151
|
Ciarmatori S, Scott PH, Sutcliffe JE, McLees A, Alzuherri HM, Dannenberg JH, te Riele H, Grummt I, Voit R, White RJ. Overlapping functions of the pRb family in the regulation of rRNA synthesis. Mol Cell Biol 2001; 21:5806-14. [PMID: 11486020 PMCID: PMC87300 DOI: 10.1128/mcb.21.17.5806-5814.2001] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2001] [Accepted: 05/07/2001] [Indexed: 12/25/2022] Open
Abstract
The "pocket" proteins pRb, p107, and p130 are a family of negative growth regulators. Previous studies have demonstrated that overexpression of pRb can repress transcription by RNA polymerase (Pol) I. To assess whether pRb performs this role under physiological conditions, we have examined pre-rRNA levels in cells from mice lacking either pRb alone or combinations of the three pocket proteins. Pol I transcription was unaffected in pRb-knockout fibroblasts, but specific disruption of the entire pRb family deregulated rRNA synthesis. Further analysis showed that p130 shares with pRb the ability to repress Pol I transcription, whereas p107 is ineffective in this system. Production of rRNA is abnormally elevated in Rb(-/-) p130(-/-) fibroblasts. Furthermore, overexpression of p130 can inhibit an rRNA promoter both in vitro and in vivo. This reflects an ability of p130 to bind and inactivate the upstream binding factor, UBF. The data imply that rRNA synthesis in living cells is subject to redundant control by endogenous pRb and p130.
Collapse
Affiliation(s)
- S Ciarmatori
- Division of Molecular Biology of the Cell II, German Cancer Research Centre, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Seither P, Iben S, Thiry M, Grummt I. PAF67, a novel protein that is associated with the initiation-competent form of RNA polymerase I. Biol Chem 2001; 382:1163-70. [PMID: 11592397 DOI: 10.1515/bc.2001.146] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mammalian RNA polymerase I (Pol I) is a multisubunit enzyme that is decorated with accessory proteins, termed PAFs (polymerase-associated factors). The presence or absence of distinct PAFs may account for the functional differences of distinct fractions of cellular Pol I, and suggests that PAFs could be targets of regulatory pathways. Here we describe and functionally characterize PAF67, a novel 67 kDa protein that is tightly associated with a subpopulation of cellular Pol I. Both PAF67-containing and -deficient Pol I transcribe non-specific templates with similar efficiency, however, only the enzyme that contains PAF67 is capable of specifically transcribing rDNA templates. PAF67 co-localizes with Pol I in the nucleolus at sites of active rDNA transcription, indicating that PAF67 serves a role in rDNA transcription initiation. The results suggest that association of PAF67 with the 'core' enzyme endows Pol I with the capability to assemble into a productive transcription initiation complex at the rDNA promoter.
Collapse
Affiliation(s)
- P Seither
- German Cancer Research Center, Molecular Biology of the Cell II, Heidelberg
| | | | | | | |
Collapse
|
153
|
Sullivan GJ, Bridger JM, Cuthbert AP, Newbold RF, Bickmore WA, McStay B. Human acrocentric chromosomes with transcriptionally silent nucleolar organizer regions associate with nucleoli. EMBO J 2001; 20:2867-74. [PMID: 11387219 PMCID: PMC125486 DOI: 10.1093/emboj/20.11.2867] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2000] [Revised: 03/30/2001] [Accepted: 04/03/2001] [Indexed: 11/13/2022] Open
Abstract
Human ribosomal gene repeats are distributed among five nucleolar organizer regions (NORs) on the p arms of acrocentric chromosomes. On exit from mitosis, nucleoli form around individual active NORs. As cells progress through the cycle, these mini-nucleoli fuse to form large nucleoli incorporating multiple NORs. It is generally assumed that nucleolar incorporation of individual NORs is dependent on ribosomal gene transcription. To test this assumption, we determined the nuclear location of individual human acrocentric chromosomes, and their associated NORs, in mouse> human cell hybrids. Human ribosomal genes are transcriptionally silent in this context. Combined immunofluorescence and in situ hybridization (immuno-FISH) on three-dimensional preserved nuclei showed that human acrocentric chromosomes associate with hybrid cell nucleoli. Analysis of purified nucleoli demonstrated that human and mouse NORs are equally likely to be within a hybrid cell nucleolus. This is supported further by the observation that murine upstream binding factor can associate with human NORs. Incorporation of silent NORs into mature nucleoli raises interesting issues concerning the maintenance of the activity status of individual NORs.
