151
|
Utilization of a deoxynucleoside diphosphate substrate by HIV reverse transcriptase. PLoS One 2008; 3:e2074. [PMID: 18446195 PMCID: PMC2312326 DOI: 10.1371/journal.pone.0002074] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 03/19/2008] [Indexed: 11/19/2022] Open
Abstract
Background Deoxynucleoside triphosphates (dNTPs) are the normal substrates for DNA synthesis catalyzed by polymerases such as HIV-1 reverse transcriptase (RT). However, substantial amounts of deoxynucleoside diphosphates (dNDPs) are also present in the cell. Use of dNDPs in HIV-1 DNA synthesis could have significant implications for the efficacy of nucleoside RT inhibitors such as AZT which are first line therapeutics for treatment of HIV infection. Our earlier work on HIV-1 reverse transcriptase (RT) suggested that the interaction between the γ-phosphate of the incoming dNTP and RT residue K65 in the active site is not essential for dNTP insertion, implying that this polymerase may be able to insert dNDPs in addition to dNTPs. Methodology/Principal Findings We examined the ability of recombinant wild type (wt) and mutant RTs with substitutions at residue K65 to utilize a dNDP substrate in primer extension reactions. We found that wild type HIV-1 RT indeed catalyzes incorporation of dNDP substrates whereas RT with mutations of residue K65 were unable to catalyze this reaction. Wild type HIV-1 RT also catalyzed the reverse reaction, inorganic phosphate-dependent phosphorolysis. Nucleotide-mediated phosphorolytic removal of chain-terminating 3′-terminal nucleoside inhibitors such as AZT forms the basis for HIV-1 resistance to such drugs, and this removal is enhanced by thymidine analog mutations (TAMs). We found that both wt and TAM-containing RTs were able to catalyze Pi-mediated phosphorolysis of 3′-terminal AZT at physiological levels of Pi with an efficacy similar to that for ATP-dependent AZT-excision. Conclusions We have identified two new catalytic functions of HIV-1 RT, the use of dNDPs as substrates for DNA synthesis, and the use of Pi as substrate for phosphorolytic removal of primer 3′-terminal nucleotides. The ability to insert dNDPs has been documented for only one other DNA polymerase, the RB69 DNA polymerase and the reverse reaction employing inorganic phosphate has not been documented for any DNA polymerase. Importantly, our results show that Pi-mediated phosphorolysis can contribute to AZT resistance and indicates that factors that influence HIV resistance to AZT are more complex than previously appreciated.
Collapse
|
152
|
Lesion processing: high-fidelity versus lesion-bypass DNA polymerases. Trends Biochem Sci 2008; 33:209-19. [PMID: 18407502 DOI: 10.1016/j.tibs.2008.02.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 02/08/2008] [Accepted: 02/12/2008] [Indexed: 12/18/2022]
Abstract
When a high-fidelity DNA polymerase encounters certain DNA-damage sites, its progress can be stalled and one or more lesion-bypass polymerases are recruited to transit the lesion. Here, we consider two representative types of lesions: (i) 7,8-dihydro-8-oxoguanine (8-oxoG), a small, highly prevalent lesion caused by oxidative damage; and (ii) bulky lesions derived from the environmental pre-carcinogen benzo[a]pyrene, in the high-fidelity DNA polymerase Bacillus fragment (BF) from Bacillus stearothermophilus and in the lesion-bypass DNA polymerase IV (Dpo4) from Sulfolobus solfataricus. The tight fit of the BF polymerase around the nascent base pair contrasts with the more spacious, solvent-exposed active site of Dpo4, and these differences in architecture result in distinctions in their respective functions: one-step versus stepwise polymerase translocation, mutagenic versus accurate bypass of 8-oxoG, and polymerase stalling versus mutagenic bypass at bulky benzo[a]pyrene-derived lesions.
Collapse
|
153
|
Allen WJ, Rothwell PJ, Waksman G. An intramolecular FRET system monitors fingers subdomain opening in Klentaq1. Protein Sci 2008; 17:401-8. [PMID: 18287276 DOI: 10.1110/ps.073309208] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A major goal of polymerase research is to determine the mechanism through which a nucleotide complementary to a templating DNA base is selected and delivered to the polymerase active site. Structural evidence suggests a large open-to-closed conformational change affecting the fingers subdomain as being crucial to the process. We previously designed a FRET system capable of measuring the rate of fingers subdomain closure in the presence of correct nucleotide. However, this FRET system was limited in that it could not directly measure the rate of fingers subdomain opening by FRET after polymerization or in the absence of DNA. Here we report the development of a new system capable of measuring both fingers subdomain closure and reopening by FRET, and show that the rate of fingers subdomain opening is limited only by the rate of polymerization. We anticipate that this system will scale down to the single molecule level, allowing measurement of fingers subdomain movements in the presence of incorrect nucleotide and in the absence of DNA.
