151
|
Peng Y, Wang L, Wu L, Zhang L, Nie G, Guo M. Methylation of SLFN11 promotes gastric cancer growth and increases gastric cancer cell resistance to cisplatin. J Cancer 2019; 10:6124-6134. [PMID: 31762822 PMCID: PMC6856579 DOI: 10.7150/jca.32511] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 08/20/2019] [Indexed: 02/06/2023] Open
Abstract
Background and Aim: Human SLFN11 gene encodes a protein with structural similarity to RNA helicases, which was reported to sensitize cancer cells to DNA-damaging agents. This study explored the epigenetic regulation and mechanism of SLFN11 in human gastric cancer. Methods: Eight human gastric cancer cell lines and 201 cases of primary gastric cancer were analyzed. Methylation specific PCR, flow cytometry, xenograft mouse model and siRNA technique were employed. Results: SLFN11 was methylated in 29.9% (60/201) of primary gastric cancer. The expression of SLFN11 was regulated by promoter region methylation. Methylation of SLFN11 was significantly associated with tumor size (p < 0.05). SLFN11 suppressed gastric cancer growth both in vitro and in vivo and enhanced the ability of cisplatin to induce S-phrase arrest and apoptosis in gastric cancer cells. Conclusions: SLFN11 is frequently methylated in human gastric cancer, and its expression is regulated by promoter region methylation. Our results demonstrate that SLFN11 is a tumor suppressor in human gastric cancer, and methylation of SLFN11 may serve as a cisplatin resistant marker in human gastric cancer.
Collapse
Affiliation(s)
- Yaojun Peng
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing 100853, China
| | - Li Wang
- Department of Surgery, The Affiliated Cancer Hospital of Zhengzhou University, #127 Dongming Road, Zhengzhou, Henan Province 450008, China
| | - Liangliang Wu
- Department of Oncology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing 100853, China
| | - Ling Zhang
- Department of Surgery, The Affiliated Cancer Hospital of Zhengzhou University, #127 Dongming Road, Zhengzhou, Henan Province 450008, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, North Road No. 1, Zhongguancun, Beijing, 100190, China
| | - Mingzhou Guo
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing 100853, China
| |
Collapse
|
152
|
Marzi L, Szabova L, Gordon M, Weaver Ohler Z, Sharan SK, Beshiri ML, Etemadi M, Murai J, Kelly K, Pommier Y. The Indenoisoquinoline TOP1 Inhibitors Selectively Target Homologous Recombination-Deficient and Schlafen 11-Positive Cancer Cells and Synergize with Olaparib. Clin Cancer Res 2019; 25:6206-6216. [PMID: 31409613 PMCID: PMC6801079 DOI: 10.1158/1078-0432.ccr-19-0419] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/24/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Irinotecan and topotecan are used to treat a variety of different cancers. However, they have limitations, including chemical instability and severe side effects. To overcome these limitations, we developed the clinical indenoisoquinolines: LMP400 (indotecan), LMP776 (indimitecan), and LMP744. The purpose of the study is to build the molecular rationale for phase II clinical trials. EXPERIMENTAL DESIGN CellMinerCDB (http://discover.nci.nih.gov/cellminercdb) was used to mine the cancer cell lines genomic databases. The causality of Schlafen11 (SLFN11) was validated in isogenic cell lines. Because topoisomerase I (TOP1)-mediated replication DNA damage is repaired by homologous recombination (HR), we tested the "synthetic lethality" of HR-deficient (HRD) cells. Survival and cell-cycle alterations were performed after drug treatments in isogenic DT40, DLD1, and OVCAR cell lines with BRCA1, BRCA2, or PALB2 deficiencies and in organoids cultured from prostate cancer patient-derived xenografts with BRCA2 loss. We also used an ovarian orthotopic allograft model with BRCA1 loss to validate the efficacy of LMP400 and olaparib combination. RESULTS CellMinerCDB reveals that SLFN11, which kills cells undergoing replicative stress, is a dominant drug determinant to the clinical indenoisoquinolines. In addition, BRCA1-, BRCA2-, and PALB2-deficient cells were hypersensitive to the indenoisoquinolines. All 3 clinical indenoisoquinolines were also synergistic with olaparib, especially in the HRD cells. The synergy between LMP400 and olaparib was confirmed in the orthotopic allograft model harboring BRCA1 loss. CONCLUSIONS Our results provide a rationale for molecularly designed clinical trials with the indenoisoquinolines as single agents and in combination with PARP inhibitors in HRD cancers expressing SLFN11.
Collapse
Affiliation(s)
- Laetitia Marzi
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Ludmila Szabova
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research at the National Cancer Institute-Frederick, Frederick, Maryland
| | - Melanie Gordon
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research at the National Cancer Institute-Frederick, Frederick, Maryland
| | - Zoe Weaver Ohler
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research at the National Cancer Institute-Frederick, Frederick, Maryland
| | - Shyam K Sharan
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research at the National Cancer Institute-Frederick, Frederick, Maryland
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, Maryland
| | - Michael L Beshiri
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Moudjib Etemadi
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Junko Murai
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Kathleen Kelly
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
153
|
Kaur S, Schwartz AL, Jordan DG, Soto-Pantoja DR, Kuo B, Elkahloun AG, Mathews Griner L, Thomas CJ, Ferrer M, Thomas A, Tang SW, Rajapakse VN, Pommier Y, Roberts DD. Identification of Schlafen-11 as a Target of CD47 Signaling That Regulates Sensitivity to Ionizing Radiation and Topoisomerase Inhibitors. Front Oncol 2019; 9:994. [PMID: 31632920 PMCID: PMC6781860 DOI: 10.3389/fonc.2019.00994] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/16/2019] [Indexed: 01/10/2023] Open
Abstract
Knockdown or gene disruption of the ubiquitously expressed cell surface receptor CD47 protects non-malignant cells from genotoxic stress caused by ionizing radiation or cytotoxic chemotherapy but sensitizes tumors in an immune competent host to genotoxic stress. The selective radioprotection of non-malignant cells is mediated in part by enhanced autophagy and protection of anabolic metabolism pathways, but differential H2AX activation kinetics suggested that the DNA damage response is also CD47-dependent. A high throughput screen of drug sensitivities indicated that CD47 expression selectively sensitizes Jurkat T cells to inhibitors of topoisomerases, which are known targets of Schlafen-11 (SLFN11). CD47 mRNA expression positively correlated with schlafen-11 mRNA expression in a subset of human cancers but not the corresponding non-malignant tissues. CD47 mRNA expression was also negatively correlated with SLFN11 promoter methylation in some cancers. CD47 knockdown, gene disruption, or treatment with a CD47 function-blocking antibody decreased SLFN11 expression in Jurkat cells. The CD47 signaling ligand thrombospondin-1 also suppressed schlafen-11 expression in wild type but not CD47-deficient T cells. Re-expressing SLFN11 restored radiosensitivity to a CD47-deficient Jurkat cells. Disruption of CD47 in PC3 prostate cancer cells similarly decreased schlafen-11 expression and was associated with a CD47-dependent decrease in acetylation and increased methylation of histone H3 in the SLFN11 promoter region. The ability of histone deacetylase or topoisomerase inhibitors to induce SLFN11 expression in PC3 cells was lost when CD47 was targeted in these cells. Disrupting CD47 in PC3 cells increased resistance to etoposide but, in contrast to Jurkat cells, not to ionizing radiation. These data identify CD47 as a context-dependent regulator of SLFN11 expression and suggest an approach to improve radiotherapy and chemotherapy responses by combining with CD47-targeted therapeutics.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Anthony L. Schwartz
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - David G. Jordan
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - David R. Soto-Pantoja
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Bethany Kuo
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Abdel G. Elkahloun
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Lesley Mathews Griner
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Craig J. Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Anish Thomas
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sai-Wen Tang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Vinodh N. Rajapakse
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
154
|
Lee TW, Wong WW, Dickson BD, Lipert B, Cheng GJ, Hunter FW, Hay MP, Wilson WR. Radiosensitization of head and neck squamous cell carcinoma lines by DNA-PK inhibitors is more effective than PARP-1 inhibition and is enhanced by SLFN11 and hypoxia. Int J Radiat Biol 2019; 95:1597-1612. [PMID: 31490091 DOI: 10.1080/09553002.2019.1664787] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background and purpose: Poly(ADP-ribose)polymerase-1 (PARP1) and DNA-dependent protein kinase (DNA-PK) play key roles in the repair of radiation-induced DNA double strand breaks, but it is unclear which is the preferred therapeutic target in radiotherapy. Here we compare small molecule inhibitors of both as radiosensitizers of head and neck squamous cell carcinoma (HNSCC) cell lines.Methods: Two PARP1 inhibitors (olaparib, veliparib) and two DNA-PK inhibitors (KU57788, IC87361) were tested in 14 HNSCC cell lines and two non-tumorigenic lines (HEK-293 and WI-38/Va-13), with drug exposure for 6 or 24 h post-irradiation, using regrowth assays. For three lines (UT-SCC-54C, -74B, -76B), radiosensitization was also assessed by clonogenic assay under oxia and acute (6 h) anoxia, and for 54C cells under chronic hypoxia (0.2% O2 for 48 h). Relationships between sensitizer enhancement ratios (SER) and gene expression, assessed by RNA sequencing, were evaluated.Results: The inhibitors were minimally cytotoxic in the absence of radiation, with 74B and 54C cells the most sensitive to both olaparib and KU57788. Median SER values for each inhibitor at 1.1 µM were 1.12 (range 1.02-1.24) for olaparib, 1.08 (1.04-1.13) for veliparib, 1.35 (1.10-1.64) for IC87361 and 1.77 (1.41-2.38) for KU57788. The higher SER values for the DNA-PK inhibitors were observed with all cell lines (except HEK-293) and all concentrations tested and were confirmed by clonogenic assay. Radiosensitization by the DNA-PK inhibitors correlated with expression of SLFN11 mRNA. Radiosensitization by IC87361 and olaparib was significantly enhanced under acute anoxia and chronic hypoxia.Conclusions: The DNA-PK inhibitors KU57788 and IC87361 are more effective radiosensitizers than the PARP-1 inhibitors olaparib and veliparib at non-cytotoxic concentrations in HNSCC cell cultures and their activity is enhanced by SLFN11 and hypoxia.
Collapse
Affiliation(s)
- Tet Woo Lee
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Way Wua Wong
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Benjamin D Dickson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Barbara Lipert
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Gary J Cheng
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Francis W Hunter
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Michael P Hay
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - William R Wilson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
155
|
Zeng S, Pöttler M, Lan B, Grützmann R, Pilarsky C, Yang H. Chemoresistance in Pancreatic Cancer. Int J Mol Sci 2019; 20:ijms20184504. [PMID: 31514451 PMCID: PMC6770382 DOI: 10.3390/ijms20184504] [Citation(s) in RCA: 375] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), generally known as pancreatic cancer (PC), ranks the fourth leading cause of cancer-related deaths in the western world. While the incidence of pancreatic cancer is displaying a rising tendency every year, the mortality rate has not decreased significantly because of late diagnosis, early metastasis, and limited reaction to chemotherapy or radiotherapy. Adjuvant chemotherapy after surgical resection is typically the preferred option to treat early pancreatic cancer. Although 5-fluorouracil/leucovorin with irinotecan and oxaliplatin (FOLFIRINOX) and gemcitabine/nab-paclitaxel can profoundly improve the prognosis of advanced pancreatic cancer, the development of chemoresistance still leads to poor clinical outcomes. Chemoresistance is multifactorial as a result of the interaction among pancreatic cancer cells, cancer stem cells, and the tumor microenvironment. Nevertheless, more pancreatic cancer patients will benefit from precision treatment and targeted drugs. Therefore, we outline new perspectives for enhancing the efficacy of gemcitabine after reviewing the related factors of gemcitabine metabolism, mechanism of action, and chemoresistance.
