151
|
Bidnenko V, Lestini R, Michel B. The Escherichia coli UvrD helicase is essential for Tus removal during recombination-dependent replication restart from Ter sites. Mol Microbiol 2007; 62:382-96. [PMID: 17020578 DOI: 10.1111/j.1365-2958.2006.05382.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Blocking replication forks in the Escherichia coli chromosome by ectopic Ter sites renders the RecBCD pathway of homologous recombination and SOS induction essential for viability. In this work, we show that the E. coli helicase II (UvrD) is also essential for the growth of cells where replication forks are arrested at ectopic Ter sites. We propose that UvrD is required for Tus removal from Ter sites. The viability of a SOS non-inducible Ter-blocked strain is fully restored by the expression of the two SOS-induced proteins UvrD and RecA at high level, indicating that these are the only two SOS-induced proteins required for replication across Ter/Tus complexes. Several observations suggest that UvrD acts in concert with homologous recombination and we propose that UvrD is associated with recombination-initiated replication forks and that it removes Tus when a PriA-dependent, restarted replication fork goes across the Ter/Tus complex. Finally, expression of the UvrD homologue from Bacilus subtilis PcrA restores the growth of uvrD-deficient Ter-blocked cells, indicating that the capacity to dislodge Tus is conserved in this distant bacterial species.
Collapse
Affiliation(s)
- Vladimir Bidnenko
- Génétique Microbienne, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas Cedex, France
| | | | | |
Collapse
|
152
|
Shin JH, Santangelo TJ, Xie Y, Reeve JN, Kelman Z. Archaeal minichromosome maintenance (MCM) helicase can unwind DNA bound by archaeal histones and transcription factors. J Biol Chem 2006; 282:4908-4915. [PMID: 17158792 DOI: 10.1074/jbc.m606847200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Protein-DNA complexes must be disassembled to facilitate DNA replication. Replication forks contain a helicase that unwinds the duplex DNA at the front of the fork. The minichromosome maintenance helicase from the archaeon Methanothermobacter thermautotrophicus required only ATP to unwind DNA bound into complexes by the M. thermautotrophicus archaeal histone HMtA2, transcription repressor TrpY, or into a transcription pre-initiation complex by M. thermautotrophicus TATA-box-binding protein, transcription factor B, and RNA polymerase. In contrast, the minichromosome maintenance helicase was unable to unwind DNA bound by this archaeal RNA polymerase in a stalled transcript-elongating complex.
Collapse
Affiliation(s)
- Jae-Ho Shin
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland 20850 and the
| | | | - Yunwei Xie
- Department of Microbiology, Ohio State University, Columbus, Ohio 43210
| | - John N Reeve
- Department of Microbiology, Ohio State University, Columbus, Ohio 43210
| | - Zvi Kelman
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland 20850 and the.
| |
Collapse
|
153
|
Heller RC, Marians KJ. Replisome assembly and the direct restart of stalled replication forks. Nat Rev Mol Cell Biol 2006; 7:932-43. [PMID: 17139333 DOI: 10.1038/nrm2058] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Failure to reactivate either stalled or collapsed replication forks is a source of genomic instability in both prokaryotes and eukaryotes. In prokaryotes, dedicated fork repair systems that involve both recombination and replication proteins have been identified genetically and characterized biochemically. Replication conflicts are solved through several pathways, some of which require recombination and some of which operate directly at the stalled fork. Some recent biochemical observations support models of direct fork repair in which the removal of the blocking template lesion is not always required for replication restart.
Collapse
Affiliation(s)
- Ryan C Heller
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | |
Collapse
|
154
|
Indiani C, O'Donnell M. The replication clamp-loading machine at work in the three domains of life. Nat Rev Mol Cell Biol 2006; 7:751-61. [PMID: 16955075 DOI: 10.1038/nrm2022] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sliding clamps are ring-shaped proteins that tether DNA polymerases to DNA, which enables the rapid and processive synthesis of both leading and lagging strands at the replication fork. The clamp-loading machinery must repeatedly load sliding-clamp factors onto primed sites at the replication fork. Recent structural and biochemical analyses provide unique insights into how these clamp-loading ATPase machines function to load clamps onto the DNA. Moreover, these studies highlight the evolutionary conservation of the clamp-loading process in the three domains of life.
Collapse
Affiliation(s)
- Chiara Indiani
- Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, New York 10021, USA
| | | |
Collapse
|
155
|
Abstract
Sliding clamps and clamp loaders are processivity factors required for efficient DNA replication. Sliding clamps are ring-shaped complexes that tether DNA polymerases to DNA to increase the processivity of synthesis. Clamp loaders assemble these ring-shaped clamps onto DNA in an ATP-dependent reaction. The overall process of clamp loading is dynamic in that protein-protein and protein-DNA interactions must actively change in a coordinated fashion to complete the mechanical clamp-loading reaction cycle. The clamp loader must initially have a high affinity for both the clamp and DNA to bring these macromolecules together, but then must release the clamp on DNA for synthesis to begin. Evidence is presented for a mechanism in which the clamp-loading reaction comprises a series of binding reactions to ATP, the clamp, DNA, and ADP, each of which promotes some change in the conformation of the clamp loader that alters interactions with the next component of the pathway. These changes in interactions must be rapid enough to allow the clamp loader to keep pace with replication fork movement. This review focuses on the measurement of dynamic and transient interactions required to assemble the Escherichia coli sliding clamp on DNA.
Collapse
Affiliation(s)
- Linda B Bloom
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610-0245, USA.
| |
Collapse
|
156
|
Langston LD, O'Donnell M. DNA replication: keep moving and don't mind the gap. Mol Cell 2006; 23:155-60. [PMID: 16857582 DOI: 10.1016/j.molcel.2006.05.034] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 05/10/2006] [Accepted: 05/12/2006] [Indexed: 10/24/2022]
Abstract
As the replication fork progresses, synthesis of the discontinuous lagging strand requires frequent priming and cycling of the lagging strand polymerase to the new primers. It appears that this mechanism also permits bypass of template lesions on both strands, leaving the damage behind in a single-strand gap and precluding fork stalling or collapse.
Collapse
Affiliation(s)
- Lance D Langston
- Howard Hughes Medical Institute, The Rockefeller University, New York City, New York 10021, USA
| | | |
Collapse
|
157
|
Seki T, Akita M, Kamimura Y, Muramatsu S, Araki H, Sugino A. GINS Is a DNA Polymerase ϵ Accessory Factor during Chromosomal DNA Replication in Budding Yeast. J Biol Chem 2006; 281:21422-21432. [PMID: 16714283 DOI: 10.1074/jbc.m603482200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GINS is a protein complex found in eukaryotic cells that is composed of Sld5p, Psf1p, Psf2p, and Psf3p. GINS polypeptides are highly conserved in eukaryotes, and the GINS complex is required for chromosomal DNA replication in yeasts and Xenopus egg. This study reports purification and biochemical characterization of GINS from Saccharomyces cerevisiae. The results presented here demonstrate that GINS forms a 1:1 complex with DNA polymerase epsilon (Pol epsilon) holoenzyme and greatly stimulates its catalytic activity in vitro. In the presence of GINS, Pol epsilon is more processive and dissociates more readily from replicated DNA, while under identical conditions, proliferating cell nuclear antigen slightly stimulates Pol epsilon in vitro. These results strongly suggest that GINS is a Pol epsilon accessory protein during chromosomal DNA replication in budding yeast. Based on these results, we propose a model for molecular dynamics at eukaryotic chromosomal replication fork.
Collapse
Affiliation(s)
- Takashi Seki
- Laboratories for Biomolecular Networks, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871; Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602
| | - Masaki Akita
- Laboratories for Biomolecular Networks, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871
| | - Yoichiro Kamimura
- Division of Microbial Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Sachiko Muramatsu
- Division of Microbial Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Hiroyuki Araki
- Division of Microbial Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Akio Sugino
- Laboratories for Biomolecular Networks, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871; Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602.
| |
Collapse
|
158
|
Affiliation(s)
- Mike O'Donnell
- Laboratory of DNA Replication, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021, USA.
| |
Collapse
|
159
|
Neylon C, Kralicek AV, Hill TM, Dixon NE. Replication termination in Escherichia coli: structure and antihelicase activity of the Tus-Ter complex. Microbiol Mol Biol Rev 2005; 69:501-26. [PMID: 16148308 PMCID: PMC1197808 DOI: 10.1128/mmbr.69.3.501-526.2005] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The arrest of DNA replication in Escherichia coli is triggered by the encounter of a replisome with a Tus protein-Ter DNA complex. A replication fork can pass through a Tus-Ter complex when traveling in one direction but not the other, and the chromosomal Ter sites are oriented so replication forks can enter, but not exit, the terminus region. The Tus-Ter complex acts by blocking the action of the replicative DnaB helicase, but details of the mechanism are uncertain. One proposed mechanism involves a specific interaction between Tus-Ter and the helicase that prevents further DNA unwinding, while another is that the Tus-Ter complex itself is sufficient to block the helicase in a polar manner, without the need for specific protein-protein interactions. This review integrates three decades of experimental information on the action of the Tus-Ter complex with information available from the Tus-TerA crystal structure. We conclude that while it is possible to explain polar fork arrest by a mechanism involving only the Tus-Ter interaction, there are also strong indications of a role for specific Tus-DnaB interactions. The evidence suggests, therefore, that the termination system is more subtle and complex than may have been assumed. We describe some further experiments and insights that may assist in unraveling the details of this fascinating process.
