151
|
Ramadhar TR, Beemelmanns C, Currie CR, Clardy J. Bacterial symbionts in agricultural systems provide a strategic source for antibiotic discovery. J Antibiot (Tokyo) 2013; 67:53-8. [PMID: 23921819 DOI: 10.1038/ja.2013.77] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 06/28/2013] [Accepted: 07/05/2013] [Indexed: 12/24/2022]
Abstract
As increased antibiotic resistance erodes the efficacy of currently used drugs, the need for new candidates with therapeutic potential grows. Although the majority of antibiotics in clinical use originated from natural products, mostly from environmental actinomycetes, high rediscovery rates, among other factors, have diminished the enthusiasm for continued exploration of this historically important source. Several well-studied insect agricultural systems have bacterial symbionts that have evolved to produce small molecules that suppress environmental pathogens. These molecules represent an underexplored reservoir of potentially useful antibiotics. This report describes the multilateral symbioses common to insect agricultural systems, the general strategy used for antibiotic discovery and pertinent examples from three farming systems: fungus-farming ants, southern pine beetles (SPBs) and fungus-growing termites.
Collapse
Affiliation(s)
- Timothy R Ramadhar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Christine Beemelmanns
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
152
|
Instability of novel ant-fungal associations constrains horizontal exchange of fungal symbionts. Evol Ecol 2013. [DOI: 10.1007/s10682-013-9665-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
153
|
Defensive Bacteriome Symbiont with a Drastically Reduced Genome. Curr Biol 2013; 23:1478-84. [DOI: 10.1016/j.cub.2013.06.027] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/31/2013] [Accepted: 06/12/2013] [Indexed: 11/19/2022]
|
154
|
Madden AA, Grassetti A, Soriano JAN, Starks PT. Actinomycetes with antimicrobial activity isolated from paper wasp (Hymenoptera: Vespidae: Polistinae) nests. ENVIRONMENTAL ENTOMOLOGY 2013; 42:703-710. [PMID: 23905732 DOI: 10.1603/en12159] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Actinomycetes-a group of antimicrobial producing bacteria-have been successfully cultured and characterized from the nest material of diverse arthropods. Some are symbionts that produce antimicrobial chemicals found to protect nest brood and resources from pathogenic microbes. Others have no known fitness relationship with their associated insects, but have been found to produce antimicrobials in vitro. Consequently, insect nest material is being investigated as a new source of novel antimicrobial producing actinomycetes, which could be harnessed for therapeutic potential. To extend studies of actinomycete-insect associations beyond soil-substrate dwelling insects and wood boring excavators, we conducted a preliminary assessment of the actinomycetes within the nests of the paper wasp, Polistes dominulus (Christ). We found that actinomycetes were readily cultured from nest material across multiple invasive P. dominulus populations-including members of the genera Streptomyces, Micromonospora, and Actinoplanes. Thirty of these isolates were assayed for antimicrobial activity against the challenge bacteria Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Serratia marcescens, and Bacillus subtilis. Sixty percent of isolates inhibited the growth of at least one challenge strain. This study provides the first assessment of bacteria associated with nests of P. dominulus, and the first record of antimicrobial producing actinomycetes isolated from social wasps. We provide a new system to explore nest associated actinomycetes from a ubiquitous and cosmopolitan group of insects.
Collapse
Affiliation(s)
- Anne A Madden
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| | | | | | | |
Collapse
|
155
|
The bark beetle holobiont: why microbes matter. J Chem Ecol 2013; 39:989-1002. [PMID: 23846183 DOI: 10.1007/s10886-013-0318-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/19/2013] [Accepted: 06/27/2013] [Indexed: 01/20/2023]
Abstract
All higher organisms are involved in symbioses with microbes. The importance of these partnerships has led to the concept of the holobiont, defined as the animal or plant with all its associated microbes. Indeed, the interactions between insects and symbionts form much of the basis for the success and diversity of this group of arthropods. Insects rely on microbes to perform basic life functions and to exploit resources and habitats. By "partnering" with microbes, insects access new genomic variation instantaneously allowing the exploitation of new adaptive zones, influencing not only outcomes in ecological time, but the degree of innovation and change that occurs over evolutionary time. In this review, I present a brief overview of the importance of insect-microbe holobionts to illustrate how critical an understanding of the holobiont is to understanding the insect host and it interactions with its environment. I then review what is known about the most influential insect holobionts in many forest ecosystems-bark beetles and their microbes-and how new approaches and technologies are allowing us to illuminate how these symbioses function. Finally, I discuss why it will be critical to study bark beetles as a holobiont to understand the ramifications and extent of anthropogenic change in forest ecosystems.
Collapse
|
156
|
Maternal and environmental effects on symbiont-mediated antimicrobial defense. J Chem Ecol 2013; 39:978-88. [PMID: 23779268 DOI: 10.1007/s10886-013-0304-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
Abstract
Bacteria produce a remarkable diversity of bioactive molecules with antimicrobial properties. Despite the importance of such compounds for human medicine, little is known about the factors influencing antibiotic production in natural environments. Recently, several insects have been found to benefit from symbiont-produced antimicrobial compounds for defense against pathogenic microbes. In the European beewolf, Philanthus triangulum (Hymenoptera, Crabronidae), bacteria of the genus Streptomyces provide protection against pathogens by producing antimicrobials on the larval cocoon during hibernation, thereby significantly enhancing the survival probability of the beewolf larva. To investigate the effects of abiotic and biotic factors on antibiotic production, we exposed beewolf cocoons to different environmental conditions and quantified the amount of Streptomyces-produced antibiotics by using gas chromatography/mass spectrometry (GC/MS). The results revealed no significant influence of temperature, humidity, or pathogen load on the antibiotic amount, indicating that antibiotic production is not affected by current environmental conditions but rather may be optimized to serve as a reliable long-term protection during the unpredictable phase of beewolf hibernation. However, the amount of antibiotics was positively correlated with the symbiont population size on the cocoon, which in turn is affected by the number of Streptomyces cells provided by the mother into the brood cell. Additionally, we found a positive correlation between the amount of hydrocarbons and the number and length of bacterial cells in the antennal gland secretion, suggesting that maternal investment affects symbiont growth and, thus, antibiotic production on the larval cocoon.
