151
|
Genetically Modified T-Cell Therapy for Osteosarcoma: Into the Roaring 2020s. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1257:109-131. [PMID: 32483735 DOI: 10.1007/978-3-030-43032-0_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T-cell immunotherapy may offer an approach to improve outcomes for patients with osteosarcoma who fail current therapies. In addition, it has the potential to reduce treatment-related complications for all patients. Generating tumor-specific T cells with conventional antigen-presenting cells ex vivo is time-consuming and often results in T-cell products with a low frequency of tumor-specific T cells. Furthermore, the generated T cells remain sensitive to the immunosuppressive tumor microenvironment. Genetic modification of T cells is one strategy to overcome these limitations. For example, T cells can be genetically modified to render them antigen specific, resistant to inhibitory factors, or increase their ability to home to tumor sites. Most genetic modification strategies have only been evaluated in preclinical models; however, early clinical phase trials are in progress. In this chapter, we will review the current status of gene-modified T-cell therapy with special focus on osteosarcoma, highlighting potential antigenic targets, preclinical and clinical studies, and strategies to improve current T-cell therapy approaches.
Collapse
|
152
|
Singh N, Orlando E, Xu J, Xu J, Binder Z, Collins MA, O'Rourke DM, Melenhorst JJ. Mechanisms of resistance to CAR T cell therapies. Semin Cancer Biol 2019; 65:91-98. [PMID: 31866478 DOI: 10.1016/j.semcancer.2019.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/26/2019] [Accepted: 12/11/2019] [Indexed: 12/23/2022]
Abstract
Chimeric antigen receptor (CAR)-engineered T cells have demonstrated remarkable success in the treatment of B cell malignancies. FDA approval of these therapies represents a watershed moment in the development of therapies for cancer. Despite the successes of the last decade, many patients will unfortunately not experience durable responses to CAR therapy. Emerging research has shed light on the biology responsible for these failures, and further highlighted the hurdles to broader success. Here, we review the recent research identifying how interactions between cancer cells and engineered immune cells result in resistance to CAR therapies.
Collapse
Affiliation(s)
- Nathan Singh
- Division of Oncology, Section of Stem Cell Biology, Washington University School of Medicine, St. Louis, MO, 63105, United States
| | - Elena Orlando
- Novartis Institutes for Biomedical Research, Cambridge, MA, 02139, United States
| | - Jun Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Jie Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Zev Binder
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - McKensie A Collins
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Donald M O'Rourke
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - J Joseph Melenhorst
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, United States.
| |
Collapse
|
153
|
Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol 2019; 17:147-167. [PMID: 31848460 PMCID: PMC7223338 DOI: 10.1038/s41571-019-0297-y] [Citation(s) in RCA: 863] [Impact Index Per Article: 143.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
Abstract
T cells genetically engineered to express chimeric antigen receptors (CARs) have proven — and impressive — therapeutic activity in patients with certain subtypes of B cell leukaemia or lymphoma, with promising efficacy also demonstrated in patients with multiple myeloma. Nevertheless, various barriers restrict the efficacy and/or prevent the widespread use of CAR T cell therapies in these patients as well as in those with other cancers, particularly solid tumours. Key challenges relating to CAR T cells include severe toxicities, restricted trafficking to, infiltration into and activation within tumours, suboptimal persistence in vivo, antigen escape and heterogeneity, and manufacturing issues. The evolution of CAR designs beyond the conventional structures will be necessary to address these limitations and to expand the use of CAR T cells to a wider range of malignancies. Investigators are addressing the current obstacles with a wide range of engineering strategies in order to improve the safety, efficacy and applicability of this therapeutic modality. In this Review, we discuss the innovative designs of novel CAR T cell products that are being developed to increase and expand the clinical benefits of these treatments in patients with diverse cancers. Chimeric antigen receptor (CAR) T cell therapy, the first approved therapeutic approach with a genetic engineering component, holds substantial promise in the treatment of a range of cancers but is nevertheless limited by various challenges, including toxicities, intrinsic and acquired resistance mechanisms, and manufacturing issues. In this Review, the authors describe the innovative approaches to the engineering of CAR T cell products that are providing solutions to these challenges and therefore have the potential to considerably improve the safety and effectiveness of treatment. Chimeric antigen receptor (CAR) T cells have induced remarkable responses in patients with certain haematological malignancies, yet various barriers restrict the efficacy and/or prevent the widespread use of this treatment. Investigators are addressing these challenges with engineering strategies designed to improve the safety, efficacy and applicability of CAR T cell therapy. CARs have modular components, and therefore the optimal molecular design of the CAR can be achieved through many variations of the constituent protein domains. Toxicities currently associated with CAR T cell therapy can be mitigated using engineering strategies to make CAR T cells safer and that potentially broaden the range of tumour-associated antigens that can be targeted by overcoming on-target, off-tumour toxicities. CAR T cell efficacy can be enhanced by using engineering strategies to address the various challenges relating to the unique biology of diverse haematological and solid malignancies. Strategies to address the manufacturing challenges can lead to an improved CAR T cell product for all patients.
Collapse
|
154
|
CAR-NK for tumor immunotherapy: Clinical transformation and future prospects. Cancer Lett 2019; 472:175-180. [PMID: 31790761 DOI: 10.1016/j.canlet.2019.11.033] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 02/08/2023]
Abstract
Recently, the use of chimeric antigen receptor-modified T (CAR-T)-cells in the treatment of hematological tumors has been successful and has become a clinical hotspot in tumor immunotherapy. However, their wide application is limited by inherent risks such as graft-versus-host disease (GvHD) and the amount of time it takes to produce CAR-T cells. Natural killer (NK) cells can be xenografted and have the potential to become off-the-shelf products, making CAR-NK cell therapies universal products. These products may be safer than CAR-T cell therapy. Considering that the fundamental researche is still in its infancy, this review focuses on clinical achievements and new strategies for improving the safety and efficacy of CAR-NK cell therapy, as well as the corresponding challenges.
Collapse
|
155
|
Springuel L, Lonez C, Alexandre B, Van Cutsem E, Machiels JPH, Van Den Eynde M, Prenen H, Hendlisz A, Shaza L, Carrasco J, Canon JL, Opyrchal M, Odunsi K, Rottey S, Gilham DE, Flament A, Lehmann FF. Chimeric Antigen Receptor-T Cells for Targeting Solid Tumors: Current Challenges and Existing Strategies. BioDrugs 2019; 33:515-537. [PMID: 31363930 PMCID: PMC6790340 DOI: 10.1007/s40259-019-00368-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chimeric antigen receptor-T cells (CAR-Ts) are an exciting new cancer treatment modality exemplified by the recent regulatory approval of two CD19-targeted CAR-T therapies for certain B cell malignancies. However, this success in the hematological setting has yet to translate to a significant level of objective clinical responses in the solid tumor setting. The reason for this lack of translation undoubtedly lies in the substantial challenges raised by solid tumors to all therapies, including CAR-T, that differ from B cell malignancies. For instance, intravenously infused CAR-Ts are likely to make rapid contact with cancerous B cells since both tend to reside in the same vascular compartments within the body. By contrast, solid cancers tend to form discrete tumor masses with an immune-suppressive tumor microenvironment composed of tumor cells and non-tumor stromal cells served by abnormal vasculature that restricts lymphocyte infiltration and suppresses immune function, expansion, and persistence. Moreover, the paucity of uniquely and homogeneously expressed tumor antigens and inherent plasticity of cancer cells provide major challenges to the specificity, potency, and overall effectiveness of CAR-T therapies. This review focuses on the major preclinical and clinical strategies currently being pursued to tackle these challenges in order to drive the success of CAR-T therapy against solid tumors.
Collapse
Affiliation(s)
| | | | | | | | | | - Marc Van Den Eynde
- Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Hans Prenen
- University Hospital Antwerp (UZ Antwerp), Antwerp, Belgium
| | - Alain Hendlisz
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Leila Shaza
- Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | - Kunle Odunsi
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | | | | | | |
Collapse
|
156
|
Ma S, Li X, Wang X, Cheng L, Li Z, Zhang C, Ye Z, Qian Q. Current Progress in CAR-T Cell Therapy for Solid Tumors. Int J Biol Sci 2019; 15:2548-2560. [PMID: 31754328 PMCID: PMC6854376 DOI: 10.7150/ijbs.34213] [Citation(s) in RCA: 295] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022] Open
Abstract
Cancer immunotherapy by chimeric antigen receptor-modified T (CAR-T) cells has shown exhilarative clinical efficacy for hematological malignancies. Recently two CAR-T cell based therapeutics, Kymriah (Tisagenlecleucel) and Yescarta (Axicabtagene ciloleucel) approved by US FDA (US Food and Drug Administration) are now used for treatment of B cell acute lymphoblastic leukemia (B-ALL) and diffuse large B-cell lymphoma (DLBCL) respectively in the US. Despite the progresses made in treating hematological malignancies, challenges still remain for use of CAR-T cell therapy to treat solid tumors. In this landscape, most studies have primarily focused on improving CAR-T cells and overcoming the unfavorable effects of tumor microenvironment on solid tumors. To further understand the current status and trend for developing CAR-T cell based therapies for various solid tumors, this review emphasizes on CAR-T techniques, current obstacles, and strategies for application, as well as necessary companion diagnostics for treatment of solid tumors with CAR-T cells.
