151
|
Dai H, Huang Y, Li Y, Meng G, Wang Y, Guo QN. TSSC3 overexpression associates with growth inhibition, apoptosis induction and enhances chemotherapeutic effects in human osteosarcoma. Carcinogenesis 2011; 33:30-40. [PMID: 22021909 DOI: 10.1093/carcin/bgr232] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Loss of expression of TSSC3, an apoptosis-related imprinted gene, has been reported in several cases of malignant tumors. However, the roles and mechanisms of TSSC3 in human osteosarcoma remain to be defined. In this study, we found TSSC3 to be downregulated during osteosarcoma transformation and progression in osteosarcoma cell lines and tissues. The SaOS2 cell line was used to further evaluate the precise role of TSSC3 in osteosarcoma development. Overexpression of TSSC3 markedly reduced cell vitality and growth, colony formation, Ki67 expression as well as cell cycle arrest in the G(0)/G(1) phase. Consistently, TSSC3 overexpression was associated with increased apoptosis assayed by annexin V/propidium iodide and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling staining. Subcutaneous injection of TSSC3 overexpressing SaOS2 cells into athymic nude mice showed that TSSC3 also inhibited tumorigenesis through growth inhibition and apoptosis induction in vivo. Further mechanistic studies revealed that the mitochondrial apoptosis pathway was required for TSSC3-mediated cell apoptosis. These findings support a suppressor role for TSSC3 in osteosarcoma development by regulating apoptosis. In addition, constitutive TSSC3 expression greatly enhanced the sensitivity of human osteosarcoma cells to the chemotherapeutic drugs cisplatin and epirubicin. Conversely, TSSC3 knockdown increased SaOS2 cell growth and decreased apoptosis in vitro and in vivo and reduced sensitivity of the cells to chemotherapy. This is the first study to demonstrate that TSSC3 has a potent tumor suppressor role in osteosarcoma, probably by inhibition of growth and induction of apoptosis via the mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Huanzi Dai
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | |
Collapse
|
152
|
Michels KB, Harris HR, Barault L. Birthweight, maternal weight trajectories and global DNA methylation of LINE-1 repetitive elements. PLoS One 2011; 6:e25254. [PMID: 21980406 PMCID: PMC3182185 DOI: 10.1371/journal.pone.0025254] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 08/30/2011] [Indexed: 12/03/2022] Open
Abstract
Low birthweight, premature birth, intrauterine growth retardation, and maternal malnutrition have been related to an increased risk of cardiovascular disease, type 2 diabetes mellitus, obesity, and neuropsychiatric disorders later in life. Conversely, high birthweight has been linked to future risk of cancer. Global DNA methylation estimated by the methylation of repetitive sequences in the genome is an indicator of susceptibility to chronic diseases. We used data and biospecimens from an epigenetic birth cohort to explore the association between trajectories of fetal and maternal weight and LINE-1 methylation in 319 mother-child dyads. Newborns with low or high birthweight had significantly lower LINE-1 methylation levels in their cord blood compared to normal weight infants after adjusting for gestational age, sex of the child, maternal age at delivery, and maternal smoking during pregnancy (p = 0.007 and p = 0.036, respectively), but the magnitude of the difference was small. Infants born prematurely also had lower LINE-1 methylation levels in cord blood compared to term infants, and this difference, though small, was statistically significant (p = 0.004). We did not find important associations between maternal prepregnancy BMI or gestational weight gain and global methylation of the cord blood or fetal placental tissue. In conclusion, we found significant differences in cord blood LINE-1 methylation among newborns with low and high birthweight as well as among prematurely born infants. Future studies may elucidate whether chromosomal instabilities or other functional consequences of these changes contribute to the increased risk of chronic diseases among individuals with these characteristics.
Collapse
Affiliation(s)
- Karin B Michels
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | |
Collapse
|
153
|
Epigenetic mechanisms in developmental programming of adult disease. Drug Discov Today 2011; 16:1007-18. [PMID: 21945859 DOI: 10.1016/j.drudis.2011.09.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 07/05/2011] [Accepted: 09/09/2011] [Indexed: 12/13/2022]
Abstract
Adverse insults during intrauterine life can result in permanent changes in the physiology and metabolism of the offspring, which in turn leads to an increased risk of disease in adulthood. This is an adaptational response by the fetus to changes in the environmental signals that it receives during early life to ensure its survival and prepare itself for postnatal life. Increasing evidence suggests that the epigenetic regulation of gene expression patterns has a crucial role in the developmental programming of adult disease. This review summarizes recent studies of epigenetic mechanisms and focuses particularly on studies that explore identifiable epigenetic biomarkers in the promoters of specific disease-associated genes. Such biomarkers would enable early recognition of children who might be at risk of developing adult disease with fetal origins.
Collapse
|
154
|
Wong EC, Hatakeyama C, Robinson WP, Ma S. DNA methylation at H19/IGF2 ICR1 in the placenta of pregnancies conceived by in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril 2011; 95:2524-6.e1-3. [PMID: 21704210 DOI: 10.1016/j.fertnstert.2011.05.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 05/14/2011] [Accepted: 05/16/2011] [Indexed: 11/18/2022]
Abstract
DNA methylation at H19 ICR1 was investigated in the placenta from pregnancies conceived by in vitro fertilization, intracytoplasmic sperm injection, and from natural conception. Our results showed that there were no significant differences in mean methylation between all pregnancy groups; therefore, assisted reproductive technology may not affect proper imprinting of H19 and IGF2.
Collapse
Affiliation(s)
- Edgar Chan Wong
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
155
|
Suzuki S, Shaw G, Kaneko-Ishino T, Ishino F, Renfree MB. Characterisation of marsupial PHLDA2 reveals eutherian specific acquisition of imprinting. BMC Evol Biol 2011; 11:244. [PMID: 21854573 PMCID: PMC3170258 DOI: 10.1186/1471-2148-11-244] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 08/19/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Genomic imprinting causes parent-of-origin specific gene expression by differential epigenetic modifications between two parental genomes. We previously reported that there is no evidence of genomic imprinting of CDKN1C in the KCNQ1 domain in the placenta of an Australian marsupial, the tammar wallaby (Macropus eugenii) whereas tammar IGF2 and H19, located adjacent to the KCNQ1 domain in eutherian mammals, are imprinted. We have now identified and characterised the marsupial orthologue of PHLDA2, another gene in the KCNQ1 domain (also known as IPL or TSSC3) that is imprinted in eutherians. In mice, Phlda2 is a dose-sensitive negative regulator of placental growth, as Cdkn1c is for embryonic growth. RESULTS Tammar PHLDA2 is highly expressed in the yolk sac placenta compared to other fetal tissues, confirming a similar expression pattern to that of mouse Phlda2. However, tammar PHLDA2 is biallelically expressed in both the fetus and yolk sac placenta, so it is not imprinted. The lack of imprinting in tammar PHLDA2 suggests that the acquisition of genomic imprinting of the KCNQ1 domain in eutherian mammals, accompanied with gene dosage reduction, occurred after the split of the therian mammals into the marsupials and eutherians. CONCLUSIONS Our results confirm the idea that acquisition of genomic imprinting in the KCNQ1 domain occurred specifically in the eutherian lineage after the divergence of marsupials, even though imprinting of the adjacent IGF2-H19 domain arose before the marsupial-eutherian split. These data are consistent with the hypothesis that genomic imprinting of the KCNQ1 domain may have contributed to the evolution of more complex placentation in the eutherian lineage by reduction of the gene dosage of negative regulators for both embryonic and placental growth.
Collapse
Affiliation(s)
- Shunsuke Suzuki
- ARC Centre of Excellence for Kangaroo Genomics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
156
|
Banister CE, Koestler DC, Maccani MA, Padbury JF, Houseman EA, Marsit CJ. Infant growth restriction is associated with distinct patterns of DNA methylation in human placentas. Epigenetics 2011; 6:920-7. [PMID: 21758004 PMCID: PMC3154432 DOI: 10.4161/epi.6.7.16079] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/16/2011] [Indexed: 12/23/2022] Open
Abstract
The placenta acts not only as a conduit of nutrient and waste exchange between mother and developing fetus, but also functions as a regulator of the intrauterine environment. Recent work has identified changes in the expression of candidate genes, often through epigenetic alteration, which alter the placenta's function and impact fetal growth. In this study, we used the Illumina Infinium HumanMethylation27 BeadChip array to examine genome-wide DNA methylation patterns in 206 term human placentas. Semi-supervised recursively partitioned mixture modeling was implemented to identify specific patterns of placental DNA methylation that could differentially classify intrauterine growth restriction (IUGR) and small for gestational age (SGA) placentas from appropriate for gestational age (AGA) placentas, and these associations were validated in a masked testing series of samples. Our work demonstrates that patterns of DNA methylation in human placenta are reliably and significantly associated with infant growth and serve as a proof of principle that methylation status in the human term placenta can function as a marker for the intrauterine environment, and could potentially play a critical functional role in fetal development.