Collapse
Affiliation(s)
- Cameron Neylon
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom.
| | | | | | | |
Collapse
|
160
|
Szyjka SJ, Viggiani CJ, Aparicio OM. Mrc1 is required for normal progression of replication forks throughout chromatin in S. cerevisiae. Mol Cell 2005; 19:691-7. [PMID: 16137624 DOI: 10.1016/j.molcel.2005.06.037] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 05/26/2005] [Accepted: 06/28/2005] [Indexed: 12/18/2022]
Abstract
Mrc1 associates with replication forks, where it transmits replication stress signals and is required for normal replisome pausing in response to nucleotide depletion. Mrc1 also plays a poorly understood role in DNA replication, which appears distinct from its role in checkpoint signaling. Here, we demonstrate that Mrc1 functions constitutively to promote normal replication fork progression. In mrc1Delta cells, replication forks proceed slowly throughout chromatin, rather than being specifically defective in pausing and progression through loci that impede fork progression. Analysis of genetic interactions with Rrm3, a DNA helicase required to resolve paused forks, indicates that Mrc1 checkpoint signaling is dispensable for the resolution of stalled replication forks and suggests that replication forks lacking Mrc1 create DNA damage that must be repaired by Rrm3. These findings elucidate a central role for Mrc1 in normal replisome function, which is distinct from its role as a checkpoint mediator, but nevertheless critical to genome stability.
Collapse
Affiliation(s)
- Shawn J Szyjka
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | | | | |
Collapse
|
161
|
Heller RC, Marians KJ. Unwinding of the Nascent Lagging Strand by Rep and PriA Enables the Direct Restart of Stalled Replication Forks. J Biol Chem 2005; 280:34143-51. [PMID: 16079128 DOI: 10.1074/jbc.m507224200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During origin-independent replisome assembly, the replication restart protein PriC prefers to load the replication fork helicase, DnaB, to stalled replication forks where there is a gap in the nascent leading strand. However, this activity can be obstructed if the 5'-end of the nascent lagging strand is near the template branch point. Here we provide biochemical evidence that the helicase activities of Rep and PriA function to unwind the nascent lagging strand DNA at such stalled replication forks. PriC then loads the replicative helicase, DnaB, onto the newly generated, single-stranded template for the purposes of replisome assembly and duplex unwinding ahead of the replication fork. Direct rescue of replication forks by the Rep-PriC and PriA-PriC pathways in this manner may contribute to genomic stability by avoiding the potential dangers of fork breakage inherent to recombination-dependent restart pathways.
Collapse
Affiliation(s)
- Ryan C Heller
- Programs in Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University and Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | |
Collapse
|
162
|
Abstract
DNA replicases are multicomponent machines that have evolved clever strategies to perform their function. Although the structure of DNA is elegant in its simplicity, the job of duplicating it is far from simple. At the heart of the replicase machinery is a heteropentameric AAA+ clamp-loading machine that couples ATP hydrolysis to load circular clamp proteins onto DNA. The clamps encircle DNA and hold polymerases to the template for processive action. Clamp-loader and sliding clamp structures have been solved in both prokaryotic and eukaryotic systems. The heteropentameric clamp loaders are circular oligomers, reflecting the circular shape of their respective clamp substrates. Clamps and clamp loaders also function in other DNA metabolic processes, including repair, checkpoint mechanisms, and cell cycle progression. Twin polymerases and clamps coordinate their actions with a clamp loader and yet other proteins to form a replisome machine that advances the replication fork.
Collapse
Affiliation(s)
- Aaron Johnson
- Howard Hughes Medical Institute, New York City, New York 10021-6399, USA.
| | | |
Collapse
|
163
|
Stano NM, Jeong YJ, Donmez I, Tummalapalli P, Levin MK, Patel SS. DNA synthesis provides the driving force to accelerate DNA unwinding by a helicase. Nature 2005; 435:370-3. [PMID: 15902262 PMCID: PMC1563444 DOI: 10.1038/nature03615] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2004] [Accepted: 03/29/2005] [Indexed: 11/08/2022]
Abstract
Helicases are molecular motors that use the energy of nucleoside 5'-triphosphate (NTP) hydrolysis to translocate along a nucleic acid strand and catalyse reactions such as DNA unwinding. The ring-shaped helicase of bacteriophage T7 translocates along single-stranded (ss)DNA at a speed of 130 bases per second; however, T7 helicase slows down nearly tenfold when unwinding the strands of duplex DNA. Here, we report that T7 DNA polymerase, which is unable to catalyse strand displacement DNA synthesis by itself, can increase the unwinding rate to 114 base pairs per second, bringing the helicase up to similar speeds compared to its translocation along ssDNA. The helicase rate of stimulation depends upon the DNA synthesis rate and does not rely on specific interactions between T7 DNA polymerase and the carboxy-terminal residues of T7 helicase. Efficient duplex DNA synthesis is achieved only by the combined action of the helicase and polymerase. The strand displacement DNA synthesis by the DNA polymerase depends on the unwinding activity of the helicase, which provides ssDNA template. The rapid trapping of the ssDNA bases by the DNA synthesis activity of the polymerase in turn drives the helicase to move forward through duplex DNA at speeds similar to those observed along ssDNA.
Collapse
Affiliation(s)
- Natalie M. Stano
- Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854
| | - Yong-Joo Jeong
- Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854
- Department of Bio and Nanochemistry, Kookmin University, 861-1, Chongnung-dong, Songbuk-gu, Seoul 136-702, Korea
| | - Ilker Donmez
- Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854
| | - Padmaja Tummalapalli
- Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854
| | - Mikhail K. Levin
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030-1507
| | - Smita S. Patel
- Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854
- Correspondence and requests for materials should be addressed to S.S.P ()
| |
Collapse
|
164
|
Abstract
Initiation and completion of DNA replication defines the beginning and ending of S phase of the cell cycle. Successful progression through S phase requires that replication be properly regulated and monitored to ensure that the entire genome is duplicated exactly once, without errors, in a timely fashion. Given the immense size and complexity of eukaryotic genomes, this presents a significant challenge for the cell. As a result, DNA replication has evolved into a tightly regulated process involving the coordinated action of numerous factors that function in all phases of the cell cycle. We will review our current understanding of these processes from the formation of prereplicative complexes in preparation for S phase to the series of events that culminate in the loading of DNA polymerases during S phase. We will incorporate structural data from archaeal and bacterial replication proteins and discuss their implications for understanding the mechanism of action of their corresponding eukaryotic homologues. We will also describe the concept of replication licensing which protects against genomic instability by limiting initiation events to once per cell cycle. Lastly, we will review our knowledge of checkpoint pathways that maintain the integrity of stalled forks and relay defects in replication to the rest of the cell cycle.
Collapse
Affiliation(s)
- David Y Takeda
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
165
|
Slavcev RA, Funnell BE. Identification and characterization of a novel allele of Escherichia coli dnaB helicase that compromises the stability of plasmid P1. J Bacteriol 2005; 187:1227-37. [PMID: 15687186 PMCID: PMC545633 DOI: 10.1128/jb.187.4.1227-1237.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage P1 lysogenizes Escherichia coli cells as a plasmid with approximately the same copy number as the copy number of the host chromosome. Faithful inheritance of the plasmids relies upon proper DNA replication, as well as a partition system that actively segregates plasmids to new daughter cells. We genetically screened for E. coli chromosomal mutations that influenced P1 stability and identified a novel temperature-sensitive allele of the dnaB helicase gene (dnaB277) that replaces serine 277 with a leucine residue (DnaB S277L). This allele conferred a severe temperature-sensitive phenotype to the host; dnaB277 cells were not viable at temperatures above 34 degrees C. Shifting dnaB277 cells to 42 degrees C resulted in an immediate reduction in the rate of DNA synthesis and extensive cell filamentation. The dnaB277 allele destabilized P1 plasmids but had no significant influence on the stability of the F low-copy-number plasmid. This observation suggests that there is a specific requirement for DnaB in P1 plasmid maintenance in addition to the general requirement for DnaB as the replicative helicase during elongation.