Collapse
Affiliation(s)
- Shuo Ma
- Shanghai Baize Medical Laboratory, Shanghai, China
| | - Xinchun Li
- Shanghai Baize Medical Laboratory, Shanghai, China
| | - Xinyue Wang
- Shanghai Baize Medical Laboratory, Shanghai, China
| | - Liang Cheng
- Shanghai Baize Medical Laboratory, Shanghai, China.,Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zhong Li
- Shanghai Baize Medical Laboratory, Shanghai, China
| | | | - Zhenlong Ye
- Shanghai Baize Medical Laboratory, Shanghai, China.,Shanghai Cell Therapy Research Institute, Shanghai, China.,Shanghai Engineering Research Center for Cell Therapy, Shanghai, China
| | - Qijun Qian
- Shanghai Baize Medical Laboratory, Shanghai, China.,Shanghai Cell Therapy Research Institute, Shanghai, China.,Shanghai Engineering Research Center for Cell Therapy, Shanghai, China
| |
Collapse
|
157
|
Khan JF, Khan AS, Brentjens RJ. Application of CAR T cells for the treatment of solid tumors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 164:293-327. [PMID: 31383408 DOI: 10.1016/bs.pmbts.2019.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CAR T cell therapy of cancers promises to revolutionize oncology by harnessing the powers of synthetic biology and immunotherapy in a single agent. CARs are synthetic receptors composed of an extracellular antigen binding domain and one or more intracellular signaling domains which act in concert to activate the T cell upon antigen recognition. CARs targeting B cell associated CD19 demonstrated robust in vivo cytolytic activity, expansion, and persistence upon antigen exposure paving the way for clinical application of this technology and ultimately FDA approval for pediatric and young adult acute lymphoblastic leukemia as well as patients with relapsed or refractory diffuse large B cell lymphoma. However, these successes have not yet been replicated in the arena of solid tumors. Unlike hematologic malignancies, solid tumors present numerous challenges in the form of an immunosuppressive tumor microenvironment. In this chapter, we will highlight clinical application of CAR T cells in solid tumors, discuss hurdles that have impeded CAR T cell function in these malignancies, and propose methods to overcome these limitations.
Collapse
Affiliation(s)
- Jonathan F Khan
- Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, United States; Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Abdul Salam Khan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Renier J Brentjens
- Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, United States; Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| |
Collapse
|
158
|
Wang Y, Jiang H, Luo H, Sun Y, Shi B, Sun R, Li Z. An IL-4/21 Inverted Cytokine Receptor Improving CAR-T Cell Potency in Immunosuppressive Solid-Tumor Microenvironment. Front Immunol 2019; 10:1691. [PMID: 31379876 PMCID: PMC6658891 DOI: 10.3389/fimmu.2019.01691] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/05/2019] [Indexed: 12/31/2022] Open
Abstract
Incorporation of inverted cytokine receptor (ICR) such as interleukin (IL)-4 vs. IL-7 (4/7) ICR is one strategy to improve the antitumor activities of chimeric antigen receptor (CAR) modified T (CAR-T) cells facing immunosuppressive cytokines. Here we report a novel interleukin (IL)-4 vs. IL-21 ICR (4/21 ICR) that enhanced CAR-T cell potency in IL-4+ tumor milieu via a different working-mechanism from 4/7 ICR. Upon IL-4 stimulation, 4/21 ICR activated the STAT3 pathway and promoted Th17-like polarization and tumor-targeted cytotoxicity in CAR-T cells in vitro. Furthermore, 4/21 ICR-CAR T cells persisted and eradicated established IL-4+ tumors in vivo. Thus, 4/21 ICR is a promising clinical CAR-T cell therapeutics for solid tumors rich in IL-4.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Renji Hosptial, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Jiang
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Luo
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Renji Hosptial, Shanghai Jiao Tong University, Shanghai, China
| | - Yansha Sun
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bizhi Shi
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruixin Sun
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zonghai Li
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Renji Hosptial, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
159
|
Chen B, Zhou M, Zhang H, Wang C, Hu X, Wang B, Wang E. TREM1/Dap12-based CAR-T cells show potent antitumor activity. Immunotherapy 2019; 11:1043-1055. [PMID: 31268375 DOI: 10.2217/imt-2019-0017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aim: Chimeric antigen receptor-engineered T (CAR-T) cells have gained huge success in treating hematological malignancies, yet the CD3ζ-based CAR-T therapies have not shown comparable clinical benefits in solid tumors. We designed an alternative chimeric immunoreceptor in which a single-chain variable fragment was fused to the transmembrane-cytoplasmic domains of triggering receptor expressed on myeloid (TREM1), which may show potent antitumor activity. Methods: To generate TREM1/DNAX activation protein of 12 kDa (Dap12)-based CAR-T cells, TREM1 along with DAP12 was transduced into T cells. Results: TREM1/Dap12-based CAR-T cells showed more lysis in vitro and a similar antitumor effect in mouse models compared with CD19BBζ CAR-T cells. Conclusion: In this study, we designed a TREM1/Dap12-based CAR, which was not reported previously and demonstrated that TREM1/Dap12-based CAR-T cells had potent antitumor activity in vitro and in vivo.
Collapse
Affiliation(s)
- Bing Chen
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, PR China
| | - Min Zhou
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, PR China
| | - Hai Zhang
- Department of Research and Development, Nanjing Aide Institute of Immunotherapy, Nanjing 211808, PR China
| | - Chen Wang
- Nanjing CART Medical Technology Co., Ltd, Nanjing 210032, PR China
| | - Xiaocui Hu
- Nanjing CART Medical Technology Co., Ltd, Nanjing 210032, PR China
| | - Bo Wang
- Department of Medical Oncology, The Seventh Affilliated Hospital, Sun Yat-Sen Universityl, Shenzhen 518107, PR China
| | - Enxiu Wang
- Nanjing CART Medical Technology Co., Ltd, Nanjing 210032, PR China
| |
Collapse
|
160
|
Akhavan D, Alizadeh D, Wang D, Weist MR, Shepphird JK, Brown CE. CAR T cells for brain tumors: Lessons learned and road ahead. Immunol Rev 2019; 290:60-84. [PMID: 31355493 PMCID: PMC6771592 DOI: 10.1111/imr.12773] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022]
Abstract
Malignant brain tumors, including glioblastoma, represent some of the most difficult to treat of solid tumors. Nevertheless, recent progress in immunotherapy, across a broad range of tumor types, provides hope that immunological approaches will have the potential to improve outcomes for patients with brain tumors. Chimeric antigen receptors (CAR) T cells, a promising immunotherapeutic modality, utilizes the tumor targeting specificity of any antibody or receptor ligand to redirect the cytolytic potency of T cells. The remarkable clinical response rates of CD19-targeted CAR T cells and early clinical experiences in glioblastoma demonstrating safety and evidence for disease modifying activity support the potential of further advancements ultimately providing clinical benefit for patients. The brain, however, is an immune specialized organ presenting unique and specific challenges to immune-based therapies. Remaining barriers to be overcome for achieving effective CAR T cell therapy in the central nervous system (CNS) include tumor antigenic heterogeneity, an immune-suppressive microenvironment, unique properties of the CNS that limit T cell entry, and risks of immune-based toxicities in this highly sensitive organ. This review will summarize preclinical and clinical data for CAR T cell immunotherapy in glioblastoma and other malignant brain tumors, including present obstacles to advancement.
Collapse
Affiliation(s)
- David Akhavan
- Department of Radiation OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Darya Alizadeh
- Department of Hematology & Hematopoietic Cell TransplantationBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Dongrui Wang
- Department of Hematology & Hematopoietic Cell TransplantationBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Michael R. Weist
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Molecular Imaging and TherapyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Jennifer K. Shepphird
- Department of Hematology & Hematopoietic Cell TransplantationBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Christine E. Brown
- Department of Hematology & Hematopoietic Cell TransplantationBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| |
Collapse
|
161
|
Zabel M, Tauber PA, Pickl WF. The making and function of CAR cells. Immunol Lett 2019; 212:53-69. [PMID: 31181279 PMCID: PMC7058416 DOI: 10.1016/j.imlet.2019.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/24/2019] [Accepted: 06/06/2019] [Indexed: 12/28/2022]
Abstract
Genetically engineered T cells expressing chimeric antigen receptors (CAR) present a new treatment option for patients with cancer. Recent clinical trials of B cell leukemia have demonstrated a response rate of up to 90%. However, CAR cell therapy is frequently accompanied by severe side effects such as cytokine release syndrome and the development of target cell resistance. Consequently, further optimization of CARs to obtain greater long-term efficacy and increased safety is urgently needed. Here we high-light the various efforts of adjusting the intracellular signaling domains of CARs to these major requirements to eventually obtain high-level target cell cytotoxicity paralleled by the establishment of longevity of the CAR expressing cell types to guarantee for extended tumor surveillance over prolonged periods of time. We are convinced that it will be crucial to identify the molecular pathways and signaling requirements utilized by such ‘efficient CARs’ in order to provide a rational basis for their further hypothesis-based improvement. Furthermore, we here discuss timely attempts of how to: i) control ‘on-tumor off-target’ effects; ii) introduce Signal 3 (cytokine responsiveness of CAR cells) as an important building-block into the CAR concept; iii) most efficiently eliminate CAR cells once full remission has been obtained. We also argue that universal systems for the variable and pharmacokinetically-controlled attachment of extracellular ligand recognition domains of choice along with the establishment of ‘off-the-shelf’ cell preparations with suitability for all patients in need of a highly-potent cellular therapy may become future mainstays of CAR cell therapy. Such therapies would have the attraction to work independent of the patients’ histo-compatibility make-up and the availability of functionally intact patient’s cells. Finally, we summarize the evidence that CAR cells may obtain a prominent place in the treatment of non-malignant and auto-reactive T and B lymphocyte expansions in the near future, e.g., for the alleviation of autoimmune diseases and allergies. After the introduction of red blood cell transfusions, which were made possible by the landmark discoveries of the ABO blood groups by Karl Landsteiner, and the establishment of bone marrow transplantation by E. Donnall Thomas to exchange the entire hematopoietic system of a patient suffering from leukemia, the introduction of patient-tailored cytotoxic cellular populations to eradicate malignant cell populations in vivo pioneered by Carl H. June, represents the third major and broadly applicable milestone in the development of human cellular therapies within the rapidly developing field of applied biomedical research of the last one hundred years.
