151
|
Zhou Q, Huang ZG, Zhu XJ, Xie ZH, Yao TF, Wang YH, Li JH. Effects of nicotinamide N-methyltransferase (NNMT) inhibition on the aerobic and the anaerobic endurance exercise capacity. Sci Sports 2018. [DOI: 10.1016/j.scispo.2018.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
152
|
Shin JH, Park CW, Yoon G, Hong SM, Choi KY. NNMT depletion contributes to liver cancer cell survival by enhancing autophagy under nutrient starvation. Oncogenesis 2018; 7:58. [PMID: 30093610 PMCID: PMC6085294 DOI: 10.1038/s41389-018-0064-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/27/2018] [Accepted: 06/21/2018] [Indexed: 12/19/2022] Open
Abstract
Nicotinamide N-methyl transferase (NNMT) transfers a methyl group from S-adenosyl-L-methionine (SAM) to nicotinamide (NAM), producing 1-methylnicotinamide (1MNA). NNMT has been implicated in several cancer types and recently in metabolism, but its role in autophagy regulation has not yet been investigated. In this study, we determined that NNMT negatively regulated autophagy at the stage of ULK1 activation through protein phosphatase 2A (PP2A) activity. Specifically, NNMT knockdown increased PP2A methylation and subsequently enhanced phosphatase activity. Consequent p-ULK1 (S638) dephosphorylation derepressed ULK1 activity, resulting in autophagy induction. Accordingly, NNMT downregulation rescued tumor cells under nutrient deficiency in vivo, which was alleviated by ULK1 inhibitor treatment. In summary, our results suggest a novel mechanism by which tumor cells protect themselves against nutrient deprivation through NNMT suppression to accelerate autophagy.
Collapse
Affiliation(s)
- Ji Hye Shin
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea
| | - Chang Wook Park
- Biokogen Inc. Korea National Food Cluster #255, 110 Dongchonje-gil, Wanggung-myeon, Iksan, Jeonbuk, 54576, Korea
| | - Gyesoon Yoon
- Department of Biochemistry, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi, 16499, Korea
- Department of Biomedical Science, Graduate School, Ajou University, 164 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi, 16499, Korea
| | - Sun Mi Hong
- Department of Biochemistry, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi, 16499, Korea.
| | - Kwan Yong Choi
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea.
| |
Collapse
|
153
|
Wang Y, Grenell A, Zhong F, Yam M, Hauer A, Gregor E, Zhu S, Lohner D, Zhu J, Du J. Metabolic signature of the aging eye in mice. Neurobiol Aging 2018; 71:223-233. [PMID: 30172221 DOI: 10.1016/j.neurobiolaging.2018.07.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/28/2018] [Accepted: 07/29/2018] [Indexed: 12/29/2022]
Abstract
Aging is a major risk factor for age-related ocular diseases including age-related macular degeneration in the retina and retinal pigment epithelium (RPE), cataracts in the lens, glaucoma in the optic nerve, and dry eye syndrome in the cornea. We used targeted metabolomics to analyze metabolites from young (6 weeks) and old (73 weeks) eyes in C57 BL6/J mice. Old mice had diminished electroretinogram responses and decreased number of photoreceptors in their retinas. Among the 297 detected metabolites, 45-114 metabolites are significantly altered in aged eye tissues, mostly in the neuronal tissues (retina and optic nerve) and less in cornea, RPE/choroid, and lens. We noted that changes of metabolites in mitochondrial metabolism and glucose metabolism are common features in the aged retina, RPE/choroid, and optic nerve. The aging retina, cornea, and optic nerve also share similar changes in Nicotinamide adenine dinucleotide (NAD), 1-methylnicotinamides, 3-methylhistidine, and other methylated metabolites. Metabolites in taurine metabolism are strikingly influenced by aging in the cornea and lens. In conclusion, the aging eye has both common and tissue-specific metabolic signatures. These changes may be attributed to dysregulated mitochondrial metabolism, reprogrammed glucose metabolism and impaired methylation in the aging eye. Our findings provide biochemical insights into the mechanisms of age-related ocular changes.