Collapse
Affiliation(s)
- Roderick A Slavcev
- Department of Medical Genetics and Microbiology, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
166
|
Heller RC, Marians KJ. The Disposition of Nascent Strands at Stalled Replication Forks Dictates the Pathway of Replisome Loading during Restart. Mol Cell 2005; 17:733-43. [PMID: 15749022 DOI: 10.1016/j.molcel.2005.01.019] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 12/31/2004] [Accepted: 01/25/2005] [Indexed: 11/26/2022]
Abstract
Rescue of arrested and collapsed replication forks is essential for maintenance of genomic integrity. One system for origin of replication-independent loading of the DnaB replicative helicase and subsequent replisome reassembly requires the structure-specific recognition factor PriA and the assembly factors PriB and DnaT. Here, we provide biochemical evidence for an alternate system for DnaB loading that requires only PriC. Furthermore, the choice of which system is utilized during restart is dictated by the nature of the structure of the stalled replication fork. PriA-dependent reactions are most robust on fork structures with no gaps in the leading strand, such as is found at the junction of a D loop, while the PriC-dependent system preferentially utilizes fork structures with large gaps in the leading strand. These observations suggest that the type of initial damage on the DNA template and how the inactivated fork is processed ultimately influence the choice of enzymatic restart pathway.
Collapse
Affiliation(s)
- Ryan C Heller
- Program in Molecular Biology, Weill Graduate School of Medical Sciences, Cornell University, New York, New York 10021, USA
| | | |
Collapse
|
167
|
Briggs GS, Mahdi AA, Wen Q, Lloyd RG. DNA binding by the substrate specificity (wedge) domain of RecG helicase suggests a role in processivity. J Biol Chem 2005; 280:13921-7. [PMID: 15695524 DOI: 10.1074/jbc.m412054200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RecG differs from most helicases acting on branched DNA in that it is thought to catalyze unwinding via translocation of a monomer on dsDNA, with a wedge domain facilitating strand separation. Conserved phenylalanines in the wedge are shown to be critical for DNA binding. When detached from the helicase domains, the wedge bound a Holliday junction with high affinity but failed to bind a replication fork structure. Further stabilizing contacts are identified in full-length RecG, which may explain fork binding. Detached from the wedge, the helicase region unwound junctions but had extremely low substrate affinity, arguing against the "classical inchworm" mode of translocation. We propose that the processivity of RecG on branched DNA substrates is dependent on the ability of the wedge to establish strong binding at the branch point. This keeps the helicase motor in contact with the substrate, enabling it to drive dsDNA translocation with high efficiency.
Collapse
Affiliation(s)
- Geoffrey S Briggs
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | | | | | | |
Collapse
|
168
|
Hinds T, Sandler SJ. Allele specific synthetic lethality between priC and dnaAts alleles at the permissive temperature of 30 degrees C in E. coli K-12. BMC Microbiol 2004; 4:47. [PMID: 15588282 PMCID: PMC539235 DOI: 10.1186/1471-2180-4-47] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Accepted: 12/08/2004] [Indexed: 11/14/2022] Open
Abstract
Background DnaA is an essential protein in the regulation and initiation of DNA replication in many bacteria. It forms a protein-DNA complex at oriC to which DnaC loads DnaB. DNA replication forks initiated at oriC by DnaA can collapse on route to the terminus for a variety of reasons. PriA, PriB, PriC, DnaT, Rep and DnaC form multiple pathways to restart repaired replication forks. DnaC809 and dnaC809,820 are suppressors of priA2::kan mutant phenotypes. The former requires PriC and Rep while the latter is independent of them. RnhA339::cat mutations allow DnaA-independent initiation of DNA replication. Results It is shown herein that a priC303::kan mutation is synthetically lethal with either a dnaA46 or dnaA508 temperature sensitive mutation at the permissive temperature of 30°C. The priC-dnaA lethality is specific for the dnaA allele. The priC303::kan mutant was viable when placed in combination with either dnaA5, dnaA167, dnaA204 or dnaA602. The priC-dnaA508 and priC-dnaA46 lethality could be suppressed by rnhA339::cat. The priC-dnaA508 lethality could be suppressed by a dnaC809,820 mutation, but not dnaC809. Neither of the dnaC mutations could suppress the priC-dnaA46 lethality. Conclusions A hitherto unknown function for either DnaA in replication restart or PriC in initiation of DNA replication that occurs in certain dnaA temperature sensitive mutant strains at the permissive temperature of 30°C has been documented. Models considering roles for PriC during initiation of DNA replication and roles for DnaA in replication restart were tested and found not to decisively explain the data. Other roles of dnaA in transcription and nucleoid structure are additionally considered.
Collapse
Affiliation(s)
- Tania Hinds
- 203 Morrill Science Center IVN, Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Steven J Sandler
- 203 Morrill Science Center IVN, Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
169
|
Harinarayanan R, Gowrishankar J. A dnaC mutation in Escherichia coli that affects copy number of ColE1-like plasmids and the PriA-PriB (but not Rep-PriC) pathway of chromosomal replication restart. Genetics 2004; 166:1165-76. [PMID: 15082538 PMCID: PMC1470795 DOI: 10.1534/genetics.166.3.1165] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli nusG and rho mutants, which are defective in transcription termination, are killed following transformation with several ColE1-like plasmids that lack the plasmid-encoded copy-number regulator gene rom because of uncontrolled plasmid replication within the cells. In this study, a mutation [dnaC1331(A84T)] in the dnaC gene encoding the replicative helicase-loading protein was characterized as a suppressor of this plasmid-mediated lethality phenotype. The mutation also reduced the copy number of the plasmids in otherwise wild-type strains. In comparison with the isogenic dnaC(+) strain, the dnaC mutant was largely unaffected for (i) growth on rich or minimal medium, (ii) tolerance to UV irradiation, or (iii) survival in the absence of the PriA, RecA, or RecB proteins. However, it was moderately SOS-induced and was absolutely dependent on both the Rep helicase and the PriC protein for its viability. A dnaC1331(A84T) dam mutant, but not its mutH derivative, exhibited sensitivity to growth on rich medium, suggestive of a reduced capacity in the dnaC1331(A84T) strains to survive chromosomal double-strand breaks. We propose that DnaC-A84T is proficient in the assembly of replication forks for both initiation of chromosome replication (at oriC) and replication restart via the Rep-PriC pathway, but that it is specifically defective for replication restart via the PriA-PriB pathway (and consequently also for replication of the Rom(-) ColE1-like plasmids).
Collapse
Affiliation(s)
- R Harinarayanan
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | | |
Collapse
|
170
|
Galletto R, Jezewska MJ, Bujalowski W. Unzipping mechanism of the double-stranded DNA unwinding by a hexameric helicase: quantitative analysis of the rate of the dsDNA unwinding, processivity and kinetic step-size of the Escherichia coli DnaB helicase using rapid quench-flow method. J Mol Biol 2004; 343:83-99. [PMID: 15381422 DOI: 10.1016/j.jmb.2004.07.055] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 06/30/2004] [Accepted: 07/01/2004] [Indexed: 11/26/2022]
Abstract
Kinetics of the double-stranded (ds) DNA unwinding by the Escherichia coli replicative helicase DnaB protein has been examined under single-turnover conditions using the chemical quench-flow technique. The unwinding reaction proceeds through an initial conformational transition followed by the unwinding catalytic steps and the release of the single-stranded (ss) DNA. Analyses of the reaction as a function of the number of base-pairs in the dsDNA reveal that the number of catalytic steps is not strictly proportional to the length of the dsDNA. As the helicase approaches the end of the substrate, the remaining approximately 11 bp of the DNA melts without catalytic participation of the enzyme. The kinetic step-size of the DnaB helicase, i.e. the number of the base-pairs unwound in a single catalytic step is only 1.4(+/- 0.2). The low value of the step-size indicates that the helicase unwinds a single base-pair in a single catalytic step. Thus, the DnaB helicase unzips the dsDNA in a reverse process to the zipping mechanism of the non-enzymatic double helix formation. The protein is a fast helicase that at 25 degrees C unwinds approximately 291 bp/s, much faster than previously thought, and the unwinding rate can be much higher at higher temperatures. However, the ATP-state of the enzyme has an increased dissociation rate, resulting in only a moderate unwinding processivity, P = 0.89(+/- 0.03), little dependent on the temperature. The conformational transition of the DnaB helicase-DNA complex, preceding the unwinding, is an intrinsic transition of the enzyme from the stationary conformation to the ATP-state of the helicase.