Collapse
Affiliation(s)
- Carolyn E Banister
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | | | | | | | | | | |
Collapse
|
157
|
Fowden AL, Coan PM, Angiolini E, Burton GJ, Constancia M. Imprinted genes and the epigenetic regulation of placental phenotype. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 106:281-8. [PMID: 21108957 DOI: 10.1016/j.pbiomolbio.2010.11.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/06/2010] [Accepted: 11/10/2010] [Indexed: 10/18/2022]
Abstract
Imprinted genes are expressed in a parent-of-origin manner by epigenetic modifications that silence either the paternal or maternal allele. They are widely expressed in fetal and placental tissues and are essential for normal placental development. In general, paternally expressed genes enhance feto-placental growth while maternally expressed genes limit conceptus growth, consistent with the hypothesis that imprinting evolved in response to the conflict between parental genomes in the allocation of maternal resources to fetal growth. Using targeted deletion, uniparental duplication, loss of imprinting and transgenic approaches, imprinted genes have been shown to determine the transport capacity of the definitive mouse placenta by regulating its growth, morphology and transporter abundance. Imprinted genes in the placenta are also responsive to environmental challenges and adapt placental phenotype to the prevailing nutritional conditions, in part, by varying their epigenetic status. In addition, interplay between placental and fetal imprinted genes is important in regulating resource partitioning via the placenta both developmentally and in response to environmental factors. By balancing the opposing parental drives on resource allocation with the environmental signals of nutrient availability, imprinted genes, like the Igf2-H19 locus, may act as nutrient sensors and optimise the fetal acquisition of nutrients for growth. These genes, therefore, have a major role in the epigenetic regulation of placental phenotype with long term consequences for the developmental programming of adult health and disease.
Collapse
Affiliation(s)
- A L Fowden
- Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB23EG, United Kingdom.
| | | | | | | | | |
Collapse
|
158
|
Radford EJ, Ferrón SR, Ferguson-Smith AC. Genomic imprinting as an adaptative model of developmental plasticity. FEBS Lett 2011; 585:2059-66. [PMID: 21672541 DOI: 10.1016/j.febslet.2011.05.063] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 05/29/2011] [Accepted: 05/30/2011] [Indexed: 01/14/2023]
Abstract
Developmental plasticity can be defined as the ability of one genotype to produce a range of phenotypes in response to environmental conditions. Such plasticity can be manifest at the level of individual cells, an organ, or a whole organism. Imprinted genes are a group of approximately 100 genes with functionally monoallelic, parental-origin specific expression. As imprinted genes are critical for prenatal growth and metabolic axis development and function, modulation of imprinted gene dosage has been proposed to play a key role in the plastic development of the unborn foetus in response to environmental conditions. Evidence is accumulating that imprinted dosage may also be involved in controlling the plastic potential of individual cells or stem cell populations. Imprinted gene dosage can be modulated through canonical, transcription factor mediated mechanisms, or through the relaxation of imprinting itself, reactivating the normally silent allele.
Collapse
Affiliation(s)
- Elizabeth J Radford
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
159
|
Piedrahita JA. The role of imprinted genes in fetal growth abnormalities. ACTA ACUST UNITED AC 2011; 91:682-92. [PMID: 21648055 DOI: 10.1002/bdra.20795] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 12/13/2010] [Accepted: 01/26/2011] [Indexed: 12/20/2022]
Abstract
Epigenetics, and in particular imprinted genes, have a critical role in the development and function of the placenta, which in turn has a central role in the regulation of fetal growth and development. A unique characteristic of imprinted genes is their expression from only one allele, maternal or paternal and dependent on parent of origin. This unique expression pattern may have arisen as a mechanism to control the flow of nutrients from the mother to the fetus, with maternally expressed imprinted genes reducing the flow of resources and paternally expressed genes increasing resources to the fetus. As a result, any epigenetic deregulation affecting this balance can result in fetal growth abnormalities. Imprinting-associated disorders in humans, such as Beckwith-Wiedemann and Angelman syndrome, support the role of imprinted genes in fetal growth. Similarly, assisted reproductive technologies in animals have been shown to affect the epigenome of the early embryo and the expression of imprinted genes. Their role in disorders such as intrauterine growth restriction appears to be more complex, in that imprinted gene expression can be seen as both causative and protective of fetal growth restriction. This protective or compensatory effect needs to be explored more fully.
Collapse
Affiliation(s)
- Jorge A Piedrahita
- Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606, USA.
| |
Collapse
|
160
|
Tzschoppe A, Fahlbusch F, Seidel J, Dörr HG, Rascher W, Goecke TW, Beckmann MW, Schild RL, Struwe E, Dötsch J. Dexamethasone stimulates the expression of leptin and 11β-HSD2 in primary human placental trophoblastic cells. Eur J Obstet Gynecol Reprod Biol 2011; 156:50-5. [DOI: 10.1016/j.ejogrb.2011.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 12/30/2010] [Accepted: 01/08/2011] [Indexed: 10/18/2022]
|
161
|
Tzschoppe A, Struwe E, Rascher W, Dörr HG, Schild RL, Goecke TW, Beckmann MW, Hofner B, Kratzsch J, Dötsch J. Intrauterine growth restriction (IUGR) is associated with increased leptin synthesis and binding capability in neonates. Clin Endocrinol (Oxf) 2011; 74:459-66. [PMID: 21138460 DOI: 10.1111/j.1365-2265.2010.03943.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Animal studies suggest pathological foetal programming of hypothalamic circuits regulating food intake in the setting of leptin deficiency and intrauterine growth restriction (IUGR). We aimed to compare placental leptin synthesis and leptin-binding capability in venous cord blood between IUGR newborns and neonates born appropriate for gestational age (AGA). DESIGN Prospective controlled multicentre study. PATIENTS Twenty-one ultrasound-proven IUGR and 33 AGA neonates. MEASUREMENTS The concentration of leptin and soluble leptin receptor (sOB-R) in venous cord blood at birth was determined. Moreover, placental gene and protein expression of leptin and placental mRNA expression of functional and total leptin receptor isoforms were measured. RESULTS Whereas log-leptin concentration in venous cord blood did not differ between IUGR and AGA newborns, the concentration of log-sOB-R was elevated in IUGR neonates (p(confounder adjusted)=0·009). Placental leptin protein synthesis as well as leptin mRNA was significantly higher in IUGR than in AGA infants (log-transformed, relative gene expression, p(confounder adjusted)=0·004). Analysis of gene expression of functional and total leptin receptor isoforms did not show any difference between both groups. CONCLUSIONS Leptin-binding capability in venous cord blood is increased in IUGR newborns. Thus, via foetal programming, reduced biologically active leptin levels might contribute to a perturbed regulation of appetite.
Collapse
Affiliation(s)
- Anja Tzschoppe
- Department of Paediatrics and Adolescent Medicine, University of Erlangen-Nuremberg, Erlangen-Nuremberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Kopsida E, Mikaelsson MA, Davies W. The role of imprinted genes in mediating susceptibility to neuropsychiatric disorders. Horm Behav 2011; 59:375-82. [PMID: 20403360 DOI: 10.1016/j.yhbeh.2010.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 03/31/2010] [Accepted: 04/09/2010] [Indexed: 11/25/2022]
Abstract
Imprinted genes, which are thought to comprise <1% of the mammalian genome, are defined by their parent-of-origin specific monoallelic expression arising as a consequence of differential epigenetic marking of alleles in the paternal and maternal germlines. Such genes are highly represented in the brain and placental transcriptomes, and have been shown to exert significant influence on fundamental developmental processes in these organs. Converging evidence from work in man and animal models has shown that imprinted genes can influence a variety of brain and behavioral endophenotypes. In this article, we review the current evidence that imprinted gene dysfunction is associated with vulnerability to several common psychiatric disorders. We also discuss how studying imprinted gene (dys)function may provide mechanistic insights into two important areas in modern psychiatry: first, how environmental factors (especially in utero) interact with genetic liability via epigenetic mechanisms to predispose to later mental illness, and second, the molecular underpinnings of sex-specific vulnerability to psychiatric disorders.