Collapse
Affiliation(s)
- Siyuan Zeng
- Department of Surgery, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Marina Pöttler
- Department of Otorhinolaryngology, Head and Neck Surgery, Universitätsklinikum Erlangen, Glückstraße 10a, 91054 Erlangen, Germany.
| | - Bin Lan
- Department of Surgery, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Christian Pilarsky
- Department of Surgery, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Hai Yang
- Department of Surgery, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany.
| |
Collapse
|
156
|
Murai J, Thomas A, Miettinen M, Pommier Y. Schlafen 11 (SLFN11), a restriction factor for replicative stress induced by DNA-targeting anti-cancer therapies. Pharmacol Ther 2019; 201:94-102. [PMID: 31128155 PMCID: PMC6708787 DOI: 10.1016/j.pharmthera.2019.05.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022]
Abstract
Schlafen 11 (SLFN11) sensitizes cells to a broad range of anti-cancer drugs including platinum derivatives (cisplatin and carboplatin), inhibitors of topoisomerases (irinotecan, topotecan, doxorubicin, daunorubicin, mitoxantrone and etoposide), DNA synthesis inhibitors (gemcitabine, cytarabine, hydroxyurea and nucleoside analogues), and poly(ADPribose) polymerase (PARP) inhibitors (olaparib, rucaparib, niraparib and talazoparib). In spite of their different primary mechanisms of action, all these drugs damage DNA during S-phase, activate the intra-S-phase checkpoint and induce replication fork slowing and stalling with single-stranded DNA segments coated with replication protein A. Such situation with abnormal replication forks is known as replication stress. SLFN11 irreversibly blocks replication in cells under replication stress, explaining why SLFN11-positive cells are markedly more efficiently killed by DNA-targeting drugs than SLFN11-negative cells. SLFN11 is inactivated in ~50% of cancer cell lines and in a large fraction of tumors, and is linked with the native immune, interferon and T-cells responses, implying the translational relevance of measuring SLFN11 expression as a predictive biomarker of response and resistance in patients. SLFN11 is also a plausible epigenetic target for reactivation by inhibitors of histone deacetylases (HDAC), DNA methyltransferases (DNMT) and EZH2 histone methyltransferase and for combination of these epigenetic inhibitors with DNA-targeting drugs in cells lacking SLFN11 expression. In addition, resistance due to lack of SLFN11 expression in tumors is a potential indication for cell-cycle checkpoint inhibitors in combination with DNA-targeting therapies.
Collapse
Affiliation(s)
- Junko Murai
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Anish Thomas
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Markku Miettinen
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
157
|
Noordermeer SM, van Attikum H. PARP Inhibitor Resistance: A Tug-of-War in BRCA-Mutated Cells. Trends Cell Biol 2019; 29:820-834. [PMID: 31421928 DOI: 10.1016/j.tcb.2019.07.008] [Citation(s) in RCA: 280] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023]
Abstract
Poly-(ADP)-ribose polymerase (PARP) inhibition is synthetic lethal with deficiency for homologous recombination (HR), a pathway essential for DNA double-strand break repair. PARP inhibitors (PARPi) therefore hold great promise for the treatment of tumors with disruptive mutations in BRCA1/2 or other HR factors. Unfortunately, PARPi resistance has proved to be a major problem in the clinic. Knowledge about PARPi resistance is expanding quickly, revealing four main mechanisms that alter drug availability, affect (de)PARylation enzymes, restore HR, or restore replication fork stability. We discuss how studies on resistance mechanisms have yielded important insights into the regulation of DNA double-strand break (DSB) repair and replication fork protection, and how these studies could pave the way for novel treatment options to target resistance mechanisms or acquired vulnerabilities.
Collapse
Affiliation(s)
- Sylvie M Noordermeer
- Leiden University Medical Center, Department of Human Genetics, Einthovenweg 20, 2333 ZC Leiden, The Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, The Netherlands.
| | - Haico van Attikum
- Leiden University Medical Center, Department of Human Genetics, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| |
Collapse
|
158
|
Malone D, Lardelli RM, Li M, David M. Dephosphorylation activates the interferon-stimulated Schlafen family member 11 in the DNA damage response. J Biol Chem 2019; 294:14674-14685. [PMID: 31395656 DOI: 10.1074/jbc.ra118.006588] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 07/23/2019] [Indexed: 01/08/2023] Open
Abstract
Human Schlafen 11 (SLFN11) is an interferon-stimulated gene (ISG) that we previously have demonstrated to ablate translation of HIV proteins based on the virus's distinct codon preference. Additionally, lack of SLFN11 expression has been linked to the resistance of cancer cells to DNA-damaging agents (DDAs). We recently resolved the underlying mechanism, finding that it involves SLFN11-mediated cleavage of select tRNAs predominantly employed in the translation of the ATR and ATM Ser/Thr kinases, thereby establishing SLFN11 as a novel tRNA endonuclease. Even though SLFN11 is thus involved in two of the most prominent diseases of our time, cancer and HIV infection, its regulation remained thus far unresolved. Using MS and bioinformatics-based approaches combined with site-directed mutagenesis, we show here that SLFN11 is phosphorylated at three different sites, which requires dephosphorylation for SLFN11 to become fully functionally active. Furthermore, we identified protein phosphatase 1 catalytic subunit γ (PPP1CC) as the upstream enzyme whose activity is required for SLFN11 to cleave tRNAs and thereby act as a selective translational inhibitor. In summary, our work has identified both the mechanism of SLFN11 activation and PPP1CC as the enzyme responsible for its activation. Our findings open up future studies of the PPP1CC subunit(s) involved in SLFN11 activation and the putative kinase(s) that inactivates SLFN11.
Collapse
Affiliation(s)
- Dane Malone
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0322
| | - Rea M Lardelli
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0322
| | - Manqing Li
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0322
| | - Michael David
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0322 .,Moores Cancer Center, La Jolla, California 92093
| |
Collapse
|
159
|
Gambale A, Russo R, Andolfo I, Quaglietta L, De Rosa G, Contestabile V, De Martino L, Genesio R, Pignataro P, Giglio S, Capasso M, Parasole R, Pasini B, Iolascon A. Germline mutations and new copy number variants among 40 pediatric cancer patients suspected for genetic predisposition. Clin Genet 2019; 96:359-365. [DOI: 10.1111/cge.13600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Antonella Gambale
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II Naples Italy
- CEINGE Biotecnologie Avanzate Naples Italy
| | - Roberta Russo
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II Naples Italy
- CEINGE Biotecnologie Avanzate Naples Italy
| | - Immacolata Andolfo
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II Naples Italy
- CEINGE Biotecnologie Avanzate Naples Italy
| | - Lucia Quaglietta
- Azienda Ospedaliera di Rilievo Nazionale Santobono PausiliponS.C. Pediatria Oncologia, Dip. di Oncoematologia Pediatrica Napoli Italy
| | - Gianluca De Rosa
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II Naples Italy
- CEINGE Biotecnologie Avanzate Naples Italy
| | - Valentina Contestabile
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II Naples Italy
- CEINGE Biotecnologie Avanzate Naples Italy
| | - Lucia De Martino
- Azienda Ospedaliera di Rilievo Nazionale Santobono PausiliponS.C. Pediatria Oncologia, Dip. di Oncoematologia Pediatrica Napoli Italy
| | - Rita Genesio
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II Naples Italy
| | - Piero Pignataro
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II Naples Italy
| | - Sabrina Giglio
- Biomedical Experimental and Clinical Sciences "Mario Serio"University of Florence Florence Italy
- SOD Genetica MedicaAzienda Ospedaliero‐Universitaria Meyer Florence Italy
| | - Mario Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II Naples Italy
- CEINGE Biotecnologie Avanzate Naples Italy
- IRCCS SDN Naples Italy
| | - Rosanna Parasole
- Azienda Ospedaliera di Rilievo Nazionale Santobono PausiliponS.C. Pediatria Oncologia, Dip. di Oncoematologia Pediatrica Napoli Italy
| | - Barbara Pasini
- Dipartimento di Scienze MedicheUniversità degli Studi di Torino Torino Italy
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II Naples Italy
- CEINGE Biotecnologie Avanzate Naples Italy
| |
Collapse
|
160
|
Harms JK, Lee TW, Wang T, Lai A, Kee D, Chaplin JM, McIvor NP, Hunter FW, Macann AMJ, Wilson WR, Jamieson SMF. Impact of Tumour Hypoxia on Evofosfamide Sensitivity in Head and Neck Squamous Cell Carcinoma Patient-Derived Xenograft Models. Cells 2019; 8:E717. [PMID: 31337055 PMCID: PMC6678517 DOI: 10.3390/cells8070717] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 01/05/2023] Open
Abstract
Tumour hypoxia is a marker of poor prognosis and failure of chemoradiotherapy in head and neck squamous cell carcinoma (HNSCC), providing a strategy for therapeutic intervention in this setting. To evaluate the utility of the hypoxia-activated prodrug evofosfamide (TH-302) in HNSCC, we established ten early passage patient-derived xenograft (PDX) models of HNSCC that were characterised by their histopathology, hypoxia status, gene expression, and sensitivity to evofosfamide. All PDX models closely resembled the histology of the patient tumours they were derived from. Pimonidazole-positive tumour hypoxic fractions ranged from 1.7-7.9% in line with reported HNSCC clinical values, while mRNA expression of the Toustrup hypoxia gene signature showed close correlations between PDX and matched patient tumours, together suggesting the PDX models may accurately model clinical tumour hypoxia. Evofosfamide as a single agent (50 mg/kg IP, qd × 5 for three weeks) demonstrated antitumour efficacy that was variable across the PDX models, ranging from complete regressions in one p16-positive PDX model to lack of significant activity in the three most resistant models. Despite all PDX models showing evidence of tumour hypoxia, and hypoxia being essential for activation of evofosfamide, the antitumour activity of evofosfamide only weakly correlated with tumour hypoxia status determined by pimonidazole immunohistochemistry. Other candidate evofosfamide sensitivity genes-MKI67, POR, and SLFN11-did not strongly influence evofosfamide sensitivity in univariate analyses, although a weak significant relationship with MKI67 was observed, while SLFN11 expression was lost in PDX tumours. Overall, these data confirm that evofosfamide has antitumour activity in clinically-relevant PDX tumour models of HNSCC and support further clinical evaluation of this drug in HNSCC patients. Further research is required to identify those factors that, alongside hypoxia, can influence sensitivity to evofosfamide and could act as predictive biomarkers to support its use in precision medicine therapy of HNSCC.
