of Swm2p, indicating that Swm2p is required for a substrate-specific activity of Tgs1p.
Collapse
|
171
|
|
172
|
Cortajarena AL, Liu TY, Hochstrasser M, Regan L. Designed proteins to modulate cellular networks. ACS Chem Biol 2010; 5:545-52. [PMID: 20020775 DOI: 10.1021/cb9002464] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A major challenge of protein design is to create useful new proteins that interact specifically with biological targets in living cells. Such binding modules have many potential applications, including the targeted perturbation of protein networks. As a general approach to create such modules, we designed a library with approximately 10(9) different binding specificities based on a small 3-tetratricopeptide repeat (TPR) motif framework. We employed a novel strategy, based on split GFP reassembly, to screen the library for modules with the desired binding specificity. Using this approach, we identified modules that bind tightly and specifically to Dss1, a small human protein that interacts with the tumor suppressor protein BRCA2. We showed that these modules also bind the yeast homologue of Dss1, Sem1. Furthermore, we demonstrated that these modules inhibit Sem1 activity in yeast. This strategy will be generally applicable to make novel genetically encoded tools for systems/synthetic biology applications.
Collapse
Affiliation(s)
| | - Tina Y. Liu
- Department of Molecular Biophysics & Biochemistry
| | | | - Lynne Regan
- Department of Molecular Biophysics & Biochemistry
- Department of Chemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520
| |
Collapse
|
173
|
Abstract
Traditionally, research has been reductionist, characterizing the individual components of biological systems. But new technologies have increased the size and scope of biological data, and systems approaches have broadened the view of how these components are interconnected. Here, we discuss how quantitative mapping of genetic interactions enhances our view of biological systems, allowing their deeper interrogation across different biological scales.
Collapse
Affiliation(s)
- Pedro Beltrao
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
174
|
Aguilar PS, Fröhlich F, Rehman M, Shales M, Ulitsky I, Olivera-Couto A, Braberg H, Shamir R, Walter P, Mann M, Ejsing CS, Krogan NJ, Walther TC. A plasma-membrane E-MAP reveals links of the eisosome with sphingolipid metabolism and endosomal trafficking. Nat Struct Mol Biol 2010; 17:901-8. [PMID: 20526336 DOI: 10.1038/nsmb.1829] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 04/09/2010] [Indexed: 12/11/2022]
Abstract
The plasma membrane delimits the cell and controls material and information exchange between itself and the environment. How different plasma-membrane processes are coordinated and how the relative abundance of plasma-membrane lipids and proteins is homeostatically maintained are not yet understood. Here, we used a quantitative genetic interaction map, or E-MAP, to functionally interrogate a set of approximately 400 genes involved in various aspects of plasma-membrane biology, including endocytosis, signaling, lipid metabolism and eisosome function. From this E-MAP, we derived a set of 57,799 individual interactions between genes functioning in these various processes. Using triplet genetic motif analysis, we identified a new component of the eisosome, Eis1, and linked the poorly characterized gene EMP70 to endocytic and eisosome function. Finally, we implicated Rom2, a GDP/GTP exchange factor for Rho1 and Rho2, in the regulation of sphingolipid metabolism.
Collapse
|
175
|
Fukunaga K, Kudo T, Toh-e A, Tanaka K, Saeki Y. Dissection of the assembly pathway of the proteasome lid in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2010; 396:1048-53. [PMID: 20471955 DOI: 10.1016/j.bbrc.2010.05.061] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Accepted: 05/11/2010] [Indexed: 01/05/2023]
Abstract
The 26S proteasome is a highly conserved multisubunit protease that degrades ubiquitinated proteins in eukaryotic cells. It comprises a 20S core particle and two 19S regulatory particles that are further divided into the lid and base complexes. The lid is a nine subunits complex that is structurally related to the COP9 signalosome and the eukaryotic initiation factor 3. Although the assembly pathway of the 20S and the base are well described, that of the lid is still unclear. In this study, we dissected the lid assembly using yeast lid mutant cells, rpn7-3, Delta rpn9, and rpn12-1. Using mass spectrometry, we identified a number of lid subassemblies, such as Rpn3-Rpn7 pair and a lid-like complex lacking Rpn12, in the mutants. Our analysis suggests that the assembly of the lid is a highly ordered and multi-step process; first, Rpn5, 6, 8, 9, and 11 are assembled to form a core module, then a second module, consisting of Rpn3, 7, and Sem1, is attached, followed by the incorporation of Rpn12 to form the lid complex.