Collapse
Affiliation(s)
- William J Allen
- Institute of Structural Molecular Biology, UCL and Birkbeck, London WC1E 7HX, United Kingdom
| | | | | |
Collapse
|
154
|
Structure-function relationships among RNA-dependent RNA polymerases. Curr Top Microbiol Immunol 2008; 320:137-56. [PMID: 18268843 DOI: 10.1007/978-3-540-75157-1_7] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RNA-dependent RNA polymerases (RdRPs) play key roles in viral transcription and genome replication, as well as epigenetic and post-transcriptional control of cellular gene expression. In this article, we review the crystallographic, biochemical, and molecular genetic data available for viral RdRPs that have led to a detailed description of substrate and cofactor binding, fidelity of nucleotide selection and incorporation, and catalysis. It is likely that the cellular RdRPs will share some of the basic structural and mechanistic principles gleaned from studies of viral RdRPs. Therefore, studies of the viral RdRP establish a framework for the study of cellular RdRPs, an important yet understudied class of nucleic acid polymerases.
Collapse
|
155
|
Zamyatkin DF, Parra F, Alonso JMM, Harki DA, Peterson BR, Grochulski P, Ng KKS. Structural insights into mechanisms of catalysis and inhibition in Norwalk virus polymerase. J Biol Chem 2008; 283:7705-12. [PMID: 18184655 DOI: 10.1074/jbc.m709563200] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Crystal structures of Norwalk virus polymerase bound to an RNA primer-template duplex and either the natural substrate CTP or the inhibitor 5-nitrocytidine triphosphate have been determined to 1.8A resolution. These structures reveal a closed conformation of the polymerase that differs significantly from previously determined open structures of calicivirus and picornavirus polymerases. These closed complexes are trapped immediately prior to the nucleotidyl transfer reaction, with the triphosphate group of the nucleotide bound to two manganese ions at the active site, poised for reaction to the 3'-hydroxyl group of the RNA primer. The positioning of the 5-nitrocytidine triphosphate nitro group between the alpha-phosphate and the 3'-hydroxyl group of the primer suggests a novel, general approach for the design of antiviral compounds mimicking natural nucleosides and nucleotides.
Collapse
Affiliation(s)
- Dmitry F Zamyatkin
- Department of Biological Sciences and Alberta Ingenuity Centre for Carbohydrate Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | | | | | | | | | |
Collapse
|
156
|
Minko IG, Kozekov ID, Kozekova A, Harris TM, Rizzo CJ, Lloyd RS. Mutagenic potential of DNA-peptide crosslinks mediated by acrolein-derived DNA adducts. Mutat Res 2008; 637:161-72. [PMID: 17868748 PMCID: PMC3181171 DOI: 10.1016/j.mrfmmm.2007.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/27/2007] [Accepted: 08/01/2007] [Indexed: 04/09/2023]
Abstract
Current data suggest that DNA-peptide crosslinks are formed in cellular DNA as likely intermediates in the repair of DNA-protein crosslinks. In addition, a number of naturally occurring peptides are known to efficiently conjugate with DNA, particularly through the formation of Schiff-base complexes at aldehydic DNA adducts and abasic DNA sites. Since the potential role of DNA-peptide crosslinks in promoting mutagenesis is not well elucidated, here we report on the mutagenic properties of Schiff-base-mediated DNA-peptide crosslinks in mammalian cells. Site-specific DNA-peptide crosslinks were generated by covalently trapping a lysine-tryptophan-lysine-lysine peptide to the N(6) position of deoxyadenosine (dA) or the N(2) position of deoxyguanosine (dG) via the aldehydic forms of acrolein-derived DNA adducts (gamma-hydroxypropano-dA or gamma-hydroxypropano-dG, respectively). In order to evaluate the potential of DNA-peptide crosslinks to promote mutagenesis, we inserted the modified oligodeoxynucleotides into a single-stranded pMS2 shuttle vector, replicated these vectors in simian kidney (COS-7) cells and tested the progeny DNAs for mutations. Mutagenic analyses revealed that at the site of modification, the gamma-hydroxypropano-dA-mediated crosslink induced mutations at only approximately 0.4%. In contrast, replication bypass of the gamma-hydroxypropano-dG-mediated crosslink resulted in mutations at the site of modification at an overall frequency of approximately 8.4%. Among the types of mutations observed, single base substitutions were most common, with a prevalence of G to T transversions. Interestingly, while covalent attachment of lysine-tryptophan-lysine-lysine at gamma-hydroxypropano-dG caused an increase in mutation frequencies relative to gamma-hydroxypropano-dG, similar modification of gamma-hydroxypropano-dA resulted in decreased levels of mutations. Thus, certain DNA-peptide crosslinks can be mutagenic, and their potential to cause mutations depends on the site of peptide attachment. We propose that in order to avoid error-prone replication, proteolytic degradation of proteins covalently attached to DNA and subsequent steps of DNA repair should be tightly coordinated.