Collapse
|
163
|
Ying W, Jingli F, Wei SW, Li WL. Genomic imprinting status of IGF-II and H19 in placentas of fetal growth restriction patients. J Genet 2011; 89:213-6. [PMID: 20861572 DOI: 10.1007/s12041-010-0027-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Wang Ying
- Department of Obstetrics and Gynecology, China Medical University, Shenyang, People's Republic of China
| | | | | | | |
Collapse
|
164
|
Tobi EW, Heijmans BT, Kremer D, Putter H, Delemarre-van de Waal HA, Finken MJJ, Wit JM, Slagboom PE. DNA methylation of IGF2, GNASAS, INSIGF and LEP and being born small for gestational age. Epigenetics 2011; 6:171-6. [PMID: 20930547 DOI: 10.4161/epi.6.2.13516] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Being born small for gestational age (SGA), a proxy for intrauterine growth restriction (IUGR), and prenatal famine exposure are both associated with a greater risk of metabolic disease. Both associations have been hypothesized to involve epigenetic mechanisms. We investigated whether prenatal growth restriction early in pregnancy was associated with changes in DNA methylation at loci that were previously shown to be sensitive to early gestational famine exposure. We compared 38 individuals born preterm (< 32 weeks) and with a birth weight too low for their gestational age (-1SDS) and a normal postnatal growth (>-1SDS at 3 months post term; AGA). The SGA individuals were not only lighter at birth, but also had a smaller length (P=3.3x10 (-13) ) and head circumference at birth (P=4.1x10 (-13) ). The DNA methylation levels of IGF2, GNASAS, INSIGF and LEP were 48.5%, 47.5%, 79.4% and 25.7% respectively. This was not significantly different between SGA and AGA individuals. Risk factors for being born SGA, including preeclampsia and maternal smoking, were also not associated with DNA methylation at these loci. Growth restriction early in development is not associated with DNA methylation at loci shown to be affected by prenatal famine exposure. Our and previous results by others indicate that prenatal growth restriction and famine exposure may be associated with different epigenetic changes or non epigenetic mechanisms that may lead to similar later health outcomes.
Collapse
Affiliation(s)
- Elmar W Tobi
- Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Oh-McGinnis R, Bogutz AB, Lefebvre L. Partial loss of Ascl2 function affects all three layers of the mature placenta and causes intrauterine growth restriction. Dev Biol 2011; 351:277-86. [PMID: 21238448 DOI: 10.1016/j.ydbio.2011.01.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 01/06/2011] [Accepted: 01/06/2011] [Indexed: 12/17/2022]
Abstract
Several imprinted genes have been implicated in the regulation of placental function and embryonic growth. On distal mouse chromosome 7, two clusters of imprinted genes, each regulated by its own imprinting center (IC), are separated by a poorly characterized region of 280kb (the IC1-IC2 interval). We previously generated a mouse line in which this IC1-IC2 interval has been deleted (Del(7AI) allele) and found that maternal inheritance of this allele results in low birth weights in newborns. Here we report that Del(7AI) causes a partial loss of Ascl2, a maternally expressed gene in the IC2 cluster, which when knocked out leads to embryonic lethality at midgestation due to a lack of spongiotrophoblast formation. The hypomorphic Ascl2 allele causes embryonic growth restriction and an associated placental phenotype characterized by a reduction in placental weight, reduced spongiotrophoblast population, absence of glycogen cells, and an expanded trophoblast giant cell layer. We also uncovered severe defects in the labyrinth layer of maternal mutants including increased production of the trilaminar labyrinth trophoblast cell types and a disorganized labyrinthine vasculature. Our results have important implications for our understanding of the role played by the spongiotrophoblast layer during placentation and show that regulation of the dosage of the imprinted gene Ascl2 can affect all three layers of the chorio-allantoic placenta.
Collapse
Affiliation(s)
- Rosemary Oh-McGinnis
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
166
|
Gallou-Kabani C, Gabory A, Tost J, Karimi M, Mayeur S, Lesage J, Boudadi E, Gross MS, Taurelle J, Vigé A, Breton C, Reusens B, Remacle C, Vieau D, Ekström TJ, Jais JP, Junien C. Sex- and diet-specific changes of imprinted gene expression and DNA methylation in mouse placenta under a high-fat diet. PLoS One 2010; 5:e14398. [PMID: 21200436 PMCID: PMC3006175 DOI: 10.1371/journal.pone.0014398] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 11/26/2010] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Changes in imprinted gene dosage in the placenta may compromise the prenatal control of nutritional resources. Indeed monoallelic behaviour and sensitivity to changes in regional epigenetic state render imprinted genes both vulnerable and adaptable. METHODS AND FINDINGS We investigated whether a high-fat diet (HFD) during pregnancy modified the expression of imprinted genes and local and global DNA methylation patterns in the placenta. Pregnant mice were fed a HFD or a control diet (CD) during the first 15 days of gestation. We compared gene expression patterns in total placenta homogenates, for male and female offspring, by the RT-qPCR analysis of 20 imprinted genes. Sexual dimorphism and sensitivity to diet were observed for nine genes from four clusters on chromosomes 6, 7, 12 and 17. As assessed by in situ hybridization, these changes were not due to variation in the proportions of the placental layers. Bisulphite-sequencing analysis of 30 CpGs within the differentially methylated region (DMR) of the chromosome 17 cluster revealed sex- and diet-specific differential methylation of individual CpGs in two conspicuous subregions. Bioinformatic analysis suggested that these differentially methylated CpGs might lie within recognition elements or binding sites for transcription factors or factors involved in chromatin remodelling. Placental global DNA methylation, as assessed by the LUMA technique, was also sexually dimorphic on the CD, with lower methylation levels in male than in female placentae. The HFD led to global DNA hypomethylation only in female placenta. Bisulphite pyrosequencing showed that neither B1 nor LINE repetitive elements could account for these differences in DNA methylation. CONCLUSIONS A HFD during gestation triggers sex-specific epigenetic alterations within CpG and throughout the genome, together with the deregulation of clusters of imprinted genes important in the control of many cellular, metabolic and physiological functions potentially involved in adaptation and/or evolution. These findings highlight the importance of studying both sexes in epidemiological protocols and dietary interventions.
Collapse
Affiliation(s)
- Catherine Gallou-Kabani
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
| | - Anne Gabory
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
- INRA, UMR1198, UMR INRA/ENV Maisons-Alfort/CNRS: Biologie du Développement et Reproduction, (ENV Maisons-Alfort; CNRS), Physiologie Animale et Systèmes d'Elevage, Centre de recherche de Jouy-en-Josas, Jouy-en-Josas, France
| | - Jörg Tost
- Laboratoire d'Epigénétique, CEA - Institut de Génomique, Centre National de Génotypage, Evry, France
| | - Mohsen Karimi
- Laboratory for Medical Epigenetics, Department of Clinical Neuroscience, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sylvain Mayeur
- Unité Environnement Périnatal et Croissance, EA 4489, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Jean Lesage
- Unité Environnement Périnatal et Croissance, EA 4489, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Elsa Boudadi
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
| | - Marie-Sylvie Gross
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
| | - Julien Taurelle
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
| | - Alexandre Vigé
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
| | - Christophe Breton
- Unité Environnement Périnatal et Croissance, EA 4489, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Brigitte Reusens
- Laboratory of Cell Biology, Institute of Life Sciences, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Claude Remacle
- Laboratory of Cell Biology, Institute of Life Sciences, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Didier Vieau
- Unité Environnement Périnatal et Croissance, EA 4489, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Tomas J. Ekström
- Laboratory for Medical Epigenetics, Department of Clinical Neuroscience, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Claudine Junien
- Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, U781, Paris, France
- INRA, UMR1198, UMR INRA/ENV Maisons-Alfort/CNRS: Biologie du Développement et Reproduction, (ENV Maisons-Alfort; CNRS), Physiologie Animale et Systèmes d'Elevage, Centre de recherche de Jouy-en-Josas, Jouy-en-Josas, France
| |
Collapse
|
167
|
Abstract
Patterns and risks of human disease have evolved. In this article, I review evidence regarding the importance of recent adaptive evolution, positive selection, and genomic conflicts in shaping the genetic and phenotypic architectures of polygenic human diseases. Strong recent selection in human populations can create and maintain genetically based disease risk primarily through three processes: increased scope for dysregulation from recent human adaptations, divergent optima generated by intraspecific genomic conflicts, and transient or stable deleterious by-products of positive selection caused by antagonistic pleiotropy, ultimately due to trade-offs at the levels of molecular genetics, development, and physiology. Human disease due to these processes appears to be concentrated in three sets of phenotypes: cognition and emotion, reproductive traits, and life-history traits related to long life-span. Diverse, convergent lines of evidence suggest that a small set of tissues whose pleiotropic patterns of gene function and expression are under especially strong selection-brain, placenta, testis, prostate, breast, and ovary-has mediated a considerable proportion of disease risk in modern humans.
Collapse
Affiliation(s)
- Bernard J Crespi
- Department of Biosciences, Simon Fraser University, Burnaby, B. C., Canada V5A 1S6.
| |
Collapse
|
168
|
Abstract
As a field of study, genomic imprinting has grown rapidly in the last 20 years, with a growing figure of around 100 imprinted genes known in the mouse and approximately 50 in the human. The imprinted expression of genes may be transient and highly tissue-specific, and there are potentially hundreds of other, as yet undiscovered, imprinted transcripts. The placenta is notable amongst mammalian organs for its high and prolific expression of imprinted genes. This review discusses the development of the human placenta and focuses on the function of imprinting in this organ. Imprinting is potentially a mechanism to balance parental resource allocation and it plays an important role in growth. The placenta, as the interface between mother and fetus, is central to prenatal growth control. The expression of genes subject to parental allelic expression bias has, over the years, been shown to be essential for the normal development and physiology of the placenta. In this review we also discuss the significance of genes that lack conservation of imprinting between mice and humans, genes whose imprinted expression is often placental-specific. Finally, we illustrate the importance of imprinting in the postnatal human in terms of several human imprinting disorders, with consideration of the brain as a key organ for imprinted gene expression after birth.