Collapse
Affiliation(s)
- Keisuke Fukunaga
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | | | | | | | | |
Collapse
|
176
|
Chang J, Schwer B, Shuman S. Mutational analyses of trimethylguanosine synthase (Tgs1) and Mud2: proteins implicated in pre-mRNA splicing. RNA (NEW YORK, N.Y.) 2010; 16:1018-31. [PMID: 20360394 PMCID: PMC2856874 DOI: 10.1261/rna.2082610] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Yeast and human Tgs1 are orthologous RNA cap (guanine-N2) methyltransferases that convert m(7)G caps into the 2,2,7-trimethylguanosine (TMG) caps characteristic of spliceosomal snRNAs. TMG caps are dispensable for vegetative yeast growth, but are essential in the absence of Mud2, the putative yeast homolog of human splicing factor U2AF. Here we exploited the synthetic lethal interactions of tgs1Delta and mud2Delta mutations to identify essential structural features of the Tgs1 and Mud2 proteins. Thirty-two new mutations were introduced into human Tgs1 and surveyed for their effects on function in vivo in yeast and on the two sequential guanine-N2 methylation reactions in vitro. The structure-function data highlight a strictly essential pi-cation interaction between Trp766 and the m(7)G base and a network of important enzymic contacts to the cap triphosphate via Lys646, Tyr771, Arg807, and Lys836. Mud2 is a 527-amino acid polypeptide composed of a hydrophilic N-terminal domain and a C-terminal RRM domain. We found that the RRM domain is necessary but not sufficient for Mud2 function in complementing growth of tgs1Delta mud2Delta and mud1Delta mud2Delta strains. Other changes in Mud2 elicited distinct phenotypes in tgs1Delta versus mud1Delta backgrounds. mud2Delta also caused a severe growth defect in cells lacking the Tgs1-binding protein encoded by the nonessential gene YNR004w (now renamed SWM2, synthetic with mud2Delta). Mud2 mutational effects in the swm2Delta background paralleled those for mud1Delta. The requirements for Mud2 function are apparently more stringent when yeast cells lack TMG caps than when they lack Mud1 or Swm2.
Collapse
Affiliation(s)
- Jonathan Chang
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | | | | |
Collapse
|
177
|
Wu DD, Hu X, Park EK, Wang X, Feng J, Wu X. Exploratory analysis of protein translation regulatory networks using hierarchical random graphs. BMC Bioinformatics 2010; 11 Suppl 3:S2. [PMID: 20438649 PMCID: PMC2863061 DOI: 10.1186/1471-2105-11-s3-s2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Abstract
Collapse
Affiliation(s)
- Daniel D Wu
- Drexel University, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | |
Collapse
|
178
|
Assembly, structure, and function of the 26S proteasome. Trends Cell Biol 2010; 20:391-401. [PMID: 20427185 DOI: 10.1016/j.tcb.2010.03.007] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Revised: 03/30/2010] [Accepted: 03/31/2010] [Indexed: 01/15/2023]
Abstract
The 26S proteasome is a large multiprotein complex involved in the regulated degradation of ubiquitinated proteins in the cell. The 26S proteasome has been shown to control an increasing number of essential biochemical mechanisms of the cellular lifecycle including DNA synthesis, repair, transcription, translation, and cell signal transduction. Concurrently, it is increasingly seen that malfunction of the ubiquitin proteasome system contributes to the pathogenesis of disease. The recent identification of four molecular chaperones, in addition to five previously identified chaperones, have provided mechanistic insight into how this cellular megastructure is assembled in the cell. These data, together with new insights into the structure and function of the proteasome, provide a much better understanding of this complex protease.