Collapse
Affiliation(s)
- Yekai Wang
- Department of Ophthalmology, West Virginia University, Morgantown, WV, USA; Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Allison Grenell
- Department of Ophthalmology, West Virginia University, Morgantown, WV, USA; Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Fanyi Zhong
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | - Michelle Yam
- Department of Ophthalmology, West Virginia University, Morgantown, WV, USA; Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Allison Hauer
- Department of Ophthalmology, West Virginia University, Morgantown, WV, USA; Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Elizabeth Gregor
- Department of Ophthalmology, West Virginia University, Morgantown, WV, USA; Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Siyan Zhu
- Department of Ophthalmology, West Virginia University, Morgantown, WV, USA; Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Daniel Lohner
- Department of Ophthalmology, West Virginia University, Morgantown, WV, USA; Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Jiangjiang Zhu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | - Jianhai Du
- Department of Ophthalmology, West Virginia University, Morgantown, WV, USA; Department of Biochemistry, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
154
|
Crujeiras AB, Pissios P, Moreno-Navarrete JM, Diaz-Lagares A, Sandoval J, Gomez A, Ricart W, Esteller M, Casanueva FF, Fernandez-Real JM. An Epigenetic Signature in Adipose Tissue Is Linked to Nicotinamide N-Methyltransferase Gene Expression. Mol Nutr Food Res 2018; 62:e1700933. [PMID: 29688621 DOI: 10.1002/mnfr.201700933] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/19/2018] [Indexed: 01/24/2023]
Abstract
SCOPE The enzyme nicotinamide N-methyltransferase (NNMT) is a major methyltransferase in adipose tissue. We hypothesized an epigenetic signature in association with NNMT gene expression in adipose tissue. METHODS AND RESULTS The global human methylome was analyzed in visceral adipose tissue (VAT) from morbidly obese patients using the Infinium Human Methylation 450 BeadChip array (discovery cohort: n = 11). The findings were confirmed in two additional independent cohorts (cohort 1: n = 60; BMI 20-60 kg m-2 and cohort 2: n = 40; BMI > 40 kg m-2 ) and validated after weight loss (using microarray data). Among the genes associated with the largest methylation fold change were genes related to metabolic processes, proliferation, inflammation, and extracellular matrix remodeling, such as COL23A1, PLEC1, FBXO21, STEAP3, RGS12, IGDCC3, FOXK2, and ORAI2. In fact, the results showed 577 differentially methylated CpG sites (DMCpGs) associated with the NNMT expression levels, with low methylation levels paralleling high NNMT expression. The expression of FBXO21 and FOXK2 was specifically modified after weight loss concomitantly with a decrease in NNMT expression and inflammation-related genes. Interestingly, the adipose tissue NNMT gene expression correlated with markers of adipose tissue inflammation. CONCLUSIONS The expression of NNMT in VAT is associated with a specific methylome signature involving genes linked to adipose tissue metabolic pathophysiology.
Collapse
Affiliation(s)
- Ana B Crujeiras
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS) and Santiago de Compostela University (USC), Santiago de Compostela 15706, Spain, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, 28029, Spain
| | - Pavlos Pissios
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Jose M Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona, Girona, 77190 Spain, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, 28029, Spain
| | - Angel Diaz-Lagares
- Translational Medical Oncology (Oncomet), Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS) and CIBERonc, Santiago de Compostela, 15706, Spain
| | - Juan Sandoval
- Laboratory of Personalized Medicine, Epigenomics Unit, Medical Research Institute La Fe, Valencia, 46026, Spain
| | - Antonio Gomez
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Catalonia, 08908, Spain
| | - Wilfredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona, Girona, 77190 Spain, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, 28029, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Catalonia 08908, Spain, Institucio Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain
| | - Felipe F Casanueva
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS) and Santiago de Compostela University (USC), Santiago de Compostela 15706, Spain, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, 28029, Spain
| | - Jose M Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona, Girona, 77190 Spain, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, 28029, Spain
| |
Collapse
|
155
|
Komatsu M, Kanda T, Urai H, Kurokochi A, Kitahama R, Shigaki S, Ono T, Yukioka H, Hasegawa K, Tokuyama H, Kawabe H, Wakino S, Itoh H. NNMT activation can contribute to the development of fatty liver disease by modulating the NAD + metabolism. Sci Rep 2018; 8:8637. [PMID: 29872122 PMCID: PMC5988709 DOI: 10.1038/s41598-018-26882-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/22/2018] [Indexed: 12/15/2022] Open
Abstract
