151
|
Lemay DG, Pollard KS, Martin WF, Freeman Zadrowski C, Hernandez J, Korf I, German JB, Rijnkels M. From genes to milk: genomic organization and epigenetic regulation of the mammary transcriptome. PLoS One 2013; 8:e75030. [PMID: 24086428 PMCID: PMC3784412 DOI: 10.1371/journal.pone.0075030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 08/08/2013] [Indexed: 01/08/2023] Open
Abstract
Even in genomes lacking operons, a gene's position in the genome influences its potential for expression. The mechanisms by which adjacent genes are co-expressed are still not completely understood. Using lactation and the mammary gland as a model system, we explore the hypothesis that chromatin state contributes to the co-regulation of gene neighborhoods. The mammary gland represents a unique evolutionary model, due to its recent appearance, in the context of vertebrate genomes. An understanding of how the mammary gland is regulated to produce milk is also of biomedical and agricultural importance for human lactation and dairying. Here, we integrate epigenomic and transcriptomic data to develop a comprehensive regulatory model. Neighborhoods of mammary-expressed genes were determined using expression data derived from pregnant and lactating mice and a neighborhood scoring tool, G-NEST. Regions of open and closed chromatin were identified by ChIP-Seq of histone modifications H3K36me3, H3K4me2, and H3K27me3 in the mouse mammary gland and liver tissue during lactation. We found that neighborhoods of genes in regions of uniquely active chromatin in the lactating mammary gland, compared with liver tissue, were extremely rare. Rather, genes in most neighborhoods were suppressed during lactation as reflected in their expression levels and their location in regions of silenced chromatin. Chromatin silencing was largely shared between the liver and mammary gland during lactation, and what distinguished the mammary gland was mainly a small tissue-specific repertoire of isolated, expressed genes. These findings suggest that an advantage of the neighborhood organization is in the collective repression of groups of genes via a shared mechanism of chromatin repression. Genes essential to the mammary gland's uniqueness are isolated from neighbors, and likely have less tolerance for variation in expression, properties they share with genes responsible for an organism's survival.
Collapse
Affiliation(s)
- Danielle G. Lemay
- Genome Center, University of California Davis, Davis, California, United States of America
- * E-mail: (DGL); (MR)
| | - Katherine S. Pollard
- Gladstone Institutes, Institute for Human Genetics, and Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - William F. Martin
- Department of Food Science and Technology, University of California Davis, Davis, California, United States of America
| | - Courtneay Freeman Zadrowski
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Joseph Hernandez
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ian Korf
- Genome Center, University of California Davis, Davis, California, United States of America
| | - J. Bruce German
- Department of Food Science and Technology, University of California Davis, Davis, California, United States of America
| | - Monique Rijnkels
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (DGL); (MR)
| |
Collapse
|
152
|
Merelli I, Liò P, Milanesi L. NuChart: an R package to study gene spatial neighbourhoods with multi-omics annotations. PLoS One 2013; 8:e75146. [PMID: 24069388 PMCID: PMC3777921 DOI: 10.1371/journal.pone.0075146] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/11/2013] [Indexed: 11/23/2022] Open
Abstract
Long-range chromosomal associations between genomic regions, and their repositioning in the 3D space of the nucleus, are now considered to be key contributors to the regulation of gene expression and important links have been highlighted with other genomic features involved in DNA rearrangements. Recent Chromosome Conformation Capture (3C) measurements performed with high throughput sequencing (Hi-C) and molecular dynamics studies show that there is a large correlation between colocalization and coregulation of genes, but these important researches are hampered by the lack of biologists-friendly analysis and visualisation software. Here, we describe NuChart, an R package that allows the user to annotate and statistically analyse a list of input genes with information relying on Hi-C data, integrating knowledge about genomic features that are involved in the chromosome spatial organization. NuChart works directly with sequenced reads to identify the related Hi-C fragments, with the aim of creating gene-centric neighbourhood graphs on which multi-omics features can be mapped. Predictions about CTCF binding sites, isochores and cryptic Recombination Signal Sequences are provided directly with the package for mapping, although other annotation data in bed format can be used (such as methylation profiles and histone patterns). Gene expression data can be automatically retrieved and processed from the Gene Expression Omnibus and ArrayExpress repositories to highlight the expression profile of genes in the identified neighbourhood. Moreover, statistical inferences about the graph structure and correlations between its topology and multi-omics features can be performed using Exponential-family Random Graph Models. The Hi-C fragment visualisation provided by NuChart allows the comparisons of cells in different conditions, thus providing the possibility of novel biomarkers identification. NuChart is compliant with the Bioconductor standard and it is freely available at ftp://fileserver.itb.cnr.it/nuchart.