Collapse
|
179
|
Ryan C, Greene D, Cagney G, Cunningham P. Missing value imputation for epistatic MAPs. BMC Bioinformatics 2010; 11:197. [PMID: 20406472 PMCID: PMC2873538 DOI: 10.1186/1471-2105-11-197] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 04/20/2010] [Indexed: 01/07/2023] Open
Abstract
Background Epistatic miniarray profiling (E-MAPs) is a high-throughput approach capable of quantifying aggravating or alleviating genetic interactions between gene pairs. The datasets resulting from E-MAP experiments typically take the form of a symmetric pairwise matrix of interaction scores. These datasets have a significant number of missing values - up to 35% - that can reduce the effectiveness of some data analysis techniques and prevent the use of others. An effective method for imputing interactions would therefore increase the types of possible analysis, as well as increase the potential to identify novel functional interactions between gene pairs. Several methods have been developed to handle missing values in microarray data, but it is unclear how applicable these methods are to E-MAP data because of their pairwise nature and the significantly larger number of missing values. Here we evaluate four alternative imputation strategies, three local (Nearest neighbor-based) and one global (PCA-based), that have been modified to work with symmetric pairwise data. Results We identify different categories for the missing data based on their underlying cause, and show that values from the largest category can be imputed effectively. We compare local and global imputation approaches across a variety of distinct E-MAP datasets, showing that both are competitive and preferable to filling in with zeros. In addition we show that these methods are effective in an E-MAP from a different species, suggesting that pairwise imputation techniques will be increasingly useful as analogous epistasis mapping techniques are developed in different species. We show that strongly alleviating interactions are significantly more difficult to predict than strongly aggravating interactions. Finally we show that imputed interactions, generated using nearest neighbor methods, are enriched for annotations in the same manner as measured interactions. Therefore our method potentially expands the number of mapped epistatic interactions. In addition we make implementations of our algorithms available for use by other researchers. Conclusions We address the problem of missing value imputation for E-MAPs, and suggest the use of symmetric nearest neighbor based approaches as they offer consistently accurate imputations across multiple datasets in a tractable manner.
Collapse
Affiliation(s)
- Colm Ryan
- School of Computer Science and Informatics, University College Dublin, Dublin, Ireland.
| | | | | | | |
Collapse
|
180
|
Abstract
The mRNA export adaptors provide an important link between multiple nuclear mRNA processing events and the mRNA export receptor TAP/NXF1/Mex67p. They are recruited to mRNA through transcriptional and post-transcriptional events, integrating this information to licence mRNA for export. Subsequently they hand mRNA over to TAP and switch TAP to a higher-affinity RNA-binding state, ensuring its stable association with mRNA destined for export. Here we discuss the structure and function of adaptors and how they are recruited to mRNA.
Collapse
|
181
|
Abstract
Genetic interactions represent the degree to which the presence of one mutation modulates the phenotype of a second mutation. In recent years, approaches for measuring genetic interactions systematically and quantitatively have proven to be effective tools for unbiased characterization of gene function and have provided valuable data for analyses of evolution. Here, we present protocols for systematic measurement of genetic interactions with respect to organismal growth rate for two yeast species.
Collapse
Affiliation(s)
- Sean R Collins
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA
| | | | | |
Collapse
|
182
|
Zhou Q, Mazloum N, Mao N, Kojic M, Holloman WK. Dss1 regulates interaction of Brh2 with DNA. Biochemistry 2010; 48:11929-38. [PMID: 19919104 DOI: 10.1021/bi901775j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Brh2, the BRCA2 homologue in Ustilago maydis, plays a crucial role in homologous recombination by controlling Rad51. In turn, Brh2 is governed by Dss1, an intrinsically disordered protein that forms a tight complex with the C-terminal region of Brh2. This region of the protein associating with Dss1 is highly conserved in sequence and by comparison with mammalian BRCA2 corresponds to a part of the DNA binding domain with characteristic OB folds. The N-terminal region of Brh2 harbors a less-defined but powerful DNA binding site, the activity of which is revealed upon deletion of the C-terminal region. Full-length Brh2 complexed with Dss1 binds DNA slowly, while the N-terminal fragment binds quickly. The DNA binding activity of full-length Brh2 appears to correlate with dissociation of Dss1. Addition of Dss1 to the heterotypic Brh2-Dss1 complex attenuates DNA binding activity, but not by direct competition for the N-terminal DNA binding site. Conversely, the Brh2-Dss1 complex dissociates more quickly when DNA is present. These findings suggest a model in which binding of Brh2 to DNA is subject to allosteric regulation by Dss1.