Collapse
Affiliation(s)
- Julia K Harms
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
| | - Tet-Woo Lee
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Tao Wang
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
| | - Amy Lai
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1023, New Zealand
| | - Dennis Kee
- LabPLUS, Auckland City Hospital, Auckland 1023, New Zealand
| | - John M Chaplin
- Department of Otolaryngology-Head and Neck Surgery, Auckland City Hospital, Auckland 1023, New Zealand
| | - Nick P McIvor
- Department of Otolaryngology-Head and Neck Surgery, Auckland City Hospital, Auckland 1023, New Zealand
| | - Francis W Hunter
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Andrew M J Macann
- Department of Radiation Oncology, Auckland City Hospital, Auckland 1023, New Zealand
| | - William R Wilson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand.
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1023, New Zealand.
| |
Collapse
|
161
|
Pilié PG, Gay CM, Byers LA, O'Connor MJ, Yap TA. PARP Inhibitors: Extending Benefit Beyond BRCA-Mutant Cancers. Clin Cancer Res 2019; 25:3759-3771. [PMID: 30760478 DOI: 10.1158/1078-0432.ccr-18-0968] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/04/2019] [Accepted: 02/08/2019] [Indexed: 02/03/2023]
Abstract
A mounting body of evidence now indicates that PARP inhibitors have the potential to be used as a foundation for both monotherapy and combination strategies across a wide spectrum of molecular backgrounds and tumor types. Although PARP inhibitors as a class display many similarities, critical differences in structure can translate into differences in tolerability and antitumor activity that have important implications for the clinic. Furthermore, while PARP inhibitors have demonstrated a clear role in treating tumors with underlying homologous recombination deficiencies, there is now biological and early clinical evidence to support their use in other molecular subsets of cancer, including tumors associated with high levels of replication stress such as small-cell lung cancer. In this article, we highlight the key similarities and differences between individual PARP inhibitors and their implications for the clinic. We discuss data that currently support clinical strategies for extending the benefit of PARP inhibitors beyond BRCA-mutant cancers, toward broader populations of patients through the use of novel biomarkers of homologous recombination repair deficiency (HRD), as well as predictive biomarkers rooted in mechanisms of sensitivity outside of HRD. We also explore the potential application of PARP inhibitors in earlier treatment settings, including neoadjuvant, adjuvant, and even chemoprevention approaches. Finally, we focus on promising combination therapeutic strategies, such as those with other DNA damage response (DDR) inhibitors such as ATR inhibitors, immune checkpoint inhibitors, and non-DDR-targeted agents that induce "chemical BRCAness."
Collapse
Affiliation(s)
- Patrick G Pilié
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carl M Gay
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lauren A Byers
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark J O'Connor
- Oncology Innovative Medicines and Early Clinical Development, AstraZeneca, Cambridge, United Kingdom
| | - Timothy A Yap
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
- The Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
162
|
Luan J, Gao X, Hu F, Zhang Y, Gou X. SLFN11 is a general target for enhancing the sensitivity of cancer to chemotherapy (DNA-damaging agents). J Drug Target 2019; 28:33-40. [PMID: 31092045 DOI: 10.1080/1061186x.2019.1616746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In patients with cancer, drug tolerance often occurs during the use of chemotherapy drugs, seriously affecting patient prognosis and survival. Therefore, scientists began to study the factors that affect chemotherapy drug sensitivity, and the high correlation between Schlafen-11 (SLFN11) and sensitivity to chemical drugs (mainly DNA-damaging agents, DDAs) has received increasing attention since it was discovered through bioinformatics analyses. Regarding the mechanism, SLFN11 may sensitise cells to chemotherapy drugs by preventing DNA damage repair. In recent years, SLFN11 has gradually become a hot research topic, and the results are enriching our understanding of this molecule. Indeed, the biological functions of SLFN11 under normal physiological conditions and in cancer, changes in its expression levels and mechanisms promoting apoptosis within the context of chemotherapeutic interventions have gradually been uncovered. Studies to date provide knowledge and the experimental and theoretical bases underlying SLFN11 and its effects on sensitivity to chemotherapy drugs. This review summarises the existing research on SLFN11 with the aim of achieving a more comprehensive understanding and furthering the development of strategies to target SLFN11 in the treatment of cancer.
Collapse
Affiliation(s)
- Jing Luan
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Xingchun Gao
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Fengrui Hu
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Yuelin Zhang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
163
|
Thomas A, Pommier Y. Targeting Topoisomerase I in the Era of Precision Medicine. Clin Cancer Res 2019; 25:6581-6589. [PMID: 31227499 DOI: 10.1158/1078-0432.ccr-19-1089] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/06/2019] [Accepted: 06/17/2019] [Indexed: 12/24/2022]
Abstract
Irinotecan and topotecan have been widely used as anticancer drugs for the past 20 years. Because of their selectivity as topoisomerase I (TOP1) inhibitors that trap TOP1 cleavage complexes, camptothecins are also widely used to elucidate the DNA repair pathways associated with DNA-protein cross-links and replication stress. This review summarizes the basic molecular mechanisms of action of TOP1 inhibitors, their current use, and limitations as anticancer agents. We introduce new therapeutic strategies based on novel TOP1 inhibitor chemical scaffolds including the indenoisoquinolines LMP400 (indotecan), LMP776 (indimitecan), and LMP744, and on tumor-targeted delivery TOP1 inhibitors using liposome, PEGylation, and antibody-drug conjugates. We also address how tumor-specific determinants such as homologous recombination defects (HRD and BRCAness) and Schlafen 11 (SLFN11) expression can be used to guide clinical application of TOP1 inhibitors in combination with DNA damage response inhibitors including PARP, ATR, CHEK1, and ATM inhibitors.
Collapse
Affiliation(s)
- Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
164
|
Schlafen-11 expression is associated with immune signatures and basal-like phenotype in breast cancer. Breast Cancer Res Treat 2019; 177:335-343. [PMID: 31222709 DOI: 10.1007/s10549-019-05313-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/05/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Breast cancer (BC) is a heterogeneous disorder, with variable response to systemic chemotherapy. Likewise, BC shows highly complex immune activation patterns, only in part reflecting classical histopathological subtyping. Schlafen-11 (SLFN11) is a nuclear protein we independently described as causal factor of sensitivity to DNA damaging agents (DDA) in cancer cell line models. SLFN11 has been reported as a predictive biomarker for DDA and PARP inhibitors in human neoplasms. SLFN11 has been implicated in several immune processes such as thymocyte maturation and antiviral response through the activation of interferon signaling pathway, suggesting its potential relevance as a link between immunity and cancer. In the present work, we investigated the transcriptional landscape of SLFN11, its potential prognostic value, and the clinico-pathological associations with its variability in BC. METHODS We assessed SLFN11 determinants in a gene expression meta-set of 5061 breast cancer patients annotated with clinical data and multigene signatures. RESULTS We found that 537 transcripts are highly correlated with SLFN11, identifying "immune response", "lymphocyte activation", and "T cell activation" as top Gene Ontology processes. We established a strong association of SLFN11 with stromal signatures of basal-like phenotype and response to chemotherapy in estrogen receptor negative (ER-) BC. We identified a distinct subgroup of patients, characterized by high SLFN11 levels, ER- status, basal-like phenotype, immune activation, and younger age. Finally, we observed an independent positive predictive role for SLFN11 in BC. CONCLUSIONS Our findings are suggestive of a relevant role for SLFN11 in BC and its immune and molecular variability.
Collapse
|
165
|
Van Den Borg R, Leonetti A, Tiseo M, Giovannetti E, Peters GJ. Novel targeted strategies to overcome resistance in small-cell lung cancer: focus on PARP inhibitors and rovalpituzumab tesirine. Expert Rev Anticancer Ther 2019; 19:461-471. [PMID: 31148500 DOI: 10.1080/14737140.2019.1624530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Small-cell lung cancer (SCLC) is a highly aggressive neuroendocrine tumour, and its outcome is strongly conditioned by the rapid onset of resistance to conventional chemotherapeutics. First-line treatment with a combination of platinum agents and topoisomerase inhibitors has been the standard of care for over 30 years, with disappointing clinical outcome caused by early-acquired chemoresistance. In this disheartening scenario, novel treatment strategies are being implemented in order to either revert or bypass resistance mechanisms. Areas covered: The general mechanism of action of the standard frontline treatment regimens for SCLC, as well as the known resistance mechanisms to these drugs, is reviewed. Moreover, we focus on the current preclinical and clinical evidence on the potential role of PARP inhibitors and rovalpituzumab tesirine (Rova-T) to tackle chemoresistance in SCLC. Expert opinion: Preliminary evidence supports PARP inhibitors and Rova-T as two promising approaches to either revert or bypass chemoresistance in SCLC, respectively. The identification of potential predictive biomarkers of response to these innovative treatments (SLFN11 and DLL3) has shortened the gap between SCLC and personalized targeted therapy. Further large-scale clinical studies are urgently needed for a better designation of PARP inhibitors and Rova-T in the therapeutic algorithm of SCLC patients.
Collapse
Affiliation(s)
- Robin Van Den Borg
- a Laboratory Medical Oncology , Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam , Amsterdam , Netherlands
| | - Alessandro Leonetti
- a Laboratory Medical Oncology , Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam , Amsterdam , Netherlands.,b Medical Oncology Unit , University Hospital of Parma , Parma , Italy
| | - Marcello Tiseo
- b Medical Oncology Unit , University Hospital of Parma , Parma , Italy.,c Department of Medicine and Surgery , University of Parma , Parma , Italy
| | - Elisa Giovannetti
- a Laboratory Medical Oncology , Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam , Amsterdam , Netherlands.,d Cancer Pharmacology Lab , AIRC Start-Up Unit , Pisa , Italy
| | - Godefridus J Peters
- a Laboratory Medical Oncology , Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam , Amsterdam , Netherlands
| |
Collapse
|
166
|
Aberrations in DNA repair pathways in cancer and therapeutic significances. Semin Cancer Biol 2019; 58:29-46. [PMID: 30922960 DOI: 10.1016/j.semcancer.2019.02.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/31/2019] [Accepted: 02/19/2019] [Indexed: 01/16/2023]
Abstract
Cancer cells show various types of mutations and aberrant expression in genes involved in DNA repair responses. These alterations induce genome instability and promote carcinogenesis steps and cancer progression processes. These defects in DNA repair have also been considered as suitable targets for cancer therapies. A most effective target so far clinically demonstrated is "homologous recombination repair defect", such as BRCA1/2 mutations, shown to cause synthetic lethality with inhibitors of poly(ADP-ribose) polymerase (PARP), which in turn is involved in DNA repair as well as multiple physiological processes. Different approaches targeting genomic instability, including immune therapy targeting mismatch-repair deficiency, have also recently been demonstrated to be promising strategies. In these DNA repair targeting-strategies, common issues could be how to optimize treatment and suppress/conquer the development of drug resistance. In this article, we review the extending framework of DNA repair response pathways and the potential impact of exploiting those defects on cancer treatments, including chemotherapy, radiation therapy and immune therapy.