Collapse
Affiliation(s)
| | - Joanna M. Bridger
- Biomedical Research Centre, University of Dundee, Ninewells Hospital, Dundee DD1 9SY,
Department of Biological Sciences, Brunel University, Uxbridge, Middlesex UB8 3PH and MRC Human Genetics Unit, Crewe Road, Edinburgh EH4 2XU, UK Present address: Division of Medical and Molecular Genetics, Guy’s, King’s and St Thomas’ School of Medicine, London SE1 9RT, UK Corresponding author e-mail:
| | - Andrew P. Cuthbert
- Biomedical Research Centre, University of Dundee, Ninewells Hospital, Dundee DD1 9SY,
Department of Biological Sciences, Brunel University, Uxbridge, Middlesex UB8 3PH and MRC Human Genetics Unit, Crewe Road, Edinburgh EH4 2XU, UK Present address: Division of Medical and Molecular Genetics, Guy’s, King’s and St Thomas’ School of Medicine, London SE1 9RT, UK Corresponding author e-mail:
| | - Robert F. Newbold
- Biomedical Research Centre, University of Dundee, Ninewells Hospital, Dundee DD1 9SY,
Department of Biological Sciences, Brunel University, Uxbridge, Middlesex UB8 3PH and MRC Human Genetics Unit, Crewe Road, Edinburgh EH4 2XU, UK Present address: Division of Medical and Molecular Genetics, Guy’s, King’s and St Thomas’ School of Medicine, London SE1 9RT, UK Corresponding author e-mail:
| | - Wendy A. Bickmore
- Biomedical Research Centre, University of Dundee, Ninewells Hospital, Dundee DD1 9SY,
Department of Biological Sciences, Brunel University, Uxbridge, Middlesex UB8 3PH and MRC Human Genetics Unit, Crewe Road, Edinburgh EH4 2XU, UK Present address: Division of Medical and Molecular Genetics, Guy’s, King’s and St Thomas’ School of Medicine, London SE1 9RT, UK Corresponding author e-mail:
| | - Brian McStay
- Biomedical Research Centre, University of Dundee, Ninewells Hospital, Dundee DD1 9SY,
Department of Biological Sciences, Brunel University, Uxbridge, Middlesex UB8 3PH and MRC Human Genetics Unit, Crewe Road, Edinburgh EH4 2XU, UK Present address: Division of Medical and Molecular Genetics, Guy’s, King’s and St Thomas’ School of Medicine, London SE1 9RT, UK Corresponding author e-mail:
| |
Collapse
|
154
|
Greenwood SJ, Schnare MN, Cook JR, Gray MW. Analysis of intergenic spacer transcripts suggests 'read-around' transcription of the extrachromosomal circular rDNA in Euglena gracilis. Nucleic Acids Res 2001; 29:2191-8. [PMID: 11353089 PMCID: PMC55454 DOI: 10.1093/nar/29.10.2191] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2001] [Accepted: 03/21/2001] [Indexed: 11/14/2022] Open
Abstract
We report here the sequence of the 1743 bp intergenic spacer (IGS) that separates the 3'-end of the large subunit ribosomal RNA (rRNA) gene from the 5'-end of the small subunit (SSU) rRNA gene in the circular, extrachromosomal ribosomal DNA (rDNA) of Euglena gracilis. The IGS contains a 277 nt stretch of sequence that is related to a sequence found in ITS 1, an internal transcribed spacer between the SSU and 5.8S rRNA genes. Primer extension analysis of IGS transcripts identified three abundant reverse transcriptase stops that may be analogous to the transcription initiation site (TIS) and two processing sites (A' and A0) that are found in this region in other eukaryotes. Features that could influence processing at these sites include an imperfect palindrome near site A0 and a sequence near site A' that could potentially base pair with U3 small nucleolar RNA. Our identification of the TIS (verified by mung bean nuclease analysis) is considered tentative because we also detected low-abundance transcripts upstream of this site throughout the entire IGS. This result suggests the possibility of 'read-around' transcription, i.e. transcription that proceeds multiple times around the rDNA circle without termination.