Collapse
Affiliation(s)
- Ivan Merelli
- Institute for Biomedical Technologies, National Research Council, Segrate (Milan), Italy
- * E-mail:
| | - Pietro Liò
- Computer Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Luciano Milanesi
- Institute for Biomedical Technologies, National Research Council, Segrate (Milan), Italy
| |
Collapse
|
153
|
Poly(ADP-ribosyl)ation regulates insulator function and intrachromosomal interactions in Drosophila. Cell 2013; 155:148-59. [PMID: 24055367 DOI: 10.1016/j.cell.2013.08.052] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/29/2013] [Accepted: 08/23/2013] [Indexed: 11/20/2022]
Abstract
Insulators mediate inter- and intrachromosomal contacts to regulate enhancer-promoter interactions and establish chromosome domains. The mechanisms by which insulator activity can be regulated to orchestrate changes in the function and three-dimensional arrangement of the genome remain elusive. Here, we demonstrate that Drosophila insulator proteins are poly(ADP-ribosyl)ated and that mutation of the poly(ADP-ribose) polymerase (Parp) gene impairs their function. This modification is not essential for DNA occupancy of insulator DNA-binding proteins dCTCF and Su(Hw). However, poly(ADP-ribosyl)ation of K566 in CP190 promotes protein-protein interactions with other insulator proteins, association with the nuclear lamina, and insulator activity in vivo. Consistent with these findings, the nuclear clustering of CP190 complexes is disrupted in Parp mutant cells. Importantly, poly(ADP-ribosyl)ation facilitates intrachromosomal interactions between insulator sites measured by 4C. These data suggest that the role of insulators in organizing the three-dimensional architecture of the genome may be modulated by poly(ADP-ribosyl)ation.
Collapse
|
154
|
Gurudatta BV, Yang J, Van Bortle K, Donlin-Asp PG, Corces VG. Dynamic changes in the genomic localization of DNA replication-related element binding factor during the cell cycle. Cell Cycle 2013; 12:1605-15. [PMID: 23624840 DOI: 10.4161/cc.24742] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
DREF was first characterized for its role in the regulation of transcription of genes encoding proteins involved in DNA replication and found to interact with sequences similar to the DNA recognition motif of the BEAF-32 insulator protein. Insulators are DNA-protein complexes that mediate intra- and inter-chromosome interactions. Several DNA-binding insulator proteins have been described in Drosophila, including BEAF-32, dCTCF and Su(Hw). Here we find that DREF and BEAF-32 co-localize at the same genomic sites, but their enrichment shows an inverse correlation. Furthermore, DREF co-localizes in the genome with other insulator proteins, suggesting that the function of this protein may require components of Drosophila insulators. This is supported by the finding that mutations in insulator proteins modulate DREF-induced cell proliferation. DREF persists bound to chromatin during mitosis at a subset of sites where it also co-localizes with dCTCF, BEAF-32 and CP190. These sites are highly enriched for sites where Orc2 and Mcm2 are present during interphase and at the borders of topological domains of chromosomes defined by Hi-C. The results suggest that DREF and insulator proteins may help maintain chromosome organization during the cell cycle and mark a subset of genomic sites for the assembly of pre-replication complexes and gene bookmarking during the M/G1 transition.
Collapse
Affiliation(s)
- B V Gurudatta
- Department of Biology, Emory University, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|