Collapse
|
167
|
Murai J, Pommier Y. PARP Trapping Beyond Homologous Recombination and Platinum Sensitivity in Cancers. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2019. [DOI: 10.1146/annurev-cancerbio-030518-055914] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Poly(ADP-ribose) polymerase inhibitors (PARPis) have recently been approved for the treatment of ovarian and breast cancers with BRCA mutations, as well as for maintenance therapies regardless of BRCA mutation for ovarian and primary peritoneal cancers that previously responded to platinum-based chemotherapy. The rationale of these indications is derived from the facts that cancer cells with BRCA mutations are defective in homologous recombination (HR), which confers synthetic lethality with PARPis, and that some of the sensitivity-determining factors for PARPis are shared with platinums. Although BRCA1 and BRCA2 are central for HR, more players within and beyond HR are emerging as response determinants to PARPis. Furthermore, there are similarities as well as differences in the DNA lesions and repair pathways induced by PARPis, platinums, and camptothecin topoisomerase 1 (TOP1) inhibitors. Here we review the sensitivity-determining factors for PARPis and the rationale for using PARPis as single agents and in combination therapy for cancers.
Collapse
Affiliation(s)
- Junko Murai
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;,
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;,
| |
Collapse
|
168
|
Gogola E, Rottenberg S, Jonkers J. Resistance to PARP Inhibitors: Lessons from Preclinical Models of BRCA-Associated Cancer. ANNUAL REVIEW OF CANCER BIOLOGY 2019; 3:235-254. [DOI: 10.1146/annurev-cancerbio-030617-050232] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Inhibitors of poly(ADP-ribose) polymerase (PARP) have recently entered the clinic for the treatment of homologous recombination–deficient cancers. Despite the success of this approach, resistance to PARP inhibitors (PARPis) is a clinical hurdle, and it is poorly understood how cancer cells escape the deadly effects of PARPis without restoring BRCA1/2 function. By synergizing the advantages of next-generation sequencing with functional genetic screens in tractable model systems, novel mechanisms providing useful insights into DNA damage response (DDR) have been identified. BRCA1/2 models not only are tools to explore therapy escape mechanisms but also yield basic knowledge about DDR pathways and PARPis’ mechanism of action. Moreover, alterations that render cells resistant to targeted therapies may cause new synthetic dependencies that can be exploited to combat resistant disease.
Collapse
Affiliation(s)
- Ewa Gogola
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Cancer Genomics Centre Netherlands, 3584 CG Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Sven Rottenberg
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Cancer Genomics Centre Netherlands, 3584 CG Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| |
Collapse
|
169
|
Mezzadra R, de Bruijn M, Jae LT, Gomez-Eerland R, Duursma A, Scheeren FA, Brummelkamp TR, Schumacher TN. SLFN11 can sensitize tumor cells towards IFN-γ-mediated T cell killing. PLoS One 2019; 14:e0212053. [PMID: 30753225 PMCID: PMC6372190 DOI: 10.1371/journal.pone.0212053] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/15/2018] [Indexed: 12/21/2022] Open
Abstract
Experimental and clinical observations have highlighted the role of cytotoxic T cells in human tumor control. However, the parameters that control tumor cell sensitivity to T cell attack remain incompletely understood. To identify modulators of tumor cell sensitivity to T cell effector mechanisms, we performed a whole genome haploid screen in HAP1 cells. Selection of tumor cells by exposure to tumor-specific T cells identified components of the interferon-γ (IFN-γ) receptor (IFNGR) signaling pathway, and tumor cell killing by cytotoxic T cells was shown to be in large part mediated by the pro-apoptotic effects of IFN-γ. Notably, we identified schlafen 11 (SLFN11), a known modulator of DNA damage toxicity, as a regulator of tumor cell sensitivity to T cell-secreted IFN-γ. SLFN11 does not influence IFNGR signaling, but couples IFNGR signaling to the induction of the DNA damage response (DDR) in a context dependent fashion. In line with this role of SLFN11, loss of SLFN11 can reduce IFN-γ mediated toxicity. Collectively, our data indicate that SLFN11 can couple IFN-γ exposure of tumor cells to DDR and cellular apoptosis. Future work should reveal the mechanistic basis for the link between IFNGR signaling and DNA damage response, and identify tumor cell types in which SLFN11 contributes to the anti-tumor activity of T cells.
Collapse
Affiliation(s)
- Riccardo Mezzadra
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marjolein de Bruijn
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lucas T. Jae
- Division of Biochemistry, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Raquel Gomez-Eerland
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anja Duursma
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ferenc A. Scheeren
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Thijn R. Brummelkamp
- Division of Biochemistry, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Cancergenomics.nl, Amsterdam, The Netherlands
| | - Ton N. Schumacher
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
170
|
Pilié PG, Tang C, Mills GB, Yap TA. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat Rev Clin Oncol 2019; 16:81-104. [PMID: 30356138 PMCID: PMC8327299 DOI: 10.1038/s41571-018-0114-z] [Citation(s) in RCA: 743] [Impact Index Per Article: 123.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genomic instability is a key hallmark of cancer that arises owing to defects in the DNA damage response (DDR) and/or increased replication stress. These alterations promote the clonal evolution of cancer cells via the accumulation of driver aberrations, including gene copy-number changes, rearrangements and mutations; however, these same defects also create vulnerabilities that are relatively specific to cancer cells, which could potentially be exploited to increase the therapeutic index of anticancer treatments and thereby improve patient outcomes. The discovery that BRCA-mutant cancer cells are exquisitely sensitive to inhibition of poly(ADP-ribose) polymerase has ushered in a new era of research on biomarker-driven synthetic lethal treatment strategies for different cancers. The therapeutic landscape of antitumour agents targeting the DDR has rapidly expanded to include inhibitors of other key mediators of DNA repair and replication, such as ATM, ATR, CHK1 and CHK2, DNA-PK and WEE1. Efforts to optimize these therapies are ongoing across a range of cancers, involving the development of predictive biomarker assays of responsiveness (beyond BRCA mutations), assessment of the mechanisms underlying intrinsic and acquired resistance, and evaluation of rational, tolerable combinations with standard-of-care treatments (such as chemotherapeutics and radiation), novel molecularly targeted agents and immune-checkpoint inhibitors. In this Review, we discuss the current status of anticancer therapies targeting the DDR.
Collapse
Affiliation(s)
- Patrick G Pilié
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chad Tang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
171
|
Pacheco J, Bunn PA. Advancements in Small-cell Lung Cancer: The Changing Landscape Following IMpower-133. Clin Lung Cancer 2019; 20:148-160.e2. [PMID: 30686680 DOI: 10.1016/j.cllc.2018.12.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/12/2018] [Accepted: 12/25/2018] [Indexed: 12/30/2022]
Abstract
The treatment landscape of small-cell lung cancer is rapidly evolving. Results of the first-line randomized trial comparing etoposide/carboplatin/placebo with etoposide/carboplatin/atezolizumab (IMpower-133) were recently published, showing a longer progression-free survival and overall survival for patients receiving atezolizumab. These results changed the standard first-line therapy for the first time in several decades. There are 4 additional ongoing randomized trials comparing chemotherapy alone with chemotherapy plus immune checkpoint inhibition as initial treatment. In addition to these major changes in first-line treatment, multiple second or later line options with new agents are likely to change therapeutic standards in these settings. In this article, we discuss the changing treatment landscape following IMpower-133, highlight new second/subsequent line approaches, and discuss the role of biomarkers in patient selection for these treatments.
Collapse
Affiliation(s)
- Jose Pacheco
- University of Colorado Cancer Center, Aurora, CO.
| | - Paul A Bunn
- University of Colorado Cancer Center, Aurora, CO
| |
Collapse
|
172
|
Rajapakse VN, Luna A, Yamade M, Loman L, Varma S, Sunshine M, Iorio F, Sousa FG, Elloumi F, Aladjem MI, Thomas A, Sander C, Kohn KW, Benes CH, Garnett M, Reinhold WC, Pommier Y. CellMinerCDB for Integrative Cross-Database Genomics and Pharmacogenomics Analyses of Cancer Cell Lines. iScience 2018; 10:247-264. [PMID: 30553813 PMCID: PMC6302245 DOI: 10.1016/j.isci.2018.11.029] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/11/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022] Open
Abstract
CellMinerCDB provides a web-based resource (https://discover.nci.nih.gov/cellminercdb/) for integrating multiple forms of pharmacological and genomic analyses, and unifying the richest cancer cell line datasets (the NCI-60, NCI-SCLC, Sanger/MGH GDSC, and Broad CCLE/CTRP). CellMinerCDB enables data queries for genomics and gene regulatory network analyses, and exploration of pharmacogenomic determinants and drug signatures. It leverages overlaps of cell lines and drugs across databases to examine reproducibility and expand pathway analyses. We illustrate the value of CellMinerCDB for elucidating gene expression determinants, such as DNA methylation and copy number variations, and highlight complexities in assessing mutational burden. We demonstrate the value of CellMinerCDB in selecting drugs with reproducible activity, expand on the dominant role of SLFN11 for drug response, and present novel response determinants and genomic signatures for topoisomerase inhibitors and schweinfurthins. We also introduce LIX1L as a gene associated with mesenchymal signature and regulation of cellular migration and invasiveness.
Collapse
Affiliation(s)
- Vinodh N Rajapakse
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Augustin Luna
- cBio Center, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA.
| | - Mihoko Yamade
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Lisa Loman
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sudhir Varma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Margot Sunshine
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; General Dynamics Information Technology Inc., 3211 Jermantown Road, Fairfax, VA 22030, USA
| | - Francesco Iorio
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Fabricio G Sousa
- Centro De Estudos Em Células Tronco, Terapia Celular E Genética Toxicológica, Programa De Pós-Graduação Em Farmácia, Universidade Federal De Mato Grosso Do Sul, Campo Grande, MS 79070-900, Brazil
| | - Fathi Elloumi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; General Dynamics Information Technology Inc., 3211 Jermantown Road, Fairfax, VA 22030, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Chris Sander
- cBio Center, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Kurt W Kohn
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Cyril H Benes
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Mathew Garnett
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - William C Reinhold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
173
|
Lazzari C, Gregorc V, Bulotta A, Dottore A, Altavilla G, Santarpia M. Temozolomide in combination with either veliparib or placebo in patients with relapsed-sensitive or refractory small-cell lung cancer. Transl Lung Cancer Res 2018; 7:S329-S333. [PMID: 30705847 DOI: 10.21037/tlcr.2018.12.02] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chiara Lazzari
- Department of Oncology, Division of Experimental Medicine, IRCCS San Raffaele Hospital, Milano, Italy
| | - Vanesa Gregorc
- Department of Oncology, Division of Experimental Medicine, IRCCS San Raffaele Hospital, Milano, Italy
| | - Alessandra Bulotta
- Department of Oncology, Division of Experimental Medicine, IRCCS San Raffaele Hospital, Milano, Italy
| | - Alessia Dottore
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Giuseppe Altavilla
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| |
Collapse
|
174
|
Production of Spliced Long Noncoding RNAs Specifies Regions with Increased Enhancer Activity. Cell Syst 2018; 7:537-547.e3. [PMID: 30447999 DOI: 10.1016/j.cels.2018.10.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/12/2018] [Accepted: 10/16/2018] [Indexed: 12/28/2022]
Abstract
Active enhancers in mammals produce enhancer RNAs (eRNAs) that are bidirectionally transcribed, unspliced, and unstable. Enhancer regions are also enriched with long noncoding RNA (lncRNA) transcripts, which are typically spliced and substantially more stable. In order to explore the relationship between these two classes of RNAs, we analyzed DNase hypersensitive sites with evidence of bidirectional transcription, which we termed eRNA-producing centers (EPCs). EPCs found very close to transcription start sites of lncRNAs exhibit attributes of both enhancers and promoters, including distinctive DNA motifs and a characteristic chromatin landscape. These EPCs are associated with higher enhancer activity, driven at least in part by the presence of conserved, directional splicing signals that promote lncRNA production, pointing at a causal role of lncRNA processing in enhancer activity. Together, our results suggest that the conserved ability of some enhancers to produce lncRNAs augments their activity in a manner likely mediated through lncRNA maturation.