Collapse
Affiliation(s)
- Irina G. Minko
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| | - Ivan D. Kozekov
- Department of Chemistry, Center in Molecular Toxicology, UV Station B, 351822, Vanderbilt University, Nashville, TN 37235, United States
| | - Albena Kozekova
- Department of Chemistry, Center in Molecular Toxicology, UV Station B, 351822, Vanderbilt University, Nashville, TN 37235, United States
| | - Thomas M. Harris
- Department of Chemistry, Center in Molecular Toxicology, UV Station B, 351822, Vanderbilt University, Nashville, TN 37235, United States
| | - Carmelo J. Rizzo
- Department of Chemistry, Center in Molecular Toxicology, UV Station B, 351822, Vanderbilt University, Nashville, TN 37235, United States
| | - R. Stephen Lloyd
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
- Corresponding author. Tel.: +1 503 494 9957; fax: +1 503 494 6831.,
| |
Collapse
|
157
|
McCulloch SD, Kunkel TA. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res 2008; 18:148-61. [PMID: 18166979 PMCID: PMC3639319 DOI: 10.1038/cr.2008.4] [Citation(s) in RCA: 370] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In their seminal publication describing the structure of the DNA double helix, Watson and Crick wrote what may be one of the greatest understatements in the scientific literature, namely that "It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material." Half a century later, we more fully appreciate what a huge challenge it is to replicate six billion nucleotides with the accuracy needed to stably maintain the human genome over many generations. This challenge is perhaps greater than was realized 50 years ago, because subsequent studies have revealed that the genome can be destabilized not only by environmental stresses that generate a large number and variety of potentially cytotoxic and mutagenic lesions in DNA but also by various sequence motifs of normal DNA that present challenges to replication. Towards a better understanding of the many determinants of genome stability, this chapter reviews the fidelity with which undamaged and damaged DNA is copied, with a focus on the eukaryotic B- and Y-family DNA polymerases, and considers how this fidelity is achieved.
Collapse
Affiliation(s)
- Scott D McCulloch
- Department of Environmental and Molecular Toxicology, North Carolina State University, Campus Box 7633, Raleigh, NC 27695, USA.
| | | |
Collapse
|
158
|
Broyde S, Wang L, Zhang L, Rechkoblit O, Geacintov NE, Patel DJ. DNA adduct structure-function relationships: comparing solution with polymerase structures. Chem Res Toxicol 2007; 21:45-52. [PMID: 18052109 DOI: 10.1021/tx700193x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It has now been nearly two decades since the first solution structures of DNA duplexes covalently damaged by metabolically activated polycyclic aromatic hydrocarbons and amines were determined by NMR. Dozens of such high-resolution structures are now available, and some broad structural themes have been uncovered. It has been hypothesized that the solution structures are relevant to the biochemical processing of the adducts. The structural features of the adducts are considered to determine their mutational properties in DNA polymerases and their repair susceptibilities. In recent years, a number of crystal structures of DNA adducts of interest to our work have been determined in DNA polymerases. Accordingly, it is now timely to consider how NMR solution structures relate to structures within DNA polymerases. The NMR solution structural themes for polycyclic aromatic adducts are often observed in polymerase crystal structures. While the polymerase interactions can on occasion override the solution preferences, intrinsic adduct conformations favored in solution are often manifested within polymerases and likely play a significant role in lesion processing.
Collapse
Affiliation(s)
- Suse Broyde
- Department of Biology, New York University, New York NY 10003, USA.
| | | | | | | | | | | |
Collapse
|
159
|
Berman AJ, Kamtekar S, Goodman JL, Lázaro JM, de Vega M, Blanco L, Salas M, Steitz TA. Structures of phi29 DNA polymerase complexed with substrate: the mechanism of translocation in B-family polymerases. EMBO J 2007; 26:3494-505. [PMID: 17611604 PMCID: PMC1933411 DOI: 10.1038/sj.emboj.7601780] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 05/30/2007] [Indexed: 11/09/2022] Open
Abstract
Replicative DNA polymerases (DNAPs) move along template DNA in a processive manner. The structural basis of the mechanism of translocation has been better studied in the A-family of polymerases than in the B-family of replicative polymerases. To address this issue, we have determined the X-ray crystal structures of phi29 DNAP, a member of the protein-primed subgroup of the B-family of polymerases, complexed with primer-template DNA in the presence or absence of the incoming nucleoside triphosphate, the pre- and post-translocated states, respectively. Comparison of these structures reveals a mechanism of translocation that appears to be facilitated by the coordinated movement of two conserved tyrosine residues into the insertion site. This differs from the mechanism employed by the A-family polymerases, in which a conserved tyrosine moves into the templating and insertion sites during the translocation step. Polymerases from the two families also interact with downstream single-stranded template DNA in very different ways.