Collapse
Affiliation(s)
- Roberto Galletto
- Department of Human Biological Chemistry and Genetics, The Sealy Center for Structural Biology, The University of Texas Medical Branch at Galveston, 301 University Boulevard, 77555-1053, USA
| | | | | |
Collapse
|
171
|
Kaplan DL, O'Donnell M. Twin DNA pumps of a hexameric helicase provide power to simultaneously melt two duplexes. Mol Cell 2004; 15:453-65. [PMID: 15304224 DOI: 10.1016/j.molcel.2004.06.039] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 05/10/2004] [Accepted: 05/17/2004] [Indexed: 10/26/2022]
Abstract
DnaB is the primary replicative helicase in Escherichia coli. We show here that DnaB can unwind two duplex arms simultaneously for an extended distance provided that two protein rings are positioned on opposite sides of the duplex arms. A putative eukaryotic replication fork helicase, Mcm4,6,7, performs a similar activity. Double-ringed melting of duplexes may function at a replication fork in vivo. This mechanism may apply to RuvB, since the proteins share mechanistic similarities. Thus, two RuvB hexamers may function in coordination at a Holliday junction to overcome regions of DNA heterology and DNA lesions. Furthermore, DnaB can actively translocate along DNA while encircling three DNA strands. Therefore, if DnaB encounters a D loop during fork progression, it will encircle the invading strand and may convert the recombinative invading strand to a daughter lagging strand. Finally, we present evidence that the DNA binding site of DnaB is buried inside its central channel.
Collapse
|
172
|
Soni RK, Mehra P, Choudhury NR, Mukhopadhyay G, Dhar SK. Functional characterization of Helicobacter pylori DnaB helicase. Nucleic Acids Res 2004; 31:6828-40. [PMID: 14627816 PMCID: PMC290263 DOI: 10.1093/nar/gkg895] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Helicobacter pylori causes gastric ulcer diseases and gastric adenocarcinoma in humans. Not much is known regarding DNA replication in H.pylori that is important for cell survival. Here we report the cloning, expression and characterization of H.pylori DnaB (HpDnaB) helicase both in vitro and in vivo. Among the DnaB homologs, only Escherichia coli DnaB has been studied extensively. HpDnaB showed strong 5' to 3' helicase and ATPase activity. Interestingly, H.pylori does not have an obvious DnaC homolog which is essential for DnaB loading on the E.coli chromosomal DNA replication origin (oriC). However, HpDnaB can functionally complement the E.coli DnaB temperature-sensitive mutant at the non-permissive temperature, confirming that HpDnaB is a true replicative helicase. Escherichia coli DnaC co-eluted in the same fraction with HpDnaB following gel filtration analysis suggesting that these proteins might physically interact with each other. It is possible that a functional DnaC homolog is present in H.pylori. The complete characterization of H.pylori DnaB helicase will also help the comparative analysis of DnaB helicases among bacteria.
Collapse
Affiliation(s)
- Rajesh K Soni
- Special Centre For Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | | | |
Collapse
|
173
|
Thirlway J, Turner IJ, Gibson CT, Gardiner L, Brady K, Allen S, Roberts CJ, Soultanas P. DnaG interacts with a linker region that joins the N- and C-domains of DnaB and induces the formation of 3-fold symmetric rings. Nucleic Acids Res 2004; 32:2977-86. [PMID: 15173380 PMCID: PMC434434 DOI: 10.1093/nar/gkh628] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 05/11/2004] [Accepted: 05/11/2004] [Indexed: 11/12/2022] Open
Abstract
Loading of the replicative ring helicase onto the origin of replication (oriC) is the final outcome of a well coordinated series of events that collectively constitute a primosomal cascade. Once the ring helicase is loaded, it recruits the primase and signals the switch to the polymerization mode. The transient nature of the helicase-primase (DnaB-DnaG) interaction in the Escherichia coli system has hindered our efforts to elucidate its structure and function. Taking advantage of the stable DnaB-DnaG complex in Bacillus stearothermophilus, we have reviewed conflicting mutagenic data from other bacterial systems and shown that DnaG interacts with the flexible linker that connects the N- and C-terminal domains of DnaB. Furthermore, atomic force microscopy (AFM) imaging experiments show that binding of the primase to the helicase induces predominantly a 3-fold symmetric morphology to the hexameric ring. Overall, three DnaG molecules appear to interact with the hexameric ring helicase but a small number of complexes with two and even one DnaG molecule bound to DnaB were also detected. The structural/functional significance of these data is discussed and a speculative structural model for this complex is suggested.
Collapse
Affiliation(s)
- Jenny Thirlway
- Centre for Biomolecular Sciences (CBS), School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | | | |
Collapse
|
174
|
López de Saro F, Georgescu RE, Leu F, O'Donnell M. Protein trafficking on sliding clamps. Philos Trans R Soc Lond B Biol Sci 2004; 359:25-30. [PMID: 15065653 PMCID: PMC1693307 DOI: 10.1098/rstb.2003.1361] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The sliding clamps of chromosomal replicases are acted upon by both the clamp loader and DNA polymerase. Several other proteins and polymerases also interact with the clamp. These proteins bind the clamp at the same spot and use it in sequential fashion. First the clamp loader must bind the clamp in order to load it onto DNA, but directly thereafter the clamp loader must clear away from the clamp so it can be used by the replicative DNA polymerase. At the end of replication, the replicase is ejected from the clamp, which presumably allows the clamp to interact with yet other proteins after its use by the replicase. This paper describes how different proteins in the Escherichia coli replicase, DNA polymerase III holoenzyme, coordinate their traffic flow on the clamp. The mechanism by which traffic flow on the beta clamp is directed is based on competition of the proteins for the clamp, where DNA structure modulates the competition. It seems likely that the principles will generalize to a traffic flow of other factors on these circular clamp proteins.
Collapse
|
175
|
Abstract
Replication of the genome is crucial for the accurate transmission of genetic information. It has become clear over the last decade that the orderly progression of replication forks in both prokaryotes and eukaryotes is disrupted with high frequency by encounters with various obstacles either on or in the template strands. Survival of the organism then becomes dependent on both removal of the obstruction and resumption of replication. This latter point is particularly important in bacteria, where the number of replication forks per genome is nominally only two. Replication restart in Escherichia coli is accomplished by the action of the restart primosomal proteins, which use both recombination intermediates and stalled replication forks as substrates for loading new replication forks. These reactions have been reconstituted with purified recombination and replication proteins.
Collapse
Affiliation(s)
- Kenneth J Marians
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| |
Collapse
|
176
|
Jeong YJ, Levin MK, Patel SS. The DNA-unwinding mechanism of the ring helicase of bacteriophage T7. Proc Natl Acad Sci U S A 2004; 101:7264-9. [PMID: 15123793 PMCID: PMC409907 DOI: 10.1073/pnas.0400372101] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Helicases are motor proteins that use the chemical energy of NTP hydrolysis to drive mechanical processes such as translocation and nucleic acid strand separation. Bacteriophage T7 helicase functions as a hexameric ring to drive the replication complex by separating the DNA strands during genome replication. Our studies show that T7 helicase unwinds DNA with a low processivity, and the results indicate that the low processivity is due to ring opening and helicase dissociating from the DNA during unwinding. We have measured the single-turnover kinetics of DNA unwinding and globally fit the data to a modified stepping model to obtain the unwinding parameters. The comparison of the unwinding properties of T7 helicase with its translocation properties on single-stranded (ss)DNA has provided insights into the mechanism of strand separation that is likely to be general for ring helicases. T7 helicase unwinds DNA with a rate of 15 bp/s, which is 9-fold slower than the translocation speed along ssDNA. T7 helicase is therefore primarily an ssDNA translocase that does not directly destabilize duplex DNA. We propose that T7 helicase achieves DNA unwinding by its ability to bind ssDNA because it translocates unidirectionally, excluding the complementary strand from its central channel. The results also imply that T7 helicase by itself is not an efficient helicase and most likely becomes proficient at unwinding when it is engaged in a replication complex.