Collapse
|
175
|
Thibodeau A, Uyar A, Khetan S, Stitzel ML, Ucar D. A neural network based model effectively predicts enhancers from clinical ATAC-seq samples. Sci Rep 2018; 8:16048. [PMID: 30375457 PMCID: PMC6207744 DOI: 10.1038/s41598-018-34420-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/16/2018] [Indexed: 01/06/2023] Open
Abstract
Enhancers are cis-acting sequences that regulate transcription rates of their target genes in a cell-specific manner and harbor disease-associated sequence variants in cognate cell types. Many complex diseases are associated with enhancer malfunction, necessitating the discovery and study of enhancers from clinical samples. Assay for Transposase Accessible Chromatin (ATAC-seq) technology can interrogate chromatin accessibility from small cell numbers and facilitate studying enhancers in pathologies. However, on average, ~35% of open chromatin regions (OCRs) from ATAC-seq samples map to enhancers. We developed a neural network-based model, Predicting Enhancers from ATAC-Seq data (PEAS), to effectively infer enhancers from clinical ATAC-seq samples by extracting ATAC-seq data features and integrating these with sequence-related features (e.g., GC ratio). PEAS recapitulated ChromHMM-defined enhancers in CD14+ monocytes, CD4+ T cells, GM12878, peripheral blood mononuclear cells, and pancreatic islets. PEAS models trained on these 5 cell types effectively predicted enhancers in four cell types that are not used in model training (EndoC-βH1, naïve CD8+ T, MCF7, and K562 cells). Finally, PEAS inferred individual-specific enhancers from 19 islet ATAC-seq samples and revealed variability in enhancer activity across individuals, including those driven by genetic differences. PEAS is an easy-to-use tool developed to study enhancers in pathologies by taking advantage of the increasing number of clinical epigenomes.
Collapse
Affiliation(s)
- Asa Thibodeau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Asli Uyar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Shubham Khetan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.,Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Michael L Stitzel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.,Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA. .,Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
176
|
DNA damage-induced cell death relies on SLFN11-dependent cleavage of distinct type II tRNAs. Nat Struct Mol Biol 2018; 25:1047-1058. [PMID: 30374083 PMCID: PMC6579113 DOI: 10.1038/s41594-018-0142-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/07/2018] [Indexed: 12/30/2022]
Abstract
Transcriptome analysis revealed a strong positive correlation between human SLFN11 expression and the sensitivity of tumor cells to DNA damaging agents (DDAs). We show here that SLFN11 preferentially inhibits translation of ATR or ATM upon DDAs treatment based on distinct codon usage without disrupting early DNA damage response signaling. Type II tRNAs, which include all serine and leucine tRNAs, are cleaved in a SLFN11-dependent manner in response to DDAs. mRNAs encoded by genes with high TTA (Leu) codon usage such as ATR display utmost susceptibility to translational suppression by SLFN11. Specific attenuation of tRNA-Leu-TAA sufficed to ablate ATR protein expression and restore DDA sensitivity of SLFN11-deficient cells. Our study uncovered a novel mechanism of codon-specific translational inhibition via SLFN11-dependent tRNA cleavage in the DNA damage response, and supports the notion that SLFN11-deficient tumor cells can be resensitized to DDAs by targeting ATR or tRNA-Leu-TAA.
Collapse
|
177
|
Prasanna T, Wu F, Khanna KK, Yip D, Malik L, Dahlstrom JE, Rao S. Optimizing poly (ADP-ribose) polymerase inhibition through combined epigenetic and immunotherapy. Cancer Sci 2018; 109:3383-3392. [PMID: 30230653 PMCID: PMC6215877 DOI: 10.1111/cas.13799] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/05/2018] [Accepted: 09/09/2018] [Indexed: 12/31/2022] Open
Abstract
Triple‐negative breast cancer (TNBC) is an aggressive breast cancer subtype with poor survival outcomes. Currently, there are no targeted therapies available for TNBCs despite remarkable progress in targeted and immune‐directed therapies for other solid organ malignancies. Poly (ADP‐ribose) polymerase inhibitors (PARPi) are effective anticancer drugs that produce good initial clinical responses, especially in homologous recombination DNA repair‐deficient cancers. However, resistance is the rule rather than the exception, and recurrent tumors tend to have an aggressive phenotype associated with poor survival. Many efforts have been made to overcome PARPi resistance, mostly by targeting genes and effector proteins participating in homologous recombination that are overexpressed during PARPi therapy. Due to many known and unknown compensatory pathways, genes, and effector proteins, overlap and shared resistance are common. Overexpression of programmed cell death‐ligand 1 (PD‐L1) and cancer stem cell (CSC) sparing are novel PARPi resistance hypotheses. Although adding programmed cell death‐1 (PD‐1)/PD‐L1 inhibitors to PARPi might improve immunogenic cell death and be crucial for durable responses, they are less likely to target the CSC population that drives recurrent tumor growth. Lysine‐specific histone demethylase‐1A and histone deacetylase inhibitors have shown promising activity against CSCs. Combining epigenetic drugs such as lysine‐specific histone demethylase‐1A inhibitors or histone deacetylase inhibitors with PARPi/anti‐PD‐1/PD‐L1 is a novel, potentially synergistic strategy for priming tumors and overcoming resistance. Furthermore, such an approach could pave the way for the identification of new upstream epigenetic and genetic signatures.
Collapse
Affiliation(s)
- Thiru Prasanna
- Health Research Institute, Faculty of ESTeM, University of Canberra, Canberra, ACT, Australia.,Department of Medical Oncology, The Canberra Hospital, Canberra, ACT, Australia
| | - Fan Wu
- Health Research Institute, Faculty of ESTeM, University of Canberra, Canberra, ACT, Australia
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Desmond Yip
- Department of Medical Oncology, The Canberra Hospital, Canberra, ACT, Australia.,ANU Medical School, Australian National University, Canberra, ACT, Australia
| | - Laeeq Malik
- Department of Medical Oncology, The Canberra Hospital, Canberra, ACT, Australia.,ANU Medical School, Australian National University, Canberra, ACT, Australia
| | - Jane E Dahlstrom
- ANU Medical School, Australian National University, Canberra, ACT, Australia.,Department of Anatomical Pathology, ACT Pathology, The Canberra Hospital, Canberra, ACT, Australia
| | - Sudha Rao
- Health Research Institute, Faculty of ESTeM, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
178
|
Kramer B, França LM, Zhang Y, Paes AMDA, Gerdes AM, Carrillo-Sepulveda MA. Western diet triggers Toll-like receptor 4 signaling-induced endothelial dysfunction in female Wistar rats. Am J Physiol Heart Circ Physiol 2018; 315:H1735-H1747. [PMID: 30265151 DOI: 10.1152/ajpheart.00218.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Overconsumption of a diet rich in fat and carbohydrates, called the Western diet, is a major contributor to the global epidemic of cardiovascular disease. Despite previously documented cardiovascular protection exhibited in female rats, this safeguard may be lost under certain metabolic stressors. We hypothesized that female Wistar rats challenged by a Western diet composed of 21% fat and 50% carbohydrate (34.1% sucrose) for 17 wk would develop endothelial dysfunction via endothelial Toll-like receptor 4 (TLR4) signaling. Western diet-fed female rats exhibited dysregulation of metabolism, revealing increased body weight and abdominal fat, decreased expression of adiponectin in white adipose tissue, glucose intolerance, and impaired insulin sensitivity. Western diet exposure increased hepatic triglycerides and cholesterol alongside hepatic steatosis, categorizing nonalcoholic fatty liver disease. Moreover, a Western diet negatively affected vascular function, revealing hypertension, impaired endothelium-dependent vasorelaxation, aortic remodeling, and increased reactive oxygen species (ROS) production. Aortic protein expression of TLR4 and its downstream proteins were markedly increased in the Western diet-fed group in association with elevated serum levels of free fatty acids. In vitro experiments were conducted to test whether free fatty acids contribute to vascular ROS overproduction via the TLR4 signaling pathway. Cultured endothelial cells were stimulated with palmitate in the presence of TAK-242, a TLR4 signaling inhibitor. Palmitate-induced overgeneration of ROS in endothelial cells was abolished in the presence of TAK-242. Our data show that a Western diet induced endothelial dysfunction in female rats and suggest that endothelial TLR4 signaling may play a key role in abolishing female cardiovascular protection. NEW & NOTEWORTHY A Western diet induced elevated levels of free fatty acids, produced nonalcoholic fatty liver disease, and provoked endothelial dysfunction in female rats in association with Toll-like receptor 4 signaling-mediated vascular reactive oxygen species production. Limited consumption of a Western diet in premenopausal women may decrease their risk of cardiovascular complications.
Collapse
Affiliation(s)
- Benjamin Kramer
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| | - Lucas Martins França
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão , Sao Luis , Brazil
| | - Youhua Zhang
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| | - Antonio Marcus de Andrade Paes
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão , Sao Luis , Brazil
| | - A Martin Gerdes
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| | - Maria Alicia Carrillo-Sepulveda
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| |
Collapse
|
179
|
Abstract
The chemical treatment of cancer started with the realization that DNA damaging agents such as mustard gas present notable antitumoural properties. Consequently, early drug development focused on genotoxic chemicals, some of which are still widely used in the clinic. However, the efficacy of such therapies is often limited by the side effects of these drugs on healthy cells. A refinement to this approach is to use compounds that can exploit the presence of DNA damage in cancer cells. Given that replication stress (RS) is a major source of genomic instability in cancer, targeting the RS-response kinase ataxia telangiectasia and Rad3-related protein (ATR) has emerged as a promising alternative. With ATR inhibitors now entering clinical trials, we here revisit the biology behind this strategy and discuss potential biomarkers that could be used for a better selection of patients who respond to therapy.