Collapse
Affiliation(s)
- Qingwen Zhou
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
183
|
Clarkson BK, Gilbert WV, Doudna JA. Functional overlap between eIF4G isoforms in Saccharomyces cerevisiae. PLoS One 2010; 5:e9114. [PMID: 20161741 PMCID: PMC2817733 DOI: 10.1371/journal.pone.0009114] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 01/19/2010] [Indexed: 12/02/2022] Open
Abstract
Initiation factor eIF4G is a key regulator of eukaryotic protein synthesis, recognizing proteins bound at both ends of an mRNA to help recruit messages to the small (40S) ribosomal subunit. Notably, the genomes of a wide variety of eukaryotes encode multiple distinct variants of eIF4G. We found that deletion of eIF4G1, but not eIF4G2, impairs growth and global translation initiation rates in budding yeast under standard laboratory conditions. Not all mRNAs are equally sensitive to loss of eIF4G1; genes that encode messages with longer poly(A) tails are preferentially affected. However, eIF4G1-deletion strains contain significantly lower levels of total eIF4G, relative to eIF4G2-delete or wild type strains. Homogenic strains, which encode two copies of either eIF4G1 or eIF4G2 under native promoter control, express a single isoform at levels similar to the total amount of eIF4G in a wild type cell and have a similar capacity to support normal translation initiation rates. Polysome microarray analysis of these strains and the wild type parent showed that translationally active mRNAs are similar. These results suggest that total eIF4G levels, but not isoform-specific functions, determine mRNA-specific translational efficiency.
Collapse
Affiliation(s)
- Bryan K. Clarkson
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Wendy V. Gilbert
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Jennifer A. Doudna
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- Department of Chemistry, University of California, Berkeley, California, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| |
Collapse
|
184
|
Identification and analysis of the interaction between Edc3 and Dcp2 in Saccharomyces cerevisiae. Mol Cell Biol 2010; 30:1446-56. [PMID: 20086104 DOI: 10.1128/mcb.01305-09] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cap hydrolysis is a critical control point in the life of eukaryotic mRNAs and is catalyzed by the evolutionarily conserved Dcp1-Dcp2 complex. In Saccharomyces cerevisiae, decapping is modulated by several factors, including the Lsm family protein Edc3, which directly binds to Dcp2. We show that Edc3 binding to Dcp2 is mediated by a short peptide sequence located C terminal to the catalytic domain of Dcp2. This sequence is required for Edc3 to stimulate decapping activity of Dcp2 in vitro, for Dcp2 to efficiently accumulate in P-bodies, and for efficient degradation of the RPS28B mRNA, whose decay is enhanced by Edc3. In contrast, degradation of YRA1 pre-mRNA, another Edc3-regulated transcript, occurs independently from this region, suggesting that the effect of Edc3 on YRA1 is independent of its interaction with Dcp2. Deletion of the sequence also results in a subtle but significant defect in turnover of the MFA2pG reporter transcript, which is not affected by deletion of EDC3, suggesting that the region affects some other aspect of Dcp2 function in addition to binding Edc3. These results raise a model for Dcp2 recruitment to specific mRNAs where regions outside the catalytic core promote the formation of different complexes involved in mRNA decapping.
Collapse
|
185
|
Jaehning JA. The Paf1 complex: platform or player in RNA polymerase II transcription? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:379-88. [PMID: 20060942 DOI: 10.1016/j.bbagrm.2010.01.001] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/31/2009] [Accepted: 01/04/2010] [Indexed: 12/01/2022]
Abstract
The Paf1 complex (Paf1C), composed of the proteins Paf1, Ctr9, Cdc73, Rtf1, and Leo1, accompanies RNA polymerase II (pol II) from the promoter to the 3' end formation site of mRNA and snoRNA encoding genes; it is also found associated with RNA polymerase I (pol I) on rDNA. The Paf1C is found in simple and complex eukaryotes; in human cells hSki8 is also part of the complex. The Paf1C has been linked to a large and growing list of transcription related processes including: communication with transcriptional activators; recruitment and activation of histone modification factors; facilitation of elongation on chromatin templates; and the recruitment of 3' end-processing factors necessary for accurate termination of transcription. Absence of, or mutations in, Paf1C factors result in alterations in gene expression that can result in misregulation of developmental programs and loss of control of cell division leading to cancer in humans. This review considers recent information that may help to resolve whether the Paf1C is primarily a "platform" on pol II that coordinates the association of many critical transcription factors, or if the complex itself plays a more direct role in one or more steps in transcription.