Collapse
MESH Headings
- Animals
- Base Pairing
- Base Sequence
- Conserved Sequence/genetics
- DNA, Circular/genetics
- DNA, Intergenic/genetics
- DNA, Ribosomal/genetics
- Euglena/genetics
- Molecular Sequence Data
- Nuclease Protection Assays
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal/biosynthesis
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nucleolar/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Repetitive Sequences, Nucleic Acid/genetics
- Sequence Alignment
- Single-Strand Specific DNA and RNA Endonucleases/metabolism
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- S J Greenwood
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | | | |
Collapse
|
155
|
Chen D, Huang S. Nucleolar components involved in ribosome biogenesis cycle between the nucleolus and nucleoplasm in interphase cells. J Cell Biol 2001; 153:169-76. [PMID: 11285283 PMCID: PMC2185520 DOI: 10.1083/jcb.153.1.169] [Citation(s) in RCA: 257] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2000] [Accepted: 02/14/2001] [Indexed: 11/22/2022] Open
Abstract
We examined the mobilities of nucleolar components that act at various steps of the ribosome biogenesis pathway. Fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP) analyses demonstrate that factors involved in rRNA transcription (upstream-binding factor [UBF]), processing (nucleolin, fibrillarin, and RNase MRP subunits, Rpp29), and ribosome assembly (B23) exchange rapidly between the nucleoplasm and nucleolus. In contrast, the mobilities of ribosomal subunit proteins (S5, L9) are much slower. Selective inhibition of RNA polymerase I transcription does not prevent the exchanges but influences the rates of exchange differentially for different nucleolar components. These findings suggest that the rapid exchange of nucleolar components between the nucleolus and nucleoplasm may represent a new level of regulation for rRNA synthesis. The different dynamic properties of proteins involved in different steps of ribosome biogenesis imply that the nucleolar association of these proteins is due to their specific functional roles rather than simply their specific nucleolar-targeting events.
Collapse
Affiliation(s)
- Danyang Chen
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | - Sui Huang
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| |
Collapse
|
156
|
Panov KI, Friedrich JK, Zomerdijk JC. A step subsequent to preinitiation complex assembly at the ribosomal RNA gene promoter is rate limiting for human RNA polymerase I-dependent transcription. Mol Cell Biol 2001; 21:2641-9. [PMID: 11283244 PMCID: PMC86895 DOI: 10.1128/mcb.21.8.2641-2649.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The assembly, disassembly, and functional properties of transcription preinitiation complexes (PICs) of human RNA polymerase I (Pol I) play a crucial role in the regulation of rRNA gene expression. To study the factors and processes involved, an immobilized-promoter template assay has been developed that allows the isolation from nuclear extracts of functional PICs, which support accurate initiation of transcription. Immunoblotting of template-bound factors showed that these complexes contained the factors required to support initiation of transcription, SL1, upstream binding factor (UBF), and Pol I. We have demonstrated that, throughout a single round of transcription, SL1 and UBF remain promoter bound. Moreover, the promoter-bound SL1 and UBF retain the ability to function in transcription initiation. SL1 has a central role in the stable association of the PIC with the promoter DNA. The polymerase component of the PIC is released from the promoter during transcription yet is efficiently recycled and able to reinitiate from "poised" promoters carrying SL1 and UBF, since the PICs captured on the immobilized templates sustained multiple rounds of transcription. Kinetic analyses of initiation of transcription by Pol I revealed that Pol I-dependent transcription is rate limited in a step subsequent to recruitment and assembly of Pol I PICs. The rate of RNA synthesis is primarily determined by the rates at which the polymerase initiates transcription and escapes the promoter, referred to as promoter clearance. This rate-limiting step in Pol I transcription is likely to be a major target in the regulation of rRNA gene expression.
Collapse
Affiliation(s)
- K I Panov
- Division of Gene Regulation and Expression, Wellcome Trust Biocentre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | |
Collapse
|
157
|
Yamamoto K, Yamamoto M, Nogi Y, Muramatsu M. Species-specific interaction of transcription factor p70 with the rDNA core promoter. Biochem Biophys Res Commun 2001; 281:1001-5. [PMID: 11237762 DOI: 10.1006/bbrc.2001.4457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
p70 is a transcription factor that is involved in the initiation of transcription by RNA polymerase I and has been shown to cooperate with the selectivity factor SL1 for binding to the core promoter region of mammalian ribosomal RNA gene (rDNA). To examine a role of the p70-SL1 interaction in promoter recognition, mouse and human proteins were partially purified and analyzed by UV-cross linking. Mouse rDNA core promoter was recognized by any combination of p70 and SL1 prepared from either species. In contrast, human p70 no longer bound to the human core promoter when mouse SL1 was used. Thus, a species-specific interaction between p70 and SL1 may be involved in the promoter selection for rDNA transcription.