Collapse
Affiliation(s)
- Maja Zabel
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter A Tauber
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
162
|
Tahmasebi S, Elahi R, Esmaeilzadeh A. Solid Tumors Challenges and New Insights of CAR T Cell Engineering. Stem Cell Rev Rep 2019; 15:619-636. [DOI: 10.1007/s12015-019-09901-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
163
|
Wang Z, Chen W, Zhang X, Cai Z, Huang W. A long way to the battlefront: CAR T cell therapy against solid cancers. J Cancer 2019; 10:3112-3123. [PMID: 31289581 PMCID: PMC6603378 DOI: 10.7150/jca.30406] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/07/2019] [Indexed: 12/15/2022] Open
Abstract
Chimeric antigen receptors (CARs) are engineered synthetic receptors that redirect and reprogram T cells to tumor surface antigens for subsequent eradication. The unprecedented efficacy of CD19-CAR T cells against B-cell malignancies has inspired oncologists to extend these efforts for the treatment of solid tumors. However, limited success has been achieved so far, partially due to some of the formidable challenges, e.g. suppression of full activation, inhibition of T cell localization, lacking of ideal targets, inefficient trafficking and infiltration, immunosuppression of microenvironment, and the probability of off targets and associated side effects. Significant progresses have being made recently. Thus, an updated summary is urgently needed. Here in this review, we discuss the advantages and some of the key hurdles encountered by CAR T cell therapy in solid tumors as well as the strategies adopted to improve therapeutic outcomes of this approach. Continuing efforts to increase therapeutic potential and decrease the adverse effects of adaptive cell transfer are suggested as well.
Collapse
Affiliation(s)
- Zhicai Wang
- Department of Medical Melanoma and Sarcoma, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.,Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, China
| | - Wei Chen
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, China
| | - Xing Zhang
- Department of Medical Melanoma and Sarcoma, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhiming Cai
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, China.,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen 518039, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen 518035, China
| | - Weiren Huang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, China.,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen 518039, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen 518035, China
| |
Collapse
|
164
|
Höpken UE, Rehm A. Targeting the Tumor Microenvironment of Leukemia and Lymphoma. Trends Cancer 2019; 5:351-364. [DOI: 10.1016/j.trecan.2019.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
|
165
|
Stoiber S, Cadilha BL, Benmebarek MR, Lesch S, Endres S, Kobold S. Limitations in the Design of Chimeric Antigen Receptors for Cancer Therapy. Cells 2019; 8:cells8050472. [PMID: 31108883 PMCID: PMC6562702 DOI: 10.3390/cells8050472] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022] Open
Abstract
Cancer therapy has entered a new era, transitioning from unspecific chemotherapeutic agents to increasingly specific immune-based therapeutic strategies. Among these, chimeric antigen receptor (CAR) T cells have shown unparalleled therapeutic potential in treating refractory hematological malignancies. In contrast, solid tumors pose a much greater challenge to CAR T cell therapy, which has yet to be overcome. As this novel therapeutic modality matures, increasing effort is being invested to determine the optimal structure and properties of CARs to facilitate the transition from empirical testing to the rational design of CAR T cells. In this review, we highlight how individual CAR domains contribute to the success and failure of this promising treatment modality and provide an insight into the most notable advances in the field of CAR T cell engineering.
Collapse
Affiliation(s)
- Stefan Stoiber
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research (DZL), 80337 Munich, Germany.
| | - Bruno L Cadilha
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research (DZL), 80337 Munich, Germany.
| | - Mohamed-Reda Benmebarek
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research (DZL), 80337 Munich, Germany.
| | - Stefanie Lesch
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research (DZL), 80337 Munich, Germany.
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research (DZL), 80337 Munich, Germany.
- German Center for Translational Cancer Research (DKTK), 80337 Munich, Germany.
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research (DZL), 80337 Munich, Germany.
- German Center for Translational Cancer Research (DKTK), 80337 Munich, Germany.
| |
Collapse
|
166
|
Patel S, Burga RA, Powell AB, Chorvinsky EA, Hoq N, McCormack SE, Van Pelt SN, Hanley PJ, Cruz CRY. Beyond CAR T Cells: Other Cell-Based Immunotherapeutic Strategies Against Cancer. Front Oncol 2019; 9:196. [PMID: 31024832 PMCID: PMC6467966 DOI: 10.3389/fonc.2019.00196] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Chimeric antigen receptor (CAR)-modified T cells have successfully harnessed T cell immunity against malignancies, but they are by no means the only cell therapies in development for cancer. Main Text Summary: Systemic immunity is thought to play a key role in combatting neoplastic disease; in this vein, genetic modifications meant to explore other components of T cell immunity are being evaluated. In addition, other immune cells—from both the innate and adaptive compartments—are in various stages of clinical application. In this review, we focus on these non-CAR T cell immunotherapeutic approaches for malignancy. The first section describes engineering T cells to express non-CAR constructs, and the second section describes other gene-modified cells used to target malignancy. Conclusions: CAR T cell therapies have demonstrated the clinical benefits of harnessing our body's own defenses to combat tumor cells. Similar research is being conducted on lesser known modifications and gene-modified immune cells, which we highlight in this review.
Collapse
Affiliation(s)
- Shabnum Patel
- GW Cancer Center, The George Washington University, Washington, DC, United States
| | - Rachel A Burga
- GW Cancer Center, The George Washington University, Washington, DC, United States
| | - Allison B Powell
- GW Cancer Center, The George Washington University, Washington, DC, United States
| | - Elizabeth A Chorvinsky
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, United States
| | - Nia Hoq
- GW Cancer Center, The George Washington University, Washington, DC, United States
| | - Sarah E McCormack
- GW Cancer Center, The George Washington University, Washington, DC, United States
| | - Stacey N Van Pelt
- GW Cancer Center, The George Washington University, Washington, DC, United States
| | - Patrick J Hanley
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, United States
| | - Conrad Russell Y Cruz
- GW Cancer Center, The George Washington University, Washington, DC, United States.,Center for Cancer and Immunology Research, Children's National Health System, Washington, DC, United States
| |
Collapse
|
167
|
Krawczyk E, Zolov SN, Huang K, Bonifant CL. T-cell Activity against AML Improved by Dual-Targeted T Cells Stimulated through T-cell and IL7 Receptors. Cancer Immunol Res 2019; 7:683-692. [PMID: 30782669 PMCID: PMC8186236 DOI: 10.1158/2326-6066.cir-18-0748] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/22/2018] [Accepted: 02/14/2019] [Indexed: 12/13/2022]
Abstract
The development of engineered T cells to treat acute myeloid leukemia (AML) is challenging due to difficulty in target selection and the need for robust T-cell expansion and persistence. We designed a T cell stimulated to kill AML cells based on recognition of the AML-associated surface marker CLEC12A, via secretion of a CLEC12AxCD3 bispecific "engager" molecule (CLEC12A-ENG). CLEC12A-ENG T cells are specifically activated by CLEC12A, are not toxic to hematopoietic progenitor cells, and exhibit antigen-dependent AML killing. Next, we coupled stimulation of T-cell survival to triggering of a chimeric IL7 receptor with an ectodomain that binds a second AML-associated surface antigen, CD123. The resulting T cells, identified as CLEC12A-ENG.CD123IL7Rα T cells, demonstrate improved activation upon dual target recognition, kill AML, and exhibit antitumor activity in xenograft models. Enhanced T-cell activation conferred by CD123.IL7Rα was dependent both on recognition of the CD123 target and on IL7Rα-mediated downstream signaling. Expression of a chimeric IL7R targeted to a second tumor-associated antigen (TAA) should improve T-cell activity not only against hematologic malignancies, but perhaps against all cancers.