Nicotinamide N-methyltransferase (NNMT) catalyses the reaction between nicotinamide (NAM) and S-adenosylmethionine to produce 1-methylnicotinamide and S-adenosylhomocysteine. Recently, this enzyme has also been reported to modulate hepatic nutrient metabolism, but its role in the liver has not been fully elucidated. We developed transgenic mice overexpressing NNMT to elucidate its role in hepatic nutrient metabolism. When fed a high fat diet containing NAM, a precursor for nicotinamide adenine dinucleotide (NAD)+, these NNMT-overexpressing mice exhibit fatty liver deterioration following increased expression of the genes mediating fatty acid uptake and decreased very low-density lipoprotein secretion. NNMT overactivation decreased the NAD+ content in the liver and also decreased gene activity related to fatty acid oxidation by inhibiting NAD+-dependent deacetylase Sirt3 function. Moreover, the transgenic mice showed liver fibrosis, with the induction of inflammatory and fibrosis genes. Induced NNMT expression decreased the tissue methylation capacity, thereby reducing methylation of the connective tissue growth factor (CTGF) gene promoter, resulting in increased CTGF expression. These data indicate that NNMT links the NAD+ and methionine metabolic pathways and promotes liver steatosis and fibrosis. Therefore, targeting NNMT may serve as a therapeutic strategy for treating fatty liver and fibrosis.
Collapse
Affiliation(s)
- Motoaki Komatsu
- Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Takeshi Kanda
- Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Hidenori Urai
- Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Arata Kurokochi
- Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Rina Kitahama
- Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | | | | | | | - Kazuhiro Hasegawa
- Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Hirobumi Tokuyama
- Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | | | - Shu Wakino
- Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan.
| | - Hiroshi Itoh
- Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
156
|
Nejabati HR, Mihanfar A, Pezeshkian M, Fattahi A, Latifi Z, Safaie N, Valiloo M, Jodati AR, Nouri M. N1-methylnicotinamide (MNAM) as a guardian of cardiovascular system. J Cell Physiol 2018; 233:6386-6394. [PMID: 29741779 DOI: 10.1002/jcp.26636] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/30/2018] [Indexed: 12/19/2022]
Abstract
Atherosclerosis is identified as the formation of atherosclerotic plaques, which could initiate the formation of a blood clot in which its growth to coronary artery can lead to a heart attack. N-methyltransferase (NNMT) is an enzyme that converts the NAM (nicotinamide) to its methylated form, N1-methylnicotinamide (MNAM). Higher levels of MNAM have been reported in cases with coronary artery disease (CAD). Further, MNAM increases endothelial prostacyclin (PGI2) and nitric oxide (NO) and thereby causes vasorelaxation. The vasoprotective, anti-inflammatory and anti-thrombotic roles of MNAM have been well documented; however, the exact underlying mechanisms remain to be clarified. Due to potential role of MNAM in the formation of lipid droplets (LDs), it might exert its function in coordination with lipids, and their targets. In this study, we summarized the roles of MNAM in cardiovascular system and highlighted its possible mode of actions.
Collapse
Affiliation(s)
- Hamid Reza Nejabati
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aynaz Mihanfar
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Pezeshkian
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Latifi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Safaie
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Valiloo
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Reza Jodati
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
157
|
You Z, Liu Y, Liu X. Nicotinamide N-methyltransferase enhances the progression of prostate cancer by stabilizing sirtuin 1. Oncol Lett 2018; 15:9195-9201. [PMID: 29805651 PMCID: PMC5958777 DOI: 10.3892/ol.2018.8474] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 02/05/2018] [Indexed: 12/12/2022] Open
Abstract
A previous study demonstrated that nicotinamide N-methyltransferase (NNMT) is upregulated in the tissues of patients with prostate cancer (PCa); however, the specific underlying mechanism of this remains unclear. To begin with, the expression of NNMT was investigated in the peripheral blood of patients with PCa and of healthy control subjects. The results indicated that the expression level of NNMT was elevated in the peripheral blood and tissues of patients with PCa. Furthermore, the overexpression of NNMT enhanced PC-3 cell viability, invasion and migration capacity. Additionally, the overexpression of NNMT significantly increased the mRNA level of sirtuin 1 (SIRT1) in PC-3 cells. In addition, nicotinamide treatment significantly suppressed the expression of SIRT1 even in PC-3 cells transfected with adeno-associated virus-NNMT. Furthermore, the PC-3 cell invasion capacity was notably decreased by the nicotinamide treatment; however, such effects were largely abolished by the overexpression of NNMT in PC-3 cells. These data indicated that NNMT enhanced PC-3 cell migration and invasion mainly by regulating SIRT1 expression. In summary, the present study indicated that NNMT is an important regulator of SIRT1 expression in PC-3 cells and may be a potential therapeutic target for PCa.