Collapse
Affiliation(s)
- K Yamamoto
- Department of Biochemistry, Saitama Medical School, 38 Morohongo, Saitama, Moroyama, Iruma-gun, 350-0495, Japan
| | | | | | | |
Collapse
|
158
|
Laufer G, Günzl A. In-vitro competition analysis of procyclin gene and variant surface glycoprotein gene expression site transcription in Trypanosoma brucei. Mol Biochem Parasitol 2001; 113:55-65. [PMID: 11254954 DOI: 10.1016/s0166-6851(00)00380-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In Trypanosoma brucei, alpha-amanitin-resistant transcription characteristic of RNA polymerase I is initiated at ribosomal RNA gene (RRNA), procyclin gene (GPEET or EP1), and variant surface glycoprotein gene expression site (VSG ES) promoters. The three promoter types do not share obvious sequence homologies, but contain a proximal domain I and a distal domain II within 80 bp upstream of the transcription initiation site. RRNA, GPEET and EP1, but not the VSG ES promoter, require additional upstream sequences for full activity. In the present study, we competed in-vitro transcription of circular template DNA with linear DNA fragments to identify promoter domains responsible for binding and sequestering essential trans-acting transcription factors. For the GPEET promoter, we found that domain III, located between positions -141 and -92, was most important for the DNA fragment to exert a transcription competition effect, whereas domain I, the only element absolutely required for transcription, was not. Moreover, insertions between promoter domains II and III reduced both transcription from the GPEET promoter and competition with the GPEET promoter fragment, suggesting that these two domains cooperate in the formation of a stable DNA-protein complex. Taken together, these results indicate a promoter structure very similar to that of the Saccharomyces cerevisiae RRNA promoter. In contrast, VSG ES promoter analysis showed that domains I and II are both necessary and sufficient to compete transcription. Despite this structural difference, our analysis provide evidence that GPEET and VSG ES promoters interact with a common factor that is also important for RRNA promoter transcription.
Collapse
Affiliation(s)
- G Laufer
- Zoologisches Institut der Universität Tübingen, Abteilung Zellbiologie, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | | |
Collapse
|
159
|
Tian Q, Kopf GS, Brown RS, Tseng H. Function of basonuclin in increasing transcription of the ribosomal RNA genes during mouse oogenesis. Development 2001; 128:407-16. [PMID: 11152639 DOI: 10.1242/dev.128.3.407] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Active protein synthesis during early oogenesis requires accelerated transcription of ribosomal RNA genes (rDNAs). In response to this demand, rDNAs are amplified more than 1000-fold early in Xenopus oogenesis. Here, we report evidence that rDNA is not amplified in mouse oocytes, but these cells may instead employ the zinc-finger protein basonuclin, a putative rDNA transcription factor, to enhance rRNA synthesis. This conclusion is based on observations that basonuclin is localized in the nucleolus in the mouse oocyte early in its growth phase, when rRNA transcription is highly active; and that the binding sites of basonuclin zinc fingers on the human and mouse rDNA promoters are homologous. In a co-transfection assay, basonuclin can elevate transcription from an rDNA promoter, and its zinc-finger domain can inhibit RNA polymerase I transcription, as detected by a run-on assay, in growing mouse oocytes.