Collapse
Affiliation(s)
- Judith A Jaehning
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
186
|
Coy S, Vasiljeva L. The exosome and heterochromatin : multilevel regulation of gene silencing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 702:105-21. [PMID: 21713681 DOI: 10.1007/978-1-4419-7841-7_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Heterochromatic silencing is important for repressing gene expression, protecting cells against viral invasion, maintaining DNA integrity and for proper chromosome segregation. Recently, it has become apparent that expression of eukaryotic genomesis far more complex than had previously been anticipated. Strikingly, it has emerged that most of the genome is transcribed including intergenic regions and heterochromatin, calling for us to re-address the question of how gene silencing is regulated and re-evaluate the concept ofheterochromatic regions of the genome being transcriptionally inactive. Although heterochromatic silencing can be regulated at the transcriptional level, RNA degrading activities supplied either by the exosome complex or RNAi also significantly contribute to this process. The exosome also regulates noncoding RNAs (ncRNAs) involved in the establishment of heterochromatin, further underscoring its role as the major cellular machinery involved in RNA processing and turn-over. This multilevel control of the transcriptome may be utilized to ensure greater accuracy of gene expression and allow distinction between functional transcripts and background noise. In this chapter, we will discuss the regulation of gene silencing across species, with special emphasis on the exosome's contribution to the process. We will also discuss the links between transcriptional and posttranscriptional mechanisms for gene silencing and their impact on the regulation of eukaryotic transcriptomes.
Collapse
Affiliation(s)
- Sarah Coy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | | |
Collapse
|
187
|
Lu Q, Tang X, Tian G, Wang F, Liu K, Nguyen V, Kohalmi SE, Keller WA, Tsang EWT, Harada JJ, Rothstein SJ, Cui Y. Arabidopsis homolog of the yeast TREX-2 mRNA export complex: components and anchoring nucleoporin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:259-70. [PMID: 19843313 DOI: 10.1111/j.1365-313x.2009.04048.x] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nuclear pore complexes (NPCs) are vital to nuclear-cytoplasmic communication in eukaryotes. The yeast NPC-associated TREX-2 complex, also known as the Thp1-Sac3-Cdc31-Sus1 complex, is anchored on the NPC via the nucleoporin Nup1, and is essential for mRNA export. Here we report the identification and characterization of the putative Arabidopsis thaliana TREX-2 complex and its anchoring nucleoporin. Physical and functional evidence support the identification of the Arabidopsis orthologs of yeast Thp1 and Nup1. Of three Arabidopsis homologs of yeast Sac3, two are putative TREX-2 components, but, surprisingly, none are required for mRNA export as they are in yeast. Physical association of the two Cdc31 homologs, but not the Sus1 homolog, with the TREX-2 complex was observed. In addition to identification of these TREX-2 components, direct interactions of the Arabidopsis homolog of DSS1, which is an established proteasome component in yeast and animals, with both the TREX-2 complex and the proteasome were observed. This suggests the possibility of a link between the two complexes. Thus this work has identified the putative Arabidopsis TREX-2 complex and provides a foundation for future studies of nuclear export in Arabidopsis.
Collapse
Affiliation(s)
- Qing Lu
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ON N5V 4T3, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
|
189
|
Butler JS, Mitchell P. Rrp6, Rrp47 and Cofactors of the Nuclear Exosome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 702:91-104. [DOI: 10.1007/978-1-4419-7841-7_8] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
190
|
Ulitsky I, Krogan NJ, Shamir R. Towards accurate imputation of quantitative genetic interactions. Genome Biol 2009; 10:R140. [PMID: 20003301 PMCID: PMC2812947 DOI: 10.1186/gb-2009-10-12-r140] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 11/08/2009] [Accepted: 12/10/2009] [Indexed: 12/25/2022] Open
Abstract
A new method for calculating quantitative genetic interactions allows for the inference of 190,000 new genetic interactions in Saccharomyces cerevisae. Recent technological breakthroughs have enabled high-throughput quantitative measurements of hundreds of thousands of genetic interactions among hundreds of genes in Saccharomyces cerevisiae. However, these assays often fail to measure the genetic interactions among up to 40% of the studied gene pairs. Here we present a novel method, which combines genetic interaction data together with diverse genomic data, to quantitatively impute these missing interactions. We also present data on almost 190,000 novel interactions.