Collapse
Affiliation(s)
- Eric Krawczyk
- Department of Pediatrics and Communicable Diseases, Division of Pediatric Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Sergey N Zolov
- Department of Pediatrics and Communicable Diseases, Division of Pediatric Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Kevin Huang
- Department of Pediatrics and Communicable Diseases, Division of Pediatric Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Challice L Bonifant
- Department of Pediatrics and Communicable Diseases, Division of Pediatric Hematology and Oncology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
168
|
Scheller L, Fussenegger M. From synthetic biology to human therapy: engineered mammalian cells. Curr Opin Biotechnol 2019; 58:108-116. [PMID: 30933864 DOI: 10.1016/j.copbio.2019.02.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/07/2019] [Accepted: 02/28/2019] [Indexed: 01/05/2023]
Abstract
Mammalian synthetic biology has evolved to become a key driver of biomedical innovation in the area of cell therapy. Advances in receptor engineering, immunotherapy and cell implants promise new treatment options for complex diseases. Synthetic receptors have already found applications in cellular immunotherapy for cancer treatment, and are being introduced into the field of cell implants. Here, we discuss prospects for the next generation of engineered mammalian cells for human therapy, highlighting selected recent studies.
Collapse
Affiliation(s)
- Leo Scheller
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland; University of Basel, Faculty of Science, Mattenstrasse 26, CH-4058, Basel, Switzerland.
| |
Collapse
|
169
|
Evolution of chimeric antigen receptor (CAR) T cell therapy: current status and future perspectives. Arch Pharm Res 2019; 42:607-616. [DOI: 10.1007/s12272-019-01136-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/21/2019] [Indexed: 12/27/2022]
|
170
|
DeRenzo C, Gottschalk S. Genetic Modification Strategies to Enhance CAR T Cell Persistence for Patients With Solid Tumors. Front Immunol 2019; 10:218. [PMID: 30828333 PMCID: PMC6384227 DOI: 10.3389/fimmu.2019.00218] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 01/25/2019] [Indexed: 01/19/2023] Open
Abstract
Immunotherapy with chimeric antigen receptor (CAR) T cells offers a promising method to improve cure rates and decrease morbidities for patients with cancer. In this regard, CD19-specific CAR T cell therapies have achieved dramatic objective responses for a high percent of patients with CD19-positive leukemia or lymphoma. Most patients with solid tumors however, have experienced transient or no benefit from CAR T cell therapies. Novel strategies are therefore needed to improve CAR T cell function for patients with solid tumors. One obstacle for the field is limited CAR T cell persistence after infusion into patients. In this review we highlight genetic engineering strategies to improve CAR T cell persistence for enhancing antitumor activity for patients with solid tumors.
Collapse
Affiliation(s)
- Christopher DeRenzo
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
171
|
Heyman B, Yang Y. Chimeric Antigen Receptor T Cell Therapy for Solid Tumors: Current Status, Obstacles and Future Strategies. Cancers (Basel) 2019; 11:cancers11020191. [PMID: 30736355 PMCID: PMC6407020 DOI: 10.3390/cancers11020191] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/28/2019] [Accepted: 02/02/2019] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor T cells (CAR T Cells) have led to dramatic improvements in the survival of cancer patients, most notably those with hematologic malignancies. Early phase clinical trials in patients with solid tumors have demonstrated them to be feasible, but unfortunately has yielded limited efficacy for various cancer types. In this article we will review the background on CAR T cells for the treatment of solid tumors, focusing on the unique obstacles that solid tumors present for the development of adoptive T cell therapy, and the novel approaches currently under development to overcome these hurdles.
Collapse
Affiliation(s)
- Benjamin Heyman
- Division of Regenerative Medicine, Department of Medicine, UC San Diego, La Jolla, CA 92093, USA.
| | - Yiping Yang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Department of Immunology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
172
|
Martinez M, Moon EK. CAR T Cells for Solid Tumors: New Strategies for Finding, Infiltrating, and Surviving in the Tumor Microenvironment. Front Immunol 2019; 10:128. [PMID: 30804938 PMCID: PMC6370640 DOI: 10.3389/fimmu.2019.00128] [Citation(s) in RCA: 572] [Impact Index Per Article: 95.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/16/2019] [Indexed: 12/26/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells, T cells that have been genetically engineered to express a receptor that recognizes a specific antigen, have given rise to breakthroughs in treating hematological malignancies. However, their success in treating solid tumors has been limited. The unique challenges posed to CAR T cell therapy by solid tumors can be described in three steps: finding, entering, and surviving in the tumor. The use of dual CAR designs that recognize multiple antigens at once and local administration of CAR T cells are both strategies that have been used to overcome the hurdle of localization to the tumor. Additionally, the immunosuppressive tumor microenvironment has implications for T cell function in terms of differentiation and exhaustion, and combining CARs with checkpoint blockade or depletion of other suppressive factors in the microenvironment has shown very promising results to mitigate the phenomenon of T cell exhaustion. Finally, identifying and overcoming mechanisms associated with dysfunction in CAR T cells is of vital importance to generating CAR T cells that can proliferate and successfully eliminate tumor cells. The structure and costimulatory domains chosen for the CAR may play an important role in the overall function of CAR T cells in the TME, and “armored” CARs that secrete cytokines and third- and fourth-generation CARs with multiple costimulatory domains offer ways to enhance CAR T cell function.
Collapse
Affiliation(s)
- Marina Martinez
- Perelman School of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Edmund Kyung Moon
- Perelman School of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
173
|
Liu B, Yan L, Zhou M. Target selection of CAR T cell therapy in accordance with the TME for solid tumors. Am J Cancer Res 2019; 9:228-241. [PMID: 30906625 PMCID: PMC6405971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 01/17/2019] [Indexed: 06/09/2023] Open
Abstract
Chimeric antigen receptor-engineered T (CAR T) cell therapy has made great progress in hematological malignancies and resulted in two newly FDA-approved drugs specific for CD19, Kymriah and Yescarta. To some extent, this success is attributable to the appropriately selected antigen, CD19, a cell surface protein that is uniformly and strongly expressed on malignant B cells. This result indicates that a proper CAR target is of great importance to the success of this technique. Another key factor contributing to the success of hematological malignancies can be ascribed to the nonphysical tumor microenvironment (TME). The TME in solid tumors is complicated and has a specific niche favorable for tumor progression with physical barriers, multiple mechanisms of immunosuppression, and a variety of biochemical factors, thus resulting in limited efficacy of CAR T cell therapy in clinical trials with cancer patients. Therefore, the inhospitable solid TME becomes a major hurdle in translating the success of CAR T cell therapy in hematological malignancies to solid tumors. Here, we provide our perspective on how to improve the success of CAR T therapy in solid tumors by focusing on the aspects of target selection and the related TME in CAR T cell design, especially stressing the interplay between them. With four kinds of antigenic CAR targets as examples in this review, we anticipate that the overall consideration of both factors will further expand CAR T cell therapy in clinical trials.
Collapse
Affiliation(s)
- Bainan Liu
- Department of Immunology, Zunyi Medical UniversityZunyi, Guizhou Province, China
| | - Lingli Yan
- Department of Immunology, Zunyi Medical UniversityZunyi, Guizhou Province, China
| | - Ming Zhou
- Cancer Research Institute, Central South UniversityChangsha, Hunan Province, China
| |
Collapse
|
174
|
Holzinger A, Abken H. CAR T Cells: A Snapshot on the Growing Options to Design a CAR. Hemasphere 2019; 3:e172. [PMID: 31723811 PMCID: PMC6745938 DOI: 10.1097/hs9.0000000000000172] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/14/2018] [Indexed: 12/27/2022] Open
Abstract
Adoptive cell therapy of malignant diseases with chimeric antigen receptor (CAR) modified T cells rapidly advanced from pre-clinical models to commercial approvals within 2 decades. CARs redirect patient's T cells towards cancer cells and activate the engineered cells for a cytolytic attack resulting in the destruction of the cognate target cell. CAR T cells have demonstrated their powerful capacities in inducing complete and lasting remissions of leukemia/lymphoma in an increasing number of trials worldwide. Since the early 90's, the design of CARs went through various steps of optimization until the very recent developments which include CARs with logic gating in the recognition of antigen patterns on target cells and TRUCKs with a target recognition induced delivery of immune modulating agents. Here we review the generations in CAR design, the impact of specific modifications, the strategies to improve the safety of CAR T cell therapy, and the challenges to adapt the CAR design for broader applications.
Collapse
Affiliation(s)
- Astrid Holzinger
- RCI, Regensburg Center for Interventional Immunology, Chair for Gene-Immune Therapy, University Hospital Regensburg, Regensburg, Germany
| | - Hinrich Abken
- RCI, Regensburg Center for Interventional Immunology, Chair for Gene-Immune Therapy, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
175
|
Schmidts A, Maus MV. Making CAR T Cells a Solid Option for Solid Tumors. Front Immunol 2018; 9:2593. [PMID: 30467505 PMCID: PMC6235951 DOI: 10.3389/fimmu.2018.02593] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/22/2018] [Indexed: 01/02/2023] Open
Abstract
Adoptive cell therapy with chimeric antigen receptor (CAR) T cells aims to redirect the patient's own immune system to selectively attack cancer cells. To do so, CAR T cells are endowed with specific antigen recognition moieties fused to signaling and costimulatory domains. While this approach has shown great success for the treatment of B cell malignancies, response rates among patients with solid cancers are less favorable. The major challenges for CAR T cell immunotherapy in solid cancers are the identification of unique tumor target antigens, as well as improving CAR T cell trafficking to and expansion at the tumor site. This review focuses on combinatorial antigen targeting, regional delivery and approaches to improve CAR T cell persistence in the face of a hostile tumor microenvironment.