Collapse
Affiliation(s)
- Q Tian
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
160
|
Abstract
In plants and animals, RNA polymerase I (pol I) can be purified in a form that is self-sufficient for accurate rRNA gene promoter-dependent transcription and that has biochemical properties suggestive of a single complex, or holoenzyme. In this study, we examined the promoter binding properties of a highly purified Brassica pol I holoenzyme activity. DNase I footprinting revealed protection of the core promoter region from approximately -30 to +20, in good agreement with the boundaries of the minimal promoter defined by deletion analyses (-33 to +6). Using conventional polyacrylamide electrophoretic mobility shift assays (EMSA), protein-DNA complexes were mostly excluded from the gel. However, agarose EMSA revealed promoter-specific binding activity that co-purified with promoter-dependent transcription activity. Titration, time-course, and competition experiments revealed the formation or dissociation of a single protein-DNA complex. This protein-DNA complex could be labeled by incorporation of radioactive ribonucleotides into RNA in the presence of alpha-amanitin, suggesting that the polymerase I enzyme is part of the complex. Collectively, these results suggest that transcriptionally competent pol I holoenzymes can associate with rRNA gene promoters in a single DNA binding event.
Collapse
Affiliation(s)
- J Saez-Vasquez
- Biology Department, Washington University, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
161
|
Brachat A, Pierrat B, Brüngger A, Heim J. Comparative microarray analysis of gene expression during apoptosis-induction by growth factor deprivation or protein kinase C inhibition. Oncogene 2000; 19:5073-82. [PMID: 11042695 DOI: 10.1038/sj.onc.1203882] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The transcriptional response of mouse pro-B cells to two different apoptotic stimuli was investigated. First, interleukin-3 (IL-3) deprivation was used to trigger programmed cell death in IL-3 dependent FL5.12 cells. Alternatively, cells were treated with the protein kinase C (PKC) inhibitor staurosporine. The temporal pattern of gene expression was followed with cDNA microarrays, covering over 8700 different mouse cDNA sequences corresponding to approximately 7900 unique genes. Messenger RNA levels of 315 genes were found to be regulated by more than twofold upon IL-3 removal, while 125 genes reacted to staurosporine treatment. Cross-comparison revealed an intersection of 34 genes similarly regulated in both pathways and thus representing candidates for common apoptosis regulators. For many expressed sequence tags (ESTs) our data suggest for the first time functions in the control of apoptosis, stress response or the cell cycle. IL-3 removal led to the repression of genes required for proliferation and to the induction of genes, linked to apoptotic and signaling pathways. Staurosporine caused predominantly activation of genes, some of which had previously been described to be involved in inflammation. Our findings indicate that cellular responses to both apoptotic stimuli influence various physiological pathways which had not previously been known to be linked.
Collapse
Affiliation(s)
- A Brachat
- Molecular and Cellular Biology Senior Scientific Expert Laboratory, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | | | | | | |
Collapse
|
162
|
|
163
|
Bodem J, Dobreva G, Hoffmann-Rohrer U, Iben S, Zentgraf H, Delius H, Vingron M, Grummt I. TIF-IA, the factor mediating growth-dependent control of ribosomal RNA synthesis, is the mammalian homolog of yeast Rrn3p. EMBO Rep 2000; 1:171-5. [PMID: 11265758 PMCID: PMC1084264 DOI: 10.1093/embo-reports/kvd032] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2000] [Revised: 06/19/2000] [Accepted: 06/28/2000] [Indexed: 11/13/2022] Open
Abstract
Cells carefully modulate the rate of rRNA transcription in order to prevent an overinvestment in ribosome synthesis under less favorable nutritional conditions. In mammals, growth-dependent regulation of RNA polymerase I (Pol I) transcription is mediated by TIF-IA, an essential initiation factor that is active in extracts from growing but not starved or cycloheximide-treated mammalian cells. Here we report the molecular cloning and functional characterization of recombinant TIF-IA, which turns out to be the mammalian homolog of the yeast factor Rrn3p. We demonstrate that TIF-IA interacts with Pol I in the absence of template DNA, augments Pol I transcription in vivo and rescues transcription in extracts from growth-arrested cells in vitro.