Collapse
Affiliation(s)
- Yong-Joo Jeong
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
177
|
Li XT, Costantino N, Lu LY, Liu DP, Watt RM, Cheah KSE, Court DL, Huang JD. Identification of factors influencing strand bias in oligonucleotide-mediated recombination in Escherichia coli. Nucleic Acids Res 2004; 31:6674-87. [PMID: 14602928 PMCID: PMC275540 DOI: 10.1093/nar/gkg844] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recombinogenic engineering methodology, also known as recombineering, utilizes homologous recombination to create targeted changes in cellular DNA with great specificity and flexibility. In Escherichia coli, the Red recombination system from bacteriophage lambda has been used successfully to modify both plasmid and chromosomal DNA in a highly efficient manner, using either a linear double-stranded DNA fragment or a synthetic single-stranded oligonucleotide (SSO). The current model for Red/SSO-mediated recombination involves the SSO first annealing to a transient, single-stranded region of DNA before being incorporated into the chromosome or plasmid target. It has been observed previously, in both eukaryotes and prokaryotes, that mutations in the two strands of the DNA double helix are 'corrected' by complementary SSOs with differing efficiencies. Here we investigate further the factors that influence the strand bias as well as the overall efficiency of Red/SSO-mediated recombination in E.coli. We show that the direction of DNA replication and the nature of the SSO-encoded mismatch are the main factors dictating the recombinational strand bias. However, the influence that the SSO-encoded mismatch exerts upon the recombinational strand bias is abolished in E.coli strains that are defective in mismatch repair (MMR). This reflects the fact that different base-base mispairs are corrected by the mutS/H/L-dependent MMR pathway with differing efficiencies. Furthermore, our data indicate that transcription has negligible influence on the strand bias. These results demonstrate for the first time that the interplay between DNA replication and MMR has a major effect on the efficiency and strand bias of Red/SSO-mediated recombination in E.coli.
Collapse
Affiliation(s)
- Xin-tian Li
- Department of Biochemistry, The University of Hong Kong, 3/F Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, PR China
| | | | | | | | | | | | | | | |
Collapse
|
178
|
McInerney P, O'Donnell M. Functional uncoupling of twin polymerases: mechanism of polymerase dissociation from a lagging-strand block. J Biol Chem 2004; 279:21543-51. [PMID: 15014081 DOI: 10.1074/jbc.m401649200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replication forks are constantly subjected to events that lead to fork stalling, stopping, or collapse. Using a synthetic rolling circle DNA substrate, we demonstrate that a block to the lagging-strand polymerase does not compromise helicase or leading-strand polymerase activity. In fact, lagging-strand synthesis also continues. Thus, the blocked lagging-strand enzyme quickly dissociates from the block site and resumes synthesis on new primed sites. Furthermore, studies in which the lagging polymerase is continuously blocked show that the leading polymerase continues unabated even as it remains attached to the lagging-strand enzyme. Hence, upon encounter of a block to the lagging stand, the polymerases functionally uncouple yet remain physically associated. Further study reveals that naked single-stranded DNA results in disruption of a stalled polymerase from its beta-DNA substrate. Thus, as the replisome advances, the single-stranded DNA loop that accumulates on the lagging-strand template releases the stalled lagging-strand polymerase from beta after SSB protein is depleted. The lagging-strand polymerase is then free to continue Okazaki fragment production.
Collapse
Affiliation(s)
- Peter McInerney
- Laboratory of DNA Replication, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
179
|
Haroniti A, Anderson C, Doddridge Z, Gardiner L, Roberts CJ, Allen S, Soultanas P. The clamp-loader-helicase interaction in Bacillus. Atomic force microscopy reveals the structural organisation of the DnaB-tau complex in Bacillus. J Mol Biol 2004; 336:381-93. [PMID: 14757052 PMCID: PMC3034218 DOI: 10.1016/j.jmb.2003.12.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The clamp-loader-helicase interaction is an important feature of the replisome. Although significant biochemical and structural work has been carried out on the clamp-loader-clamp-DNA polymerase alpha interactions in Escherichia coli, the clamp-loader-helicase interaction is poorly understood by comparison. The tau subunit of the clamp-loader mediates the interaction with DnaB. We have recently characterised this interaction in the Bacillus system and established a tau(5)-DnaB(6) stoichiometry. Here, we have obtained atomic force microscopy images of the tau-DnaB complex that reveal the first structural insight into its architecture. We show that despite the reported absence of the shorter gamma version in Bacillus, tau has a domain organisation similar to its E.coli counterpart and possesses an equivalent C-terminal domain that interacts with DnaB. The interaction interface of DnaB is also localised in its C-terminal domain. The combined data contribute towards our understanding of the bacterial replisome.
Collapse
Affiliation(s)
- Anna Haroniti
- School of Chemistry University of Nottingham University Park, Nottingham NG7 2RD, UK
| | - Christopher Anderson
- Laboratory of Biophysics and Surface Analysis School of Pharmacy University of Nottingham University Park, Nottingham NG7 2RD, UK
| | - Zara Doddridge
- School of Chemistry University of Nottingham University Park, Nottingham NG7 2RD, UK
| | - Laurence Gardiner
- School of Chemistry University of Nottingham University Park, Nottingham NG7 2RD, UK
| | - Clive J. Roberts
- Laboratory of Biophysics and Surface Analysis School of Pharmacy University of Nottingham University Park, Nottingham NG7 2RD, UK
| | - Stephanie Allen
- Laboratory of Biophysics and Surface Analysis School of Pharmacy University of Nottingham University Park, Nottingham NG7 2RD, UK
| | - Panos Soultanas
- School of Chemistry University of Nottingham University Park, Nottingham NG7 2RD, UK
- Corresponding author
| |
Collapse
|
180
|
Gulbis JM, Kazmirski SL, Finkelstein J, Kelman Z, O'Donnell M, Kuriyan J. Crystal structure of the chi:psi sub-assembly of the Escherichia coli DNA polymerase clamp-loader complex. ACTA ACUST UNITED AC 2004; 271:439-49. [PMID: 14717711 DOI: 10.1046/j.1432-1033.2003.03944.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chi (chi) and psi (psi) subunits of Escherichia coli DNA polymerase III form a heterodimer that is associated with the ATP-dependent clamp-loader machinery. In E. coli, the chi:psi heterodimer serves as a bridge between the clamp-loader complex and the single-stranded DNA-binding protein. We determined the crystal structure of the chi:psi heterodimer at 2.1 A resolution. Although neither chi (147 residues) nor psi (137 residues) bind to nucleotides, the fold of each protein is similar to the folds of mononucleotide-(chi) or dinucleotide-(psi) binding proteins, without marked similarity to the structures of the clamp-loader subunits. Genes encoding chi and psi proteins are found to be readily identifiable in several bacterial genomes and sequence alignments showed that residues at the chi:psi interface are highly conserved in both proteins, suggesting that the heterodimeric interaction is of functional significance. The conservation of surface-exposed residues is restricted to the interfacial region and to just two other regions in the chi:psi complex. One of the conserved regions was found to be located on chi, distal to the psi interaction region, and we identified this as the binding site for a C-terminal segment of the single-stranded DNA-binding protein. The other region of sequence conservation is localized to an N-terminal segment of psi (26 residues) that is disordered in the crystal structure. We speculate that psi is linked to the clamp-loader complex by this flexible, but conserved, N-terminal segment, and that the chi:psi unit is linked to the single-stranded DNA-binding protein via the distal surface of chi. The base of the clamp-loader complex has an open C-shaped structure, and the shape of the chi:psi complex is suggestive of a loose docking within the crevice formed by the open faces of the delta and delta' subunits of the clamp-loader.
Collapse
Affiliation(s)
- Jacqueline M Gulbis
- Laboratory of Molecular Biophysics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
181
|
Lo T, van Der Schalie E, Werner T, Brun YV, Din N. A temperature-sensitive mutation in the dnaE gene of Caulobacter crescentus that prevents initiation of DNA replication but not ongoing elongation of DNA. J Bacteriol 2004; 186:1205-12. [PMID: 14762018 PMCID: PMC344199 DOI: 10.1128/jb.186.4.1205-1212.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A genetic screen for cell division cycle mutants of Caulobacter crescentus identified a temperature-sensitive DNA replication mutant. Genetic complementation experiments revealed a mutation within the dnaE gene, encoding the alpha-catalytic subunit of DNA polymerase III holoenzyme. Sequencing of the temperature-sensitive dnaE allele indicated a single base pair substitution resulting in a change from valine to glutamic acid within the C-terminal portion of the protein. This mutation lies in a region of the DnaE protein shown in Escherichia coli, to be important in interactions with other essential DNA replication proteins. Using DNA replication assays and fluorescence flow cytometry, we show that the observed block in DNA synthesis in the Caulobacter dnaE mutant strain occurs at the initiation stage of replication and that there is also a partial block of DNA elongation.