Collapse
Affiliation(s)
- Andrea J Berman
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Satwik Kamtekar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jessica L Goodman
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - José M Lázaro
- Centro de Biología Molecular ‘Severo Ochoa' (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Miguel de Vega
- Centro de Biología Molecular ‘Severo Ochoa' (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Luis Blanco
- Centro de Biología Molecular ‘Severo Ochoa' (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Margarita Salas
- Centro de Biología Molecular ‘Severo Ochoa' (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
160
|
Rothwell PJ, Waksman G. A pre-equilibrium before nucleotide binding limits fingers subdomain closure by Klentaq1. J Biol Chem 2007; 282:28884-28892. [PMID: 17640877 DOI: 10.1074/jbc.m704824200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Numerous studies have been undertaken to establish the mechanism of dNTP binding and template-directed incorporation by DNA polymerases. It has been established by kinetic experiments that a rate-limiting step, crucial for dNTP selection, occurs before chemical bond formation. Crystallographic studies indicated that this step may be due to a large open-to-closed conformational transition affecting the fingers subdomain. In previous studies, we established a fluorescence resonance energy transfer system to monitor the open-to-closed transition in the fingers subdomain of Klentaq1. By comparing the rates of the fingers subdomain closure with that of the rate-limiting step for Klentaq1, we showed that fingers subdomain motion was significantly faster than the rate-limiting step. We have now used this system to characterize DNA binding as well as to complete a more extensive characterization of incorporation of all four dNTPs. The data indicate that DNA binding occurs by a two-step association and that dissociation of the DNA is significantly slower in the case of the closed ternary complex. The data for nucleotide incorporation indicate a step occurring before dNTP binding, which differs for all four nucleotides. As the only difference between the (E x p/t) complexes is the templating base, it would suggest an important role for the templating base in initial ground state selection.
Collapse
Affiliation(s)
- Paul J Rothwell
- Institute of Structural Molecular Biology, Birkbeck College and University College London, Malet Street, London, WC1E 7HX, United Kingdom
| | - Gabriel Waksman
- Institute of Structural Molecular Biology, Birkbeck College and University College London, Malet Street, London, WC1E 7HX, United Kingdom.
| |
Collapse
|
161
|
Xu P, Oum L, Beese LS, Geacintov NE, Broyde S. Following an environmental carcinogen N2-dG adduct through replication: elucidating blockage and bypass in a high-fidelity DNA polymerase. Nucleic Acids Res 2007; 35:4275-88. [PMID: 17576677 PMCID: PMC1934992 DOI: 10.1093/nar/gkm416] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We have investigated how a benzo[a]pyrene-derived N2-dG adduct, 10S(+)-trans-anti-[BP]-N2-dG ([BP]G*), is processed in a well-characterized Pol I family model replicative DNA polymerase, Bacillus fragment (BF). Experimental results are presented that reveal relatively facile nucleotide incorporation opposite the lesion, but very inefficient further extension. Computational studies follow the possible bypass of [BP]G* through the pre-insertion, insertion and post-insertion sites as BF alternates between open and closed conformations. With dG* in the normal B-DNA anti conformation, BP seriously disturbs the polymerase structure, positioning itself either deeply in the pre-insertion site or on the crowded evolving minor groove side of the modified template, consistent with a polymerase-blocking conformation. With dG* in the less prevalent syn conformation, BP causes less distortion: it is either out of the pre-insertion site or in the major groove open pocket of the polymerase. Thus, the syn conformation can account for the observed relatively easy incorporation of nucleotides, with mutagenic purines favored, opposite the [BP]G* adduct. However, with the lesion in the BF post-insertion site, more serious distortions caused by the adduct even in the syn conformation explain the very inefficient extension observed experimentally. In vivo, a switch to a potentially error-prone bypass polymerase likely dominates translesion bypass.
Collapse
Affiliation(s)
- Pingna Xu
- Department of Biology and Department of Chemistry, New York University, New York, NY and Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Lida Oum
- Department of Biology and Department of Chemistry, New York University, New York, NY and Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Lorena S. Beese
- Department of Biology and Department of Chemistry, New York University, New York, NY and Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Nicholas E. Geacintov
- Department of Biology and Department of Chemistry, New York University, New York, NY and Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Suse Broyde
- Department of Biology and Department of Chemistry, New York University, New York, NY and Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
- *To whom correspondence should be addressed. (212)998-8231(212)995-4015
| |
Collapse
|
162
|
Strerath M, Gloeckner C, Liu D, Schnur A, Marx A. Directed DNA polymerase evolution: effects of mutations in motif C on the mismatch-extension selectivity of thermus aquaticus DNA polymerase. Chembiochem 2007; 8:395-401. [PMID: 17279590 DOI: 10.1002/cbic.200600337] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The selectivity of DNA polymerases for processing the canonical nucleotide and DNA substrate in favor of the noncanonical ones is the key to the integrity of the genome of every living species and to many biotechnological applications. The inborn ability of most DNA polymerases to abort efficient extension of mismatched DNA substrates adds to the overall DNA polymerase selectivity. DNA polymerases have been grouped into families according to their sequence. Within family A DNA polymerases, six motifs that come into contact with the substrates and form the active site have been discovered to be evolutionary highly conserved. Here we present results obtained from amino acid randomization within one motif, motif C, of thermostable Thermus aquaticus DNA polymerase. We have identified several distinct mutation patterns that increase the selectivity of mismatch extension. These results might lead to direct applications such as allele-specific PCR, as demonstrated by real-time PCR experiments and add to our understanding of DNA polymerase selectivity.