Collapse
Affiliation(s)
- Jennifer M Frost
- Clinical and Molecular Genetics Unit, Institute of Child Health, University College London, London, United Kingdom.
| | | |
Collapse
|
169
|
Developmental stage-specific imprinting of IPL in domestic pigs (Sus scrofa). J Biomed Biotechnol 2010; 2010:527539. [PMID: 20589073 PMCID: PMC2879551 DOI: 10.1155/2010/527539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 02/09/2010] [Accepted: 03/22/2010] [Indexed: 01/18/2023] Open
Abstract
Imprinted in placenta and liver (IPL) gene has been identified as an imprinted gene in the mouse and human. Its sequence and imprinting status, however, have not been determined in the domestic pigs. In the present study, a 259 base pair-specific sequence for IPL gene of the domestic pig was obtained and a novel SNP, a T/C transition, was identified in IPL exon 1. The C allele of this polymorphism was found to be the predominant allele in Landrace,Yorkshire, and Duroc. The frequency of CC genotype and C allele are different in Duroc as compared with Yorkshire (P = .038 and P = .005, resp.). Variable imprinting status of this gene was observed in different developmental stages. For example, it is imprinted in 1-dayold newborns (expressed from the maternal allele), but imprinting was lost in 180-day-old adult (expressed from both parental alleles). Real-time PCR analysis showed the porcine IPL gene is expressed in all tested eight organ/tissues. The expression level was significantly higher in spleen, duodenum, lung, and bladder of 180-day-old Lantang adult compared to that in 1-day-old newborns Lantang pigs (P < .05). In conclusion, the imprinting of the porcine IPL gene is developmental stage and tissue specific.
Collapse
|
170
|
Placental Gene Expression in a Rat ‘Model’ of Placental Insufficiency. Placenta 2010; 31:568-75. [DOI: 10.1016/j.placenta.2010.05.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 05/07/2010] [Accepted: 05/11/2010] [Indexed: 01/03/2023]
|
171
|
Abstract
Normal fetal growth and development depends on multiple molecular mechanisms that coordinate both placental and fetal development. Efforts to better understand fetal/placental growth dysregulation and fetal growth restriction (FGR) are now being driven by several findings that highlight the longterm impact of FGR on susceptibility to disease. The association of poor fetal growth to perinatal medical complications is well accepted but more recent data also show that FGR is linked to common, serious adult health problems. Several large-scale human epidemiological studies from diverse countries have shown that conditions such as coronary heart disease, hypertension, stroke, type 2 diabetes mellitus, adiposity, insulin resistance and osteoporosis are more prevalent in individuals with a history of low birthweight.
Collapse
|
172
|
Abnormal Expression of the Imprinted Gene Phlda2 in Cloned Bovine Placenta. Placenta 2010; 31:482-90. [DOI: 10.1016/j.placenta.2010.03.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/01/2010] [Accepted: 03/02/2010] [Indexed: 12/29/2022]
|
173
|
Altered gene expression in murine placentas in an infection-induced intrauterine growth restriction model: a microarray analysis. J Reprod Immunol 2010; 85:140-8. [PMID: 20478622 DOI: 10.1016/j.jri.2010.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 03/09/2010] [Accepted: 04/05/2010] [Indexed: 11/21/2022]
Abstract
The biological mechanisms leading to incomplete intrauterine growth are not completely elucidated and few studies have investigated infection-mediated growth restriction. In this investigation we report the alterations induced by maternal infectious challenge in placental gene expression patterns using a murine model. Pregnant dams were challenged at day E7.5 with the oral human pathogen Campylobacter rectus to elicit fetal growth restriction. At embryonic day E16.5 placentas were collected to compare placental gene expression patterns from normal fetuses of unchallenged dams and growth restricted fetuses from infected dams. Differential gene expression patterns were determined using Agilent Oligo array (G4121A) with a false discovery rate of P<0.05 and pathway analyses were performed. Seventy-four genes were differentially expressed during infection-mediated growth restriction with 9 genes significantly up-regulated, indicating that the effects of maternal infection on gene expression were predominantly suppressive. Pathway analyses indicated that 46 of the 65 genes that were significantly down-regulated were associated with placental/fetal development, and 26 of those were imprinted genes. Among the 9 genes that were up-regulated, 4 are involved in oxygen supply to the fetus and the development of the vascular system. Microarray analysis demonstrated that in the pregnant mouse model, maternal infection that induced growth restriction was associated with down-regulated placental expression of critical growth and developmental related genes, including many imprinted genes. These findings may have significant implications for our understanding of the mechanisms underlying infection-associated human fetal growth restriction and the role of differential placental expression of imprinted genes in fetal growth.
Collapse
|
174
|
Pozharny Y, Lambertini L, Ma Y, Ferrara L, Litton CG, Diplas A, Jacobs AR, Chen J, Stone JL, Wetmur J, Lee MJ. Genomic loss of imprinting in first-trimester human placenta. Am J Obstet Gynecol 2010; 202:391.e1-8. [PMID: 20350649 DOI: 10.1016/j.ajog.2010.01.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 12/23/2009] [Accepted: 01/15/2010] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate imprinting patterns in first-trimester human placentas. STUDY DESIGN Using samples of 17 first-trimester and 14 term placentas from uncomplicated pregnancies, we assessed loss of imprinting (LOI) at the RNA level in a panel of 14 genes that are known to be imprinted in the placenta with the use of a quantitative allele-specific reverse transcriptase polymerase chain reaction analysis of those genes that contained readout single nucleotide polymorphisms in their transcripts. RESULTS There is significant LOI (ie, biallelic expression) in all 14 genes in first-trimester placentas. LOI was more variable and generally at lower levels at term. Although there is little difference in gene expression, the level of LOI is higher in the first-trimester placentas, compared with term placentas. CONCLUSION Genomic imprinting appears to be a dynamic maturational process across gestation in human placenta. In contrast with prevailing theories, epigenetic imprints may continue to evolve past 12 weeks of gestation.
Collapse
|
175
|
Bruchova H, Vasikova A, Merkerova M, Milcova A, Topinka J, Balascak I, Pastorkova A, Sram R, Brdicka R. Effect of Maternal Tobacco Smoke Exposure on the Placental Transcriptome. Placenta 2010; 31:186-91. [DOI: 10.1016/j.placenta.2009.12.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 12/14/2009] [Accepted: 12/16/2009] [Indexed: 11/26/2022]
|
176
|
Fauque P, Ripoche MA, Tost J, Journot L, Gabory A, Busato F, Le Digarcher A, Mondon F, Gut I, Jouannet P, Vaiman D, Dandolo L, Jammes H. Modulation of imprinted gene network in placenta results in normal development of in vitro manipulated mouse embryos. Hum Mol Genet 2010; 19:1779-90. [DOI: 10.1093/hmg/ddq059] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
177
|
Struwe E, Berzl G, Schild R, Blessing H, Drexel L, Hauck B, Tzschoppe A, Weidinger M, Sachs M, Scheler C, Schleussner E, Dötsch J. Microarray analysis of placental tissue in intrauterine growth restriction. Clin Endocrinol (Oxf) 2010; 72:241-7. [PMID: 19548955 DOI: 10.1111/j.1365-2265.2009.03659.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Besides foetal or maternal disorders, placental dysfunction is a major cause of intrauterine growth restriction (IUGR). Although numerous macro- and histopathological changes have been described, little is known about the precise aetiology and the contribution of foetal/placental genes in this disorder. DESIGN Placental tissues of 20 IUGR and control neonates were analysed by microarray technique. Four of the regulated genes with possible relevance in the pathogenesis of IUGR and its consequences were further studied in placentas of 27 IUGR and 35 control newborns. RESULTS Elevated gene expression of leptin, corticotrophin-releasing hormone (CRH), and IGF-binding protein-1 (IGFBP-1) in IUGR placentas could be confirmed in the larger group by real-time PCR, whereas prolactin showed no significant difference. Accordingly, protein expression of leptin and IGFBP-1 depicted by Western blot was elevated in IUGR, prolactin was not different. Birthweight standard deviation score (SDS) correlated negatively to leptin, IGFBP-1, and CRH, whereas placental weight correlated only to IGFBP-1. Leptin correlated negatively to gestational age of IUGR patients and positively to placental score, a marker of severity of impaired foeto-placental circulation. CONCLUSIONS As confirmed in a large group of IUGR and control samples, the up-regulated factors leptin, IGFBP-1, and CRH may serve as candidate genes for the prediction of subsequent metabolic consequences in IUGR newborns. These three factors may not only influence growth of the foetus, but might also interact with programming of its metabolic functions, which has to be determined in an ongoing study.