Collapse
Affiliation(s)
- Zhenyu You
- Department of Oncology, 202 Hospital of Chinese People's Liberation Army, Shenyang, Liaoning 110812, P.R. China
| | - Yang Liu
- Department of Oncology, 202 Hospital of Chinese People's Liberation Army, Shenyang, Liaoning 110812, P.R. China
| | - Xuefei Liu
- Department of Oncology, 202 Hospital of Chinese People's Liberation Army, Shenyang, Liaoning 110812, P.R. China
| |
Collapse
|
158
|
The Rheumatoid Arthritis-Associated Citrullinome. Cell Chem Biol 2018; 25:691-704.e6. [PMID: 29628436 DOI: 10.1016/j.chembiol.2018.03.002] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/14/2017] [Accepted: 02/28/2018] [Indexed: 01/12/2023]
Abstract
Increased protein citrullination is linked to various diseases including rheumatoid arthritis (RA), lupus, and cancer. Citrullinated autoantigens, a hallmark of RA, are recognized by anti-citrullinated protein antibodies (ACPAs) which are used to diagnose RA. ACPA-recognizing citrullinated enolase, vimentin, keratin, and filaggrin are also pathogenic. Here, we used a chemoproteomic approach to define the RA-associated citrullinome. The identified proteins include numerous serine protease inhibitors (Serpins), proteases and metabolic enzymes. We demonstrate that citrullination of antiplasmin, antithrombin, t-PAI, and C1 inhibitor (P1-Arg-containing Serpins) abolishes their ability to inhibit their cognate proteases. Citrullination of nicotinamide N-methyl transferase (NNMT) also abolished its methyltransferase activity. Overall, these data advance our understanding of the roles of citrullination in RA and suggest that extracellular protein arginine deiminase (PAD) activity can modulate protease activity with consequent effects on Serpin-regulated pathways. Moreover, our data suggest that inhibition of extracellular PAD activity will be therapeutically relevant.
Collapse
|
159
|
Liang L, Zeng M, Pan H, Liu H, He Y. Nicotinamide N-methyltransferase promotes epithelial-mesenchymal transition in gastric cancer cells by activating transforming growth factor-β1 expression. Oncol Lett 2018; 15:4592-4598. [PMID: 29541230 PMCID: PMC5835905 DOI: 10.3892/ol.2018.7885] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022] Open
Abstract
Previous studies have demonstrated that nicotinamide N-methyltransferase (NNMT) is aberrantly expressed in a number of tumors. In the present study, it was demonstrated that the gene and protein levels of NNMT were significantly increased in gastric cancer cells. Furthermore, upregulation of NNMT significantly increased the expression of mesenchymal markers, including α-smooth muscle actin (SMA), vimentin and fibronectin, but decreased the levels of epithelial cadherin. Since transforming growth factor (TGF)-β1 may serve a key function in epithelial-mesenchymal transition (EMT), the effects of NNMT on the expression of TGF-β1 were investigated in BGC-823 cells. The results demonstrated that overexpression of NNMT significantly induced the expression of TGF-β1. However, knockdown of NNMT inhibited the expression of TGF-β1, mothers against decapentaplegic homolog (Smad)2 and α-SMA. Additionally, pre-incubation with TGF-β1 partially eliminated NNMT-mediated changes in EMT. Collectively, the results demonstrated that upregulation of NNMT in gastric cancer cells may increase the expression of TGF-β1, therefore activating TGF-β1/Smad signaling, which in turn promotes EMT.