Collapse
Affiliation(s)
- Michael Strerath
- Fachbereich Chemie, Universität Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
163
|
Liebmann M, Di Pasquale F, Marx A. A new photoactive building block for investigation of DNA backbone interactions: photoaffinity labeling of human DNA polymerase beta. Chembiochem 2007; 7:1965-9. [PMID: 17106908 DOI: 10.1002/cbic.200600333] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The cross-linking of target proteins or nucleic acids to light-activatable ligands is an important tool for elucidating molecular interactions. Through the use of photoaffinity-labeling reagents, several new insights into nucleic acid interactions have been obtained, for example in DNA replication and repair. In most known photoprobes, the applied light-sensitive functionalities are placed directly at the nucleobase or are attached via linkers to either the nucleobase or the phosphate backbone. Here we describe the first photoprobe that bears a light-sensitive aryl(trifluoromethyl)diazirine at the sugar moiety of a DNA oligonucleotide. We devised a route for the synthesis of the modified nucleoside and its incorporation into an oligonucleotide. The photoactive species was proven to be stable under the conditions employed in routine automated DNA synthesis. The modified oligonucleotide was shown by subsequent photolabeling studies of human DNA polymerase beta to form a covalent complex to the enzyme upon irradiation with near-UV light.
Collapse
Affiliation(s)
- Meike Liebmann
- Fachbereich Chemie, Universität Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | | | | |
Collapse
|
164
|
Wang L, Yu X, Hu P, Broyde S, Zhang Y. A water-mediated and substrate-assisted catalytic mechanism for Sulfolobus solfataricus DNA polymerase IV. J Am Chem Soc 2007; 129:4731-7. [PMID: 17375926 PMCID: PMC2519035 DOI: 10.1021/ja068821c] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DNA polymerases are enzymes responsible for the synthesis of DNA from nucleotides. Understanding their molecular fundamentals is a prerequisite for elucidating their aberrant activities in diseases such as cancer. Here we have carried out ab initio quantum mechanical/molecular mechanical (QM/MM) studies on the nucleotidyl-transfer reaction catalyzed by the lesion-bypass DNA polymerase IV (Dpo4) from Sulfolobus solfataricus, with template guanine and Watson-Crick paired dCTP as the nascent base pair. The results suggested a novel water-mediated and substrate-assisted (WMSA) mechanism: the initial proton transfer to the alpha-phosphate of the substrate via a bridging crystal water molecule is the rate-limiting step, the nucleotidyl-transfer step is associative with a metastable pentacovalent phosphorane intermediate, and the pyrophosphate leaving is facilitated by a highly coordinated proton relay mechanism through mediation of water which neutralizes the evolving negative charge. The conserved carboxylates, which retain their liganding to the two Mg2+ ions during the reaction process, are found to be essential in stabilizing transition states. This WMSA mechanism takes specific advantage of the unique structural features of this low-fidelity lesion-bypass Y-family polymerase, which has a more spacious and solvent-exposed active site than replicative and repair polymerases.
Collapse
Affiliation(s)
- Lihua Wang
- Department of Biology, New York University, New York, NY 10003
| | - Xinyun Yu
- Department of Biology, New York University, New York, NY 10003
| | - Po Hu
- Department of Chemistry, New York University, New York, NY 10003
| | - Suse Broyde
- Department of Biology, New York University, New York, NY 10003
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY 10003
| |
Collapse
|
165
|
Protein imaging on a semiconducting substrate: A scanning tunnelling microscopy investigation. J Electroanal Chem (Lausanne) 2007. [DOI: 10.1016/j.jelechem.2006.05.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
166
|
Koonin EV. Temporal order of evolution of DNA replication systems inferred by comparison of cellular and viral DNA polymerases. Biol Direct 2006; 1:39. [PMID: 17176463 PMCID: PMC1766352 DOI: 10.1186/1745-6150-1-39] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 12/18/2006] [Indexed: 05/13/2023] Open
Abstract
Background The core enzymes of the DNA replication systems show striking diversity among cellular life forms and more so among viruses. In particular, and counter-intuitively, given the central role of DNA in all cells and the mechanistic uniformity of replication, the core enzymes of the replication systems of bacteria and archaea (as well as eukaryotes) are unrelated or extremely distantly related. Viruses and plasmids, in addition, possess at least two unique DNA replication systems, namely, the protein-primed and rolling circle modalities of replication. This unexpected diversity makes the origin and evolution of DNA replication systems a particularly challenging and intriguing problem in evolutionary biology. Results I propose a specific succession for the emergence of different DNA replication systems, drawing argument from the differences in their