Collapse
Affiliation(s)
- E Struwe
- Departments of Pediatrics, University of Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Diplas AI, Hu J, Lee MJ, Ma YY, Lee YL, Lambertini L, Chen J, Wetmur JG. Demonstration of all-or-none loss of imprinting in mRNA expression in single cells. Nucleic Acids Res 2010; 37:7039-46. [PMID: 19767614 PMCID: PMC2790885 DOI: 10.1093/nar/gkp749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Loss of imprinting (LOI) is the reactivation of the silenced allele of an imprinted gene, leading to perturbation of monoallelic expression. We tested the hypothesis that LOI of PLAGL1, a representative maternally imprinted gene, occurs through an all-or-none process leading to a mixture of fully imprinted and nonimprinted cells. Herein using a quantitative RT-PCR-based experimental approach, we measured LOI at the single cell level in human trophoblasts and demonstrated a broad distribution of LOI among cells exhibiting LOI, with the mean centered at ∼100% LOI. There was a significant (P < 0.01) increase in expression after 2 days of 5-aza-2′-deoxycytidine (AZA) treatment and a significant (P < 0.01) increase in LOI after both 1 and 2 days of AZA treatment, while the distribution remained broad and centered at ∼100% LOI. We propose a transcriptional pulsing model to show that the broadness of the distribution reflects the stochastic nature of expression between the two alleles in each cell. The mean of the distribution of LOI in the cells is consistent with our hypothesis that LOI occurs by an all-or-none process. All-or-none LOI could lead to a second distinct cell population that may have a selective advantage, leading to variation of LOI in normal tissues, such as the placenta, or in neoplastic cells.
Collapse
Affiliation(s)
- Andreas I Diplas
- Department of Community and Preventive Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Muetze S, Kapagerof A, Vlachopoulos L, Eggermann T, Kaufmann P, Zerres K, Rath W, Rudnik-Schoeneborn S. Mutation analysis of the growth factor genesPlGF, Flt1, IGF-I, andIGF-IRin intrauterine growth restriction with abnormal placental blood flow. J Matern Fetal Neonatal Med 2010; 23:142-7. [DOI: 10.3109/14767050903165198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
180
|
Abstract
An important difference between placental mammals and marsupials is the maturity of the fetus at birth. Placental mammals achieved this maturity by developing a complex and invasive placenta to support and prolong internal development. The exact genomic modifications that facilitated the evolution of this complex structure are unknown, but the emergence of genomic imprinting within mammalian lineages suggests a role for gene dosage. Here we show that a maximally altered placental structure is achieved by a single extra dose of the imprinted Phlda2 gene characterized by a dramatically reduced junctional zone and a decrease in stored glycogen. In addition, glycogen cells do not migrate into the maternal decidua in a timely fashion, but instead, Tpbpa-positive cells progressively mislocalize into the labyrinth. These defects are linked to a progressive restriction of embryonic growth from embryonic day 16.5. This work has identified a critical role for the imprinted Phlda2 gene in regulating glycogen storage in the eutherian placenta and implies that imprinting has provided a mechanism to boost nutrient supply to the fetus late in gestation, when the fetus is placing the highest demands on maternal resources, to enhance growth.
Collapse
|
181
|
Han L, Szabó PE, Mann JR. Postnatal survival of mice with maternal duplication of distal chromosome 7 induced by a Igf2/H19 imprinting control region lacking insulator function. PLoS Genet 2010; 6:e1000803. [PMID: 20062522 PMCID: PMC2794364 DOI: 10.1371/journal.pgen.1000803] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 12/08/2009] [Indexed: 11/19/2022] Open
Abstract
The misexpressed imprinted genes causing developmental failure of mouse parthenogenones are poorly defined. To obtain further insight, we investigated misexpressions that could cause the pronounced growth deficiency and death of fetuses with maternal duplication of distal chromosome (Chr) 7 (MatDup.dist7). Their small size could involve inactivity of Igf2, encoding a growth factor, with some contribution by over-expression of Cdkn1c, encoding a negative growth regulator. Mice lacking Igf2 expression are usually viable, and MatDup.dist7 death has been attributed to the misexpression of Cdkn1c or other imprinted genes. To examine the role of misexpressions determined by two maternal copies of the Igf2/H19 imprinting control region (ICR)—a chromatin insulator, we introduced a mutant ICR (ICRΔ) into MatDup.dist7 fetuses. This activated Igf2, with correction of H19 expression and other imprinted transcripts expected. Substantial growth enhancement and full postnatal viability was obtained, demonstrating that the aberrant MatDup.dist7 phenotype is highly dependent on the presence of two unmethylated maternal Igf2/H19 ICRs. Activation of Igf2 is likely the predominant correction that rescued growth and viability. Further experiments involved the introduction of a null allele of Cdkn1c to alleviate its over-expression. Results were not consistent with the possibility that this misexpression alone, or in combination with Igf2 inactivity, mediates MatDup.dist7 death. Rather, a network of misexpressions derived from dist7 is probably involved. Our results are consistent with the idea that reduced expression of IGF2 plays a role in the aetiology of the human imprinting-related growth-deficit disorder, Silver-Russell syndrome. Parthenogenetic mouse embryos with two maternal genomes die early in development due to the misexpression of imprinted genes. To gain further insight into which misexpressions might be involved, we examined some of the misexpressions that could determine the small size and fetal death of a “partial parthenogenone”—embryos with maternal duplication of distal Chr 7 (MatDup.dist7). We investigated the involvement of two maternal copies of the Igf2/H19 imprinting control region (ICR), which is associated with lack of activity of the Igf2 gene, encoding a growth factor, and over-activity of H19. By introducing a mutant ICR, we activated Igf2 and expected to correct other misexpressions, such as that of H19. The result was substantial increase in growth and full postnatal viability of MatDup.dist7 fetuses, demonstrating the dependency of their abnormal phenotype on two maternal copies of the ICR. Activation of Igf2 was probably the main effector of this rescue. These results are consistent with the idea that reduced expression of IGF2 is causal in the human growth deficit disorder, Silver-Russell syndrome.
Collapse
Affiliation(s)
- Li Han
- Division of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Piroska E. Szabó
- Division of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Jeffrey R. Mann
- Division of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
- Department of Zoology, The University of Melbourne, Melbourne, Victoria, Australia
- Laboratory and Community Genetics Theme, Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
182
|
Tzschoppe AA, Struwe E, Dörr HG, Goecke TW, Beckmann MW, Schild RL, Dötsch J. Differences in gene expression dependent on sampling site in placental tissue of fetuses with intrauterine growth restriction. Placenta 2010; 31:178-85. [PMID: 20045557 DOI: 10.1016/j.placenta.2009.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Revised: 11/21/2009] [Accepted: 12/03/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The human placenta as part of the feto-placental unit may influence fetal endocrine systems and may therefore represent a very important link between intrauterine growth restriction (IUGR) and metabolic disorders in later life. We aimed to analyze the effect of sample origin on gene expression of placental factors potentially involved in fetal programming in IUGR versus appropriate for gestational age growth (AGA) to standardize sample collection procedure for a multicenter approach. DESIGN Placental gene expression of insulin-like growth factor-binding protein (IGFBP)-1, prolactin, corticotropin releasing hormone (CRH) and leptin was measured and compared between proximal, intermediate and peripheral region of the placenta in 22 IUGR (proven by anomalous placental Doppler velocimetry) and 19 AGA neonates. RESULTS Whereas no difference in gene expression was seen in the proximal portion, in the intermediate placental region mRNA expression of IGFBP-1 (p = 0.01), prolactin (p = 0.04), CRH (p = 0.01) and leptin (p = 0.04) was increased in IUGR samples compared to controls. At the placental periphery, gene expression of these placental transcripts showed a higher expression level in IUGR placentas without statistical significance, except for leptin (p = 0.03). CONCLUSION Placental sampling site seems to be relevant for detecting differences in gene expression between IUGR and AGA neonates.
Collapse
Affiliation(s)
- A A Tzschoppe
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
183
|
Isles AR. Evolution of genomic imprinting in humans: does bipedalism have a role? Trends Genet 2009; 25:495-500. [PMID: 19836099 DOI: 10.1016/j.tig.2009.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 09/23/2009] [Accepted: 09/24/2009] [Indexed: 11/19/2022]
Abstract
Recent studies have indicated that genomic imprinting is less conserved in human placenta and fetuses than in mice. Studies in mice confirm evolutionary predictions that imprinted genes have an important role in fetal growth via their effects on placental function, nutrient demand and transfer. Here, I argue that the development of bipedalism in humans might have contributed to a reduced role for imprinted genes in fetal growth. As a consequence of bipedalism, the shape of the human pelvis has changed, leading to a reduced gestation period and smaller 'premature' babies. This overarching selective pressure could, in turn, lead to a relaxation of the silencing of those imprinted genes that reduce fetal growth, a prediction borne out by current data.