Collapse
|
157
|
Affiliation(s)
- Martin Kaltenpoth
- Max Planck Institute for Chemical Ecology; Insect Symbiosis Research Group; Hans-Knoell-Str. 8 Jena 07745 Germany
| | - Tobias Engl
- Max Planck Institute for Chemical Ecology; Insect Symbiosis Research Group; Hans-Knoell-Str. 8 Jena 07745 Germany
| |
Collapse
|
158
|
Abstract
Associations with symbiotic organisms can serve as a strategy for social insects to resist pathogens. Antibiotics produced by attine ectosymbionts (Actinobacteria) suppress the growth of Escovopsis spp., the specialized parasite of attine fungus gardens. Our objective was to evaluate whether the presence or absence of symbiotic actinobacteria covering the whole ant cuticle is related to differential immunocompetence, respiratory rate and cuticular hydrocarbons (CHs). We evaluated these parameters in three worker groups of Acromyrmex subterraneus subterraneus: External workers (EXT), internal workers with actinobacteria covering the whole body (INB) and internal workers without actinobacteria covering the whole body (INØ). We also eliminated the actinobacteria by antibiotic treatment and examined worker encapsulation response. INB ants showed lower rates of encapsulation and respiration than did the EXT and INØ ants. The lower encapsulation rate did not seem to be a cost imposed by actinomycetes because the elimination of the actinomycetes did not increase the encapsulation rate. Instead, we propose that actinobacteria confer protection to young workers until the maturation of their immune system. Actinobacteria do not seem to change nestmate recognition in these colonies. Although it is known that actinobacteria have a specific action against Escovopsis spp., our studies, along with other independent studies, indicate that actinomycetes may also be important for the individual health of the workers.
Collapse
|
159
|
Koehler S, Doubský J, Kaltenpoth M. Dynamics of symbiont-mediated antibiotic production reveal efficient long-term protection for beewolf offspring. Front Zool 2013; 10:3. [PMID: 23369509 PMCID: PMC3599432 DOI: 10.1186/1742-9994-10-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 01/24/2013] [Indexed: 12/02/2022] Open
Abstract
Background Insects have evolved a wide range of mechanisms to defend themselves and their offspring against antagonists. One of these strategies involves the utilization of antimicrobial compounds provided by symbiotic bacteria to protect the host or its nutritional resources from pathogens and parasites. In the symbiosis of the solitary digger wasp, Philanthus triangulum (Hymenoptera, Crabronidae), the bacterial symbiont ‘Candidatus Streptomyces philanthi’ defends the developing larvae against pathogens by producing a mixture of at least nine antimicrobial substances on the cocoon surface. This antibiotic cocktail inhibits the growth of a broad range of detrimental fungi and bacteria, thereby significantly enhancing the offspring’s survival probability. Results Here we show that the production of antimicrobial compounds by the beewolf symbionts is confined to the first two weeks after cocoon spinning, leading to a high concentration of piericidins and streptochlorin on the cocoon surface. Expression profiling of housekeeping, sporulation, and antibiotic biosynthesis genes indicates that antibiotic production coincides with morphological differentiation that enables the symbionts to survive the nutrient-limited conditions on the beewolf cocoon. The antibiotic substances remain stable on the cocoon surface for the entire duration of the beewolf’s hibernation period, demonstrating that the compounds are resistant against environmental influences. Conclusions The antibiotic production by the beewolf symbionts serves as a reliable protection for the wasp offspring against pathogenic microorganisms during the long and unpredictable developmental phase in the subterranean brood cells. Thus, the beewolf-Streptomyces symbiosis provides one of the rare examples of antibiotics serving as an efficient defense in the natural environment and may aid in devising new strategies for the utilization of antibiotic combination therapies in human medicine against increasingly resistant bacterial and fungal pathogens.
Collapse
Affiliation(s)
- Sabrina Koehler
- Max Planck Institute for Chemical Ecology, Insect Symbiosis Research Group, Hans-Knoell-Str, 8, 07745, Jena, Germany.
| | | | | |
Collapse
|
160
|
Scheuring I, Yu DW. How to assemble a beneficial microbiome in three easy steps. Ecol Lett 2012; 15:1300-1307. [PMID: 22913725 PMCID: PMC3507015 DOI: 10.1111/j.1461-0248.2012.01853.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 05/14/2012] [Accepted: 07/24/2012] [Indexed: 12/31/2022]
Abstract
There is great interest in explaining how beneficial microbiomes are assembled. Antibiotic-producing microbiomes are arguably the most abundant class of beneficial microbiome in nature, having been found on corals, arthropods, molluscs, vertebrates and plant rhizospheres. An exemplar is the attine ants, which cultivate a fungus for food and host a cuticular microbiome that releases antibiotics to defend the fungus from parasites. One explanation posits long-term vertical transmission of Pseudonocardia bacteria, which (somehow) evolve new compounds in arms-race fashion against parasites. Alternatively, attines (somehow) selectively recruit multiple, non-coevolved actinobacterial genera from the soil, enabling a 'multi-drug' strategy against parasites. We reconcile the models by showing that when hosts fuel interference competition by providing abundant resources, the interference competition favours the recruitment of antibiotic-producing (and -resistant) bacteria. This partner-choice mechanism is more effective when at least one actinobacterial symbiont is vertically transmitted or has a high immigration rate, as in disease-suppressive soils.