Collapse
Affiliation(s)
- Igor Ulitsky
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | | |
Collapse
|
191
|
Ellisdon AM, Jani D, Köhler A, Hurt E, Stewart M. Structural basis for the interaction between yeast Spt-Ada-Gcn5 acetyltransferase (SAGA) complex components Sgf11 and Sus1. J Biol Chem 2009; 285:3850-3856. [PMID: 20007317 PMCID: PMC2823527 DOI: 10.1074/jbc.m109.070839] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Sus1 is a central component of the yeast gene gating machinery, the process by which actively transcribing genes such as GAL1 become associated with nuclear pore complexes. Sus1 is a component of both the SAGA transcriptional co-activator complex and the TREX-2 complex that binds to nuclear pore complexes. TREX-2 contains two Sus1 chains that have an articulated helical hairpin fold, enabling them to wrap around an extended α-helix in Sac3, following a helical hydrophobic stripe. In SAGA, Sus1 binds to Sgf11 and has been proposed to provide a link between SAGA and TREX-2. We present here the crystal structure of the complex between Sus1 and the N-terminal region of Sgf11 that forms an extended α-helix around which Sus1 wraps in a manner that shares some similarities with the Sus1-Sac3 interface in TREX-2. However, the Sus1-binding site on Sgf11 is somewhat shorter than on Sac3 and is based on a narrower hydrophobic stripe. Engineered mutants that disrupt the Sgf11-Sus1 interaction in vitro confirm the importance of the hydrophobic helical stripe in molecular recognition. Helix α1 of the Sus1-articulated hairpin does not bind directly to Sgf11 and adopts a wide range of conformations within and between crystal forms, consistent with the presence of a flexible hinge and also with results from previous extensive mutagenesis studies (Klöckner, C., Schneider, M., Lutz, S., Jani, D., Kressler, D., Stewart, M., Hurt, E., and Köhler, A. (2009) J. Biol. Chem. 284, 12049–12056). A single Sus1 molecule cannot bind Sgf11 and Sac3 simultaneously and this, combined with the structure of the Sus1-Sgf11 complex, indicates that Sus1 forms separate subcomplexes within SAGA and TREX-2.
Collapse
Affiliation(s)
- Andrew M Ellisdon
- From the Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom and
| | - Divyang Jani
- From the Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom and
| | - Alwin Köhler
- Biochemie-Zentrum der Universität Heidelberg, INF328, D-69120 Heidelberg, Germany
| | - Ed Hurt
- Biochemie-Zentrum der Universität Heidelberg, INF328, D-69120 Heidelberg, Germany
| | - Murray Stewart
- From the Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom and.
| |
Collapse
|
192
|
Grainger RJ, Barrass JD, Jacquier A, Rain JC, Beggs JD. Physical and genetic interactions of yeast Cwc21p, an ortholog of human SRm300/SRRM2, suggest a role at the catalytic center of the spliceosome. RNA (NEW YORK, N.Y.) 2009; 15:2161-73. [PMID: 19854871 PMCID: PMC2779682 DOI: 10.1261/rna.1908309] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 09/15/2009] [Indexed: 05/20/2023]
Abstract
In Saccharomyces cerevisiae, Cwc21p is a protein of unknown function that is associated with the NineTeen Complex (NTC), a group of proteins involved in activating the spliceosome to promote the pre-mRNA splicing reaction. Here, we show that Cwc21p binds directly to two key splicing factors-namely, Prp8p and Snu114p-and becomes the first NTC-related protein known to dock directly to U5 snRNP proteins. Using a combination of proteomic techniques we show that the N-terminus of Prp8p contains an intramolecular fold that is a Snu114p and Cwc21p interacting domain (SCwid). Cwc21p also binds directly to the C-terminus of Snu114p. Complementary chemical cross-linking experiments reveal reciprocal protein footprints between the interacting Prp8 and Cwc21 proteins, identifying the conserved cwf21 domain in Cwc21p as a Prp8p binding site. Genetic and functional interactions between Cwc21p and Isy1p indicate that they have related functions at or prior to the first catalytic step of splicing, and suggest that Cwc21p functions at the catalytic center of the spliceosome, possibly in response to environmental or metabolic changes. We demonstrate that SRm300, the only SR-related protein known to be at the core of human catalytic spliceosomes, is a functional ortholog of Cwc21p, also interacting directly with Prp8p and Snu114p. Thus, the function of Cwc21p is likely conserved from yeast to humans.