Collapse
Affiliation(s)
- Anthony R Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Psychological Medicine and Neurology, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.
| |
Collapse
|
184
|
Charalambous M, Cowley M, Geoghegan F, Smith FM, Radford EJ, Marlow BP, Graham CF, Hurst LD, Ward A. Maternally-inherited Grb10 reduces placental size and efficiency. Dev Biol 2009; 337:1-8. [PMID: 19833122 DOI: 10.1016/j.ydbio.2009.10.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 10/02/2009] [Accepted: 10/02/2009] [Indexed: 01/01/2023]
Abstract
The control of foetal growth is poorly understood and yet it is critically important that at birth the body has attained appropriate size and proportions. Growth and survival of the mammalian foetus is dependent upon a functional placenta throughout most of gestation. A few genes are known that influence both foetal and placental growth and might therefore coordinate growth of the conceptus, including the imprinted Igf2 and Grb10 genes. Grb10 encodes a signalling adapter protein, is expressed predominantly from the maternally-inherited allele and acts to restrict foetal and placental growth. Here, we show that following disruption of the maternal allele in mice, the labyrinthine volume was increased in a manner consistent with a cell-autonomous function of Grb10 and the enlarged placenta was more efficient in supporting foetal growth. Thus, Grb10 is the first example of a gene that acts to limit placental size and efficiency. In addition, we found that females inheriting a mutant Grb10 allele from their mother had larger litters and smaller offspring than those inheriting a mutant allele from their father. This grandparental effect suggests Grb10 can influence reproductive strategy through the allocation of maternal resources such that offspring number is offset against size.
Collapse
Affiliation(s)
- Marika Charalambous
- Department of Biology and Biochemistry, University of Bath, Building 4 South, Bath BA27AY, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Abstract
Epigenetics is focused on understanding the control of gene expression beyond what is encoded in the sequence of DNA. Central to growing interest in the field is the hope that more can be learned about the epigenetic regulatory mechanisms underlying processes of human development and disease. Researchers have begun to examine epigenetic alterations - such as changes in promoter DNA methylation, genomic imprinting, and expression of miRNA - to learn more about epigenetic regulation in the placenta, an organ whose proper development and function are crucial to the health, growth, and survival of the developing fetus. A number of studies are now making important links between alterations to appropriate epigenetic regulation in the placenta and diseases of gestation and early life. In addition, these studies are adding important insight into our understanding of trophoblast biology and differentiation as well as placental immunology. Examining epigenetic alterations in the placenta will prove especially important in the search for biomarkers of exposure, pathology, and disease risk and can provide critical insights into the biology of development and pathogenesis of disease. Thus, epigenetic alterations may aid in disease diagnosis and prognosis as well as in targeting new treatment and prevention strategies.
Collapse
Affiliation(s)
- Matthew A Maccani
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
186
|
Swanson JM, Entringer S, Buss C, Wadhwa PD. Developmental origins of health and disease: environmental exposures. Semin Reprod Med 2009; 27:391-402. [PMID: 19711249 DOI: 10.1055/s-0029-1237427] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The developmental origins of health and disease (DOHaD) approach has evolved over the past 20 years, and the current hypothesis proposes that fetal adaptations to intrauterine and maternal conditions during development shape structure and function of organs. Here we present a review of some environmental exposures that may trigger fetal maladaptations in these processes, including three examples: exposures to tobacco smoke, antidepressant medication, and folic acid deficits in the food supply. We provide a selected review of current research on the effects of each of these exposures on fetal development and birth outcomes, and use the DOHaD approach to suggest how these exposures may alter long-term outcomes. In the interpretation of this literature, we review the evidence of gene-environment interactions based on evaluation of biological pathways and evidence that some exposures to the fetus may be moderated by maternal and fetal genotypes. Finally, we use the design of the National Children's Study (now in progress) to propose how the DOHaD approach could be used to address questions that have emerged in this area that are relevant to reproductive medicine and subsequent health outcomes.
Collapse
Affiliation(s)
- James M Swanson
- Department of Pediatrics, University of California, Irvine, School of Medicine, 19722 MacArthur Boulevard, Irvine, CA 92612-4480, USA.
| | | | | | | |
Collapse
|
187
|
Wadhwa PD, Buss C, Entringer S, Swanson JM. Developmental origins of health and disease: brief history of the approach and current focus on epigenetic mechanisms. Semin Reprod Med 2009; 27:358-68. [PMID: 19711246 DOI: 10.1055/s-0029-1237424] [Citation(s) in RCA: 610] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
"Barker's hypothesis" emerged almost 25 years ago from epidemiological studies of birth and death records that revealed a high geographic correlation between rates of infant mortality and certain classes of later adult deaths as well as an association between birthweight and rates of adult death from ischemic heart disease. These observations led to a theory that undernutrition during gestation was an important early origin of adult cardiac and metabolic disorders due to fetal programming that permanently shaped the body's structure, function, and metabolism and contributed to adult disease. This theory stimulated interest in the fetal origins of adult disorders, which expanded and coalesced approximately 5 years ago with the formation of an international society for developmental origins of health and disease (DOHaD). Here we review a few examples of the many emergent themes of the DOHaD approach, including theoretical advances related to predictive adaptive responses of the fetus to a broad range of environmental cues, empirical observations of effects of overnutrition and stress during pregnancy on outcomes in childhood and adulthood, and potential epigenetic mechanisms that may underlie these observations and theory. Next, we discuss the relevance of the DOHaD approach to reproductive medicine. Finally, we consider the next steps that might be taken to apply, evaluate, and extend the DOHaD approach.
Collapse
Affiliation(s)
- Pathik D Wadhwa
- Department of Pediatrics, University of California, Irvine, School of Medicine, 3117 GillespieNeuroscience Research Facility, Irvine, CA 92697-4260, USA.
| | | | | | | |
Collapse
|
188
|
Abstract
PURPOSE OF REVIEW Epigenetics encompasses multiple mechanisms by which DNA transcription is altered in various tissues and at different times without changing the underlying gene sequence. Epigenetics plays a key role, especially during embryo and trophoblast development. As assisted reproduction technologies (ARTs) are used during these periods, a potential window of vulnerability exists during which epigenetic alterations may occur. RECENT FINDINGS Evidence for epigenetic alterations following ARTs was established based on an increased incidence of imprinting disorders, a particular epimutation in gametes. Recent work suggests induced ovulation and oocytes with potentially less stable imprints may contribute to a higher rate of the maternal imprint disorders noted. Alternatively, new findings of imprinting abnormalities in oligospermatic men again raise the question as to whether subfertility itself is associated with epimutations. SUMMARY Currently, our understanding of epigenetics and assisted reproduction is incomplete. Further searches for ART infants with imprinting diseases are hampered by their rare nature. Perhaps more importantly attention has turned to understanding imprinting and epigenetics in placental function. Further analysis of placental epimutations may provide insight into the higher rates of adverse outcomes such as growth restriction that follow ARTs.
Collapse
|
189
|
Bischoff SR, Tsai S, Hardison N, Motsinger-Reif AA, Freking BA, Nonneman D, Rohrer G, Piedrahita JA. Characterization of conserved and nonconserved imprinted genes in swine. Biol Reprod 2009; 81:906-20. [PMID: 19571260 DOI: 10.1095/biolreprod.109.078139] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To increase our understanding of imprinted genes in swine, we carried out a comprehensive analysis of this gene family using two complementary approaches: expression and phenotypic profiling of parthenogenetic fetuses, and analysis of imprinting by pyrosequencing. The parthenote placenta and fetus were smaller than those of controls but had no obvious morphological differences at Day 28 of gestation. By Day 30, however, the parthenote placentas had decreased chorioallantoic folding, decreased chorionic ruggae, and reduction of fetal-maternal interface surface in comparison with stage-matched control fetuses. Using Affymetrix Porcine GeneChip microarrays and/or semiquantitative PCR, brain, fibroblast, liver, and placenta of Day 30 fetuses were profiled, and 25 imprinted genes were identified as differentially expressed in at least one of the four tissue types: AMPD3, CDKN1C, COPG2, DHCR7, DIRAS3, IGF2 (isoform specific), IGF2AS, IGF2R, MEG3, MEST, NAP1L5, NDN, NNAT, OSBPL1A, PEG3, APEG3, PEG10, PLAGL1, PON2, PPP1R9A, SGCE, SLC38A4, SNORD107, SNRPN, and TFPI2. For DIRAS3, PLAGL1, SGCE, and SLC38A4, tissue-specific differences were detected. In addition, we examined the imprinting status of candidate genes by quantitative allelic pyrosequencing. Samples were collected from Day 30 pregnancies generated from reciprocal crosses of Meishan and White Composite breeds, and single-nucleotide polymorphisms were identified in candidate genes. Imprinting was confirmed for DIRAS3, DLK1, H19, IGF2AS, NNAT, MEST, PEG10, PHLDA2, PLAGL1, SGCE, and SNORD107. We also found no evidence of imprinting in ASB4, ASCL2, CD81, COMMD1, DCN, DLX5, and H13. Combined, these results represent the most comprehensive survey of imprinted genes in swine to date.