Collapse
Affiliation(s)
- István Scheuring
- Research Group in Theoretical Biology and Evolutionary Ecology, Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös University and HAS, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary
| | - Douglas W Yu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR47TJ, UK
| |
Collapse
|
161
|
Salem H, Kreutzer E, Sudakaran S, Kaltenpoth M. Actinobacteria as essential symbionts in firebugs and cotton stainers (Hemiptera, Pyrrhocoridae). Environ Microbiol 2012; 15:1956-68. [DOI: 10.1111/1462-2920.12001] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 09/21/2012] [Accepted: 09/22/2012] [Indexed: 12/18/2022]
Affiliation(s)
- Hassan Salem
- Insect Symbiosis Research Group; Max Planck Institute for Chemical Ecology; Jena; Germany
| | | | - Sailendharan Sudakaran
- Insect Symbiosis Research Group; Max Planck Institute for Chemical Ecology; Jena; Germany
| | | |
Collapse
|
162
|
Lauth J, Ruiz-González MX, Orivel J. New findings in insect fungiculture: Have ants developed non-food, agricultural products? Commun Integr Biol 2012; 4:728-30. [PMID: 22446539 DOI: 10.4161/cib.17590] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The interaction between Allomerus plant-ants and an ascomycete fungus growing on and strengthening their galleries is not opportunistic. We previously demonstrated that this association is highly specific as only one fungal species represented by a few haplotypes was found associated with the ants. We also discovered that the ants' behavior revealed a major investment in manipulating and enhancing the growth of their associated fungus. We have growing evidence that this specificity is consistent with selection by the ants. Here, we discuss this selection within the framework of insect agriculture, as we believe these ants fulfill all of the prerequisites to be considered as farmers. Allomerus ants promote their symbiont's growth, protect it from potential pathogens and select specific cultivars. Taken together, we think that the interaction between Allomerus ants and their cultivar might represent the first case of insect fungiculture used as a means of obtaining building material.
Collapse
|
163
|
Sudakaran S, Salem H, Kost C, Kaltenpoth M. Geographical and ecological stability of the symbiotic mid-gut microbiota in European firebugs, Pyrrhocoris apterus (Hemiptera, Pyrrhocoridae). Mol Ecol 2012; 21:6134-51. [PMID: 23017151 DOI: 10.1111/mec.12027] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 07/30/2012] [Accepted: 08/03/2012] [Indexed: 12/13/2022]
Abstract
Symbiotic bacteria often play an essential nutritional role for insects, thereby allowing them to exploit novel food sources and expand into otherwise inaccessible ecological niches. Although many insects are inhabited by complex microbial communities, most studies on insect mutualists so far have focused on single endosymbionts and their interactions with the host. Here, we provide a comprehensive characterization of the gut microbiota of the red firebug (Pyrrhocoris apterus, Hemiptera, Pyrrhocoridae), a model organism for physiological and endocrinological research. A combination of several culture-independent techniques (454 pyrosequencing, quantitative PCR and cloning/sequencing) revealed a diverse community of likely transient bacterial taxa in the mid-gut regions M1, M2 and M4. However, the completely anoxic M3 region harboured a distinct microbiota consisting of facultative and obligate anaerobes including Actinobacteria (Coriobacterium glomerans and Gordonibacter sp.), Firmicutes (Clostri-dium sp. and Lactococcus lactis) and Proteobacteria (Klebsiella sp. and a previously undescribed Rickettsiales bacterium). Characterization of the M3 microbiota in different life stages of P. apterus indicated that the symbiotic bacterial community is vertically transmitted and becomes well defined between the second and third nymphal instar, which coincides with the initiation of feeding. Comparing the mid-gut M3 microbial communities of P. apterus individuals from five different populations and after feeding on three different diets revealed that the community composition is qualitatively and quantitatively very stable, with the six predominant taxa being consistently abundant. Our findings suggest that the firebug mid-gut microbiota constitutes a functionally important and possibly coevolved symbiotic community.
Collapse
Affiliation(s)
- Sailendharan Sudakaran
- Max Planck Research Group Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
| | | | | | | |
Collapse
|
164
|
Seipke RF, Kaltenpoth M, Hutchings MI. Streptomycesas symbionts: an emerging and widespread theme? FEMS Microbiol Rev 2012; 36:862-76. [DOI: 10.1111/j.1574-6976.2011.00313.x] [Citation(s) in RCA: 277] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 10/20/2011] [Indexed: 12/24/2022] Open
|
165
|
Valverde A, Tuffin M, Cowan DA. Biogeography of bacterial communities in hot springs: a focus on the actinobacteria. Extremophiles 2012; 16:669-79. [PMID: 22711422 DOI: 10.1007/s00792-012-0465-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 05/25/2012] [Indexed: 11/26/2022]
Abstract
Actinobacteria are ubiquitous in soil, freshwater and marine ecosystems. Although various studies have focused on the microbial ecology of this phylum, data are scant on the ecology of actinobacteria endemic to hot springs. Here, we have investigated the molecular diversity of eubacteria, with specific focus on the actinobacteria in hot springs in Zambia, China, New Zealand and Kenya. Temperature and pH values at sampling sites ranged between 44.5 and 86.5 °C and 5-10, respectively. Non-metric multidimensional scaling analysis of 16S rRNA gene T-RFLP patterns showed that samples could be separated by geographical location. Multivariate analysis showed that actinobacterial community composition was best predicted by changes in pH and temperature, whereas temperature alone was the most important variable explaining differences in bacterial community structure. Using 16S rRNA gene libraries, 28 major actinobacterial OTUs were found. Both molecular techniques indicated that many of the actinobacterial phylotypes were unique and exclusive to the respective sample. Collectively, these results support the view that both actinobacterial diversity and endemism are high in hot spring ecosystems.
