151
|
Jiang PX, Wang J, Feng Y, He ZG. Divergent functions of multiple eukaryote-like Orc1/Cdc6 proteins on modulating the loading of the MCM helicase onto the origins of the hyperthermophilic archaeon Sulfolobus solfataricus P2. Biochem Biophys Res Commun 2007; 361:651-8. [PMID: 17673179 DOI: 10.1016/j.bbrc.2007.07.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 07/13/2007] [Indexed: 11/29/2022]
Abstract
The Cdc6 protein has been suggested as a loader for the eukaryotic MCM helicase. Archaeal replication machinery represents a core version of that in eukaryotes. In the current work, three eukaryotic Orc1/Cdc6 homologs (SsoCdc6-1, -2, and -3) from crenarchaeon Sulfolobus solfataricus were shown to have totally different effects on the interactions with SsoMCM helicase. SsoCdc6-2 stimulates the binding of the SsoMCM onto the origin DNA, but SsoCdc6-1 and SsoCdc6-3 significantly inhibit the loading activities, and these inhibitive effects can not be reversed by the stimulation of SsoCdc6-2. Using pull-down assays, we showed that three SsoCdc6 proteins interacted physically with the SsoMCM. Furthermore, the C-terminal domains of SsoCdc6 proteins were shown to physically and functionally affect the interactions with SsoMCM. This is the first report on the divergent functions of multiple eukaryote-like Orc1/Cdc6 proteins on regulating the loading of the MCM helicase onto the origins in the archaeon.
Collapse
Affiliation(s)
- Pei-Xia Jiang
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | |
Collapse
|
152
|
New criteria for selecting the origin of DNA replication in Wolbachia and closely related bacteria. BMC Genomics 2007; 8:182. [PMID: 17584494 PMCID: PMC1914354 DOI: 10.1186/1471-2164-8-182] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 06/20/2007] [Indexed: 11/30/2022] Open
Abstract
Background The annotated genomes of two closely related strains of the intracellular bacterium Wolbachia pipientis have been reported without the identifications of the putative origin of replication (ori). Identifying the ori of these bacteria and related alpha-Proteobacteria as well as their patterns of sequence evolution will aid studies of cell replication and cell density, as well as the potential genetic manipulation of these widespread intracellular bacteria. Results Using features that have been previously experimentally verified in the alpha-Proteobacterium Caulobacter crescentus, the origin of DNA replication (ori) regions were identified in silico for Wolbachia strains and eleven other related bacteria belonging to Ehrlichia, Anaplasma, and Rickettsia genera. These features include DnaA-, CtrA- and IHF-binding sites as well as the flanking genes in C. crescentus. The Wolbachia ori boundary genes were found to be hemE and COG1253 protein (CBS domain protein). Comparisons of the putative ori region among related Wolbachia strains showed higher conservation of bases within binding sites. Conclusion The sequences of the ori regions described here are only similar among closely related bacteria while fundamental characteristics like presence of DnaA and IHF binding sites as well as the boundary genes are more widely conserved. The relative paucity of CtrA binding sites in the ori regions, as well as the absence of key enzymes associated with DNA replication in the respective genomes, suggest that several of these obligate intracellular bacteria may have altered replication mechanisms. Based on these analyses, criteria are set forth for identifying the ori region in genome sequencing projects.
Collapse
|
153
|
Berkner S, Grogan D, Albers SV, Lipps G. Small multicopy, non-integrative shuttle vectors based on the plasmid pRN1 for Sulfolobus acidocaldarius and Sulfolobus solfataricus, model organisms of the (cren-)archaea. Nucleic Acids Res 2007; 35:e88. [PMID: 17576673 PMCID: PMC1919505 DOI: 10.1093/nar/gkm449] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The extreme thermoacidophiles of the genus Sulfolobus are among the best-studied archaea but have lacked small, reliable plasmid vectors, which have proven extremely useful for manipulating and analyzing genes in other microorganisms. Here we report the successful construction of a series of Sulfolobus-Escherichia coli shuttle vectors based on the small multicopy plasmid pRN1 from Sulfolobus islandicus. Selection in suitable uracil auxotrophs is provided through inclusion of pyrEF genes in the plasmid. The shuttle vectors do not integrate into the genome and do not rearrange. The plasmids allow functional overexpression of genes, as could be demonstrated for the beta-glycosidase (lacS) gene of S. solfataricus. In addition, we demonstrate that this beta-glycosidase gene could function as selectable marker in S. solfataricus. The shuttle plasmids differ in their interruption sites within pRN1 and allowed us to delineate functionally important regions of pRN1. The orf56/orf904 operon appears to be essential for pRN1 replication, in contrast interruption of the highly conserved orf80/plrA gene is tolerated. The new vector system promises to facilitate genetic studies of Sulfolobus and to have biotechnological uses, such as the overexpression or optimization of thermophilic enzymes that are not readily performed in mesophilic hosts.