Collapse
Affiliation(s)
- Steve R Bischoff
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina 27606, USA
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Barros SP, Offenbacher S. Epigenetics: connecting environment and genotype to phenotype and disease. J Dent Res 2009; 88:400-8. [PMID: 19493882 DOI: 10.1177/0022034509335868] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genetic information is encoded not only by the linear sequence of DNA, but also by epigenetic modifications of chromatin structure that include DNA methylation and covalent modifications of the proteins that bind DNA. These "epigenetic marks" alter the structure of chromatin to influence gene expression. Methylation occurs naturally on cytosine bases at CpG sequences and is involved in controlling the correct expression of genes. DNA methylation is usually associated with triggering histone deacetylation, chromatin condensation, and gene silencing. Differentially methylated cytosines give rise to distinct patterns specific for each tissue type and disease state. Such methylation-variable positions (MVPs) are not uniformly distributed throughout our genome, but are concentrated among genes that regulate transcription, growth, metabolism, differentiation, and oncogenesis. Alterations in MVP methylation status create epigenetic patterns that appear to regulate gene expression profiles during cell differentiation, growth, and development, as well as in cancer. Environmental stressors including toxins, as well as microbial and viral exposures, can change epigenetic patterns and thereby effect changes in gene activation and cell phenotype. Since DNA methylation is often retained following cell division, altered MVP patterns in tissues can accumulate over time and can lead to persistent alterations in steady-state cellular metabolism, responses to stimuli, or the retention of an abnormal phenotype, reflecting a molecular consequence of gene-environment interaction. Hence, DNA epigenetics constitutes the main and previously missing link among genetics, disease, and the environment. The challenge in oral biology will be to understand the mechanisms that modify MVPs in oral tissues and to identify those epigenetic patterns that modify disease pathogenesis or responses to therapy.
Collapse
Affiliation(s)
- S P Barros
- Center for Oral and Systemic Diseases, Department of Periodontology, School of Dentistry, University of North Carolina at Chapel Hill, Room 222, CB 7455, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
191
|
Jäger S, Schönherr N, Spengler S, Ranke MB, Wollmann HA, Binder G, Eggermann T. LOT1 (ZAC1/PLAGL1) as member of an imprinted gene network does not harbor Silver-Russell specific variants. J Pediatr Endocrinol Metab 2009; 22:555-9. [PMID: 19694203 DOI: 10.1515/jpem.2009.22.6.555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Silver-Russell syndrome (SRS) is a heterogeneous disease associated with intrauterine and postnatal growth retardation (IUGR/PNGR), asymmetry and craniofacial dysmorphisms. In 7-10% of patients with SRS, maternal uniparental disomy of chromosome 7 can be detected; more than 38% carry hypomethylation of the imprinting region 1 in 11p15. These chromosomes harbor the imprinted genes IGF2, H19, LIT1 and MEST. In mice, interaction of these genes with the prenatally rexpressed Plagl1/Zac1 has been reported. The aim of this study was to identify mutations in the maternally imprinted LOT1(ZAC1/PLAGL1) gene in 6q24 in patients with SRS. We screened 30 patients with SRS and 14 patients with isolated IUGR/PNGR by SSCP and/or direct sequencing. Mutation analysis revealed nine genomic variants. Seven were novel but classified as apathogenic. Interestingly, two of these variants, g.10212T/A and g.10214C/A, showed strict association. However, our results do not indicate a relevant role of mutations in LOT1(ZAC1/PLAGL1) in the etiology of SRS.
Collapse
|
192
|
Palermo GD, Neri QV, Takeuchi T, Squires J, Moy F, Rosenwaks Z. Genetic and epigenetic characteristics of ICSI children. Reprod Biomed Online 2009; 17:820-33. [PMID: 19079967 DOI: 10.1016/s1472-6483(10)60411-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The outcome of pregnancy and the developmental wellbeing of children conceived from 12,866 consecutive intracytoplasmic sperm injection (ICSI) cycles was assessed. A total of 3277 couples delivered 5891 neonates. There was a higher than normal incidence of de-novo chromosomal abnormalities in a small sample of ICSI offspring. Controlling for maternal age showed that the incidence of low birth weight and gestational length were comparable with the naturally conceived counterpart. Rates of malformation in ICSI offspring ranged from 3.5 to 6.2%. At 3 years of age (n = 811), the proportion of children at risk for developmental delays was 10.4% in ICSI and 10.7% in IVF singletons. However, high order gestations were characterized by 19.4% of the children having compromised development. Epigenetic analysis of assisted reproductive technique conceptuses found minor imprinted gene expression imbalances. ICSI offspring presented with genetic defects that were inherited or arose de novo. Obstetric and neonatal outcomes of singleton pregnancies appeared to be dependent upon maternal age. ICSI and IVF appeared to exert a negative effect on the wellbeing of offspring mainly because of the association with multiple gestations. All assisted reproduction procedures should be monitored for the eventual effect of environmental aggressors on offspring epigenesis.
Collapse
Affiliation(s)
- Gianpiero D Palermo
- The Centre for Reproductive Medicine and Infertility, Weill Medical College of Cornell University, New York, NY, USA.
| | | | | | | | | | | |
Collapse
|
193
|
Sitras V, Paulssen R, Leirvik J, Vårtun A, Acharya G. Placental gene expression profile in intrauterine growth restriction due to placental insufficiency. Reprod Sci 2009; 16:701-11. [PMID: 19372591 DOI: 10.1177/1933719109334256] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We evaluated global placental gene expression in intrauterine growth restriction (IUGR; n = 8) compared to normal pregnancies (n = 8) and studied possible additional effect of preeclampsia. Placental samples were collected from IUGR pregnancies due to placental insufficiency ascertained by hemodynamic studies. Four IUGR pregnancies were associated with preeclampsia. Gene expression profile was evaluated by 30k oligonucleotide microarrays. Principal component analysis (PCA) showed good separation in terms of gene expression patterns between the groups. Pathway analysis showed upregulation of inflammation mediated by chemokine and cytokine signaling pathway in the IUGR placentas. Genes involved in placental glucocorticoid metabolism were also differentially expressed. None of the known imprinted placental genes were differentially expressed. Subgroup analysis between IUGR placentas with and without preeclampsia showed few (n = 27) differentially expressed genes. In conclusion, IUGR due to placental insufficiency appears to alter placental glucocorticoid metabolism, upregulates inflammatory response in placenta, and shares common pathogenic mechanisms with severe early-onset preeclampsia.
Collapse
Affiliation(s)
- Vasilis Sitras
- Department of Obstetrics and Gynecology, University Hospital of Northern Norway and Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway.
| | | | | | | | | |
Collapse
|
194
|
Gheorghe CP, Goyal R, Holweger JD, Longo LD. Placental gene expression responses to maternal protein restriction in the mouse. Placenta 2009; 30:411-7. [PMID: 19362366 DOI: 10.1016/j.placenta.2009.03.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Maternal protein restriction has been shown to have deleterious effects on placental development, and has long-term consequences for the progeny. We tested the hypothesis that, by the use of microarray technology, we could identify specific genes and cellular pathways in the developing placenta that are responsive to maternal protein deprivation, and propose a potential mechanism for observed gene expression changes. METHODS We fed pregnant FVB/NJ mice from day post-coitum 10.5 (DPC10.5) to DPC17.5, an isocaloric diet containing 50% less protein than normal chow. We used the Affymetrix Mouse 430A_2.0 array to measure gene expression changes in the placenta. We functionally annotated the regulated genes, and examined over-represented functional categories and performed pathway analysis. For selected genes, we confirmed the microarray results by use of qPCR. RESULTS We observed 244 probe sets, corresponding to 235 genes, regulated by protein restriction (p<0.001), with ninety-one genes being up-regulated, and 153 down-regulated. Up-regulated genes included those involved in the p53 pathway, apoptosis, negative regulators of cell growth, negative regulators of cell metabolism and genes related to epigenetic control. Down-regulated genes included those involved in nucleotide metabolism. CONCLUSIONS Microarray analysis has allowed us to describe the genetic response to maternal protein deprivation in the mouse placenta. We observed that negative regulators of cell growth and metabolism in conjunction with genes involved in epigenesis were up-regulated, suggesting that protein deprivation may contribute to growth restriction and long-term epigenetic changes in stressed tissues and organs. The challenge will be to understand the cellular and molecular mechanisms of these gene expression responses.