representation among viruses and other selfish replicating elements. In a striking pattern, the DNA replication systems of viruses infecting bacteria and eukaryotes are dominated by the archaeal-type B-family DNA polymerase (PolB) whereas the bacterial replicative DNA polymerase (PolC) is present only in a handful of bacteriophage genomes. There is no apparent mechanistic impediment to the involvement of the bacterial-type replication machinery in viral DNA replication. Therefore, I hypothesize that the observed, markedly unequal distribution of the replicative DNA polymerases among the known cellular and viral replication systems has a historical explanation. I propose that, among the two types of DNA replication machineries that are found in extant life forms, the archaeal-type, PolB-based system evolved first and had already given rise to a variety of diverse viruses and other selfish elements before the advent of the bacterial, PolC-based machinery. Conceivably, at that stage of evolution, the niches for DNA-viral reproduction have been already filled with viruses replicating with the help of the archaeal system, and viruses with the bacterial system never took off. I further suggest that the two other systems of DNA replication, the rolling circle mechanism and the protein-primed mechanism, which are represented in diverse selfish elements, also evolved prior to the emergence of the bacterial replication system. This hypothesis is compatible with the distinct structural affinities of PolB, which has the palm-domain fold shared with reverse transcriptases and RNA-dependent RNA polymerases, and PolC that has a distinct, unrelated nucleotidyltransferase fold. I propose that PolB is a descendant of polymerases that were involved in the replication of genetic elements in the RNA-protein world, prior to the emergence of DNA replication. By contrast, PolC might have evolved from an ancient non-templated polymerase, e.g., polyA polymerase. The proposed temporal succession of the evolving DNA replication systems does not depend on the specific scenario adopted for the evolution of cells and viruses, i.e., whether viruses are derived from cells or virus-like elements are thought to originate from a primordial gene pool. However, arguments are presented in favor of the latter scenario as the most parsimonious explanation of the evolution of DNA replication systems. Conclusion Comparative analysis of the diversity of genomic strategies and organizations of viruses and cellular life forms has the potential to open windows into the deep past of life's evolution, especially, with the regard to the origin of genome replication systems. When complemented with information on the evolution of the relevant protein folds, this comparative approach can yield credible scenarios for very early steps of evolution that otherwise appear to be out of reach. Reviewers Eric Bapteste, Patrick Forterre, and Mark Ragan.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
167
|
Arana ME, Takata KI, Garcia-Diaz M, Wood RD, Kunkel TA. A unique error signature for human DNA polymerase nu. DNA Repair (Amst) 2006; 6:213-23. [PMID: 17118716 PMCID: PMC1950682 DOI: 10.1016/j.dnarep.2006.09.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 09/27/2006] [Accepted: 09/27/2006] [Indexed: 11/25/2022]
Abstract
Human DNA polymerase nu (pol nu) is one of three A family polymerases conserved in vertebrates. Although its biological functions are unknown, pol nu has been implicated in DNA repair and in translesion DNA synthesis (TLS). Pol nu lacks intrinsic exonucleolytic proofreading activity and discriminates poorly against misinsertion of dNTP opposite template thymine or guanine, implying that it should copy DNA with low base substitution fidelity. To test this prediction and to comprehensively examine pol nu DNA synthesis fidelity as a clue to its function, here we describe human pol nu error rates for all 12 single base-base mismatches and for insertion and deletion errors during synthesis to copy the lacZ alpha-complementation sequence in M13mp2 DNA. Pol nu copies this DNA with average single-base insertion and deletion error rates of 7 x 10(-5) and 17 x 10(-5), respectively. This accuracy is comparable to that of replicative polymerases in the B family, lower than that of its A family homolog, human pol gamma, and much higher than that of Y family TLS polymerases. In contrast, the average single-base substitution error rate of human pol nu is 3.5 x 10(-3), which is inaccurate compared to the replicative polymerases and comparable to Y family polymerases. Interestingly, the vast majority of errors made by pol nu reflect stable misincorporation of dTMP opposite template G, at average rates that are much higher than for homologous A family members. This pol nu error is especially prevalent in sequence contexts wherein the template G is preceded by a C-G or G-C base pair, where error rates can exceed 10%. Amino acid sequence alignments based on the structures of more accurate A family polymerases suggest substantial differences in the O-helix of pol nu that could contribute to this unique error signature.