Collapse
Affiliation(s)
- Angel Valverde
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville, Cape Town 7535, South Africa
| | | | | |
Collapse
|
166
|
Ratzka C, Gross R, Feldhaar H. Endosymbiont Tolerance and Control within Insect Hosts. INSECTS 2012; 3:553-72. [PMID: 26466544 PMCID: PMC4553611 DOI: 10.3390/insects3020553] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 05/31/2012] [Accepted: 06/05/2012] [Indexed: 01/22/2023]
Abstract
Bacterial endosymbioses are very common in insects and can range from obligate to facultative as well as from mutualistic to pathogenic associations. Several recent studies provide new insight into how endosymbionts manage to establish chronic infections of their hosts without being eliminated by the host immune system. Endosymbiont tolerance may be achieved either by specific bacterial adaptations or by host measurements shielding bacteria from innate defense mechanisms. Nevertheless, insect hosts also need to sustain control mechanisms to prevent endosymbionts from unregulated proliferation. Emerging evidence indicates that in some cases the mutual adaptations of the two organisms may have led to the integration of the endosymbionts as a part of the host immune system. In fact, endosymbionts may provide protective traits against pathogens and predators and may even be required for the proper development of the host immune system during host ontogeny. This review gives an overview of current knowledge of molecular mechanisms ensuring maintenance of chronic infections with mutualistic endosymbionts and the impact of endosymbionts on host immune competence.
Collapse
Affiliation(s)
- Carolin Ratzka
- Department of Microbiology, Biocentre, University of Würzburg, 97074, Germany.
| | - Roy Gross
- Department of Microbiology, Biocentre, University of Würzburg, 97074, Germany.
| | - Heike Feldhaar
- Animal Ecology I, University of Bayreuth, 95440, Germany.
| |
Collapse
|
167
|
Zucchi TD, Prado SS, Cônsoli FL. The gastric caeca of pentatomids as a house for actinomycetes. BMC Microbiol 2012; 12:101. [PMID: 22682021 PMCID: PMC3438088 DOI: 10.1186/1471-2180-12-101] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 05/30/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microbes are extensively associated with insects, playing key roles in insect defense, nutrition and reproduction. Most of the associations reported involve Proteobacteria. Despite the fact that Actinobacteria associated with insects were shown to produce antibiotic barriers against pathogens to the hosts or to their food and nutrients, there are few studies focusing on their association with insects. Thus, we surveyed the Actinobacteria diversity on a specific region of the midgut of seven species of stinkbugs (Hemiptera: Pentatomidae) known to carry a diversity of symbiotically-associated Proteobacteria. RESULTS A total of 34 phylotypes were placed in 11 different Actinobacteria families. Dichelops melacanthus held the highest diversity with six actinobacteria families represented by nine phylotypes. Thyanta perditor (n = 7), Edessa meditabunda (n = 5), Loxa deducta (n = 4) and Pellaea stictica (n = 3) were all associated with three families. Piezodorus guildini (n = 3) and Nezara viridula (n = 3) had the lowest diversity, being associated with two (Propionibacteriaceae and Mycobacteriaceae) and one (Streptomyceataceae) families, respectively. Corynebacteriaceae and Mycobacteriaceae were the most common families with phylotypes from three different insect species each one. CONCLUSIONS Many phylotypes shared a low 16S rRNA gene similarity with their closest type strains and formed new phyletic lines on the periphery of several genera. This is a strong indicative that stinkbug caeca can harbor new species of actinobacteria, which might be derived from specific associations with the species of stinkbugs studied. Although the well-known role of actinobacteria as a source of biomolecules, the ecological features of these symbionts on the stinkbugs biology remain unknown.
Collapse
Affiliation(s)
- Tiago D Zucchi
- Lab de Microbiologia Ambiental, EMBRAPA Meio Ambiente, Rodovia SP 340, Jaguariúna, SP, Brazil.