Collapse
Affiliation(s)
- J Bodem
- Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Abstract
The tumor suppressor protein p53 is frequently inactivated in tumors. It functions as a transcriptional activator as well as a repressor for a number of viral and cellular promoters transcribed by RNA polymerase II (Pol II) and by RNA Pol III. Moreover, it appears that p53 also suppresses RNA Pol I transcription. In this study, we examined the molecular mechanism of Pol I transcriptional inhibition by p53. We show that wild-type, but not mutant, p53 can repress Pol I transcription from a human rRNA gene promoter in cotransfection assays. Furthermore, we show that recombinant p53 inhibits rRNA transcription in a cell-free transcription system. In agreement with these results, p53-null epithelial cells display an increased Pol I transcriptional activity compared to that of epithelial cells that express p53. However, both cell lines display comparable Pol I factor protein levels. Our biochemical analysis shows that p53 prevents the interaction between SL1 and UBF. Protein-protein interaction assays indicate that p53 binds to SL1, and this interaction is mostly mediated by direct contacts with TATA-binding protein and TAF(I)110. Moreover, template commitment assays show that while the formation of a UBF-SL1 complex can partially relieve the inhibition of transcription, only the assembly of a UBF-SL1-Pol I initiation complex on the rDNA promoter confers substantial protection against p53 inhibition. In summary, our results suggest that p53 represses RNA Pol I transcription by directly interfering with the assembly of a productive transcriptional machinery on the rRNA promoter.
Collapse
Affiliation(s)
- W Zhai
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | |
Collapse
|
165
|
Abstract
The function of the nucleolus as a factory for assembling ribosomal subunits is well established, but many unrelated activities have been discovered over the past decade. Our understanding of the dynamics of nucleolar structure and its reassembly at the end of mitosis has recently advanced and the small nucleolar RNAs have been shown to be major players in the processing and modification of preribosomal RNA. Unexpectedly, the nucleolus also seems to play a role in nuclear export, sequestering regulatory molecules, modifying small RNAs, assembling ribonucleoprotein (RNP) and controlling aging.
Collapse
Affiliation(s)
- M O Olson
- Dept of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA.
| | | | | |
Collapse
|
166
|
Ko YG, Kang YS, Kim EK, Park SG, Kim S. Nucleolar localization of human methionyl-tRNA synthetase and its role in ribosomal RNA synthesis. J Cell Biol 2000; 149:567-74. [PMID: 10791971 PMCID: PMC2174846 DOI: 10.1083/jcb.149.3.567] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human aminoacyl-tRNA synthetases (ARSs) are normally located in cytoplasm and are involved in protein synthesis. In the present work, we found that human methionyl-tRNA synthetase (MRS) was translocated to nucleolus in proliferative cells, but disappeared in quiescent cells. The nucleolar localization of MRS was triggered by various growth factors such as insulin, PDGF, and EGF. The presence of MRS in nucleoli depended on the integrity of RNA and the activity of RNA polymerase I in the nucleolus. The ribosomal RNA synthesis was specifically decreased by the treatment of anti-MRS antibody as determined by nuclear run-on assay and immunostaining with anti-Br antibody after incorporating Br-UTP into nascent RNA. Thus, human MRS plays a role in the biogenesis of rRNA in nucleoli, while it is catalytically involved in protein synthesis in cytoplasm.
Collapse
Affiliation(s)
- Young-Gyu Ko
- National Creative Research Initiatives Center for ARS Network, Sung Kyun Kwan University, Jangangu, Suwon, Kyunggido 440-746, Korea
| | - Young-Sun Kang
- National Creative Research Initiatives Center for ARS Network, Sung Kyun Kwan University, Jangangu, Suwon, Kyunggido 440-746, Korea
| | - Eun-Kyoung Kim
- National Creative Research Initiatives Center for ARS Network, Sung Kyun Kwan University, Jangangu, Suwon, Kyunggido 440-746, Korea
| | - Sang Gyu Park
- National Creative Research Initiatives Center for ARS Network, Sung Kyun Kwan University, Jangangu, Suwon, Kyunggido 440-746, Korea
| | - Sunghoon Kim
- National Creative Research Initiatives Center for ARS Network, Sung Kyun Kwan University, Jangangu, Suwon, Kyunggido 440-746, Korea
| |
Collapse
|
167
|
Zirwes RF, Eilbracht J, Kneissel S, Schmidt-Zachmann MS. A novel helicase-type protein in the nucleolus: protein NOH61. Mol Biol Cell 2000; 11:1153-67. [PMID: 10749921 PMCID: PMC14838 DOI: 10.1091/mbc.11.4.1153] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We report the identification, cDNA cloning, and molecular characterization of a novel, constitutive nucleolar protein. The cDNA-deduced amino acid sequence of the human protein defines a polypeptide of a calculated mass of 61.5 kDa and an isoelectric point of 9.9. Inspection of the primary sequence disclosed that the protein is a member of the family of "DEAD-box" proteins, representing a subgroup of putative ATP-dependent RNA helicases. ATPase activity of the recombinant protein is evident and stimulated by a variety of polynucleotides tested. Immunolocalization studies revealed that protein NOH61 (nucleolar helicase of 61 kDa) is highly conserved during evolution and shows a strong accumulation in nucleoli. Biochemical experiments have shown that protein NOH61 synthesized in vitro sediments with approximately 11.5 S, i.e., apparently as homo-oligomeric structures. By contrast, sucrose gradient centrifugation analysis of cellular extracts obtained with buffers of elevated ionic strength (600 mM NaCl) revealed that the solubilized native protein sediments with approximately 4 S, suggestive of the monomeric form. Interestingly, protein NOH61 has also been identified as a specific constituent of free nucleoplasmic 65S preribosomal particles but is absent from cytoplasmic ribosomes. Treatment of cultured cells with 1) the transcription inhibitor actinomycin D and 2) RNase A results in a complete dissociation of NOH61 from nucleolar structures. The specific intracellular localization and its striking sequence homology to other known RNA helicases lead to the hypothesis that protein NOH61 might be involved in ribosome synthesis, most likely during the assembly process of the large (60S) ribosomal subunit.