Collapse
Affiliation(s)
- Emilio Lecona
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Oscar Fernandez-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
180
|
Pietanza MC, Waqar SN, Krug LM, Dowlati A, Hann CL, Chiappori A, Owonikoko TK, Woo KM, Cardnell RJ, Fujimoto J, Long L, Diao L, Wang J, Bensman Y, Hurtado B, de Groot P, Sulman EP, Wistuba II, Chen A, Fleisher M, Heymach JV, Kris MG, Rudin CM, Byers LA. Randomized, Double-Blind, Phase II Study of Temozolomide in Combination With Either Veliparib or Placebo in Patients With Relapsed-Sensitive or Refractory Small-Cell Lung Cancer. J Clin Oncol 2018; 36:2386-2394. [PMID: 29906251 PMCID: PMC6085179 DOI: 10.1200/jco.2018.77.7672] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Both temozolomide (TMZ) and poly (ADP-ribose) polymerase (PARP) inhibitors are active in small-cell lung cancer (SCLC). This phase II, randomized, double-blind study evaluated whether addition of the PARP inhibitor veliparib to TMZ improves 4-month progression-free survival (PFS). Patients and Methods A total of 104 patients with recurrent SCLC were randomly assigned 1:1 to oral veliparib or placebo 40 mg twice daily, days 1 to 7, and oral TMZ 150 to 200 mg/m2/day, days 1 to 5, of a 28-day cycle until disease progression, unacceptable toxicity, or withdrawal of consent. Response was determined by imaging at weeks 4 and 8, and every 8 weeks thereafter. Improvement in PFS at 4 months was the primary end point. Secondary objectives included overall response rate (ORR), overall survival (OS), and safety and tolerability of veliparib with TMZ. Exploratory objectives included PARP-1 and SLFN11 immunohistochemical expression, MGMT promoter methylation, and circulating tumor cell quantification. Results No significant difference in 4-month PFS was noted between TMZ/veliparib (36%) and TMZ/placebo (27%; P = .19); median OS was also not improved significantly with TMZ/veliparib (8.2 months; 95% CI, 6.4 to 12.2 months; v 7.0 months; 95% CI, 5.3 to 9.5 months; P = .50). However, ORR was significantly higher in patients receiving TMZ/veliparib compared with TMZ/placebo (39% v 14%; P = .016). Grade 3/4 thrombocytopenia and neutropenia more commonly occurred with TMZ/veliparib: 50% versus 9% and 31% versus 7%, respectively. Significantly prolonged PFS (5.7 v 3.6 months; P = .009) and OS (12.2 v 7.5 months; P = .014) were observed in patients with SLFN11-positive tumors treated with TMZ/veliparib. Conclusion Four-month PFS and median OS did not differ between the two arms, whereas a significant improvement in ORR was observed with TMZ/veliparib. SLFN11 expression was associated with improved PFS and OS in patients receiving TMZ/veliparib, suggesting a promising biomarker of PARP-inhibitor sensitivity in SCLC.
Collapse
Affiliation(s)
- M. Catherine Pietanza
- M. Catherine Pietanza, Lee M. Krug, Mark G. Kris, and Charles M. Rudin, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College; Kaitlin M. Woo, Yevgeniva Bensman, Brenda Hurtado, and Martin Fleisher, Memorial Sloan Kettering Cancer Center, New York, NY; Saiama N. Waqar, Washington University School of Medicine in St. Louis, St Louis, MO; Afshin Dowlati, Case Western Reserve University and University Hospitals Seidman Cancer Center, Cleveland, OH; Christine L. Hann, Johns Hopkins University, Baltimore; Alice Chen, National Institutes of Health, Bethesda, MD; Alberto Chiappori, H. Lee Moffitt Cancer Center, Tampa, FL; Taofeek K. Owonikoko, Emory University, Atlanta, GA; and Robert J. Cardnell, Junya Fujimoto, Lihong Long, Lixia Diao, Jing Wang, Patricia de Groot, Erik P. Sulman, Ignacio I. Wistuba, John V. Heymach, and Lauren Averett Byers, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Saiama N. Waqar
- M. Catherine Pietanza, Lee M. Krug, Mark G. Kris, and Charles M. Rudin, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College; Kaitlin M. Woo, Yevgeniva Bensman, Brenda Hurtado, and Martin Fleisher, Memorial Sloan Kettering Cancer Center, New York, NY; Saiama N. Waqar, Washington University School of Medicine in St. Louis, St Louis, MO; Afshin Dowlati, Case Western Reserve University and University Hospitals Seidman Cancer Center, Cleveland, OH; Christine L. Hann, Johns Hopkins University, Baltimore; Alice Chen, National Institutes of Health, Bethesda, MD; Alberto Chiappori, H. Lee Moffitt Cancer Center, Tampa, FL; Taofeek K. Owonikoko, Emory University, Atlanta, GA; and Robert J. Cardnell, Junya Fujimoto, Lihong Long, Lixia Diao, Jing Wang, Patricia de Groot, Erik P. Sulman, Ignacio I. Wistuba, John V. Heymach, and Lauren Averett Byers, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lee M. Krug
- M. Catherine Pietanza, Lee M. Krug, Mark G. Kris, and Charles M. Rudin, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College; Kaitlin M. Woo, Yevgeniva Bensman, Brenda Hurtado, and Martin Fleisher, Memorial Sloan Kettering Cancer Center, New York, NY; Saiama N. Waqar, Washington University School of Medicine in St. Louis, St Louis, MO; Afshin Dowlati, Case Western Reserve University and University Hospitals Seidman Cancer Center, Cleveland, OH; Christine L. Hann, Johns Hopkins University, Baltimore; Alice Chen, National Institutes of Health, Bethesda, MD; Alberto Chiappori, H. Lee Moffitt Cancer Center, Tampa, FL; Taofeek K. Owonikoko, Emory University, Atlanta, GA; and Robert J. Cardnell, Junya Fujimoto, Lihong Long, Lixia Diao, Jing Wang, Patricia de Groot, Erik P. Sulman, Ignacio I. Wistuba, John V. Heymach, and Lauren Averett Byers, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Afshin Dowlati
- M. Catherine Pietanza, Lee M. Krug, Mark G. Kris, and Charles M. Rudin, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College; Kaitlin M. Woo, Yevgeniva Bensman, Brenda Hurtado, and Martin Fleisher, Memorial Sloan Kettering Cancer Center, New York, NY; Saiama N. Waqar, Washington University School of Medicine in St. Louis, St Louis, MO; Afshin Dowlati, Case Western Reserve University and University Hospitals Seidman Cancer Center, Cleveland, OH; Christine L. Hann, Johns Hopkins University, Baltimore; Alice Chen, National Institutes of Health, Bethesda, MD; Alberto Chiappori, H. Lee Moffitt Cancer Center, Tampa, FL; Taofeek K. Owonikoko, Emory University, Atlanta, GA; and Robert J. Cardnell, Junya Fujimoto, Lihong Long, Lixia Diao, Jing Wang, Patricia de Groot, Erik P. Sulman, Ignacio I. Wistuba, John V. Heymach, and Lauren Averett Byers, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Christine L. Hann
- M. Catherine Pietanza, Lee M. Krug, Mark G. Kris, and Charles M. Rudin, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College; Kaitlin M. Woo, Yevgeniva Bensman, Brenda Hurtado, and Martin Fleisher, Memorial Sloan Kettering Cancer Center, New York, NY; Saiama N. Waqar, Washington University School of Medicine in St. Louis, St Louis, MO; Afshin Dowlati, Case Western Reserve University and University Hospitals Seidman Cancer Center, Cleveland, OH; Christine L. Hann, Johns Hopkins University, Baltimore; Alice Chen, National Institutes of Health, Bethesda, MD; Alberto Chiappori, H. Lee Moffitt Cancer Center, Tampa, FL; Taofeek K. Owonikoko, Emory University, Atlanta, GA; and Robert J. Cardnell, Junya Fujimoto, Lihong Long, Lixia Diao, Jing Wang, Patricia de Groot, Erik P. Sulman, Ignacio I. Wistuba, John V. Heymach, and Lauren Averett Byers, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alberto Chiappori
- M. Catherine Pietanza, Lee M. Krug, Mark G. Kris, and Charles M. Rudin, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College; Kaitlin M. Woo, Yevgeniva Bensman, Brenda Hurtado, and Martin Fleisher, Memorial Sloan Kettering Cancer Center, New York, NY; Saiama N. Waqar, Washington University School of Medicine in St. Louis, St Louis, MO; Afshin Dowlati, Case Western Reserve University and University Hospitals Seidman Cancer Center, Cleveland, OH; Christine L. Hann, Johns Hopkins University, Baltimore; Alice Chen, National Institutes of Health, Bethesda, MD; Alberto Chiappori, H. Lee Moffitt Cancer Center, Tampa, FL; Taofeek K. Owonikoko, Emory University, Atlanta, GA; and Robert J. Cardnell, Junya Fujimoto, Lihong Long, Lixia Diao, Jing Wang, Patricia de Groot, Erik P. Sulman, Ignacio I. Wistuba, John V. Heymach, and Lauren Averett Byers, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Taofeek K. Owonikoko
- M. Catherine Pietanza, Lee M. Krug, Mark G. Kris, and Charles M. Rudin, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College; Kaitlin M. Woo, Yevgeniva Bensman, Brenda Hurtado, and Martin Fleisher, Memorial Sloan Kettering Cancer Center, New York, NY; Saiama N. Waqar, Washington University School of Medicine in St. Louis, St Louis, MO; Afshin Dowlati, Case Western Reserve University and University Hospitals Seidman Cancer Center, Cleveland, OH; Christine L. Hann, Johns Hopkins University, Baltimore; Alice Chen, National Institutes of Health, Bethesda, MD; Alberto Chiappori, H. Lee Moffitt Cancer Center, Tampa, FL; Taofeek K. Owonikoko, Emory University, Atlanta, GA; and Robert J. Cardnell, Junya Fujimoto, Lihong Long, Lixia Diao, Jing Wang, Patricia de Groot, Erik P. Sulman, Ignacio I. Wistuba, John V. Heymach, and Lauren Averett Byers, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kaitlin M. Woo
- M. Catherine Pietanza, Lee M. Krug, Mark G. Kris, and Charles M. Rudin, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College; Kaitlin M. Woo, Yevgeniva Bensman, Brenda Hurtado, and Martin Fleisher, Memorial Sloan Kettering Cancer Center, New York, NY; Saiama N. Waqar, Washington University School of Medicine in St. Louis, St Louis, MO; Afshin Dowlati, Case Western Reserve University and University Hospitals Seidman Cancer Center, Cleveland, OH; Christine L. Hann, Johns Hopkins University, Baltimore; Alice Chen, National Institutes of Health, Bethesda, MD; Alberto Chiappori, H. Lee Moffitt Cancer Center, Tampa, FL; Taofeek K. Owonikoko, Emory University, Atlanta, GA; and Robert J. Cardnell, Junya Fujimoto, Lihong Long, Lixia Diao, Jing Wang, Patricia de Groot, Erik P. Sulman, Ignacio I. Wistuba, John V. Heymach, and Lauren Averett Byers, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Robert J. Cardnell
- M. Catherine Pietanza, Lee M. Krug, Mark G. Kris, and Charles M. Rudin, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College; Kaitlin M. Woo, Yevgeniva Bensman, Brenda Hurtado, and Martin Fleisher, Memorial Sloan Kettering Cancer Center, New York, NY; Saiama N. Waqar, Washington University School of Medicine in St. Louis, St Louis, MO; Afshin Dowlati, Case Western Reserve University and University Hospitals Seidman Cancer Center, Cleveland, OH; Christine L. Hann, Johns Hopkins University, Baltimore; Alice Chen, National Institutes of Health, Bethesda, MD; Alberto Chiappori, H. Lee Moffitt Cancer Center, Tampa, FL; Taofeek K. Owonikoko, Emory University, Atlanta, GA; and Robert J. Cardnell, Junya Fujimoto, Lihong Long, Lixia Diao, Jing Wang, Patricia de Groot, Erik P. Sulman, Ignacio I. Wistuba, John V. Heymach, and Lauren Averett Byers, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Junya Fujimoto