Collapse
Affiliation(s)
- Liang Liang
- Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P.R. China
| | - Ming Zeng
- Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P.R. China
| | - Haixia Pan
- Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P.R. China
| | - Hao Liu
- Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P.R. China
| | - Yangke He
- Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P.R. China
| |
Collapse
|
160
|
A small molecule inhibitor of Nicotinamide N-methyltransferase for the treatment of metabolic disorders. Sci Rep 2018; 8:3660. [PMID: 29483571 PMCID: PMC5826917 DOI: 10.1038/s41598-018-22081-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/16/2018] [Indexed: 01/07/2023] Open
Abstract
Nicotinamide N-methyltransferase (NNMT) is a cytosolic enzyme that catalyzes the transfer of a methyl group from the co-factor S-adenosyl-L-methionine (SAM) onto the substrate, nicotinamide (NA) to form 1-methyl-nicotinamide (MNA). Higher NNMT expression and MNA concentrations have been associated with obesity and type-2 diabetes. Here we report a small molecule analog of NA, JBSNF-000088, that inhibits NNMT activity, reduces MNA levels and drives insulin sensitization, glucose modulation and body weight reduction in animal models of metabolic disease. In mice with high fat diet (HFD)-induced obesity, JBSNF-000088 treatment caused a reduction in body weight, improved insulin sensitivity and normalized glucose tolerance to the level of lean control mice. These effects were not seen in NNMT knockout mice on HFD, confirming specificity of JBSNF-000088. The compound also improved glucose handling in ob/ob and db/db mice albeit to a lesser extent and in the absence of weight loss. Co-crystal structure analysis revealed the presence of the N-methylated product of JBSNF-000088 bound to the NNMT protein. The N-methylated product was also detected in the plasma of mice treated with JBSNF-000088. Hence, JBSNF-000088 may act as a slow-turnover substrate analog, driving the observed metabolic benefits.
Collapse
|
161
|
Babault N, Allali-Hassani A, Li F, Fan J, Yue A, Ju K, Liu F, Vedadi M, Liu J, Jin J. Discovery of Bisubstrate Inhibitors of Nicotinamide N-Methyltransferase (NNMT). J Med Chem 2018; 61:1541-1551. [PMID: 29320176 PMCID: PMC5823789 DOI: 10.1021/acs.jmedchem.7b01422] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nicotinamide N-methyltransferase (NNMT) catalyzes the N-methylation of pyridine-containing compounds using the cofactor S-5'-adenosyl-l-methionine (SAM) as the methyl group donor. Through the regulation of the levels of its substrates, cofactor, and products, NNMT plays an important role in physiology and pathophysiology. Overexpression of NNMT has been implicated in various human diseases. Potent and selective small-molecule NNMT inhibitors are valuable chemical tools for testing biological and therapeutic hypotheses. However, very few NNMT inhibitors have been reported. Here, we describe the discovery of a bisubstrate NNMT inhibitor MS2734 (6) and characterization of this inhibitor in biochemical, biophysical, kinetic, and structural studies. Importantly, we obtained the first crystal structure of human NNMT in complex with a small-molecule inhibitor. The structure of the NNMT-6 complex has unambiguously demonstrated that 6 occupied both substrate and cofactor binding sites. The findings paved the way for developing more potent and selective NNMT inhibitors in the future.