| | | | | |
Collapse
|
168
|
Visser AA, Nobre T, Currie CR, Aanen DK, Poulsen M. Exploring the potential for actinobacteria as defensive symbionts in fungus-growing termites. MICROBIAL ECOLOGY 2012; 63:975-985. [PMID: 22173371 DOI: 10.1007/s00248-011-9987-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 11/13/2011] [Indexed: 05/31/2023]
Abstract
In fungus-growing termites, fungi of the subgenus Pseudoxylaria threaten colony health through substrate competition with the termite fungus (Termitomyces). The potential mechanisms with which termites suppress Pseudoxylaria have remained unknown. Here we explore if Actinobacteria potentially play a role as defensive symbionts against Pseudoxylaria in fungus-growing termites. We sampled for Actinobacteria from 30 fungus-growing termite colonies, spanning the three main termite genera and two geographically distant sites. Our isolations yielded 360 Actinobacteria, from which we selected subsets for morphological (288 isolates, grouped in 44 morphotypes) and for 16S rRNA (35 isolates, spanning the majority of morphotypes) characterisation. Actinobacteria were found throughout all sampled nests and colony parts and, phylogenetically, they are interspersed with Actinobacteria from origins other than fungus-growing termites, indicating lack of specificity. Antibiotic-activity screening of 288 isolates against the fungal cultivar and competitor revealed that most of the Actinobacteria-produced molecules with antifungal activity. A more detailed bioassay on 53 isolates, to test the specificity of antibiotics, showed that many Actinobacteria inhibit both Pseudoxylaria and Termitomyces, and that the cultivar fungus generally is more susceptible to inhibition than the competitor. This suggests that either defensive symbionts are not present in the system or that they, if present, represent a subset of the community isolated. If so, the antibiotics must be used in a targeted fashion, being applied to specific areas by the termites. We describe the first discovery of an assembly of antibiotic-producing Actinobacteria occurring in fungus-growing termite nests. However, due to the diversity found, and the lack of both phylogenetic and bioactivity specificity, further work is necessary for a better understanding of the putative role of antibiotic-producing bacteria in the fungus-growing termite mutualistic system.
Collapse
Affiliation(s)
- Anna A Visser
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
169
|
Symbiont recruitment versus ant-symbiont co-evolution in the attine ant-microbe symbiosis. Curr Opin Microbiol 2012; 15:269-77. [PMID: 22445196 DOI: 10.1016/j.mib.2012.03.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/27/2012] [Accepted: 03/02/2012] [Indexed: 01/11/2023]
Abstract
The symbiosis between fungus-farming ants (Attini, Formicidae), their cultivated fungi, garden-infecting Escovopsis pathogens, and Pseudonocardia bacteria on the ant integument has been popularized as an example of ant-Escovopsis-Pseudonocardia co-evolution. Recent research could not verify earlier conclusions regarding antibiotic-secreting, integumental Pseudonocardia that co-evolve to specifically suppress Escovopsis disease in an ancient co-evolutionary arms-race. Rather than long-term association with a single, co-evolving Pseudonocardia strain, attine ants accumulate complex, dynamic biofilms on their integument and in their gardens. Emerging views are that the integumental biofilms protect the ants primarily against ant diseases, whereas garden biofilms protect primarily against garden diseases; attine ants selectively recruit ('screen in') microbes into their biofilms; and the biofilms of ants and gardens serve diverse functions beyond disease-suppression.
Collapse
|
170
|
Park SH, Moon K, Bang HS, Kim SH, Kim DG, Oh KB, Shin J, Oh DC. Tripartilactam, a Cyclobutane-Bearing Tricyclic Lactam from a Streptomyces sp. in a Dung Beetle’s Brood Ball. Org Lett 2012; 14:1258-61. [DOI: 10.1021/ol300108z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Seon-Hui Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea, Department of Agricultural Environment, National Academy of Agricultural Science, Suwon 441-707, Republic of Korea, and Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| | - Kyuho Moon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea, Department of Agricultural Environment, National Academy of Agricultural Science, Suwon 441-707, Republic of Korea, and Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| | - Hea-Son Bang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea, Department of Agricultural Environment, National Academy of Agricultural Science, Suwon 441-707, Republic of Korea, and Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| | - Seong-Hwan Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea, Department of Agricultural Environment, National Academy of Agricultural Science, Suwon 441-707, Republic of Korea, and Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| | - Dong-Gyu Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea, Department of Agricultural Environment, National Academy of Agricultural Science, Suwon 441-707, Republic of Korea, and Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| | - Ki-Bong Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea, Department of Agricultural Environment, National Academy of Agricultural Science, Suwon 441-707, Republic of Korea, and Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea, Department of Agricultural Environment, National Academy of Agricultural Science, Suwon 441-707, Republic of Korea, and Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea, Department of Agricultural Environment, National Academy of Agricultural Science, Suwon 441-707, Republic of Korea, and Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| |
Collapse
|
171
|
Refining the roots of the beewolf-Streptomyces symbiosis: antennal symbionts in the rare genus Philanthinus (Hymenoptera, Crabronidae). Appl Environ Microbiol 2011; 78:822-7. [PMID: 22113914 DOI: 10.1128/aem.06809-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insects engage in symbiotic associations with a large diversity of beneficial microorganisms. While the majority of well-studied symbioses have a nutritional basis, several cases are known in which bacteria protect their host from pathogen infestation. Solitary wasps of the genera Philanthus and Trachypus (beewolves; Hymenoptera, Crabronidae) cultivate the actinomycete "Candidatus Streptomyces philanthi" in specialized antennal gland reservoirs. The symbionts are transferred to the larval cocoon, where they provide protection against pathogenic fungi by producing at least nine different antibiotics. Here we investigated the closest relatives of Philanthus and Trachypus, the rare genus Philanthinus, for the presence of antennal gland reservoirs and symbiotic streptomycetes. Molecular analyses identified "Ca. Streptomyces philanthi" in reservoirs of Philanthinus quattuordecimpunctatus. Phylogenies based on the 16S rRNA gene suggest that P. quattuordecimpunctatus may have acquired "Ca. Streptomyces philanthi" by horizontal transfer from other beewolf species. In histological sections and three-dimensional reconstructions, the antennal gland reservoirs were found to occupy six antennal segments (as opposed to only five in Philanthus and Trachypus) and to be structurally less complex than those of the evolutionarily more derived genera of beewolves. The presence of "Ca. Streptomyces philanthi" in antennal glands of Philanthinus indicates that the symbiosis between beewolves and Streptomyces bacteria is much older than previously thought. It probably evolved along the branch leading to the monophyletic tribe Philanthini, as it seems to be confined to the genera Philanthus, Trachypus, and Philanthinus, which together comprise 172 described species of solitary wasps.