- M. Catherine Pietanza, Lee M. Krug, Mark G. Kris, and Charles M. Rudin, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College; Kaitlin M. Woo, Yevgeniva Bensman, Brenda Hurtado, and Martin Fleisher, Memorial Sloan Kettering Cancer Center, New York, NY; Saiama N. Waqar, Washington University School of Medicine in St. Louis, St Louis, MO; Afshin Dowlati, Case Western Reserve University and University Hospitals Seidman Cancer Center, Cleveland, OH; Christine L. Hann, Johns Hopkins University, Baltimore; Alice Chen, National Institutes of Health, Bethesda, MD; Alberto Chiappori, H. Lee Moffitt Cancer Center, Tampa, FL; Taofeek K. Owonikoko, Emory University, Atlanta, GA; and Robert J. Cardnell, Junya Fujimoto, Lihong Long, Lixia Diao, Jing Wang, Patricia de Groot, Erik P. Sulman, Ignacio I. Wistuba, John V. Heymach, and Lauren Averett Byers, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lihong Long
- M. Catherine Pietanza, Lee M. Krug, Mark G. Kris, and Charles M. Rudin, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College; Kaitlin M. Woo, Yevgeniva Bensman, Brenda Hurtado, and Martin Fleisher, Memorial Sloan Kettering Cancer Center, New York, NY; Saiama N. Waqar, Washington University School of Medicine in St. Louis, St Louis, MO; Afshin Dowlati, Case Western Reserve University and University Hospitals Seidman Cancer Center, Cleveland, OH; Christine L. Hann, Johns Hopkins University, Baltimore; Alice Chen, National Institutes of Health, Bethesda, MD; Alberto Chiappori, H. Lee Moffitt Cancer Center, Tampa, FL; Taofeek K. Owonikoko, Emory University, Atlanta, GA; and Robert J. Cardnell, Junya Fujimoto, Lihong Long, Lixia Diao, Jing Wang, Patricia de Groot, Erik P. Sulman, Ignacio I. Wistuba, John V. Heymach, and Lauren Averett Byers, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lixia Diao
- M. Catherine Pietanza, Lee M. Krug, Mark G. Kris, and Charles M. Rudin, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College; Kaitlin M. Woo, Yevgeniva Bensman, Brenda Hurtado, and Martin Fleisher, Memorial Sloan Kettering Cancer Center, New York, NY; Saiama N. Waqar, Washington University School of Medicine in St. Louis, St Louis, MO; Afshin Dowlati, Case Western Reserve University and University Hospitals Seidman Cancer Center, Cleveland, OH; Christine L. Hann, Johns Hopkins University, Baltimore; Alice Chen, National Institutes of Health, Bethesda, MD; Alberto Chiappori, H. Lee Moffitt Cancer Center, Tampa, FL; Taofeek K. Owonikoko, Emory University, Atlanta, GA; and Robert J. Cardnell, Junya Fujimoto, Lihong Long, Lixia Diao, Jing Wang, Patricia de Groot, Erik P. Sulman, Ignacio I. Wistuba, John V. Heymach, and Lauren Averett Byers, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jing Wang
- M. Catherine Pietanza, Lee M. Krug, Mark G. Kris, and Charles M. Rudin, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College; Kaitlin M. Woo, Yevgeniva Bensman, Brenda Hurtado, and Martin Fleisher, Memorial Sloan Kettering Cancer Center, New York, NY; Saiama N. Waqar, Washington University School of Medicine in St. Louis, St Louis, MO; Afshin Dowlati, Case Western Reserve University and University Hospitals Seidman Cancer Center, Cleveland, OH; Christine L. Hann, Johns Hopkins University, Baltimore; Alice Chen, National Institutes of Health, Bethesda, MD; Alberto Chiappori, H. Lee Moffitt Cancer Center, Tampa, FL; Taofeek K. Owonikoko, Emory University, Atlanta, GA; and Robert J. Cardnell, Junya Fujimoto, Lihong Long, Lixia Diao, Jing Wang, Patricia de Groot, Erik P. Sulman, Ignacio I. Wistuba, John V. Heymach, and Lauren Averett Byers, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yevgeniva Bensman
- M. Catherine Pietanza, Lee M. Krug, Mark G. Kris, and Charles M. Rudin, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College; Kaitlin M. Woo, Yevgeniva Bensman, Brenda Hurtado, and Martin Fleisher, Memorial Sloan Kettering Cancer Center, New York, NY; Saiama N. Waqar, Washington University School of Medicine in St. Louis, St Louis, MO; Afshin Dowlati, Case Western Reserve University and University Hospitals Seidman Cancer Center, Cleveland, OH; Christine L. Hann, Johns Hopkins University, Baltimore; Alice Chen, National Institutes of Health, Bethesda, MD; Alberto Chiappori, H. Lee Moffitt Cancer Center, Tampa, FL; Taofeek K. Owonikoko, Emory University, Atlanta, GA; and Robert J. Cardnell, Junya Fujimoto, Lihong Long, Lixia Diao, Jing Wang, Patricia de Groot, Erik P. Sulman, Ignacio I. Wistuba, John V. Heymach, and Lauren Averett Byers, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Brenda Hurtado
- M. Catherine Pietanza, Lee M. Krug, Mark G. Kris, and Charles M. Rudin, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College; Kaitlin M. Woo, Yevgeniva Bensman, Brenda Hurtado, and Martin Fleisher, Memorial Sloan Kettering Cancer Center, New York, NY; Saiama N. Waqar, Washington University School of Medicine in St. Louis, St Louis, MO; Afshin Dowlati, Case Western Reserve University and University Hospitals Seidman Cancer Center, Cleveland, OH; Christine L. Hann, Johns Hopkins University, Baltimore; Alice Chen, National Institutes of Health, Bethesda, MD; Alberto Chiappori, H. Lee Moffitt Cancer Center, Tampa, FL; Taofeek K. Owonikoko, Emory University, Atlanta, GA; and Robert J. Cardnell, Junya Fujimoto, Lihong Long, Lixia Diao, Jing Wang, Patricia de Groot, Erik P. Sulman, Ignacio I. Wistuba, John V. Heymach, and Lauren Averett Byers, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Patricia de Groot
- M. Catherine Pietanza, Lee M. Krug, Mark G. Kris, and Charles M. Rudin, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College; Kaitlin M. Woo, Yevgeniva Bensman, Brenda Hurtado, and Martin Fleisher, Memorial Sloan Kettering Cancer Center, New York, NY; Saiama N. Waqar, Washington University School of Medicine in St. Louis, St Louis, MO; Afshin Dowlati, Case Western Reserve University and University Hospitals Seidman Cancer Center, Cleveland, OH; Christine L. Hann, Johns Hopkins University, Baltimore; Alice Chen, National Institutes of Health, Bethesda, MD; Alberto Chiappori, H. Lee Moffitt Cancer Center, Tampa, FL; Taofeek K. Owonikoko, Emory University, Atlanta, GA; and Robert J. Cardnell, Junya Fujimoto, Lihong Long, Lixia Diao, Jing Wang, Patricia de Groot, Erik P. Sulman, Ignacio I. Wistuba, John V. Heymach, and Lauren Averett Byers, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Erik P. Sulman
- M. Catherine Pietanza, Lee M. Krug, Mark G. Kris, and Charles M. Rudin, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College; Kaitlin M. Woo, Yevgeniva Bensman, Brenda Hurtado, and Martin Fleisher, Memorial Sloan Kettering Cancer Center, New York, NY; Saiama N. Waqar, Washington University School of Medicine in St. Louis, St Louis, MO; Afshin Dowlati, Case Western Reserve University and University Hospitals Seidman Cancer Center, Cleveland, OH; Christine L. Hann, Johns Hopkins University, Baltimore; Alice Chen, National Institutes of Health, Bethesda, MD; Alberto Chiappori, H. Lee Moffitt Cancer Center, Tampa, FL; Taofeek K. Owonikoko, Emory University, Atlanta, GA; and Robert J. Cardnell, Junya Fujimoto, Lihong Long, Lixia Diao, Jing Wang, Patricia de Groot, Erik P. Sulman, Ignacio I. Wistuba, John V. Heymach, and Lauren Averett Byers, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ignacio I. Wistuba
- M. Catherine Pietanza, Lee M. Krug, Mark G. Kris, and Charles M. Rudin, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College; Kaitlin M. Woo, Yevgeniva Bensman, Brenda Hurtado, and Martin Fleisher, Memorial Sloan Kettering Cancer Center, New York, NY; Saiama N. Waqar, Washington University School of Medicine in St. Louis, St Louis, MO; Afshin Dowlati, Case Western Reserve University and University Hospitals Seidman Cancer Center, Cleveland, OH; Christine L. Hann, Johns Hopkins University, Baltimore; Alice Chen, National Institutes of Health, Bethesda, MD; Alberto Chiappori, H. Lee Moffitt Cancer Center, Tampa, FL; Taofeek K. Owonikoko, Emory University, Atlanta, GA; and Robert J. Cardnell, Junya Fujimoto, Lihong Long, Lixia Diao, Jing Wang, Patricia de Groot, Erik P. Sulman, Ignacio I. Wistuba, John V. Heymach, and Lauren Averett Byers, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alice Chen
- M. Catherine Pietanza, Lee M. Krug, Mark G. Kris, and Charles M. Rudin, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College; Kaitlin M. Woo, Yevgeniva Bensman, Brenda Hurtado, and Martin Fleisher, Memorial Sloan Kettering Cancer Center, New York, NY; Saiama N. Waqar, Washington University School of Medicine in St. Louis, St Louis, MO; Afshin Dowlati, Case Western Reserve University and University Hospitals Seidman Cancer Center, Cleveland, OH; Christine L. Hann, Johns Hopkins University, Baltimore; Alice Chen, National Institutes of Health, Bethesda, MD; Alberto Chiappori, H. Lee Moffitt Cancer Center, Tampa, FL; Taofeek K. Owonikoko, Emory University, Atlanta, GA; and Robert J. Cardnell, Junya Fujimoto, Lihong Long, Lixia Diao, Jing Wang, Patricia de Groot, Erik P. Sulman, Ignacio I. Wistuba, John V. Heymach, and Lauren Averett Byers, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Martin Fleisher
- M. Catherine Pietanza, Lee M. Krug, Mark G. Kris, and Charles M. Rudin, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College; Kaitlin M. Woo, Yevgeniva Bensman, Brenda Hurtado, and Martin Fleisher, Memorial Sloan Kettering Cancer Center, New York, NY; Saiama N. Waqar, Washington University School of Medicine in St. Louis, St Louis, MO; Afshin Dowlati, Case Western Reserve University and University Hospitals Seidman Cancer Center, Cleveland, OH; Christine L. Hann, Johns Hopkins University, Baltimore; Alice Chen, National Institutes of Health, Bethesda, MD; Alberto Chiappori, H. Lee Moffitt Cancer Center, Tampa, FL; Taofeek K. Owonikoko, Emory University, Atlanta, GA; and Robert J. Cardnell, Junya Fujimoto, Lihong Long, Lixia Diao, Jing Wang, Patricia de Groot, Erik P. Sulman, Ignacio I. Wistuba, John V. Heymach, and Lauren Averett Byers, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - John V. Heymach