Collapse
Affiliation(s)
- Nicolas Babault
- Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | | | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Jie Fan
- Accutar Biotechnology, Brooklyn, New York 11226, United States
| | - Alex Yue
- Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Kevin Ju
- Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Feng Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jing Liu
- Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jian Jin
- Center for Chemical Biology and Drug Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
162
|
Neelakantan H, Vance V, Wetzel MD, Wang HYL, McHardy SF, Finnerty CC, Hommel JD, Watowich SJ. Selective and membrane-permeable small molecule inhibitors of nicotinamide N-methyltransferase reverse high fat diet-induced obesity in mice. Biochem Pharmacol 2018; 147:141-152. [PMID: 29155147 PMCID: PMC5826726 DOI: 10.1016/j.bcp.2017.11.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/13/2017] [Indexed: 02/07/2023]
Abstract
There is a critical need for new mechanism-of-action drugs that reduce the burden of obesity and associated chronic metabolic comorbidities. A potentially novel target to treat obesity and type 2 diabetes is nicotinamide-N-methyltransferase (NNMT), a cytosolic enzyme with newly identified roles in cellular metabolism and energy homeostasis. To validate NNMT as an anti-obesity drug target, we investigated the permeability, selectivity, mechanistic, and physiological properties of a series of small molecule NNMT inhibitors. Membrane permeability of NNMT inhibitors was characterized using parallel artificial membrane permeability and Caco-2 cell assays. Selectivity was tested against structurally-related methyltransferases and nicotinamide adenine dinucleotide (NAD+) salvage pathway enzymes. Effects of NNMT inhibitors on lipogenesis and intracellular levels of metabolites, including NNMT reaction product 1-methylnicotianamide (1-MNA) were evaluated in cultured adipocytes. Effects of a potent NNMT inhibitor on obesity measures and plasma lipid were assessed in diet-induced obese mice fed a high-fat diet. Methylquinolinium scaffolds with primary amine substitutions displayed high permeability from passive and active transport across membranes. Importantly, methylquinolinium analogues displayed high selectivity, not inhibiting related SAM-dependent methyltransferases or enzymes in the NAD+ salvage pathway. NNMT inhibitors reduced intracellular 1-MNA, increased intracellular NAD+ and S-(5'-adenosyl)-l-methionine (SAM), and suppressed lipogenesis in adipocytes. Treatment of diet-induced obese mice systemically with a potent NNMT inhibitor significantly reduced body weight and white adipose mass, decreased adipocyte size, and lowered plasma total cholesterol levels. Notably, administration of NNMT inhibitors did not impact total food intake nor produce any observable adverse effects. These results support development of small molecule NNMT inhibitors as therapeutics to reverse diet-induced obesity and validate NNMT as a viable target to treat obesity and related metabolic conditions. Increased flux of key cellular energy regulators, including NAD+ and SAM, may potentially define the therapeutic mechanism-of-action of NNMT inhibitors.
Collapse
Affiliation(s)
- Harshini Neelakantan
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Virginia Vance
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Michael D Wetzel
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77550 USA; Shriners Hospitals for Children-Galveston, Galveston, TX 77550, USA
| | - Hua-Yu Leo Wang
- Department of Chemistry and Center for Innovative Drug Discovery, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Stanton F McHardy
- Department of Chemistry and Center for Innovative Drug Discovery, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Celeste C Finnerty
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77550 USA; Shriners Hospitals for Children-Galveston, Galveston, TX 77550, USA
| | - Jonathan D Hommel
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Stanley J Watowich
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550, USA.
| |
Collapse
|
163
|
Aman Y, Qiu Y, Tao J, Fang EF. Therapeutic potential of boosting NAD+ in aging and age-related diseases. TRANSLATIONAL MEDICINE OF AGING 2018. [DOI: 10.1016/j.tma.2018.08.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
164
|
Koppe T, Patchen B, Cheng A, Bhasin M, Vulpe C, Schwartz RE, Moreno‐Navarrete JM, Fernandez‐Real JM, Pissios P, Fraenkel PG. Nicotinamide N-methyltransferase expression decreases in iron overload, exacerbating toxicity in mouse hepatocytes. Hepatol Commun 2017; 1:803-815. [PMID: 29404495 PMCID: PMC5678920 DOI: 10.1002/hep4.1083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 12/19/2022] Open
Abstract
Iron overload causes the generation of reactive oxygen species that can lead to lasting damage to the liver and other organs. The goal of this study was to identify genes that modify the toxicity of iron overload. We studied the effect of iron overload on the hepatic transcriptional and metabolomic profile in mouse models using a dietary model of iron overload and a genetic model, the hemojuvelin knockout mouse. We then evaluated the correlation of nicotinamide N-methyltransferase (NNMT) expression with body iron stores in human patients and the effect of NNMT knockdown on gene expression and viability in primary mouse hepatocytes. We found that iron overload induced significant changes in the expression of genes and metabolites involved in glucose and nicotinamide metabolism and that NNMT, an enzyme that methylates nicotinamide and regulates hepatic glucose and cholesterol metabolism, is one of the most strongly down-regulated genes in the liver in both genetic and dietary iron overload. We found that hepatic NNMT expression is inversely correlated with serum ferritin levels and serum transferrin saturation in patients who are obese, suggesting that body iron stores regulate human liver NNMT expression. Furthermore, we demonstrated that adenoviral knockdown of NNMT in primary mouse hepatocytes exacerbates iron-induced hepatocyte toxicity and increases expression of transcriptional markers of oxidative and endoplasmic reticulum stress, while overexpression of NNMT partially reversed these effects. Conclusion: Iron overload alters glucose and nicotinamide transcriptional and metabolic pathways in mouse hepatocytes and decreases NNMT expression, while NNMT deficiency worsens the toxic effect of iron overload. For these reasons, NNMT may be a drug target for the prevention of iron-induced hepatotoxicity. (Hepatology Communications 2017;1:803-815).