Collapse
Affiliation(s)
- Andrea Schmidts
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
176
|
Perica K, Palomba L, Brentjens RJ. Dawn of Chimeric Antigen Receptor T Cell Therapy in Non-Hodgkin Lymphoma. ACTA ACUST UNITED AC 2018; 1. [PMID: 33043278 DOI: 10.1002/acg2.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Two Chimeric Antigen Receptor (CAR) T cell therapies are now approved for the treatment of relapsed and refractory large cell lymphomas, with many others under development. The dawn of CAR T cell therapy in non-Hodgkin Lymphoma (NHL) has been characterized by rapid progress and high response rates, with a subset of patients experiencing durable benefit. In this review, we describe commercially available and investigational CAR T cell therapies, including product characteristics and clinical outcomes. We review patient selection, with an emphasis on sequencing cell therapy options in the refractory setting. Finally, we discuss durability of response, highlighting mechanisms of escape and investigational approaches to prevent and treat relapse after CAR T cell therapy.
Collapse
Affiliation(s)
- Karlo Perica
- Department of Medicine; Memorial Sloan Kettering Cancer Center, New York, N.Y, U.S.A
| | - Lia Palomba
- Department of Medicine; Memorial Sloan Kettering Cancer Center, New York, N.Y, U.S.A.,Cellular Therapeutics Center; Department of Medicine; Memorial Sloan Kettering Cancer Center, New York, N.Y, U.S.A
| | - Renier J Brentjens
- Department of Medicine; Memorial Sloan Kettering Cancer Center, New York, N.Y, U.S.A.,Cellular Therapeutics Center; Department of Medicine; Memorial Sloan Kettering Cancer Center, New York, N.Y, U.S.A
| |
Collapse
|
177
|
Gene Therapy for Pancreatic Diseases: Current Status. Int J Mol Sci 2018; 19:ijms19113415. [PMID: 30384450 PMCID: PMC6275054 DOI: 10.3390/ijms19113415] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022] Open
Abstract
The pancreas is a key organ involved in digestion and endocrine functions in the body. The major diseases of the pancreas include pancreatitis, pancreatic cancer, cystic diseases, pancreatic divisum, islet cell tumors, endocrine tumors, diabetes mellitus, and pancreatic pain induced by these diseases. While various therapeutic methodologies have been established to date, however, the improvement of conventional treatments and establishment of novel therapies are essential to improve the efficacy. For example, conventional therapeutic options, including chemotherapy, are not effective against pancreatic cancer, and despite improvements in the last decade, the mortality rate has not declined and is estimated to become the second cause of cancer-related deaths by 2030. Therefore, continuous efforts focus on the development of novel therapeutic options. In this review, we will summarize the progress toward the development of gene therapies for pancreatic diseases, with an emphasis on recent preclinical studies and clinical trials. We aim to identify new areas for improvement of the current methodologies and new strategies that will lead to safe and effective gene therapeutic approaches in pancreatic diseases.
Collapse
|
178
|
Frank AM, Buchholz CJ. Surface-Engineered Lentiviral Vectors for Selective Gene Transfer into Subtypes of Lymphocytes. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 12:19-31. [PMID: 30417026 PMCID: PMC6216101 DOI: 10.1016/j.omtm.2018.10.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lymphocytes have always been among the prime targets in gene therapy, even more so since chimeric antigen receptor (CAR) T cells have reached the clinic. However, other gene therapeutic approaches hold great promise as well. The first part of this review provides an overview of current strategies in lymphocyte gene therapy. The second part highlights the importance of precise gene delivery into B and T cells as well as distinct subtypes of lymphocytes. This can be achieved with lentiviral vectors (LVs) pseudotyped with engineered glycoproteins recognizing lymphocyte surface markers as entry receptors. Different strategies for envelope glycoprotein engineering and selection of the targeting ligand are discussed. With a CD8-targeted LV that was recently used to achieve proof of principle for the in vivo reprogramming of CAR T cells, these vectors are becoming a key tool to genetically engineer lymphocytes directly in vivo.
Collapse
Affiliation(s)
- Annika M Frank
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Christian J Buchholz
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, 63225 Langen, Germany.,Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| |
Collapse
|
179
|
Tao K, He M, Tao F, Xu G, Ye M, Zheng Y, Li Y. Development of NKG2D-based chimeric antigen receptor-T cells for gastric cancer treatment. Cancer Chemother Pharmacol 2018; 82:815-827. [PMID: 30132099 DOI: 10.1007/s00280-018-3670-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/11/2018] [Indexed: 12/22/2022]
Abstract
Gastric cancer is the third leading cause of cancer-related mortalities worldwide and mostly incurable. It remains an urgent need for novel strategies in the management of patients with advanced gastric cancer. Chimeric antigen receptor (CAR) T therapy has shown unprecedented clinical success in hematological malignancies and potential utility is going on various solid tumors like gastric cancer. In this study, a broad expression of NKG2D ligands was observed in gastric cancer cell lines, making them suitable targets for gastric cancer therapy. T cells were engineered with an NKG2D-based second-generation CAR and the resulting NKG2D-CAR-T cells showed significantly increased cytolytic activity against gastric cancer compared to untransduced T cells. In vivo, these cells can significantly suppressed the growth of established gastric cancer xenografts. Besides, cisplatin was shown to upregulate NKG2D ligand expression in gastric cancer cells and enhance the susceptibility to NKG2D-CAR-T-cell-mediated cytotoxicity. In conclusion, NKG2D-based CAR-T cells have potent in vivo and in vitro anti-tumor activities against gastric cancer and could be a new paradigm for patients with gastric cancer, either used alone or combined with chemotherapy.
Collapse
Affiliation(s)
- Kelong Tao
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Meng He
- Department of Respiratory Medicine, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, People's Republic of China
| | - Feng Tao
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Guangen Xu
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Minfeng Ye
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Yuanyuan Zheng
- Department of Gastroenterology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, People's Republic of China
| | - Yaoqing Li
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, People's Republic of China.
| |
Collapse
|
180
|
Barros L, Pretti MA, Chicaybam L, Abdo L, Boroni M, Bonamino MH. Immunological-based approaches for cancer therapy. Clinics (Sao Paulo) 2018; 73:e429s. [PMID: 30133560 PMCID: PMC6097086 DOI: 10.6061/clinics/2018/e429s] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/05/2018] [Indexed: 02/06/2023] Open
Abstract
The immunologic landscape of tumors has been continuously unveiled, providing a new look at the interactions between cancer cells and the immune system. Emerging tumor cells are constantly eliminated by the immune system, but some cells establish a long-term equilibrium phase leading to tumor immunoediting and, eventually, evasion. During this process, tumor cells tend to acquire more mutations. Bearing a high mutation burden leads to a greater number of neoantigens with the potential to initiate an immune response. Although many tumors evoke an immune response, tumor clearance by the immune system does not occur due to a suppressive tumor microenvironment. The mechanisms by which tumors achieve the ability to evade immunologic control vary. Understanding these differences is crucial for the improvement and application of new immune-based therapies. Much effort has been placed in developing in silico algorithms to predict tumor immunogenicity and to characterize the microenvironment via high-throughput sequencing and gene expression techniques. Each sequencing source, transcriptomics, and genomics yields a distinct level of data, helping to elucidate the tumor-based immune responses and guiding the fine-tuning of current and upcoming immune-based therapies. In this review, we explore some of the immunological concepts behind the new immunotherapies and the bioinformatic tools to study the immunological aspects of tumors, focusing on neoantigen determination and microenvironment deconvolution. We further discuss the immune-based therapies already in clinical use, those underway for future clinical application, the next steps in immunotherapy, and how the characterization of the tumor immune contexture can impact therapies aiming to promote or unleash immune-based tumor elimination.
Collapse
Affiliation(s)
- Luciana Barros
- Programa de Carcinogenese Molecular, Coordenacao de Pesquisa, Instituto Nacional de Cancer (INCA), Rio de Janeiro, RJ, BR
| | - Marco Antonio Pretti
- Programa de Carcinogenese Molecular, Coordenacao de Pesquisa, Instituto Nacional de Cancer (INCA), Rio de Janeiro, RJ, BR
| | | | - Luiza Abdo
- Programa de Carcinogenese Molecular, Coordenacao de Pesquisa, Instituto Nacional de Cancer (INCA), Rio de Janeiro, RJ, BR
| | - Mariana Boroni
- Laboratorio de Bioinformatica e Biologia Computacional, Coordenacao de Pesquisa, Instituto Nacional de Cancer (INCA), Rio de Janeiro, RJ, BR
| | - Martin Hernán Bonamino
- Laboratorio de Bioinformatica e Biologia Computacional, Coordenacao de Pesquisa, Instituto Nacional de Cancer (INCA), Rio de Janeiro, RJ, BR
- *Corresponding author. E-mail: /
| |
Collapse
|
181
|
Elahi R, Khosh E, Tahmasebi S, Esmaeilzadeh A. Immune Cell Hacking: Challenges and Clinical Approaches to Create Smarter Generations of Chimeric Antigen Receptor T Cells. Front Immunol 2018; 9:1717. [PMID: 30108584 PMCID: PMC6080612 DOI: 10.3389/fimmu.2018.01717] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/12/2018] [Indexed: 12/21/2022] Open
Abstract
T cells equipped with chimeric antigen receptors (CAR T cells) have recently provided promising advances as a novel immunotherapeutic approach for cancer treatment. CAR T cell therapy has shown stunning results especially in B-cell malignancies; however, it has shown less success against solid tumors, which is more supposed to be related to the specific characteristics of the tumor microenvironment. In this review, we discuss the structure of the CAR, current clinical advantages from finished and ongoing trials, adverse effects, challenges and controversies, new engineering methods of CAR, and clinical considerations that are associated with CAR T cell therapy both in hematological malignancies and solid tumors. Also, we provide a comprehensive description of recently introduced modifications for designing smarter models of CAR T cells. Specific hurdles and problems that limit the optimal function of CAR T cells, especially on solid tumors, and possible solutions according to new modifications and generations of CAR T cells have been introduced here. We also provide information of the future directions on how to enhance engineering the next smarter generations of CAR T cells in order to decrease the adverse effects and increase the potency and efficacy of CAR T cells against cancer.