- M. Catherine Pietanza, Lee M. Krug, Mark G. Kris, and Charles M. Rudin, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College; Kaitlin M. Woo, Yevgeniva Bensman, Brenda Hurtado, and Martin Fleisher, Memorial Sloan Kettering Cancer Center, New York, NY; Saiama N. Waqar, Washington University School of Medicine in St. Louis, St Louis, MO; Afshin Dowlati, Case Western Reserve University and University Hospitals Seidman Cancer Center, Cleveland, OH; Christine L. Hann, Johns Hopkins University, Baltimore; Alice Chen, National Institutes of Health, Bethesda, MD; Alberto Chiappori, H. Lee Moffitt Cancer Center, Tampa, FL; Taofeek K. Owonikoko, Emory University, Atlanta, GA; and Robert J. Cardnell, Junya Fujimoto, Lihong Long, Lixia Diao, Jing Wang, Patricia de Groot, Erik P. Sulman, Ignacio I. Wistuba, John V. Heymach, and Lauren Averett Byers, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Mark G. Kris
- M. Catherine Pietanza, Lee M. Krug, Mark G. Kris, and Charles M. Rudin, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College; Kaitlin M. Woo, Yevgeniva Bensman, Brenda Hurtado, and Martin Fleisher, Memorial Sloan Kettering Cancer Center, New York, NY; Saiama N. Waqar, Washington University School of Medicine in St. Louis, St Louis, MO; Afshin Dowlati, Case Western Reserve University and University Hospitals Seidman Cancer Center, Cleveland, OH; Christine L. Hann, Johns Hopkins University, Baltimore; Alice Chen, National Institutes of Health, Bethesda, MD; Alberto Chiappori, H. Lee Moffitt Cancer Center, Tampa, FL; Taofeek K. Owonikoko, Emory University, Atlanta, GA; and Robert J. Cardnell, Junya Fujimoto, Lihong Long, Lixia Diao, Jing Wang, Patricia de Groot, Erik P. Sulman, Ignacio I. Wistuba, John V. Heymach, and Lauren Averett Byers, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Charles M. Rudin
- M. Catherine Pietanza, Lee M. Krug, Mark G. Kris, and Charles M. Rudin, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College; Kaitlin M. Woo, Yevgeniva Bensman, Brenda Hurtado, and Martin Fleisher, Memorial Sloan Kettering Cancer Center, New York, NY; Saiama N. Waqar, Washington University School of Medicine in St. Louis, St Louis, MO; Afshin Dowlati, Case Western Reserve University and University Hospitals Seidman Cancer Center, Cleveland, OH; Christine L. Hann, Johns Hopkins University, Baltimore; Alice Chen, National Institutes of Health, Bethesda, MD; Alberto Chiappori, H. Lee Moffitt Cancer Center, Tampa, FL; Taofeek K. Owonikoko, Emory University, Atlanta, GA; and Robert J. Cardnell, Junya Fujimoto, Lihong Long, Lixia Diao, Jing Wang, Patricia de Groot, Erik P. Sulman, Ignacio I. Wistuba, John V. Heymach, and Lauren Averett Byers, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lauren Averett Byers
- M. Catherine Pietanza, Lee M. Krug, Mark G. Kris, and Charles M. Rudin, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College; Kaitlin M. Woo, Yevgeniva Bensman, Brenda Hurtado, and Martin Fleisher, Memorial Sloan Kettering Cancer Center, New York, NY; Saiama N. Waqar, Washington University School of Medicine in St. Louis, St Louis, MO; Afshin Dowlati, Case Western Reserve University and University Hospitals Seidman Cancer Center, Cleveland, OH; Christine L. Hann, Johns Hopkins University, Baltimore; Alice Chen, National Institutes of Health, Bethesda, MD; Alberto Chiappori, H. Lee Moffitt Cancer Center, Tampa, FL; Taofeek K. Owonikoko, Emory University, Atlanta, GA; and Robert J. Cardnell, Junya Fujimoto, Lihong Long, Lixia Diao, Jing Wang, Patricia de Groot, Erik P. Sulman, Ignacio I. Wistuba, John V. Heymach, and Lauren Averett Byers, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
181
|
Marzi L, Agama K, Murai J, Difilippantonio S, James A, Peer CJ, Figg WD, Beck D, Elsayed MSA, Cushman M, Pommier Y. Novel Fluoroindenoisoquinoline Non-Camptothecin Topoisomerase I Inhibitors. Mol Cancer Ther 2018; 17:1694-1704. [PMID: 29748210 PMCID: PMC6072611 DOI: 10.1158/1535-7163.mct-18-0028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/29/2018] [Accepted: 05/04/2018] [Indexed: 01/12/2023]
Abstract
Contrary to other anticancer targets, topoisomerase I (TOP1) is targeted by only one chemical class of FDA-approved drugs: topotecan and irinotecan, the derivatives of the plant alkaloid, camptothecin. The indenoisoquinolines LMP400, LMP744, and LMP776 are novel noncamptothecin TOP1 inhibitors in clinical trial, which overcome the limitations of camptothecins. To further improve metabolic stability, their methoxy groups have been replaced by fluorine, as in the fluoroindenoisoquinolines NSC 781517 (LMP517), NSC 779135 (LMP135), and NSC 779134 (LMP134). We tested the induction and stability of TOP1 cleavage complexes (TOP1cc), and the induction and persistence of DNA damage measured by histone H2AX phosphorylation (γH2AX) compared with their parent compounds LMP744 and LMP776 in leukemia CCRF-CEM and colon carcinoma HCT116 cells. The fluoroindenoisoquinolines induced TOP1cc and γH2AX at nanomolar concentrations, and at higher levels than the parent indenoisoquinolines. The fluoroindenoisoquinoline LMP135 showed greater antitumor activity than topotecan in small-cell lung cancer cell H82 xenografts. It was also more potent than topotecan in the NCI-60 cancer cell line panel. Bioinformatics tools (http://discover.nci.nih.gov/cellminercdb) were used to investigate the following: (i) the correlations of fluoroindenoisoquinolines activity with other drugs, and (ii) genomic determinants of response in the NCI-60. The activity of the fluoroindenoisoquinolines was mostly correlated with camptothecin derivatives and the parent indenoisoquinolines, consistent with TOP1 targeting. Genomic analyses and activity assays in CCRF-CEM SLFN11-deleted cells showed that SLFN11 expression is a dominant determinant of response to LMP135. This study shows the potential value of the fluoroindenoisoquinolines for further development as novel anticancer agents targeting TOP1. Mol Cancer Ther; 17(8); 1694-704. ©2018 AACR.
Collapse
Affiliation(s)
- Laetitia Marzi
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Keli Agama
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Junko Murai
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Simone Difilippantonio
- Laboratory of Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Amy James
- Laboratory of Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Cody J Peer
- Clinical Pharmacology Program, Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - William D Figg
- Clinical Pharmacology Program, Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Daniel Beck
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and The Purdue Center for Cancer Research, Purdue University, Lafayette, Indiana
| | - Mohamed S A Elsayed
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and The Purdue Center for Cancer Research, Purdue University, Lafayette, Indiana
| | - Mark Cushman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and The Purdue Center for Cancer Research, Purdue University, Lafayette, Indiana
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
182
|
Thomas A, Murai J, Pommier Y. The evolving landscape of predictive biomarkers of response to PARP inhibitors. J Clin Invest 2018; 128:1727-1730. [PMID: 29664016 DOI: 10.1172/jci120388] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Poly(ADP-ribose) polymerase inhibitors (PARPis) are DNA-damaging agents that trap PARP-DNA complexes and interfere with DNA replication. Three PARPis - olaparib, niraparib, and rucaparib - were recently approved by the FDA for the treatment of breast and ovarian cancers. These PARPis, along with 2 others (talazoparib and veliparib), are being evaluated for their potential to treat additional malignancies, including prostate cancers. While lack of PARP-1 confers high resistance to PARPis, it has not been established whether or not the levels of PARP-1 directly correlate with tumor response. In this issue of the JCI, Makvandi and coworkers describe an approach to address this question using [18F]FluorThanatrace, an [18F]-labeled PARP-1 inhibitor, for PET. The tracer was taken up by patient tumor tissue and appeared to differentiate levels of PARP-1 expression; however, future studies should be aimed at determining if this tracer can be used to stratify patient response to PARPi therapy.
Collapse
|
183
|
Tang SW, Thomas A, Murai J, Trepel JB, Bates SE, Rajapakse VN, Pommier Y. Overcoming Resistance to DNA-Targeted Agents by Epigenetic Activation of Schlafen 11 ( SLFN11) Expression with Class I Histone Deacetylase Inhibitors. Clin Cancer Res 2018; 24:1944-1953. [PMID: 29391350 DOI: 10.1158/1078-0432.ccr-17-0443] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 11/07/2017] [Accepted: 01/26/2018] [Indexed: 12/30/2022]
Abstract
Purpose: Schlafen 11 (SLFN11), a putative DNA/RNA helicase is a dominant genomic determinant of response to DNA-damaging agents and is frequently not expressed in cancer cells. Whether histone deacetylase (HDAC) inhibitors can be used to release SLFN11 and sensitize SLFN11-inactivated cancers to DNA-targeted agents is tested here.Experimental Design:SLFN11 expression was examined in The Cancer Genome Atlas (TCGA), in cancer cell line databases and in patients treated with romidepsin. Isogenic cells overexpressing or genetically inactivated for SLFN11 were used to investigate the effect of HDAC inhibitors on SLFN11 expression and sensitivity to DNA-damaging agents.Results:SLFN11 expression is suppressed in a broad fraction of common cancers and cancer cell lines. In cancer cells not expressing SLFN11, transfection of SLFN11 sensitized the cells to camptothecin, topotecan, hydroxyurea, and cisplatin but not to paclitaxel. SLFN11 mRNA and protein levels were strongly induced by class I (romidepsin, entinostat), but not class II (roclinostat) HDAC inhibitors in a broad panel of cancer cells. SLFN11 expression was also enhanced in peripheral blood mononuclear cells of patients with circulating cutaneous T-cell lymphoma treated with romidepsin. Consistent with the epigenetic regulation of SLFN11, camptothecin and class I HDAC inhibitors were synergistic in many of the cell lines tested.Conclusions: This study reports the prevalent epigenetic regulation of SLFN11 and the dominant stimulatory effect of HDAC inhibitors on SLFN11 expression. Our results provide a rationale for combining class I HDAC inhibitors and DNA-damaging agents to overcome epigenetic inactivation of SLFN11-mediated resistance to DNA-targeted agents. Clin Cancer Res; 24(8); 1944-53. ©2018 AACR.
Collapse
Affiliation(s)
- Sai-Wen Tang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Anish Thomas
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Junko Murai
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jane B Trepel
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Susan E Bates
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.,Division of Hematology/Oncology, Columbia University, New York, New York
| | - Vinodh N Rajapakse
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|