Collapse
Affiliation(s)
- Mercedes E. Arana
- Laboratory of Molecular Genetics and Laboratory of Structural Biology National Institute of Environmental Health Sciences, NIH, DHHS Research Triangle Park, NC 27709
| | - Kei-ichi Takata
- Department of Pharmacology, University of Pittsburgh Medical School Hillman Cancer Center, Research Pavilion Suite 2.6 5117 Centre Avenue, Pittsburgh, PA 15213-1863
| | - Miguel Garcia-Diaz
- Laboratory of Molecular Genetics and Laboratory of Structural Biology National Institute of Environmental Health Sciences, NIH, DHHS Research Triangle Park, NC 27709
| | - Richard D. Wood
- Department of Pharmacology, University of Pittsburgh Medical School Hillman Cancer Center, Research Pavilion Suite 2.6 5117 Centre Avenue, Pittsburgh, PA 15213-1863
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology National Institute of Environmental Health Sciences, NIH, DHHS Research Triangle Park, NC 27709
- *Corresponding author: Phone - (919) 541-2644; Fax - (919) 541-7613; Email -
| |
Collapse
|
168
|
Perlow-Poehnelt RA, Likhterov I, Wang L, Scicchitano DA, Geacintov NE, Broyde S. Increased flexibility enhances misincorporation: temperature effects on nucleotide incorporation opposite a bulky carcinogen-DNA adduct by a Y-family DNA polymerase. J Biol Chem 2006; 282:1397-408. [PMID: 17090533 DOI: 10.1074/jbc.m606769200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Y-family DNA polymerase Dpo4, from the thermophilic crenarchaeon Sulfolobus solfataricus P2, offers a valuable opportunity to investigate the effect of conformational flexibility on the bypass of bulky lesions because of its ability to function efficiently at a wide range of temperatures. Combined molecular modeling and experimental kinetic studies have been carried out for 10S-(+)-trans-anti-[BP]-N2-dG ((+)-ta-[BP]G), a lesion derived from the covalent reaction of a benzo[a]pyrene metabolite with guanine in DNA, at 55 degrees C and results compared with an earlier study at 37 degrees C (Perlow-Poehnelt, R. A., Likhterov, I., Scicchitano, D. A., Geacintov, N. E., and Broyde, S. (2004) J. Biol. Chem. 279, 36951-36961). The experimental results show that there is more overall nucleotide insertion opposite (+)-ta-[BP]G due to particularly enhanced mismatch incorporation at 55 degrees C compared with 37 degrees C. The molecular dynamics simulations suggest that mismatched nucleotide insertion opposite (+)-ta-[BP]G is increased at 55 degrees C compared with 37 degrees C because the higher temperature shifts the preference of the damaged base from the anti to the syn conformation, with the carcinogen on the more open major groove side. The mismatched dNTP structures are less distorted when the damaged base is syn than when it is anti, at the higher temperature. However, with the normal partner dCTP, the anti conformation with close to Watson-Crick alignment remains more favorable. The molecular dynamics simulations are consistent with the kcat values for nucleotide incorporation opposite the lesion studied, providing structural interpretation of the experimental observations. The observed temperature effect suggests that conformational flexibility plays a role in nucleotide incorporation and bypass fidelity opposite (+)-ta-[BP]G by Dpo4.
Collapse
|
169
|
Oelschlaeger P, Klahn M, Beard WA, Wilson SH, Warshel A. Magnesium-cationic dummy atom molecules enhance representation of DNA polymerase beta in molecular dynamics simulations: improved accuracy in studies of structural features and mutational effects. J Mol Biol 2006; 366:687-701. [PMID: 17174326 PMCID: PMC1859854 DOI: 10.1016/j.jmb.2006.10.095] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 10/14/2006] [Accepted: 10/28/2006] [Indexed: 11/17/2022]
Abstract
Human DNA polymerase beta (pol beta) fills gaps in DNA as part of base excision DNA repair. Due to its small size it is a convenient model enzyme for other DNA polymerases. Its active site contains two Mg(2+) ions, of which one binds an incoming dNTP and one catalyzes its condensation with the DNA primer strand. Simulating such binuclear metalloenzymes accurately but computationally efficiently is a challenging task. Here, we present a magnesium-cationic dummy atom approach that can easily be implemented in molecular mechanical force fields such as the ENZYMIX or the AMBER force fields. All properties investigated here, namely, structure and energetics of both Michaelis complexes and transition state (TS) complexes were represented more accurately using the magnesium-cationic dummy atom model than using the traditional one-atom representation for Mg(2+) ions. The improved agreement between calculated free energies of binding of TS models to different pol beta variants and the experimentally determined activation free energies indicates that this model will be useful in studying mutational effects on catalytic efficiency and fidelity of DNA polymerases. The model should also have broad applicability to the modeling of other magnesium-containing proteins.
Collapse
Affiliation(s)
- Peter Oelschlaeger
- University of Southern California, Department of Chemistry, Los Angeles, California
- *Corresponding authors: Peter Oelschlaeger, University of Southern California, Department of Chemistry, SGM 418, 3620, McClintock Ave., Los Angeles, CA 90089-1062, Phone: (213) 740 7671, Fax: (213) 740 2701, E-mail: ., Arieh Warshel, University of Southern California, Department of Chemistry, SGM 418, 3620, McClintock Ave., Los Angeles, CA 90089-1062, Phone: (213) 740 4114, Fax: (213) 740 2701, E-mail:
| | - Marco Klahn
- University of Southern California, Department of Chemistry, Los Angeles, California
| | - William A. Beard
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Samuel H. Wilson
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Arieh Warshel
- University of Southern California, Department of Chemistry, Los Angeles, California
- *Corresponding authors: Peter Oelschlaeger, University of Southern California, Department of Chemistry, SGM 418, 3620, McClintock Ave., Los Angeles, CA 90089-1062, Phone: (213) 740 7671, Fax: (213) 740 2701, E-mail: ., Arieh Warshel, University of Southern California, Department of Chemistry, SGM 418, 3620, McClintock Ave., Los Angeles, CA 90089-1062, Phone: (213) 740 4114, Fax: (213) 740 2701, E-mail:
| |
Collapse
|
170
|
Lamers MH, Georgescu RE, Lee SG, O'Donnell M, Kuriyan J. Crystal Structure of the Catalytic α Subunit of E. coli Replicative DNA Polymerase III. Cell 2006; 126:881-92. [PMID: 16959568 DOI: 10.1016/j.cell.2006.07.028] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 06/29/2006] [Accepted: 07/29/2006] [Indexed: 10/24/2022]
Abstract
Bacterial replicative DNA polymerases such as Polymerase III (Pol III) share no sequence similarity with other polymerases. The crystal structure, determined at 2.3 A resolution, of a large fragment of Pol III (residues 1-917), reveals a unique chain fold with localized similarity in the catalytic domain to DNA polymerase beta and related nucleotidyltransferases. The structure of Pol III is strikingly different from those of members of the canonical DNA polymerase families, which include eukaryotic replicative polymerases, suggesting that the DNA replication machinery in bacteria arose independently. A structural element near the active site in Pol III that is not present in nucleotidyltransferases but which resembles an element at the active sites of some canonical DNA polymerases suggests that, at a more distant level, all DNA polymerases may share a common ancestor. The structure also suggests a model for interaction of Pol III with the sliding clamp and DNA.