Collapse
Affiliation(s)
- Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elnaz Khosh
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Department of Immunology, Health Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.,Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
182
|
Slaney CY, Wang P, Darcy PK, Kershaw MH. CARs versus BiTEs: A Comparison between T Cell–Redirection Strategies for Cancer Treatment. Cancer Discov 2018; 8:924-934. [DOI: 10.1158/2159-8290.cd-18-0297] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/20/2018] [Accepted: 06/01/2018] [Indexed: 02/04/2023]
|
183
|
Golumba-Nagy V, Kuehle J, Hombach AA, Abken H. CD28-ζ CAR T Cells Resist TGF-β Repression through IL-2 Signaling, Which Can Be Mimicked by an Engineered IL-7 Autocrine Loop. Mol Ther 2018; 26:2218-2230. [PMID: 30055872 DOI: 10.1016/j.ymthe.2018.07.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 01/09/2023] Open
Abstract
Adoptive cell therapy with chimeric antigen receptor (CAR)-redirected T cells induced spectacular regressions of leukemia and lymphoma, however, failed so far in the treatment of solid tumors. A cause is thought to be T cell repression through TGF-β, which is massively accumulating in the tumor tissue. Here, we show that T cells with a CD28-ζ CAR, but not with a 4-1BB-ζ CAR, resist TGF-β-mediated repression. Mechanistically, LCK activation and consequently IL-2 release and autocrine IL-2 receptor signaling mediated TGF-β resistance; deleting the LCK-binding motif in the CD28 CAR abolished both IL-2 secretion and TGF-β resistance, while IL-2 add-back restored TGF-β resistance. Other γ-cytokines like IL-7 and IL-15 could replace IL-2 in this context. This is demonstrated by engineering IL-2 deficient CD28ΔLCK-ζ CAR T cells with a hybrid IL-7 receptor to provide IL-2R β chain signaling upon IL-7 binding. Such modified T cells showed improved CAR T cell activity against TGF-β+ tumors. Data draw the concept that an autocrine loop resulting in IL-2R signaling can make CAR T cells more potent in staying active against TGF-β+ solid tumors.
Collapse
Affiliation(s)
- Viktória Golumba-Nagy
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Department I Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Johannes Kuehle
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Department I Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Andreas A Hombach
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Department I Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Hinrich Abken
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Department I Internal Medicine, University Hospital Cologne, Cologne, Germany; Regensburg Center for Interventional Immunology (RCI), University Regensburg, Regensburg, Germany; University Medical Center of Regensburg, Regensburg, Germany.
| |
Collapse
|
184
|
Manipulating the tumor microenvironment by adoptive cell transfer of CAR T-cells. Mamm Genome 2018; 29:739-756. [PMID: 29987406 DOI: 10.1007/s00335-018-9756-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022]
Abstract
T-cells expressing synthetic chimeric antigen receptors (CARs) have revolutionized immuno-oncology and highlighted the use of adoptive cell transfer, for the treatment of cancer. The phenomenal clinical success obtained in the treatment of hematological malignancies with CAR T-cells has not been reproduced in the treatment of solid tumors, mainly due to the suppressive and hostile tumor microenvironment (TME). This review will address the immunosuppressive features of the TME, which include the stroma, cytokine and chemokine milieu, suppressive regulatory cells and hypoxic conditions, which can all pose formidable barriers for the effective anti-tumor function of CAR T-cells. Some of the novel next generation CARs that have been developed and tested against the TME, will be discussed, to highlight the status of current research in CAR T-cell therapy for solid tumors.
Collapse
|
185
|
Sukumaran S, Watanabe N, Bajgain P, Raja K, Mohammed S, Fisher WE, Brenner MK, Leen AM, Vera JF. Enhancing the Potency and Specificity of Engineered T Cells for Cancer Treatment. Cancer Discov 2018; 8:972-987. [PMID: 29880586 DOI: 10.1158/2159-8290.cd-17-1298] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/13/2018] [Accepted: 06/05/2018] [Indexed: 01/05/2023]
Abstract
The adoptive transfer of chimeric antigen receptor (CAR)-modified T cells has produced tumor responses even in patients with refractory diseases. However, the paucity of antigens that are tumor selective has resulted, on occasion, in "on-target, off-tumor" toxicities. To address this issue, we developed an approach to render T cells responsive to an expression pattern present exclusively at the tumor by using a trio of novel chimeric receptors. Using pancreatic cancer as a model, we demonstrate how T cells engineered with receptors that recognize prostate stem cell antigen, TGFβ, and IL4, and whose endodomains recapitulate physiologic T-cell signaling by providing signals for activation, costimulation, and cytokine support, produce potent antitumor effects selectively at the tumor site. In addition, this strategy has the benefit of rendering our cells resistant to otherwise immunosuppressive cytokines (TGFβ and IL4) and can be readily extended to other inhibitory molecules present at the tumor site (e.g., PD-L1, IL10, and IL13).Significance: This proof-of-concept study demonstrates how sophisticated engineering approaches can be utilized to both enhance the antitumor efficacy and increase the safety profile of transgenic T cells by incorporating a combination of receptors that ensure that cells are active exclusively at the tumor site. Cancer Discov; 8(8); 972-87. ©2018 AACR.See related commentary by Achkova and Pule, p. 918This article is highlighted in the In This Issue feature, p. 899.
Collapse
Affiliation(s)
- Sujita Sukumaran
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Norihiro Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas
| | - Pradip Bajgain
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Kanchana Raja
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas
| | - Somala Mohammed
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - William E Fisher
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas
| | - Juan F Vera
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas.
| |
Collapse
|
186
|
Kosti P, Maher J, Arnold JN. Perspectives on Chimeric Antigen Receptor T-Cell Immunotherapy for Solid Tumors. Front Immunol 2018; 9:1104. [PMID: 29872437 PMCID: PMC5972325 DOI: 10.3389/fimmu.2018.01104] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/02/2018] [Indexed: 12/27/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy entails the genetic engineering of a patient's T-cells to express membrane spanning fusion receptors with defined specificities for tumor-associated antigens. These CARs are capable of eliciting robust T-cell activation to initiate killing of the target tumor cells. This therapeutic approach has produced unprecedented clinical outcomes in the treatment of "liquid" hematologic cancers, but to date has not produced comparable responses in targeting solid malignancies. Advances in our understanding of the immunobiology of solid tumors have highlighted several hurdles which currently hinder the efficacy of this therapy. These barriers include the insufficient accumulation of CAR T-cells in the tumor due to poor trafficking or physical exclusion and the exposure of infiltrating CAR T-cells to a panoply of immune suppressive checkpoint molecules, cytokines, and metabolic stresses that are not conducive to efficient immune reactions and can thereby render these cells anergic, exhausted, or apoptotic. This mini-review summarizes these hurdles and describes some recent approaches and innovations to genetically re-engineer CAR T-cells to counter inhibitory influences found in the tumor microenvironment. Novel immunotherapy drug combinations to potentiate the activity of CAR T-cells are also discussed. As our understanding of the immune landscape of tumors improves and our repertoire of immunotherapeutic drugs expands, it is envisaged that the efficacy of CAR T-cells against solid tumors might be potentiated using combination therapies, which it is hoped may lead to meaningful improvements in clinical outcome for patients with refractory solid malignancies.
Collapse
Affiliation(s)
- Paris Kosti
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - John Maher
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, London, United Kingdom.,Department of Immunology, Eastbourne Hospital, Eastbourne, East Sussex, United Kingdom.,Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - James N Arnold
- Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, London, United Kingdom
| |
Collapse
|
187
|
Shum T, Kruse RL, Rooney CM. Strategies for enhancing adoptive T-cell immunotherapy against solid tumors using engineered cytokine signaling and other modalities. Expert Opin Biol Ther 2018; 18:653-664. [PMID: 29727246 DOI: 10.1080/14712598.2018.1473368] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Cancer therapy has been transformed by the demonstration that tumor-specific T-cells can eliminate tumor cells in a clinical setting with minimal long-term toxicity. However, significant success in the treatment of leukemia and lymphoma with T-cells using native receptors or redirected with chimeric antigen receptors (CARs) has not been recapitulated in the treatment of solid tumors. This lack of success is likely related to the paucity of costimulatory and cytokine signaling available in solid tumors, in addition to a range of inhibitory mechanisms. AREAS COVERED We summarize the latest developments in engineered T-cell immunotherapy, describe the limitations of these approaches in treating solid tumors, and finally highlight several strategies that may be useful in mediating solid tumor responses in the future, while also ensuring safety of engineered cells. EXPERT OPINION CAR-T therapies require further engineering to achieve their potential against solid tumors. Facilitating cytokine signaling in CAR T-cells appears to be essential in achieving better responses. However, the engineering of T-cells with potentially unchecked proliferation and potency raises the question of whether the simultaneous combination of enhancements will prove safe, necessitating continued advancements in regulating CAR-T activity at the tumor site and methods to safely switch off these engineered cells.