Collapse
Affiliation(s)
- Silvia Berkner
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany, Department of Biological Sciences, University of Cincinnati, OH 45221-0006, USA and Department of Molecular Microbiology, University of Groningen, 9751 NN Haren, The Netherlands
| | - Dennis Grogan
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany, Department of Biological Sciences, University of Cincinnati, OH 45221-0006, USA and Department of Molecular Microbiology, University of Groningen, 9751 NN Haren, The Netherlands
| | - Sonja-Verena Albers
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany, Department of Biological Sciences, University of Cincinnati, OH 45221-0006, USA and Department of Molecular Microbiology, University of Groningen, 9751 NN Haren, The Netherlands
| | - Georg Lipps
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany, Department of Biological Sciences, University of Cincinnati, OH 45221-0006, USA and Department of Molecular Microbiology, University of Groningen, 9751 NN Haren, The Netherlands
- *To whom correspondence should be addressed: +49 921 552433, Fax: +49 921 552432,
| |
Collapse
|
154
|
Essential and non-essential DNA replication genes in the model halophilic Archaeon, Halobacterium sp. NRC-1. BMC Genet 2007; 8:31. [PMID: 17559652 PMCID: PMC1906834 DOI: 10.1186/1471-2156-8-31] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 06/08/2007] [Indexed: 11/22/2022] Open
Abstract
Background Information transfer systems in Archaea, including many components of the DNA replication machinery, are similar to those found in eukaryotes. Functional assignments of archaeal DNA replication genes have been primarily based upon sequence homology and biochemical studies of replisome components, but few genetic studies have been conducted thus far. We have developed a tractable genetic system for knockout analysis of genes in the model halophilic archaeon, Halobacterium sp. NRC-1, and used it to determine which DNA replication genes are essential. Results Using a directed in-frame gene knockout method in Halobacterium sp. NRC-1, we examined nineteen genes predicted to be involved in DNA replication. Preliminary bioinformatic analysis of the large haloarchaeal Orc/Cdc6 family, related to eukaryotic Orc1 and Cdc6, showed five distinct clades of Orc/Cdc6 proteins conserved in all sequenced haloarchaea. Of ten orc/cdc6 genes in Halobacterium sp. NRC-1, only two were found to be essential, orc10, on the large chromosome, and orc2, on the minichromosome, pNRC200. Of the three replicative-type DNA polymerase genes, two were essential: the chromosomally encoded B family, polB1, and the chromosomally encoded euryarchaeal-specific D family, polD1/D2 (formerly called polA1/polA2 in the Halobacterium sp. NRC-1 genome sequence). The pNRC200-encoded B family polymerase, polB2, was non-essential. Accessory genes for DNA replication initiation and elongation factors, including the putative replicative helicase, mcm, the eukaryotic-type DNA primase, pri1/pri2, the DNA polymerase sliding clamp, pcn, and the flap endonuclease, rad2, were all essential. Targeted genes were classified as non-essential if knockouts were obtained and essential based on statistical analysis and/or by demonstrating the inability to isolate chromosomal knockouts except in the presence of a complementing plasmid copy of the gene. Conclusion The results showed that ten out of nineteen eukaryotic-type DNA replication genes are essential for Halobacterium sp. NRC-1, consistent with their requirement for DNA replication. The essential genes code for two of ten Orc/Cdc6 proteins, two out of three DNA polymerases, the MCM helicase, two DNA primase subunits, the DNA polymerase sliding clamp, and the flap endonuclease.
Collapse
|
155
|
Higgins NP. Mutational bias suggests that replication termination occurs near the dif site, not at Ter sites: what's the Dif? Mol Microbiol 2007; 64:1-4. [PMID: 17376066 DOI: 10.1111/j.1365-2958.2007.05641.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this issue of Molecular Microbiology, Hendrickson and Lawrence analyse the sequence of bacterial genomes to map the historical traffic pattern of chromosome replication. Their surprising conclusion is that most forks terminate at the dif site rather than at the Tus/Ter sites where most investigators have concluded termination occurs most frequently. What make this analysis novel are the methods and the revisionist hypotheses for how and why forks might stop at dif.