Collapse
Affiliation(s)
- Tiago Koppe
- Division of Hematology/Oncology
- Cancer Research Institute, Beth Israel Deaconess Medical CenterBostonMA
- Department of MedicineHarvard Medical SchoolBostonMA
| | - Bonnie Patchen
- Division of Hematology/Oncology
- Cancer Research Institute, Beth Israel Deaconess Medical CenterBostonMA
- Department of MedicineHarvard Medical SchoolBostonMA
| | - Aaron Cheng
- Division of Hematology/Oncology
- Cancer Research Institute, Beth Israel Deaconess Medical CenterBostonMA
- Department of MedicineHarvard Medical SchoolBostonMA
| | - Manoj Bhasin
- Department of MedicineHarvard Medical SchoolBostonMA
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical CenterBostonMA
| | - Chris Vulpe
- Department of Physiological SciencesUniversity of FloridaGainesvilleFL
| | - Robert E. Schwartz
- Division of Gastroenterology and Hepatology, Weill Cornell Medical SchoolNew YorkNY
| | - Jose Maria Moreno‐Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de GironaHospital de Girona Dr. Josep Trueta and Universitat de GironaGironaSpain
- CIBER Fisopatologia de la Obesidad y Nutricion, Instituto de Salud Carlos IIIMadridSpain
| | - Jose Manuel Fernandez‐Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de GironaHospital de Girona Dr. Josep Trueta and Universitat de GironaGironaSpain
- CIBER Fisopatologia de la Obesidad y Nutricion, Instituto de Salud Carlos IIIMadridSpain
| | - Pavlos Pissios
- Division of Endocrinology, Beth Israel Deaconess Medical CenterBostonMA
| | - Paula G. Fraenkel
- Division of Hematology/Oncology
- Cancer Research Institute, Beth Israel Deaconess Medical CenterBostonMA
- Department of MedicineHarvard Medical SchoolBostonMA
| |
Collapse
|
165
|
Association between Nicotinamide N-Methyltransferase Gene Polymorphisms and Obesity in Chinese Han Male College Students. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2984826. [PMID: 29075643 PMCID: PMC5624167 DOI: 10.1155/2017/2984826] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/06/2017] [Accepted: 08/14/2017] [Indexed: 01/21/2023]
Abstract
Some reports have shown that nicotinamide N-methyltransferase (NNMT) is associated with the body mass index (BMI) and energy metabolism. Here we explored the association between NNMT gene polymorphisms and obesity. The subjects were recruited from male Chinese Han college student. 289 of them (19 ≤ body fat percentage (BF%)) were selected as the high body fat group (HBFG), 494 of them (3 ≤ BF% < 13.5) were selected as the low body fat group (LBFG), and then a case-control study (fat versus thin) was carried out to explore the association between the NNMT gene polymorphism and the body composition using tagSNPs method. A tagSNP (rs10891644) in NNMT gene was found significantly associated with the body composition (P < 0.0026). At this locus, the BF% for the genotype GT, TT, and GG were 14.56 ± 8.35, 13.47 ± 8.11, and 12.42 ± 7.50, respectively, and the differences between the GT and the GG + TT were highly significant (P < 0.01); the ORadjusted value of the GT versus (GG + TT) was 1.716 (Padjusted = 0.002, 95% CI = 1.240–2.235). Therefore, the variation of the tagSNP, rs10891644, is significantly associated with obesity and the GT carriers are the susceptible population.
Collapse
|