Collapse
Affiliation(s)
- Thomas Shum
- a Center for Cell and Gene Therapy, Texas Children's Hospital , Houston Methodist Hospital, and Baylor College of Medicine , Houston , Texas , USA.,b Medical Scientist Training Program , Baylor College of Medicine , Houston , Texas , USA.,c Interdepartmental Program in Translational Biology and Molecular Medicine , Baylor College of Medicine , Houston , Texas , USA
| | - Robert L Kruse
- a Center for Cell and Gene Therapy, Texas Children's Hospital , Houston Methodist Hospital, and Baylor College of Medicine , Houston , Texas , USA.,b Medical Scientist Training Program , Baylor College of Medicine , Houston , Texas , USA.,c Interdepartmental Program in Translational Biology and Molecular Medicine , Baylor College of Medicine , Houston , Texas , USA
| | - Cliona M Rooney
- a Center for Cell and Gene Therapy, Texas Children's Hospital , Houston Methodist Hospital, and Baylor College of Medicine , Houston , Texas , USA.,c Interdepartmental Program in Translational Biology and Molecular Medicine , Baylor College of Medicine , Houston , Texas , USA.,d Department of Pediatrics , Baylor College of Medicine , Houston , Texas , USA.,e Texas Children's Cancer and Hematology Centers , Baylor College of Medicine , Houston , Texas , USA.,f Department of Pathology and Immunology , Baylor College of Medicine , Houston , Texas , USA.,g Department of Molecular Virology and Microbiology , Baylor College of Medicine , Houston , Texas , USA
| |
Collapse
|
188
|
Bajgain P, Tawinwung S, D'Elia L, Sukumaran S, Watanabe N, Hoyos V, Lulla P, Brenner MK, Leen AM, Vera JF. CAR T cell therapy for breast cancer: harnessing the tumor milieu to drive T cell activation. J Immunother Cancer 2018; 6:34. [PMID: 29747685 PMCID: PMC5944113 DOI: 10.1186/s40425-018-0347-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/26/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The adoptive transfer of T cells redirected to tumor via chimeric antigen receptors (CARs) has produced clinical benefits for the treatment of hematologic diseases. To extend this approach to breast cancer, we generated CAR T cells directed against mucin1 (MUC1), an aberrantly glycosylated neoantigen that is overexpressed by malignant cells and whose expression has been correlated with poor prognosis. Furthermore, to protect our tumor-targeted cells from the elevated levels of immune-inhibitory cytokines present in the tumor milieu, we co-expressed an inverted cytokine receptor linking the IL4 receptor exodomain with the IL7 receptor endodomain (4/7ICR) in order to transform the suppressive IL4 signal into one that would enhance the anti-tumor effects of our CAR T cells at the tumor site. METHODS First (1G - CD3ζ) and second generation (2G - 41BB.CD3ζ) MUC1-specific CARs were constructed using the HMFG2 scFv. Following retroviral transduction transgenic expression of the CAR±ICR was assessed by flow cytometry. In vitro CAR/ICR T cell function was measured by assessing cell proliferation and short- and long-term cytotoxic activity using MUC1+ MDA MB 468 cells as targets. In vivo anti-tumor activity was assessed using IL4-producing MDA MB 468 tumor-bearing mice using calipers to assess tumor volume and bioluminescence imaging to track T cells. RESULTS In the IL4-rich tumor milieu, 1G CAR.MUC1 T cells failed to expand or kill MUC1+ tumors and while co-expression of the 4/7ICR promoted T cell expansion, in the absence of co-stimulatory signals the outgrowing cells exhibited an exhausted phenotype characterized by PD-1 and TIM3 upregulation and failed to control tumor growth. However, by co-expressing 2G CAR.MUC1 (signal 1 - activation + signal 2 - co-stimulation) and 4/7ICR (signal 3 - cytokine), transgenic T cells selectively expanded at the tumor site and produced potent and durable tumor control in vitro and in vivo. CONCLUSIONS Our findings demonstrate the feasibility of targeting breast cancer using transgenic T cells equipped to thrive in the suppressive tumor milieu and highlight the importance of providing transgenic T cells with signals that recapitulate physiologic TCR signaling - [activation (signal 1), co-stimulation (signal 2) and cytokine support (signal 3)] - to promote in vivo persistence and memory formation.
Collapse
Affiliation(s)
- Pradip Bajgain
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, 77030, USA.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Supannikar Tawinwung
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, 77030, USA.,Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Lindsey D'Elia
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Sujita Sukumaran
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, 77030, USA.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Norihiro Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Valentina Hoyos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Premal Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Juan F Vera
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
189
|
Challenges and prospects of chimeric antigen receptor T cell therapy in solid tumors. Med Oncol 2018; 35:87. [DOI: 10.1007/s12032-018-1149-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/02/2018] [Indexed: 01/12/2023]
|
190
|
Wang G, Li Y, Yang Z, Xu W, Yang Y, Tan X. ROS mediated EGFR/MEK/ERK/HIF-1α Loop Regulates Glucose metabolism in pancreatic cancer. Biochem Biophys Res Commun 2018; 500:873-878. [PMID: 29702094 DOI: 10.1016/j.bbrc.2018.04.177] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 04/22/2018] [Indexed: 11/26/2022]
Abstract
To investigate the glycometabolism associated mechanism in invasion and metastasis of pancreatic cancer, We screened out genes involved in anaerobic glycolysis headed by HIF-1α,using pre-established a pair of pancreatic cancer cell lines. In this study, we further detected the glucose metabolism state not only in the cells but all also in two groups of patients with different SUVmax on 18F-FDG PET/CT. The data suggests that ROS mediated EGFR/MEK/ERK/HIF-1α loop is activated in high glucose metabolic samples both in vitro and in vivo: The increasing of HIF-1α expression is controlled by activation of EGFR/MEK/ERK pathway in hypoxia condition, HIF-1α inhibits excessive release of ROS, the reduction of ROS further activates EGFR to form a positive feedback loop. This difference is closely related to invasion and metastasis capacity of pancreatic cancer, and can be rescued by separate or combined inhibition of EGFR or HIF-1α in various degree. These results indicate a new clue to develop therapy of pancreatic cancer by regulating the glucose metabolism.
Collapse
Affiliation(s)
- Gang Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Yifeng Li
- 101K, The First Clinical Department of China Medical University, Shenyang, 110122, China.
| | - Zeyu Yang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Weina Xu
- Department of Radiology and Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Yifan Yang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Xiaodong Tan
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
191
|
Ho P, Chen YY. Synthetic Biology in Immunotherapy and Stem Cell Therapy Engineering. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Patrick Ho
- University of California; Department of Chemical and Biomolecular Engineering; 420 Westwood Plaza, Boelter Hall 5532, Los Angeles CA 90095 USA
| | - Yvonne Y. Chen
- University of California; Department of Chemical and Biomolecular Engineering; 420 Westwood Plaza, Boelter Hall 5532, Los Angeles CA 90095 USA
| |
Collapse
|
192
|
Chen N, Li X, Chintala NK, Tano ZE, Adusumilli PS. Driving CARs on the uneven road of antigen heterogeneity in solid tumors. Curr Opin Immunol 2018; 51:103-110. [PMID: 29554494 DOI: 10.1016/j.coi.2018.03.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/03/2018] [Accepted: 03/01/2018] [Indexed: 12/11/2022]
Abstract
Uniform and strong expression of CD19, a cell surface antigen, on cells of B-cell lineage is unique to hematologic malignancies. Tumor-associated antigen (TAA) targets in solid tumors exhibit heterogeneity with regards to intensity and distribution, posing a challenge for chimeric antigen receptor (CAR) T-cell therapy. Novel CAR designs, such as dual TAA-targeted CARs, tandem CARs, and switchable CARs, in conjunction with inhibitory CARs, are being investigated as means to overcome antigen heterogeneity. In addition to heterogeneity in cancer-cell antigen expression, the key determinants for antitumor responses are CAR expression levels and affinity in T cells. Herein, we review CAR T-cell therapy clinical trials for patients with lung or pancreatic cancers, and provide detailed translational strategies to overcome antigen heterogeneity.
Collapse
Affiliation(s)
- Nan Chen
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Xiaoyu Li
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Navin K Chintala
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Zachary E Tano
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
193
|
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has been clinically proven to efficiently combat haematological malignancies. However, continuous efforts are required to increase the specificity of CAR T-cells against tumour versus normal tissues, and are essential to improve their antitumour activity in solid tumours. This review summarises the structure of major CAR designs, and strategies to overcome immunosuppressive tumour microenvironment, and reduce toxicities. Along with reviewing currently available techniques that allow the elimination of CAR T-cells after they fulfil their desired functions, using suicide genes, drug elimination strategies are also introduced. A better understanding of the strengths and pitfalls of CAR T-cell therapy will provide fundamental knowledge for the improvement of engineered T-cell therapy in the near future.