Collapse
Affiliation(s)
- Richard J Grainger
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3JR, United Kingdom
| | | | | | | | | |
Collapse
|
193
|
Abstract
Ribosome assembly is required for cell growth in all organisms. Classic in vitro work in bacteria has led to a detailed understanding of the biophysical, thermodynamic, and structural basis for the ordered and correct assembly of ribosomal proteins on ribosomal RNA. Furthermore, it has enabled reconstitution of active subunits from ribosomal RNA and proteins in vitro. Nevertheless, recent work has shown that eukaryotic ribosome assembly requires a large macromolecular machinery in vivo. Many of these assembly factors such as ATPases, GTPases, and kinases hydrolyze nucleotide triphosphates. Because these enzymes are likely regulatory proteins, much work to date has focused on understanding their role in the assembly process. Here, we review these factors, as well as other sources of energy, and their roles in the ribosome assembly process. In addition, we propose roles of energy-releasing enzymes in the assembly process, to explain why energy is used for a process that occurs largely spontaneously in bacteria. Finally, we use literature data to suggest testable models for how these enzymes could be used as targets for regulation of ribosome assembly.
Collapse
Affiliation(s)
- Bethany S Strunk
- Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | |
Collapse
|
194
|
Khanna M, Van Bakel H, Tang X, Calarco JA, Babak T, Guo G, Emili A, Greenblatt JF, Hughes TR, Krogan NJ, Blencowe BJ. A systematic characterization of Cwc21, the yeast ortholog of the human spliceosomal protein SRm300. RNA (NEW YORK, N.Y.) 2009; 15:2174-85. [PMID: 19789211 PMCID: PMC2779666 DOI: 10.1261/rna.1790509] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cwc21 (complexed with Cef1 protein 21) is a 135 amino acid yeast protein that shares homology with the N-terminal domain of human SRm300/SRRM2, a large serine/arginine-repeat protein shown previously to associate with the splicing coactivator and 3'-end processing stimulatory factor, SRm160. Proteomic analysis of spliceosomal complexes has suggested a role for Cwc21 and SRm300 at the core of the spliceosome. However, specific functions for these proteins have remained elusive. In this report, we employ quantitative genetic interaction mapping, mass spectrometry of tandem affinity-purified complexes, and microarray profiling to investigate genetic, physical, and functional interactions involving Cwc21. Combined data from these assays support multiple roles for Cwc21 in the formation and function of splicing complexes. Consistent with a role for Cwc21 at the core of the spliceosome, we observe strong genetic, physical, and functional interactions with Isy1, a protein previously implicated in the first catalytic step of splicing and splicing fidelity. Together, the results suggest multiple functions for Cwc21/SRm300 in the splicing process, including an important role in the activation of splicing in association with Isy1.
Collapse
Affiliation(s)
- May Khanna
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Hannum G, Srivas R, Guénolé A, van Attikum H, Krogan NJ, Karp RM, Ideker T. Genome-wide association data reveal a global map of genetic interactions among protein complexes. PLoS Genet 2009; 5:e1000782. [PMID: 20041197 PMCID: PMC2788232 DOI: 10.1371/journal.pgen.1000782] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 11/22/2009] [Indexed: 12/30/2022] Open
Abstract
This work demonstrates how gene association studies can be analyzed to map a global landscape of genetic interactions among protein complexes and pathways. Despite the immense potential of gene association studies, they have been challenging to analyze because most traits are complex, involving the combined effect of mutations at many different genes. Due to lack of statistical power, only the strongest single markers are typically identified. Here, we present an integrative approach that greatly increases power through marker clustering and projection of marker interactions within and across protein complexes. Applied to a recent gene association study in yeast, this approach identifies 2,023 genetic interactions which map to 208 functional interactions among protein complexes. We show that such interactions are analogous to interactions derived through reverse genetic screens and that they provide coverage in areas not yet tested by reverse genetic analysis. This work has the potential to transform gene association studies, by elevating the analysis from the level of individual markers to global maps of genetic interactions. As proof of principle, we use synthetic genetic screens to confirm numerous novel genetic interactions for the INO80 chromatin remodeling complex.
Collapse
Affiliation(s)
- Gregory Hannum
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Rohith Srivas
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Aude Guénolé
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Haico van Attikum
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
| | - Richard M. Karp
- Department of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, California, United States of America
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California, United States of America
| | - Trey Ideker
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
196
|
|
197
|
Pick E, Hofmann K, Glickman MH. PCI complexes: Beyond the proteasome, CSN, and eIF3 Troika. Mol Cell 2009; 35:260-4. [PMID: 19683491 DOI: 10.1016/j.molcel.2009.07.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Indexed: 10/20/2022]
Abstract
The bipartite PCI domain serves as the principal scaffold for proteasome lid, CSN, and eIF3, complexes that influence protein life span. PCI domains are also found in newly identified complexes directing nucleic acid regulation. The breadth of functions associated with the extended PCI family is a factor of shared subunits, among them a common factor Sem1/DSS1 that facilitates complex assembly.