Collapse
Affiliation(s)
- Teresa Lo
- Department of Biology, Loyola College, Baltimore, Maryland 21210, USA
| | | | | | | | | |
Collapse
|
182
|
Zhong Z, Helinski D, Toukdarian A. A specific region in the N terminus of a replication initiation protein of plasmid RK2 is required for recruitment of Pseudomonas aeruginosa DnaB helicase to the plasmid origin. J Biol Chem 2003; 278:45305-10. [PMID: 12952979 DOI: 10.1074/jbc.m306058200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Broad host range plasmid RK2 encodes two versions of its essential replication initiation protein, TrfA, using in-frame translational starts spaced 97 amino acids apart. The smaller protein, TrfA-33, is sufficient for plasmid replication in many bacterial hosts. Efficient replication in Pseudomonas aeruginosa, however, specifically requires the larger TrfA-44 protein. With the aim of identifying sequences of TrfA-44 required for stable replication of RK2 in P. aeruginosa, specific deletions and a substitution mutant within the N terminus sequence unique to TrfA-44 were constructed, and the mutant proteins were tested for activity. Deletion mutants were targeted to three of the four predicted helical regions in the first 97 amino acids of TrfA-44. Deletion of TrfA-44 amino acids 21-32 yielded a mutant protein, TrfA-44Delta2, that had lost the ability to bind and load the DnaB helicase of P. aeruginosa or Pseudomonas putida onto the RK2 origin in vitro and did not support stable replication of an RK2 mini-replicon in P. aeruginosa in vivo. A substitution of amino acid 22 within this essential region resulted in a protein, TrfA-44E22A, with reduced activity in vitro, particularly with the P. putida helicase. Deletion of amino acids 37-55 (TrfA-44Delta3) slightly affected protein activity in vitro with the P. aeruginosa helicase and significantly with the P. putida helicase, whereas deletion of amino acids 71-88 (TrfA-44Delta4) had no effect on TrfA activity in vitro with either helicase. These results identify regions of the TrfA-44 protein that are required for recruitment of the Pseudomonas DnaB helicases in the initiation of RK2 replication.
Collapse
Affiliation(s)
- Zhenping Zhong
- Division of Biological Sciences and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0322, USA
| | | | | |
Collapse
|
183
|
Williams CR, Snyder AK, Kuzmic P, O'Donnell M, Bloom LB. Mechanism of loading the Escherichia coli DNA polymerase III sliding clamp: I. Two distinct activities for individual ATP sites in the gamma complex. J Biol Chem 2003; 279:4376-85. [PMID: 14610067 DOI: 10.1074/jbc.m310429200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli DNA polymerase III gamma complex loads the beta clamp onto DNA, and the clamp tethers the core polymerase to DNA to increase the processivity of synthesis. ATP binding and hydrolysis promote conformational changes within the gamma complex that modulate its affinity for the clamp and DNA, allowing it to accomplish the mechanical task of assembling clamps on DNA. This is the first of two reports (Snyder, A. K., Williams, C. R., Johnson, A., O'Donnell, M., and Bloom, L. B. (2004) J. Biol. Chem. 279, 4386-4393) addressing the question of how ATP binding and hydrolysis modulate specific interactions with DNA and beta. Pre-steady-state rates of ATP hydrolysis were slower when reactions were initiated by addition of ATP than when the gamma complex was equilibrated with ATP and were limited by the rate of an intramolecular reaction, possibly ATP-induced conformational changes. Kinetic modeling of assays in which the gamma complex was incubated with ATP for different periods of time prior to adding DNA to trigger hydrolysis suggests a mechanism in which a relatively slow conformational change step (kforward = 6.5 s(-1)) produces a species of the gamma complex that is activated for DNA (and beta) binding. In the absence of beta, 2 of the 3 molecules of ATP are hydrolyzed rapidly prior to releasing DNA, and the 3rd molecule is hydrolyzed slowly. In the presence of beta, all 3 molecules of ATP are hydrolyzed rapidly. These results suggest that hydrolysis of 2 molecules of ATP may be coupled to conformational changes that reduce interactions with DNA, whereas hydrolysis of the 3rd is coupled to changes that result in release of beta.
Collapse
Affiliation(s)
- Christopher R Williams
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610-0245, USA
| | | | | | | | | |
Collapse
|
184
|
Haroniti A, Till R, Smith MCM, Soultanas P. Clamp-loader-helicase interaction in Bacillus. Leucine 381 is critical for pentamerization and helicase binding of the Bacillus tau protein. Biochemistry 2003; 42:10955-64. [PMID: 12974630 PMCID: PMC3034353 DOI: 10.1021/bi034955g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, we revealed the architecture of the clamp-loader-helicase (tau-DnaB) complex in Bacillus by atomic force microscopy imaging and constructed a structural model, whereby a pentameric clamp-loader interacts with the hexameric helicase. Crucial to this model is the assumption that the clamp-loader forms a pentamer in the absence of other components of the clamp-loader complex such as deltadelta'. Here, we show that the Bacillus subtilis tau protein, even in the absence of deltadelta', interacts as a pentamer with the hexameric DnaB and that the L381 of tau is critical for the integrity of the tau oligomer and interaction with DnaB. The effects of the L381A mutation were confirmed by gel filtration, ultracentrifugation, circular dichroism, cross-linking studies, and genetic replacement of the dnaX gene with a mutant L381A dnaX gene in vivo. The L381A protein is able to support growth in vivo only when expressed in high quantities. Finally, despite the fact that a mutation at P465 has been reported to result in a thermosensitive gene in vivo, a P465L mutant protein interacts with DnaB in vitro suggesting that this defect is not a result of a defective tau-DnaB interaction.
Collapse
Affiliation(s)
| | | | | | - P. Soultanas
- Corresponding author. Tel.: (+44)-(0)-115-9513525. Fax: (+44)-(0)-115-9513564.
| |
Collapse
|
185
|
Kaplan DL, Davey MJ, O'Donnell M. Mcm4,6,7 uses a "pump in ring" mechanism to unwind DNA by steric exclusion and actively translocate along a duplex. J Biol Chem 2003; 278:49171-82. [PMID: 13679365 DOI: 10.1074/jbc.m308074200] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mcm4,6,7 is a ring-shaped heterohexamer and the putative eukaryotic replication fork helicase. In this study, we examine the mechanism of Mcm4,6,7. Mcm4,6,7 binds to only one strand of a duplex during unwinding, corresponding to the leading strand of a replication fork. Mcm4,6,7 unwinding stops at a nick in either strand. The Mcm4,6,7 ring also actively translocates along duplex DNA, enabling the protein to drive branch migration of Holliday junctions. The Mcm4,6,7 mechanism is very similar to DnaB, except the proteins translocate with opposite polarity along DNA. Mcm4,6,7 and DnaB have different structural folds and evolved independently; thus, the similarity in mechanism is surprising. We propose a "pump in ring" mechanism for both Mcm4,6,7 and DnaB, wherein a single-stranded DNA pump is situated within the central channel of the ring-shaped helicase, and unwinding is the result of steric exclusion. In this example of convergent evolution, the "pump in ring" mechanism was probably selected by eukaryotic and bacterial replication fork helicases in order to restrict unwinding to replication fork structures, stop unwinding when the replication fork encounters a nick, and actively translocate along duplex DNA to accomplish additional activities such as DNA branch migration.
Collapse
Affiliation(s)
- Daniel L Kaplan
- Rockefeller University and Howard Hughes Medical Institute, Laboratory of DNA Replication, New York, New York 10021, USA.
| | | | | |
Collapse
|
186
|
McHenry CS. Chromosomal replicases as asymmetric dimers: studies of subunit arrangement and functional consequences. Mol Microbiol 2003; 49:1157-65. [PMID: 12940977 DOI: 10.1046/j.1365-2958.2003.03645.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Studies of the DNA polymerase III holoenzyme of Escherichia coli support a model in which both the leading and lagging strand polymerases are held together in a complex with the replicative helicase and priming activities, allowing two identical alpha catalytic subunits to assume different functions on the two strands of the replication fork. Creation of distinct functions for each of the two polymerases within the holoenzyme depends on the asymmetric character of the entire complex. The asymmetry of the holoenzyme is created by the DnaX complex, a heptamer that includes tau and gamma products of the dnaX gene. tau and gamma perform unique functions in the DnaX complex, and the interaction between alpha and tau appears to dictate the catalytic subunit's role in the replicative reaction. This review considers the properties of the DnaX complex including both tau and gamma, with the goal of understanding the properties of the replicase and its function in vivo. Recent studies in eukaryotic and other prokaryotic systems suggest that an asymmetric dimeric replicase may be universal. The leading and lagging strand polymerases may be distinct in some systems. For example, Pol e and Pol delta may function as distinct leading and lagging strand polymerases in eukaryotes, and PolC and DnaE may function as distinct leading and lagging strand polymerases in low GC content Gram-positive bacteria.