Collapse
|
172
|
Carbonell P, Lecointre G, Faulon JL. Origins of specificity and promiscuity in metabolic networks. J Biol Chem 2011; 286:43994-44004. [PMID: 22052908 DOI: 10.1074/jbc.m111.274050] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
How enzymes have evolved to their present form is linked to the question of how pathways emerged and evolved into extant metabolic networks. To investigate this mechanism, we have explored the chemical diversity present in a largely unbiased data set of catalytic reactions processed by modern enzymes across the tree of life. In order to get a quantitative estimate of enzyme chemical diversity, we measure enzyme multispecificity or promiscuity using the reaction molecular signatures. Our main finding is that reactions that are catalyzed by a highly specific enzyme are shared by poorly divergent species, suggesting a later emergence of this function during evolution. In contrast, reactions that are catalyzed by highly promiscuous enzymes are more likely to appear uniformly distributed across species in the tree of life. From a functional point of view, promiscuous enzymes are mainly involved in amino acid and lipid metabolisms, which might be associated with the earliest form of biochemical reactions. In this way, results presented in this paper might assist us with the identification of primeval promiscuous catalytic functions contributing to life's minimal metabolism.
Collapse
Affiliation(s)
- Pablo Carbonell
- Institute of Systems and Synthetic Biology, University of Evry, 91030 Evry, France
| | - Guillaume Lecointre
- UMR 7138 Systématique Adaptation Evolution, Département Systématique et Evolution, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - Jean-Loup Faulon
- Institute of Systems and Synthetic Biology, University of Evry, 91030 Evry, France.
| |
Collapse
|
173
|
Archetti M, Scheuring I, Hoffman M, Frederickson ME, Pierce NE, Yu DW. Economic game theory for mutualism and cooperation. Ecol Lett 2011; 14:1300-12. [DOI: 10.1111/j.1461-0248.2011.01697.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
174
|
Pseudoxylaria as stowaway of the fungus-growing termite nest: Interaction asymmetry between Pseudoxylaria, Termitomyces and free-living relatives. FUNGAL ECOL 2011. [DOI: 10.1016/j.funeco.2011.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
175
|
Biodiversity of active and inactive bacteria in the gut flora of wood-feeding huhu beetle larvae (Prionoplus reticularis). Appl Environ Microbiol 2011; 77:7000-6. [PMID: 21841025 DOI: 10.1128/aem.05609-11] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Huhu grubs (Prionoplus reticularis) are wood-feeding beetle larvae endemic to New Zealand and belonging to the family Cerambycidae. Compared to the wood-feeding lower termites, very little is known about the diversity and activity of microorganisms associated with xylophagous cerambycid larvae. To address this, we used pyrosequencing to evaluate the diversity of metabolically active and inactive bacteria in the huhu larval gut. Our estimate, that the gut harbors at least 1,800 phylotypes, is based on 33,420 sequences amplified from genomic DNA and reverse-transcribed RNA. Analysis of genomic DNA- and RNA-derived data sets revealed that 71% of all phylotypes (representing 95% of all sequences) were metabolically active. Rare phylotypes contributed considerably to the richness of the community and were also largely metabolically active, indicating their participation in digestive processes in the gut. The dominant families in the active community (RNA data set) included Acidobacteriaceae (24.3%), Xanthomonadaceae (16.7%), Acetobacteraceae (15.8%), Burkholderiaceae (8.7%), and Enterobacteriaceae (4.1%). The most abundant phylotype comprised 14% of the active community and affiliated with Dyella ginsengisoli (Gammaproteobacteria), suggesting that a Dyella-related organism is a likely symbiont. This study provides new information on the diversity and activity of gut-associated microorganisms that are essential for the digestion of the nutritionally poor diet consumed by wood-feeding larvae. Many huhu gut phylotypes affiliated with insect symbionts or with bacteria present in acidic environments or associated with fungi.
Collapse
|
176
|
Seipke RF, Barke J, Ruiz-Gonzalez MX, Orivel J, Yu DW, Hutchings MI. Fungus-growing Allomerus ants are associated with antibiotic-producing actinobacteria. Antonie van Leeuwenhoek 2011; 101:443-7. [PMID: 21748399 DOI: 10.1007/s10482-011-9621-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 07/02/2011] [Indexed: 11/26/2022]
Abstract
Fungus-growing attine ants use natural-product antibiotics produced by mutualist actinobacteria as 'weedkillers' in their fungal gardens. Here we report for the first time that fungus-growing Allomerus ants, which lie outside the tribe Attini, are associated with antifungal-producing actinobacteria, which offer them protection against non-cultivar fungi isolated from their ant-plants.