Collapse
Affiliation(s)
- Meindert H Lamers
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology and Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
171
|
Zhang L, Rechkoblit O, Wang L, Patel DJ, Shapiro R, Broyde S. Mutagenic nucleotide incorporation and hindered translocation by a food carcinogen C8-dG adduct in Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4): modeling and dynamics studies. Nucleic Acids Res 2006; 34:3326-37. [PMID: 16820532 PMCID: PMC1500869 DOI: 10.1093/nar/gkl425] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Bulky carcinogen-DNA adducts commonly cause replicative polymerases to stall, leading to a switch to bypass polymerases. We have investigated nucleotide incorporation opposite the major adduct of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in the DinB family polymerase, Dpo4, using molecular modeling and molecular dynamics (MD) simulations. PhIP, the most prevalent heterocyclic aromatic amine formed by cooking of proteinaceous food, is mutagenic in mammalian cells and is implicated in mammary and colon tumors. Our results show that the dG-C8-PhIP adduct can be accommodated in the spacious major groove Dpo4 open pocket, with Dpo4 capable of incorporating dCTP, dTTP or dATP opposite the adduct reasonably well. However, the PhIP ring system on the minor groove side would seriously disturb the active site, regardless of the presence and identity of dNTP. Furthermore, the simulations indicate that dATP and dTTP are better incorporated in the damaged system than in their respective mismatched but unmodified controls, suggesting that the PhIP adduct enhances incorporation of these mismatches. Finally, bulky C8-dG adducts, situated in the major groove, are likely to impede translocation in this polymerase (Rechkoblit et al. (2006), PLoS Biol., 4, e11). However, N2-dG adducts, which can reside on the minor groove side, appear to cause less hindrance when in this position.
Collapse
Affiliation(s)
| | - Olga Rechkoblit
- Structural Biology Program, Memorial Sloan-Kettering Cancer CenterNew York, NY, USA
| | - Lihua Wang
- Department of Biology, New York UniversityNew York, NY, USA
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer CenterNew York, NY, USA
| | | | - Suse Broyde
- Department of Biology, New York UniversityNew York, NY, USA
- To whom correspondence should be addressed. Tel: +1 212 998 8231; Fax: +1 212 995 4015;
| |
Collapse
|
172
|
Pavlov YI, Shcherbakova PV, Rogozin IB. Roles of DNA Polymerases in Replication, Repair, and Recombination in Eukaryotes. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 255:41-132. [PMID: 17178465 DOI: 10.1016/s0074-7696(06)55002-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The functioning of the eukaryotic genome depends on efficient and accurate DNA replication and repair. The process of replication is complicated by the ongoing decomposition of DNA and damage of the genome by endogenous and exogenous factors. DNA damage can alter base coding potential resulting in mutations, or block DNA replication, which can lead to double-strand breaks (DSB) and to subsequent chromosome loss. Replication is coordinated with DNA repair systems that operate in cells to remove or tolerate DNA lesions. DNA polymerases can serve as sensors in the cell cycle checkpoint pathways that delay cell division until damaged DNA is repaired and replication is completed. Eukaryotic DNA template-dependent DNA polymerases have different properties adapted to perform an amazingly wide spectrum of DNA transactions. In this review, we discuss the structure, the mechanism, and the evolutionary relationships of DNA polymerases and their possible functions in the replication of intact and damaged chromosomes, DNA damage repair, and recombination.
Collapse
Affiliation(s)
- Youri I Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, Departments of Biochemistry and Molecular Biology, and Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | |
Collapse
|
173
|
Squire JM, Parry DAD. Comparative Motile Mechanisms in Cells. ACTA ACUST UNITED AC 2005; 71:1-15. [PMID: 16230107 DOI: 10.1016/s0065-3233(04)71001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- John M Squire
- Biological Structure and Function Section, Biomedical Sciences Division, Imperial College London, London SW7 2AZ, United Kingdom
| | | |
Collapse
|