Collapse
Affiliation(s)
- Charles S McHenry
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| |
Collapse
|
187
|
Chastain PD, Makhov AM, Nossal NG, Griffith J. Architecture of the replication complex and DNA loops at the fork generated by the bacteriophage t4 proteins. J Biol Chem 2003; 278:21276-85. [PMID: 12649286 DOI: 10.1074/jbc.m301573200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rolling circle replication has previously been reconstituted in vitro using M13 duplex circles containing preformed forks and the 10 purified T4 bacteriophage replication proteins. Leading and lagging strand synthesis in these reactions is coupled and the size of the Okazaki fragments produced is typical of those generated in T4 infections. In this study the structure of the DNAs and DNA-protein complexes engaged in these in vitro reactions has been examined by electron microscopy. Following deproteinization, circular duplex templates with linear tails as great as 100 kb are observed. The tails are fully duplex except for one to three single-stranded DNA segments close to the fork. This pattern reflects Okazaki fragments stopped at different stages in their synthesis. Examination of the DNA-protein complexes in these reactions reveals M13 duplex circles in which 64% contain a single large protein mass (replication complex) and a linear duplex tail. In 56% of the replicating molecules with a tail there is at least one fully duplex loop at the replication complex resulting from the portion of the lagging strand engaged in Okazaki fragment synthesis folding back to the replisome. The single-stranded DNA segments at the fork bound by gene 32 and 59 proteins are not extended but rather appear organized into highly compact structures ("bobbins"). These bobbins constitute a major portion of the mass of the full replication complex.
Collapse
Affiliation(s)
- Paul D Chastain
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
188
|
Higuchi K, Katayama T, Iwai S, Hidaka M, Horiuchi T, Maki H. Fate of DNA replication fork encountering a single DNA lesion during oriC plasmid DNA replication in vitro. Genes Cells 2003; 8:437-49. [PMID: 12694533 DOI: 10.1046/j.1365-2443.2003.00646.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The inhibition of DNA replication fork progression by DNA lesions can lead to cell death or genome instability. However, little is known about how such DNA lesions affect the concurrent synthesis of leading- and lagging-strand DNA catalysed by the protein machinery used in chromosomal replication. Using a system of semi-bidirectional DNA replication of an oriC plasmid that employs purified replicative enzymes and a replication-terminating protein of Escherichia coli, we examined the dynamics of the replication fork when it encounters a single abasic DNA lesion on the template DNA. RESULTS A DNA lesion located on the lagging strand completely blocked the synthesis of the Okazaki fragment extending toward the lesion site, but did not affect the progression of the replication fork or leading-strand DNA synthesis. In contrast, a DNA lesion on the leading strand stalled the replication fork in conjunction with strongly inhibiting leading-strand synthesis. However, about two-thirds of the replication forks encountering this lesion maintained lagging-strand synthesis for about 1 kb beyond the lesion site, and the velocity with which the replication fork progressed seemed to be significantly reduced. CONCLUSIONS The blocking DNA lesion affects DNA replication differently depending on which strand, leading or lagging, contains the lesion.
Collapse
Affiliation(s)
- Kumiko Higuchi
- Department of Molecular Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama-cho 8916-5, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | |
Collapse
|
189
|
Johnson A, O'Donnell M. Ordered ATP hydrolysis in the gamma complex clamp loader AAA+ machine. J Biol Chem 2003; 278:14406-13. [PMID: 12582167 DOI: 10.1074/jbc.m212708200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gamma complex couples ATP hydrolysis to the loading of beta sliding clamps onto DNA for processive replication. The gamma complex structure shows that the clamp loader subunits are arranged as a circular heteropentamer. The three gamma motor subunits bind ATP, the delta wrench opens the beta ring, and the delta' stator modulates the delta-beta interaction. Neither delta nor delta' bind ATP. This report demonstrates that the delta' stator contributes a catalytic arginine for hydrolysis of ATP bound to the adjacent gamma(1) subunit. Thus, the delta' stator contributes to the motor function of the gamma trimer. Mutation of arginine 169 of gamma, which removes the catalytic arginines from only the gamma(2) and gamma(3) ATP sites, abolishes ATPase activity even though ATP site 1 is intact and all three sites are filled. This result implies that hydrolysis of the three ATP molecules occurs in a particular order, the reverse of ATP binding, where ATP in site 1 is not hydrolyzed until ATP in sites 2 and/or 3 is hydrolyzed. Implications of these results to clamp loaders of other systems are discussed.
Collapse
Affiliation(s)
- Aaron Johnson
- Howard Hughes Medical Institute and the Rockefeller University, New York, New York 10021, USA.
| | | |
Collapse
|
190
|
|
191
|
Abstract
We report the reconstitution of the initial steps of the double-strand break-repair pathway where joint molecule formation between a duplex DNA fragment and a circular template by the combined action of RecA, RecBCD, and the single-stranded DNA binding protein provides the substrate for replication fork formation by the restart primosome and the DNA polymerase III holoenzyme. We show that PriA dictates the pathway of replication from the recombination intermediate by inhibiting a nonspecific, strand displacement DNA synthesis reaction and favoring the formation of a bona fide replication fork. Furthermore, we find that RecO and RecR significantly stimulate this recombination-directed DNA replication reaction, and that this stimulation is modulated by the presence of RecF, suggesting that the latter protein may also act as a regulator of the pathway of resolution of the recombination intermediate.
Collapse
Affiliation(s)
- Liewei Xu
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | |
Collapse
|
192
|
Leu FP, Georgescu R, O'Donnell M. Mechanism of the E. coli tau processivity switch during lagging-strand synthesis. Mol Cell 2003; 11:315-27. [PMID: 12620221 DOI: 10.1016/s1097-2765(03)00042-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The E. coli replication machinery employs a beta clamp that tethers the polymerase to DNA, thus ensuring high processivity. The replicase also contains a processivity switch that dissociates the polymerase from its beta clamp. The switch requires the tau subunit of the clamp loader and is regulated by different DNA structures. At a primed site, the switch is "off." When the replicase reaches the downstream primer to form a nick, the switch is flipped, and tau ejects the polymerase from beta. This switch has high fidelity for completed synthesis, remaining "off" until just prior to incorporation of the last nucleotide and turning "on" only after addition of the last dNTP. These actions of tau are confined to its C-terminal region, which is located outside the clamp loading apparatus. Thus, this highly processive replication machine has evolved a mechanism to specifically counteract processivity at a defined time in the lagging-strand cycle.
Collapse
Affiliation(s)
- Frank P Leu
- Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
193
|
Ishmael FT, Trakselis MA, Benkovic SJ. Protein-protein interactions in the bacteriophage T4 replisome. The leading strand holoenzyme is physically linked to the lagging strand holoenzyme and the primosome. J Biol Chem 2003; 278:3145-52. [PMID: 12427736 DOI: 10.1074/jbc.m209858200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacteriophage T4 replication complex is composed of eight proteins that function together to replicate DNA. This replisome can be broken down into four basic units: a primosome composed of gp41, gp61, and gp59; a leading strand holoenzyme composed of gp43, gp44/62, and gp45; a lagging strand holoenzyme; and a single strand binding protein polymer. These units interact further to form the complete replisome. The leading and lagging strand polymerases are physically linked in the presence of DNA or an active replisome. The region of interaction was mapped to an extension of the finger domain, such that Cys-507 of one subunit is in close proximity to Cys-507 of a second subunit. The leading strand polymerase and the primosome also associate, such that gp59 mediates the contact between the two complexes. Binding of gp43 to the primosome complex causes displacement of gp32 from the gp59.gp61.gp41 primosome complex. The resultant species is a complex of proteins that may allow coordinated leading and lagging strand synthesis, helicase DNA unwinding activity, and polymerase nucleotide incorporation.
Collapse
Affiliation(s)
- Faoud T Ishmael
- Department of Biochemistry and Molecular Biology, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
194
|
van Ham RCHJ, Kamerbeek J, Palacios C, Rausell C, Abascal F, Bastolla U, Fernández JM, Jiménez L, Postigo M, Silva FJ, Tamames J, Viguera E, Latorre A, Valencia A, Morán F, Moya A. Reductive genome evolution in Buchnera aphidicola. Proc Natl Acad Sci U S A 2003; 100:581-586. [PMID: 12522265 PMCID: PMC141039 DOI: 10.1073/pnas.0235981100] [Citation(s) in RCA: 360] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2002] [Indexed: 02/07/2023] Open
Abstract
We have sequenced the genome of the intracellular symbiont Buchnera aphidicola from the aphid Baizongia pistacea. This strain diverged 80-150 million years ago from the common ancestor of two previously sequenced Buchnera strains. Here, a field-collected, nonclonal sample of insects was used as source material for laboratory procedures. As a consequence, the genome assembly unveiled intrapopulational variation, consisting of approximately 1,200 polymorphic sites. Comparison of the 618-kb (kbp) genome with the two other Buchnera genomes revealed a nearly perfect gene-order conservation, indicating that the onset of genomic stasis coincided closely with establishment of the symbiosis with aphids, approximately 200 million years ago. Extensive genome reduction also predates the synchronous diversification of Buchnera and its host; but, at a slower rate, gene loss continues among the extant lineages. A computational study of protein folding predicts that proteins in Buchnera, as well as proteins of other intracellular bacteria, are generally characterized by smaller folding efficiency compared with proteins of free living bacteria. These and other degenerative genomic features are discussed in light of compensatory processes and theoretical predictions on the long-term evolutionary fate of symbionts like Buchnera.