Collapse
Affiliation(s)
- R F Zirwes
- Division of Cell Biology, German Cancer Research Center, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
168
|
Veiko NN, Lyapunova NA, Kovalev LI, Ershova ES, Spitkovskii DM. Proteins tightly bound with rDNA transcribed regions in nuclei, nucleoids, and nucleoproteins of human lymphocytes: Isolation and characterization of candidate proteins. Mol Biol 2000. [DOI: 10.1007/bf02759647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
169
|
Guo A, Chen L, Zhao A, Boukghalter B, Pape L. Fission yeast contains an rDNA binding activity that interacts specifically with regulatory sequences for ribosomal RNA synthesis. Gene 2000; 242:183-92. [PMID: 10721711 DOI: 10.1016/s0378-1119(99)00527-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Basal level transcriptional initiation of fission yeast ribosomal RNA genes is dependent on the core ribosomal RNA gene promoter and is stimulated by an upstream rDNA promoter element and by regulatory sequences located in its approximately 3.5 kb intergenic rDNA spacer. A Schizosaccharomyces pombe sequence-specific rDNA binding activity was characterized that interacted with the upstream rDNA promoter region and that associated with required RNA polymerase I transcription components in initial fractionation steps. The rDNA binding activity was further purified and found to specifically associate with a region of the rDNA promoter between -80 and -56. The promoter region required for stable binding correlates with that mediating activated levels of transcriptional initiation. This rDNA binding activity stimulates in vitro rRNA synthesis supported by templates bearing this upstream promoter domain but not by templates lacking it.
Collapse
Affiliation(s)
- A Guo
- New York University, Department of Chemistry, New York, NY 10003, USA
| | | | | | | | | |
Collapse
|
170
|
Affiliation(s)
- S T Jacob
- Department of Molecular and Cellular Biochemistry, Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | | |
Collapse
|
171
|
Voit R, Hoffmann M, Grummt I. Phosphorylation by G1-specific cdk-cyclin complexes activates the nucleolar transcription factor UBF. EMBO J 1999; 18:1891-9. [PMID: 10202152 PMCID: PMC1171274 DOI: 10.1093/emboj/18.7.1891] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Transcription of rRNA genes by RNA polymerase I increases following serum stimulation of quiescent NIH 3T3 fibroblasts. To elucidate the mechanism underlying transcriptional activation during progression through the G1 phase of the cell cycle, we have analyzed the activity and phosphorylation pattern of the nucleolar transcription factor upstream binding factor (UBF). Using a combination of tryptic phosphopeptide mapping and site-directed mutagenesis, we have identified Ser484 as a direct target for cyclin-dependent kinase 4 (cdk4)-cyclin D1- and cdk2-cyclin E-directed phosphorylation. Mutation of Ser484 impairs rDNA transcription in vivo and in vitro. The data demonstrate that UBF is regulated in a cell cycle-dependent manner and suggest a link between G1 cdks-cyclins, UBF phosphorylation and rDNA transcription activation.
Collapse
Affiliation(s)
- R Voit
- Division of Molecular Biology of the Cell II, German Cancer Research Center, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|