Collapse
|
194
|
Fu Y, Liu S, Zeng S, Shen H. The critical roles of activated stellate cells-mediated paracrine signaling, metabolism and onco-immunology in pancreatic ductal adenocarcinoma. Mol Cancer 2018; 17:62. [PMID: 29458370 PMCID: PMC5817854 DOI: 10.1186/s12943-018-0815-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/12/2018] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignant diseases worldwide. It is refractory to conventional treatments, and consequently has a documented 5-year survival rate as low as 7%. Increasing evidence indicates that activated pancreatic stellate cells (PSCs), one of the stromal components in tumor microenvironment (TME), play a crucial part in the desmoplasia, carcinogenesis, aggressiveness, metastasis associated with PDAC. Despite the current understanding of PSCs as a "partner in crime" to PDAC, detailed regulatory roles of PSCs and related microenvironment remain obscure. In addition to multiple paracrine signaling pathways, recent research has confirmed that PSCs-mediated tumor microenvironment may influence behaviors of PDAC via diverse mechanisms, such as rewiring metabolic networks, suppressing immune responses. These new activities are closely linked with treatment and prognosis of PDAC. In this review, we discuss the recent advances regarding new functions of activated PSCs, including PSCs-cancer cells interaction, mechanisms involved in immunosuppressive regulation, and metabolic reprogramming. It's clear that these updated experimental or clinical studies of PSCs may provide a promising approach for PDAC treatment in the near future.
Collapse
Affiliation(s)
- Yaojie Fu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shanshan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
195
|
D'Aloia MM, Zizzari IG, Sacchetti B, Pierelli L, Alimandi M. CAR-T cells: the long and winding road to solid tumors. Cell Death Dis 2018; 9:282. [PMID: 29449531 PMCID: PMC5833816 DOI: 10.1038/s41419-018-0278-6] [Citation(s) in RCA: 291] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 01/11/2023]
Abstract
Adoptive cell therapy of solid tumors with reprogrammed T cells can be considered the “next generation” of cancer hallmarks. CAR-T cells fail to be as effective as in liquid tumors for the inability to reach and survive in the microenvironment surrounding the neoplastic foci. The intricate net of cross-interactions occurring between tumor components, stromal and immune cells leads to an ineffective anergic status favoring the evasion from the host’s defenses. Our goal is hereby to trace the road imposed by solid tumors to CAR-T cells, highlighting pitfalls and strategies to be developed and refined to possibly overcome these hurdles.
Collapse
Affiliation(s)
- Maria Michela D'Aloia
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | - Luca Pierelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Maurizio Alimandi
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
196
|
Shi X, Zhao Y, He R, Zhou M, Pan S, Yu S, Xie Y, Li X, Wang M, Guo X, Qin R. Three-lncRNA signature is a potential prognostic biomarker for pancreatic adenocarcinoma. Oncotarget 2018; 9:24248-24259. [PMID: 29849937 PMCID: PMC5966255 DOI: 10.18632/oncotarget.24443] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/01/2018] [Indexed: 01/17/2023] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a highly aggressive and metastatic cancer characterized by poor survival rates. Long non-coding RNAs (lncRNAs) play important roles in various biological processes, including cancer and PAAD. To identify the specific lncRNAs associated with PAAD and analyze their function, we constructed a global triple network based on the competitive endogenous RNA (ceRNA) theory and RNA-seq data from The Cancer Genome Atlas. Using 182 PAAD cases, we established a lncRNA–miRNA–mRNA co-expression network, which was composed of 43 lncRNA nodes, 253 mRNA nodes, 11 miRNA nodes, and 475 edges. Six lncRNAs in the ceRNA network were closely related to overall survival, and a three-lncRNA signature predicted survival of PAAD patients. Protein–protein interaction network data revealed that five genes were associated with overall survival. These results provide novel insight into the function of a lncRNA-associated ceRNA network in the pathogenesis of PAAD, and indicate that the identified three-lncRNA signature may serve as an independent prognostic marker in PAAD.
Collapse
Affiliation(s)
- Xiuhui Shi
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhao
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruizhi He
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhou
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shutao Pan
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuo Yu
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xie
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Li
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjun Guo
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
197
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a devastating 5-year overall survival of only approximately 7%. Although just 4% of all malignant diseases are accounted to PDAC, it will become the second leading cause of cancer-related deaths before 2030. Immunotherapy has proven to be a promising therapeutic option in various malignancies such as melanoma, non-small cell lung cancer (NSCLC), microsatellite instability-high gastrointestinal cancer, urinary tract cancer, kidney cancer, and others. In this review, we summarize recent findings about immunological aspects of PDAC with the focus on the proposed model of the "cancer immunity cycle". By this model, a deeper understanding of the underlying mechanism in achieving a T-cell response against cancer cells is provided. There is currently great interest in the field around designing novel immunotherapy combination studies for PDAC based on a sound understanding of the underlying immunobiology.
Collapse
|
198
|
Hu Y, Tian ZG, Zhang C. Chimeric antigen receptor (CAR)-transduced natural killer cells in tumor immunotherapy. Acta Pharmacol Sin 2018; 39:167-176. [PMID: 28880014 DOI: 10.1038/aps.2017.125] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/06/2017] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells are potential effector cells in cell-based cancer immunotherapy, particularly in the control of hematological malignancies. The chimeric antigen receptor (CAR) is an artificially modified fusion protein that consists of an extracellular antigen recognition domain fused to an intracellular signaling domain. T cells genetically modified with a CAR have demonstrated remarkable success in the treatment of hematological cancers. Compared to T cells, CAR-transduced NK cells (CAR-NK) exhibit several advantages, such as safety in clinical use, the mechanisms by which they recognize cancer cells, and their abundance in clinical samples. Human primary NK cells and the NK-92 cell line have been successfully transduced to express CARs against both hematological cancers and solid tumors in pre-clinical and clinical trials. However, many challenges and obstacles remain, such as the ex vivo expansion of CAR-modified primary NK cells and the low transduction efficiency of NK cells. Many strategies and technologies have been developed to improve the safety and therapeutic efficacy in CAR-based immunotherapy. Moreover, NK cells express a variety of activating receptors (NKRs), such as CD16, NKG2D, CD226 and NKp30, which might specifically recognize the ligands expressed on tumor cells. Based on the principle of NKR recognition, a strategy that targets NKRs is rapidly emerging. Given the promising clinical progress described in this review, CAR- and NKR-NK cell-based immunotherapy are likely promising new strategies for cancer therapy.
Collapse
|
199
|
Mirzaei HR, Rodriguez A, Shepphird J, Brown CE, Badie B. Chimeric Antigen Receptors T Cell Therapy in Solid Tumor: Challenges and Clinical Applications. Front Immunol 2017; 8:1850. [PMID: 29312333 PMCID: PMC5744011 DOI: 10.3389/fimmu.2017.01850] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/06/2017] [Indexed: 12/21/2022] Open
Abstract
Adoptive cellular immunotherapy (ACT) employing engineered T lymphocytes expressing chimeric antigen receptors (CARs) has demonstrated promising antitumor effects in advanced hematologic cancers, such as relapsed or refractory acute lymphoblastic leukemia, chronic lymphocytic leukemia, and non-Hodgkin lymphoma, supporting the translation of ACT to non-hematological malignancies. Although CAR T cell therapy has made remarkable strides in the treatment of patients with certain hematological cancers, in solid tumors success has been limited likely due to heterogeneous antigen expression, immunosuppressive networks in the tumor microenvironment limiting CAR T cell function and persistence, and suboptimal trafficking to solid tumors. Here, we outline specific approaches to overcome barriers to CAR T cell effectiveness in the context of the tumor microenvironment and offer our perspective on how expanding the use of CAR T cells in solid tumors may require modifications in CAR T cell design. We anticipate these modifications will further expand CAR T cell therapy in clinical practice.
Collapse
Affiliation(s)
- Hamid R Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Analiz Rodriguez
- Division of Neurosurgery, Department of Surgery, City of Hope National Medical Center, Duarte, CA, United States
| | - Jennifer Shepphird
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Christine E Brown
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Behnam Badie
- Division of Neurosurgery, Department of Surgery, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
200
|
Massa C, Seliger B. The tumor microenvironment: Thousand obstacles for effector T cells. Cell Immunol 2017; 343:103730. [PMID: 29249298 DOI: 10.1016/j.cellimm.2017.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 12/24/2022]
Abstract
The immune system is endowed with the capability to recognize and destroy transformed cells, but even in the presence of an immune infiltrate many tumors do progress. In the last decades new discoveries have shed light into (some of) the underlying mechanisms. Immune effector cells are not only under the influence of immune suppressive cell subsets, but also intrinsically regulated by immune check point molecules that under physiological condition avoid attach of healthy tissue. Moreover, tumor cells are modifying the surrounding microenvironment through secretion of immune modulators as well as via their own metabolism, thus further impairing the development of immune effector functions. Different approaches are currently being evaluated in the clinic to overcome those regulatory mechanisms and to unleash effector T cells.
Collapse
Affiliation(s)
- Chiara Massa
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|