Collapse
Affiliation(s)
- Roeland C H J van Ham
- Centro de Astrobiologia, Instituto Nacional de Técnica Aeroespacial-Consejo Superior de Investigaciones Cientificas, Carretera de Ajalvir kilómetro 4, 28850 Torrejón de Ardoz, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Phage annealing proteins promote oligonucleotide-directed mutagenesis in Escherichia coli and mouse ES cells. BMC Mol Biol 2003; 4:1. [PMID: 12530927 PMCID: PMC149363 DOI: 10.1186/1471-2199-4-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2002] [Accepted: 01/16/2003] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The phage protein pairs, RecE/RecT from Rac or Redalpha/Redbeta from lambda, initiate efficient double strand break repair (DSBR) in Escherichia coli that has proven very useful for DNA engineering. These phage pairs initiate DSBR either by annealing or by another mechanism that is not defined. RESULTS Here we report that these proteins also mediate single strand oligonucleotide repair (ssOR) at high efficiencies. The ssOR activity, unlike DSBR, does not require a phage exonuclease (RecE or Redalpha) but only requires a phage annealing protein (RecT or Redbeta). Notably, the P22 phage annealing protein Erf, which does not mediate the same DSBR reactions, also delivers ssOR activity. By altering aspects of the oligonucleotides, we document length and design parameters that affect ssOR efficiency to show a simple relationship to homologies either side of the repair site. Notably, ssOR shows strand bias. Oligonucleotides that can prime lagging strand replication deliver more ssOR than their leading complements. This suggests a model in which the annealing proteins hybridize the oligonucleotides to single stranded regions near the replication fork. We also show that ssOR is a highly efficient way to engineer BACs and can be detected in a eukaryotic cell upon expression of a phage annealing protein. CONCLUSION Phage annealing proteins can initiate the recombination of single stranded oligonucleotides into endogenous targets in Escherichia coli at very high efficiencies. This expands the repertoire of useful DNA engineering strategies, shows promise for applications in eukaryotic cells, and has implications for the unanswered questions regarding DSBR mediated by RecE/RecT and Redalpha/Redbeta.
Collapse
|
196
|
Abstract
We isolated a mutant allele of dnaX, encoding the tau and gamma subunits of the DNA polymerase III holoenzyme, that causes extreme cell filamentation but does not affect either cell growth or DNA replication. This phenotype results from a defect in daughter chromosome decatenation during rapid growth. In these cells, ParC, one subunit of topoisomerase IV, no longer associated with the replication factory, as occurs in wild-type cells, and was instead distributed uniformly on the nucleoid; the distribution of ParE, the other subunit of topoisomerase IV, was unaffected. In addition, the majority of topoisomerase IV activity in synchronized cell populations was restricted to late in the cell cycle, when replication was essentially complete. These observations suggest that topoisomerase IV activity in vivo might be dependent on release of ParC from the replication factory.
Collapse
Affiliation(s)
- Olivier Espeli
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | |
Collapse
|
197
|
Konieczny I. Strategies for helicase recruitment and loading in bacteria. EMBO Rep 2003; 4:37-41. [PMID: 12524518 PMCID: PMC1315803 DOI: 10.1038/sj.embor.embor703] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2002] [Accepted: 10/31/2002] [Indexed: 11/10/2022] Open
Abstract
DNA replication initiation in prokaryotes and eukaryotes requires the recruitment and loading of a helicase at the replication origin. To subsequently unwind the double-stranded DNA, the helicase must be properly positioned on the separated DNA strands. Several studies have revealed similarities and differences in the mechanisms used by different autonomously replicating DNA elements (replicons) for recruitment and activation of the appropriate helicase. Of particular interest are plasmid replicons that are adapted for replication in diverse bacterial hosts and are therefore intriguingly able to exploit the helicases of distantly related bacterial species. The different molecular mechanisms by which replicons recruit and load helicases are only just beginning to be understood.
Collapse
Affiliation(s)
- Igor Konieczny
- Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, 24 Kladki, Poland.
| |
Collapse
|
198
|
Martínez-Jiménez MI, Mesa P, Alonso JC. Bacillus subtilis tau subunit of DNA polymerase III interacts with bacteriophage SPP1 replicative DNA helicase G40P. Nucleic Acids Res 2002; 30:5056-64. [PMID: 12466528 PMCID: PMC137964 DOI: 10.1093/nar/gkf650] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genetic evidence suggests that the Bacillus subtilis dnaX gene only encodes for the tau subunit of both DNA polymerases III (Pol IIIs). The B.subtilis full-length protein and their mutant derivatives tau(373- 563) (lacking the N-terminal, domains I-III or amino acid residues 1-372) and tau(1-372) (lacking the C-terminal region or amino acids 373-563) have been purified. The tau protein forms tetramers, tau(373- 563) forms dimers, whereas tau(1-372), depending on the ionic strength, forms trimers or tetramers in solution. In the absence of single-stranded (ss) DNA and a nucleotide cofactor, tau interacts with the SPP1 hexameric replicative G40P DNA helicase in solution or with G40P-ATP bound to ssDNA, with a 1:1 stoichiometry. G40P(109-442), lacking the N-terminal amino acid residues 1-108, interacts with the C-terminal moiety of tau. The data indicate that the interaction of G40P with the tau subunit of Pol III, is relevant for the loading of the Pol IIIs into the SPP1 G38P-promoted open complex.
Collapse
Affiliation(s)
- María I Martínez-Jiménez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, C.S.I.C., Campus Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
199
|
Carr KM, Kaguni JM. Escherichia coli DnaA protein loads a single DnaB helicase at a DnaA box hairpin. J Biol Chem 2002; 277:39815-22. [PMID: 12161435 DOI: 10.1074/jbc.m205031200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular engine that drives bidirectional replication fork movement from the Escherichia coli replication origin (oriC) is the replicative helicase, DnaB. At oriC, two and only two helicase molecules are loaded, one for each replication fork. DnaA participates in helicase loading; DnaC is also involved, because it must be in a complex with DnaB for delivery of the helicase. Since DnaA induces a local unwinding of oriC, one model is that the limited availability of single-stranded DNA at oriC restricts the number of DnaB molecules that can bind. In this report, we determined that one DnaB helicase or one DnaB-DnaC complex is bound to a single-stranded DNA in a biologically relevant DNA replication system. These results indicate that the availability of single-stranded DNA is not a limiting factor and support a model in which the site of entry for DnaB is altered so that it cannot be reused. We also show that 2-4 DnaA monomers are bound on the single-stranded DNA at a specific site that carries a DnaA box sequence in a hairpin structure.
Collapse
Affiliation(s)
- Kevin M Carr
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | |
Collapse
|
200
|
Kadyrov FA, Drake JW. Characterization of DNA synthesis catalyzed by bacteriophage T4 replication complexes reconstituted on synthetic circular substrates. Nucleic Acids Res 2002; 30:4387-97. [PMID: 12384585 PMCID: PMC137140 DOI: 10.1093/nar/gkf576] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Replication complexes were reconstituted using the eight purified bacteriophage T4 replication proteins and synthetic circular 70-, 120- or 240-nt DNA substrates annealed to a leading-strand primer. To differentiate leading strands from lagging strands, the circular parts of the substrates lacked dCMP; thus, no dCTP was required for leading-strand synthesis and no dGTP for lagging-strand synthesis. The size of the substrates was crucial, the longer substrates supporting much more DNA synthesis. Leading and lagging strands were synthesized in a coupled manner. Specifically targeting leading-strand synthesis by decreasing the concentration of dGTP decreased the rate of extension of leading strands. However, blocking lagging-strand synthesis by lowering the dCTP concentration, by omitting dCTP altogether, by adding ddCTP, or with a single abasic site had no immediate effect on the rate of extension of leading strands.
Collapse
Affiliation(s)
- Farid A Kadyrov
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709-2233, USA.
| | | |
Collapse
|