Collapse
Affiliation(s)
- Elah Pick
- Department of Biology, Haifa University at Oranim, Tivon, Israel.
| | | | | |
Collapse
|
198
|
Breker M, Schuldiner M. Explorations in topology-delving underneath the surface of genetic interaction maps. MOLECULAR BIOSYSTEMS 2009; 5:1473-81. [PMID: 19763324 DOI: 10.1039/b907076c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
High throughput assays, as well as advances in computational approaches, have recently allowed the acquisition of vast amounts of genetic interaction (GI) data in several organisms. Since GIs are a functional measure that reports on the effect of a mutation in one gene on the phenotype of a mutation in another, they can serve as a powerful tool to study both the function of individual genes and the wiring of biological networks. Therefore, these data hold much promise for advancing our understanding of cellular systems. In this review we focus on the methodologies currently available for using and interpreting large datasets of GIs for functional gene groups (GI maps), and elaborate on the challenges ahead. In addition, we discuss potential applications for the study of evolution and disease mechanisms, and highlight the need for comprehensive integrative analysis to extract the wealth of information found in these maps.
Collapse
Affiliation(s)
- Michal Breker
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
199
|
Babu M, Musso G, Díaz-Mejía JJ, Butland G, Greenblatt JF, Emili A. Systems-level approaches for identifying and analyzing genetic interaction networks in Escherichia coli and extensions to other prokaryotes. MOLECULAR BIOSYSTEMS 2009; 5:1439-55. [PMID: 19763343 DOI: 10.1039/b907407d] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Molecular interactions define the functional organization of the cell. Epistatic (genetic, or gene-gene) interactions, one of the most informative and commonly encountered forms of functional relationships, are increasingly being used to map process architecture in model eukaryotic organisms. In particular, 'systems-level' screens in yeast and worm aimed at elucidating genetic interaction networks have led to the generation of models describing the global modular organization of gene products and protein complexes within a cell. However, comparable data for prokaryotic organisms have not been available. Given its ease of growth and genetic manipulation, the Gram-negative bacterium Escherichia coli appears to be an ideal model system for performing comprehensive genome-scale examinations of genetic redundancy in bacteria. In this review, we highlight emerging experimental and computational techniques that have been developed recently to examine functional relationships and redundancy in E. coli at a systems-level, and their potential application to prokaryotes in general. Additionally, we have scanned PubMed abstracts and full-text published articles to manually curate a list of approximately 200 previously reported synthetic sick or lethal genetic interactions in E. coli derived from small-scale experimental studies.
Collapse
Affiliation(s)
- Mohan Babu
- Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | | | | | | | | | | |
Collapse
|
200
|
Hessle V, Björk P, Sokolowski M, González de Valdivia E, Silverstein R, Artemenko K, Tyagi A, Maddalo G, Ilag L, Helbig R, Zubarev RA, Visa N. The exosome associates cotranscriptionally with the nascent pre-mRNP through interactions with heterogeneous nuclear ribonucleoproteins. Mol Biol Cell 2009; 20:3459-70. [PMID: 19494042 DOI: 10.1091/mbc.e09-01-0079] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Eukaryotic cells have evolved quality control mechanisms to degrade aberrant mRNA molecules and prevent the synthesis of defective proteins that could be deleterious for the cell. The exosome, a protein complex with ribonuclease activity, is a key player in quality control. An early quality checkpoint takes place cotranscriptionally but little is known about the molecular mechanisms by which the exosome is recruited to the transcribed genes. Here we study the core exosome subunit Rrp4 in two insect model systems, Chironomus and Drosophila. We show that a significant fraction of Rrp4 is associated with the nascent pre-mRNPs and that a specific mRNA-binding protein, Hrp59/hnRNP M, interacts in vivo with multiple exosome subunits. Depletion of Hrp59 by RNA interference reduces the levels of Rrp4 at transcription sites, which suggests that Hrp59 is needed for the exosome to stably interact with nascent pre-mRNPs. Our results lead to a revised mechanistic model for cotranscriptional quality control in which the exosome is constantly recruited to newly synthesized RNAs through direct interactions with specific hnRNP proteins.
Collapse
Affiliation(s)
- Viktoria Hessle
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|