Collapse
Affiliation(s)
- Ryan F Seipke
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | | | | | | | | | | |
Collapse
|
177
|
Cafaro MJ, Poulsen M, Little AEF, Price SL, Gerardo NM, Wong B, Stuart AE, Larget B, Abbot P, Currie CR. Specificity in the symbiotic association between fungus-growing ants and protective Pseudonocardia bacteria. Proc Biol Sci 2011; 278:1814-22. [PMID: 21106596 PMCID: PMC3097832 DOI: 10.1098/rspb.2010.2118] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 11/03/2010] [Indexed: 01/31/2023] Open
Abstract
Fungus-growing ants (tribe Attini) engage in a mutualism with a fungus that serves as the ants' primary food source, but successful fungus cultivation is threatened by microfungal parasites (genus Escovopsis). Actinobacteria (genus Pseudonocardia) associate with most of the phylogenetic diversity of fungus-growing ants; are typically maintained on the cuticle of workers; and infection experiments, bioassay challenges and chemical analyses support a role of Pseudonocardia in defence against Escovopsis through antibiotic production. Here we generate a two-gene phylogeny for Pseudonocardia associated with 124 fungus-growing ant colonies, evaluate patterns of ant-Pseudonocardia specificity and test Pseudonocardia antibiotic activity towards Escovopsis. We show that Pseudonocardia associated with fungus-growing ants are not monophyletic: the ants have acquired free-living strains over the evolutionary history of the association. Nevertheless, our analysis reveals a significant pattern of specificity between clades of Pseudonocardia and groups of related fungus-growing ants. Furthermore, antibiotic assays suggest that despite Escovopsis being generally susceptible to inhibition by diverse Actinobacteria, the ant-derived Pseudonocardia inhibit Escovopsis more strongly than they inhibit other fungi, and are better at inhibiting this pathogen than most environmental Pseudonocardia strains tested. Our findings support a model that many fungus-growing ants maintain specialized Pseudonocardia symbionts that help with garden defence.
Collapse
Affiliation(s)
- Matías J. Cafaro
- Department of Bacteriology, University of Wisconsin, Madison, 4325 Microbial Sciences Building, 1550 Linden Drive, Madison, WI 53706, USA
- Department of Biology, University of Puerto Rico—Mayagüez, Call Box 9000, Mayagüez, PR 00681, USA
| | - Michael Poulsen
- Department of Bacteriology, University of Wisconsin, Madison, 4325 Microbial Sciences Building, 1550 Linden Drive, Madison, WI 53706, USA
| | - Ainslie E. F. Little
- Department of Bacteriology, University of Wisconsin, Madison, 4325 Microbial Sciences Building, 1550 Linden Drive, Madison, WI 53706, USA
- Quarles and Brady LLP, 33 East Main Street, Suite 900, Madison, WI 53703, USA
| | - Shauna L. Price
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA 90095-1606, USA
| | - Nicole M. Gerardo
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Bess Wong
- Department of Public Health Sciences, University of Toronto, Toronto, Ontario, CanadaM5T 1R4
- Sporometrics Inc., 219 Dufferin Street, Suite 20C, Toronto, Ontario, CanadaM6K 1Y9
| | - Alison E. Stuart
- Calgary Board of Education, 939-45th Strasse, Calgary, AB, CanadaT3C 2B9
| | - Bret Larget
- Department of Statistics, University of Wisconsin, Medical Sciences Center, 1300 University Avenue, Madison, WI 53706, USA
- Department of Botany, University of Wisconsin, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Cameron R. Currie
- Department of Bacteriology, University of Wisconsin, Madison, 4325 Microbial Sciences Building, 1550 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
178
|
van Wezel GP, McDowall KJ. The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 2011; 28:1311-33. [PMID: 21611665 DOI: 10.1039/c1np00003a] [Citation(s) in RCA: 315] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Streptomycetes and other actinobacteria are renowned as a rich source of natural products of clinical, agricultural and biotechnological value. They are being mined with renewed vigour, supported by genome sequencing efforts, which have revealed a coding capacity for secondary metabolites in vast excess of expectations that were based on the detection of antibiotic activities under standard laboratory conditions. Here we review what is known about the control of production of so-called secondary metabolites in streptomycetes, with an emphasis on examples where details of the underlying regulatory mechanisms are known. Intriguing links between nutritional regulators, primary and secondary metabolism and morphological development are discussed, and new data are included on the carbon control of development and antibiotic production, and on aspects of the regulation of the biosynthesis of microbial hormones. Given the tide of antibiotic resistance emerging in pathogens, this review is peppered with approaches that may expand the screening of streptomycetes for new antibiotics by awakening expression of cryptic antibiotic biosynthetic genes. New technologies are also described that have potential to greatly further our understanding of gene regulation in what is an area fertile for discovery and exploitation
Collapse
|
179
|
|
180
|
O'Brien J, Wright GD. An ecological perspective of microbial secondary metabolism. Curr Opin Biotechnol 2011; 22:552-8. [PMID: 21498065 DOI: 10.1016/j.copbio.2011.03.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 03/23/2011] [Indexed: 11/26/2022]
Abstract
Bacteria and fungi produce a remarkable array of bioactive small molecules. Many of these have found use in medicine as chemotherapies to treat diseases ranging from infection and cancer to hyperlipidemia and autoimmune disorders. The applications may or may not reflect the actual targets for these compounds. Through careful studies of microbes, their associated molecules and their targets, a growing understanding of the ecology of microbial secondary metabolism is emerging that exposes the central role of secondary metabolites in many complex biological systems.