Collapse
Affiliation(s)
- C P Gheorghe
- Department of Physiology, Loma Linda University, School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | |
Collapse
|
195
|
Marques CJ, Francisco T, Sousa S, Carvalho F, Barros A, Sousa M. Methylation defects of imprinted genes in human testicular spermatozoa. Fertil Steril 2009; 94:585-94. [PMID: 19338988 DOI: 10.1016/j.fertnstert.2009.02.051] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 02/01/2009] [Accepted: 02/16/2009] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To study the methylation imprinting marks of two oppositely imprinted genes, H19 and MEST/PEG1, in human testicular spermatozoa from azoospermic patients with different etiologies. Testicular spermatozoa are often used in intracytoplasmic sperm injection for treatment of male factor infertility, but the imprinting status of these cells is currently unknown. DESIGN Experimental prospective study. SETTING University research laboratory and private in vitro fertilization (IVF) clinic. PATIENT(S) A total of 24 men, five with anejaculation, five with secondary obstructive azoospermia, five with primary obstructive azoospermia, and nine with secretory azoospermia due to hypospermatogenesis. INTERVENTION(S) Spermatozoa were isolated by micromanipulation from testicular biopsies. MAIN OUTCOME MEASURE(S) DNA methylation patterns were analyzed using bisulfite genomic sequencing with cloning analysis. RESULT(S) We found H19 complete methylation was statistically significantly reduced in secretory azoospermic patients with hypospermatogenesis, with one patient presenting complete unmethylation. Hypomethylation also affected the CTCF-binding site 6, involved in regulation of IGF2 expression. Regarding the MEST gene, all patients presented complete unmethylation although this was statistically significantly reduced in the anejaculation group. CONCLUSION(S) Testicular spermatozoa from men with abnormal spermatogenesis carry methylation defects in the H19 imprinted gene which also affect the CTCF-binding site, further supporting an association between the occurrence of imprinting errors and disruptive spermatogenesis.
Collapse
Affiliation(s)
- C Joana Marques
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | | | | | | | | |
Collapse
|
196
|
Grieve PG, Isler JR, Izraelit A, Peterson BS, Fifer WP, Myers MM, Stark RI. EEG functional connectivity in term age extremely low birth weight infants. Clin Neurophysiol 2008; 119:2712-20. [PMID: 18986834 DOI: 10.1016/j.clinph.2008.09.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 09/11/2008] [Accepted: 09/21/2008] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The hypothesis is tested that electrocortical functional connectivity (quantified by coherence) of extremely low birth weight (ELBW) infants, measured at term post-menstrual age, has regional differences from that of full term infants. METHODS 128 lead EEG data were collected during sleep from 8 ELBW infants with normal head ultrasound exams and 8 typically developing full term infants. Regional spectral power and coherence were calculated. RESULTS No significant regional differences in EEG power were found between infant groups. However, compared to term infants, ELBW infants had significantly reduced interhemispheric coherence (in frontal polar and parietal regions) and intrahemispheric coherence (between frontal polar and parieto-occipital regions) in the 1-12Hz band but increased interhemispheric coherence between occipital regions in the 24-50Hz band. CONCLUSIONS ELBW infants at term post-menstrual age manifest regional differences in EEG functional connectivity as compared to term infants. SIGNIFICANCE Distinctive spatial patterns of electrocortical synchrony are found in ELBW infants. These regional patterns may presage regional alterations in the structure of the cortex.
Collapse
|
197
|
Toft JH, Lian IA, Tarca AL, Erez O, Espinoza J, Eide IP, Bjørge L, Draghici S, Romero R, Austgulen R. Whole-genome microarray and targeted analysis of angiogenesis-regulating gene expression (ENG, FLT1, VEGF, PlGF) in placentas from pre-eclamptic and small-for-gestational-age pregnancies. J Matern Fetal Neonatal Med 2008; 21:267-73. [PMID: 18330824 DOI: 10.1080/14767050801924118] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To compare the placental pathology associated with pre-eclampsia (PE) and/or fetal growth restriction, the transcriptomes of placental tissues from PE and small-for-gestational-age (SGA) pregnancies were explored. In addition, a targeted analysis of angiogenesis-regulating gene expression was performed. METHODS Whole-genome microarray analysis was performed on placental tissue from gestational age-matched PE (n = 10), SGA (n = 8) and PE + SGA (n = 10) pregnancies. The expression of genes regulating angiogenesis (endoglin (ENG), fms-related tyrosine kinase 1 (FLT1), vascular endothelial growth factor (VEGF) and placental growth factor (PlGF)) was analyzed by quantitative real time reverse transcriptase polymerase chain reaction (qRT-PCR). RESULTS Microarray analysis did not reveal any significant differences between groups. However, an increased expression of ENG and FLT1 was detected by qRT-PCR in the PE + SGA group. CONCLUSIONS The placental transcriptome did not differ between groups, although an increased anti-angiogenic gene expression in PE + SGA was observed with qRT-PCR analysis. Based on this, we conclude that although microarray technology may represent a powerful tool in generating new hypothesis in complex fields, it may not be sensitive enough to detect subtle changes in gene expression.
Collapse
Affiliation(s)
- Johanne Holm Toft
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Huntriss J, Picton HM. Epigenetic consequences of assisted reproduction and infertility on the human preimplantation embryo. HUM FERTIL 2008; 11:85-94. [PMID: 18569063 DOI: 10.1080/14647270802116250] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epigenetic information, which is essential for normal mammalian development, is acquired during gametogenesis and further regulated during preimplantation development. The epigenetic consequences of assisted reproductive technologies (ARTs) and infertility on the health and quality of the human preimplantation embryo are considered in this review. In the zygote, the epigenetic information that is inherited from the sperm and the oocyte intersects and must be appropriately recognized, regulated and then propagated during preimplantation development so as to regulate gene expression in an appropriate manner. A growing body of evidence suggests that ARTs and/or infertility itself may affect these complex processes leading to epigenetic diseases that include disorders of genomic imprinting. The epigenetic safety of human gametes and embryos is of paramount importance. Unfortunately, morphological methods of assessing embryo quality are incapable of detecting epigenetic errors. Further research is therefore critical to resolve these issues.
Collapse
Affiliation(s)
- John Huntriss
- Reproduction and Early Development Research Group, Leeds Institute of Genetics, Health and Therapeutics, The LIGHT Laboratories, University of Leeds, Leeds, UK.
| | | |
Collapse
|
199
|
Crespi B. Genomic imprinting in the development and evolution of psychotic spectrum conditions. Biol Rev Camb Philos Soc 2008; 83:441-93. [PMID: 18783362 DOI: 10.1111/j.1469-185x.2008.00050.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
I review and evaluate genetic and genomic evidence salient to the hypothesis that the development and evolution of psychotic spectrum conditions have been mediated in part by alterations of imprinted genes expressed in the brain. Evidence from the genetics and genomics of schizophrenia, bipolar disorder, major depression, Prader-Willi syndrome, Klinefelter syndrome, and other neurogenetic conditions support the hypothesis that the etiologies of psychotic spectrum conditions commonly involve genetic and epigenetic imbalances in the effects of imprinted genes, with a bias towards increased relative effects from imprinted genes with maternal expression or other genes favouring maternal interests. By contrast, autistic spectrum conditions, including Kanner autism, Asperger syndrome, Rett syndrome, Turner syndrome, Angelman syndrome, and Beckwith-Wiedemann syndrome, commonly engender increased relative effects from paternally expressed imprinted genes, or reduced effects from genes favouring maternal interests. Imprinted-gene effects on the etiologies of autistic and psychotic spectrum conditions parallel the diametric effects of imprinted genes in placental and foetal development, in that psychotic spectrum conditions tend to be associated with undergrowth and relatively-slow brain development, whereas some autistic spectrum conditions involve brain and body overgrowth, especially in foetal development and early childhood. An important role for imprinted genes in the etiologies of psychotic and autistic spectrum conditions is consistent with neurodevelopmental models of these disorders, and with predictions from the conflict theory of genomic imprinting.
Collapse
Affiliation(s)
- Bernard Crespi
- Department of Biosciences, Simon Fraser University, Burnaby BCV5A1S6, Canada.
| |
Collapse
|
200
|
Lambertini L, Diplas AI, Lee MJ, Sperling R, Chen J, Wetmur J. A sensitive functional assay reveals frequent loss of genomic imprinting in human placenta. Epigenetics 2008; 3:261-9. [PMID: 18769151 DOI: 10.4161/epi.3.5.6755] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Loss of imprinting (LOI) is the gain of expression from the silent allele of an imprinted gene normally expressed from only one parental copy. LOI has been associated with neurodevelopmental disorders and reproductive abnormalities. The mechanisms of imprinting are varied, with DNA methylation representing only one. We have developed a functional transcriptional assay for LOI that is not limited to a single mechanism of imprinting. The method employs allele-specific PCR analysis of RT-PCR products containing common readout polymorphisms. With this method, we are able to measure LOI at the sensitivity of 1%. The method has been applied to measurement of LOI in human placentas. We found that RNA was stable in placentas stored for more than one hour at 4 degrees C following delivery. We analyzed a test panel of 26 genes known to be imprinted in the human genome. We found that 18 genes were expressed in placenta. Fourteen of the 18 expressed genes contained common readout polymorphisms in the transcripts with a minor allele frequency >20%. We found that 5 of the 14 genes were not imprinted in placenta. Using the remaining nine genes, we examined 93 heterozygosities in 27 samples. The range of LOI was 0%-96%. Among the 93 heterozygosities, we found 23 examples (25%) had LOI >3% and eight examples (9%) had LOI 1-3%. Our results indicate that LOI is common in human placentas. Because LOI in placenta is common, it may be an important new biomarker for influences on prenatal epigenetics.
Collapse
Affiliation(s)
- Luca Lambertini
- Department of Community and Preventive Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|