Collapse
Affiliation(s)
- Jonathan O'Brien
- M.G. DeGroote Institute for Infectious Disease Research and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | | |
Collapse
|
181
|
Poulsen M, Oh DC, Clardy J, Currie CR. Chemical analyses of wasp-associated streptomyces bacteria reveal a prolific potential for natural products discovery. PLoS One 2011; 6:e16763. [PMID: 21364940 PMCID: PMC3043073 DOI: 10.1371/journal.pone.0016763] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 01/13/2011] [Indexed: 11/19/2022] Open
Abstract
Identifying new sources for small molecule discovery is necessary to help mitigate the continuous emergence of antibiotic-resistance in pathogenic microbes. Recent studies indicate that one potentially rich source of novel natural products is Actinobacterial symbionts associated with social and solitary Hymenoptera. Here we test this possibility by examining two species of solitary mud dauber wasps, Sceliphron caementarium and Chalybion californicum. We performed enrichment isolations from 33 wasps and obtained more than 200 isolates of Streptomyces Actinobacteria. Chemical analyses of 15 of these isolates identified 11 distinct and structurally diverse secondary metabolites, including a novel polyunsaturated and polyoxygenated macrocyclic lactam, which we name sceliphrolactam. By pairing the 15 Streptomyces strains against a collection of fungi and bacteria, we document their antifungal and antibacterial activity. The prevalence and anti-microbial properties of Actinobacteria associated with these two solitary wasp species suggest the potential role of these Streptomyces as antibiotic-producing symbionts, potentially helping defend their wasp hosts from pathogenic microbes. Finding phylogenetically diverse and chemically prolific Actinobacteria from solitary wasps suggests that insect-associated Actinobacteria can provide a valuable source of novel natural products of pharmaceutical interest.
Collapse
Affiliation(s)
- Michael Poulsen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biology, Section for Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark
| | - Dong-Chan Oh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Cameron R. Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
182
|
|
183
|
Barke J, Seipke RF, Grüschow S, Heavens D, Drou N, Bibb MJ, Goss RJM, Yu DW, Hutchings MI. A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biol 2010; 8:109. [PMID: 20796277 PMCID: PMC2942817 DOI: 10.1186/1741-7007-8-109] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 08/26/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Attine ants live in an intensely studied tripartite mutualism with the fungus Leucoagaricus gongylophorus, which provides food to the ants, and with antibiotic-producing actinomycete bacteria. One hypothesis suggests that bacteria from the genus Pseudonocardia are the sole, co-evolved mutualists of attine ants and are transmitted vertically by the queens. A recent study identified a Pseudonocardia-produced antifungal, named dentigerumycin, associated with the lower attine Apterostigma dentigerum consistent with the idea that co-evolved Pseudonocardia make novel antibiotics. An alternative possibility is that attine ants sample actinomycete bacteria from the soil, selecting and maintaining those species that make useful antibiotics. Consistent with this idea, a Streptomyces species associated with the higher attine Acromyrmex octospinosus was recently shown to produce the well-known antifungal candicidin. Candicidin production is widespread in environmental isolates of Streptomyces, so this could either be an environmental contaminant or evidence of recruitment of useful actinomycetes from the environment. It should be noted that the two possibilities for actinomycete acquisition are not necessarily mutually exclusive. RESULTS In order to test these possibilities we isolated bacteria from a geographically distinct population of A. octospinosus and identified a candicidin-producing Streptomyces species, which suggests that they are common mutualists of attine ants, most probably recruited from the environment. We also identified a Pseudonocardia species in the same ant colony that produces an unusual polyene antifungal, providing evidence for co-evolution of Pseudonocardia with A. octospinosus. CONCLUSIONS Our results show that a combination of co-evolution and environmental sampling results in the diversity of actinomycete symbionts and antibiotics associated with attine ants.
Collapse
Affiliation(s)
- Jörg Barke
- School of Biological Sciences, University of East Anglia, Norwich, Norwich Research Park, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Common biosynthetic origins for polycyclic tetramate macrolactams from phylogenetically diverse bacteria. Proc Natl Acad Sci U S A 2010; 107:11692-7. [PMID: 20547882 DOI: 10.1073/pnas.1001513107] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A combination of small molecule chemistry, biosynthetic analysis, and genome mining has revealed the unexpected conservation of polycyclic tetramate macrolactam biosynthetic loci in diverse bacteria. Initially our chemical analysis of a Streptomyces strain associated with the southern pine beetle led to the discovery of frontalamides A and B, two previously undescribed members of this antibiotic family. Genome analyses and genetic manipulation of the producing organism led to the identification of the frontalamide biosynthetic gene cluster and several biosynthetic intermediates. The biosynthetic locus for the frontalamides' mixed polyketide/amino acid structure encodes a hybrid polyketide synthase nonribosomal peptide synthetase (PKS-NRPS), which resembles iterative enzymes known in fungi. No such mixed iterative PKS-NRPS enzymes have been characterized in bacteria. Genome-mining efforts revealed strikingly conserved frontalamide-like biosynthetic clusters in the genomes of phylogenetically diverse bacteria ranging from proteobacteria to actinomycetes. Screens for environmental actinomycete isolates carrying frontalamide-like biosynthetic loci led to the isolation of a number of positive strains, the majority of which produced candidate frontalamide-like compounds under suitable growth conditions. These results establish the prevalence of frontalamide-like gene clusters in diverse bacterial types, with medicinally important Streptomyces species being particularly enriched.
Collapse
|
185
|
Kroiss J, Kaltenpoth M, Schneider B, Schwinger MG, Hertweck C, Maddula RK, Strohm E, Svatos A. Symbiotic Streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nat Chem Biol 2010; 6:261-3. [PMID: 20190763 DOI: 10.1038/nchembio.331] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 01/22/2010] [Indexed: 02/04/2023]
Abstract
Beewolf digger wasps cultivate specific symbiotic bacteria (Streptomyces spp.) that are incorporated into the larval cocoon for protection against pathogens. We identified the molecular basis of this protective symbiosis in the natural context and demonstrate that the bacteria produce a 'cocktail' of nine antibiotic substances. The complementary action of all symbiont-produced antibiotics confers a potent antimicrobial defense for the wasp larvae that parallels the 'combination prophylaxis' known from human medicine.
Collapse
Affiliation(s)
- Johannes Kroiss
- Research Group Mass Spectrometry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|