Collapse
Affiliation(s)
- N Patrick Higgins
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 93294-0024, USA.
| |
Collapse
|
156
|
Matsunaga F, Glatigny A, Mucchielli-Giorgi MH, Agier N, Delacroix H, Marisa L, Durosay P, Ishino Y, Aggerbeck L, Forterre P. Genomewide and biochemical analyses of DNA-binding activity of Cdc6/Orc1 and Mcm proteins in Pyrococcus sp. Nucleic Acids Res 2007; 35:3214-22. [PMID: 17452353 PMCID: PMC1904270 DOI: 10.1093/nar/gkm212] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The origin of DNA replication (oriC) of the hyperthermophilic archaeon Pyrococcus abyssi contains multiple ORB and mini-ORB repeats that show sequence similarities to other archaeal ORB (origin recognition box). We report here that the binding of Cdc6/Orc1 to a 5 kb region containing oriC in vivo was highly specific both in exponential and stationary phases, by means of chromatin immunoprecipitation coupled with hybridization on a whole genome microarray (ChIP-chip). The oriC region is practically the sole binding site for the Cdc6/Orc1, thereby distinguishing oriC in the 1.8 M bp genome. We found that the 5 kb region contains a previously unnoticed cluster of ORB and mini-ORB repeats in the gene encoding the small subunit (dp1) for DNA polymerase II (PolD). ChIP and the gel retardation analyses further revealed that Cdc6/Orc1 specifically binds both of the ORB clusters in oriC and dp1. The organization of the ORB clusters in the dp1 and oriC is conserved during evolution in the order Thermococcales, suggesting a role in the initiation of DNA replication. Our ChIP-chip analysis also revealed that Mcm alters the binding specificity to the oriC region according to the growth phase, consistent with its role as a licensing factor.
Collapse
Affiliation(s)
- Fujihiko Matsunaga
- Institut de Génétique et Microbiologie, UMR8621, Bât. 409, Université Paris-Sud, 91405 Orsay Cedex, France, Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan and Gif/Orsay DNA Microarray Platform (GODMAP), Centre de Génétique Moléculaire UPR2167, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, Associated with the Université Pierre et Marie Curie-Paris 6, Paris F-75005, France
| | - Annie Glatigny
- Institut de Génétique et Microbiologie, UMR8621, Bât. 409, Université Paris-Sud, 91405 Orsay Cedex, France, Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan and Gif/Orsay DNA Microarray Platform (GODMAP), Centre de Génétique Moléculaire UPR2167, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, Associated with the Université Pierre et Marie Curie-Paris 6, Paris F-75005, France
| | - Marie-Hélène Mucchielli-Giorgi
- Institut de Génétique et Microbiologie, UMR8621, Bât. 409, Université Paris-Sud, 91405 Orsay Cedex, France, Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan and Gif/Orsay DNA Microarray Platform (GODMAP), Centre de Génétique Moléculaire UPR2167, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, Associated with the Université Pierre et Marie Curie-Paris 6, Paris F-75005, France
| | - Nicolas Agier
- Institut de Génétique et Microbiologie, UMR8621, Bât. 409, Université Paris-Sud, 91405 Orsay Cedex, France, Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan and Gif/Orsay DNA Microarray Platform (GODMAP), Centre de Génétique Moléculaire UPR2167, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, Associated with the Université Pierre et Marie Curie-Paris 6, Paris F-75005, France
| | - Hervé Delacroix
- Institut de Génétique et Microbiologie, UMR8621, Bât. 409, Université Paris-Sud, 91405 Orsay Cedex, France, Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan and Gif/Orsay DNA Microarray Platform (GODMAP), Centre de Génétique Moléculaire UPR2167, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, Associated with the Université Pierre et Marie Curie-Paris 6, Paris F-75005, France
| | - Laetitia Marisa
- Institut de Génétique et Microbiologie, UMR8621, Bât. 409, Université Paris-Sud, 91405 Orsay Cedex, France, Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan and Gif/Orsay DNA Microarray Platform (GODMAP), Centre de Génétique Moléculaire UPR2167, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, Associated with the Université Pierre et Marie Curie-Paris 6, Paris F-75005, France
| | - Patrice Durosay
- Institut de Génétique et Microbiologie, UMR8621, Bât. 409, Université Paris-Sud, 91405 Orsay Cedex, France, Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan and Gif/Orsay DNA Microarray Platform (GODMAP), Centre de Génétique Moléculaire UPR2167, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, Associated with the Université Pierre et Marie Curie-Paris 6, Paris F-75005, France
| | - Yoshizumi Ishino
- Institut de Génétique et Microbiologie, UMR8621, Bât. 409, Université Paris-Sud, 91405 Orsay Cedex, France, Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan and Gif/Orsay DNA Microarray Platform (GODMAP), Centre de Génétique Moléculaire UPR2167, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, Associated with the Université Pierre et Marie Curie-Paris 6, Paris F-75005, France
| | - Lawrence Aggerbeck
- Institut de Génétique et Microbiologie, UMR8621, Bât. 409, Université Paris-Sud, 91405 Orsay Cedex, France, Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan and Gif/Orsay DNA Microarray Platform (GODMAP), Centre de Génétique Moléculaire UPR2167, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, Associated with the Université Pierre et Marie Curie-Paris 6, Paris F-75005, France
| | - Patrick Forterre
- Institut de Génétique et Microbiologie, UMR8621, Bât. 409, Université Paris-Sud, 91405 Orsay Cedex, France, Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan and Gif/Orsay DNA Microarray Platform (GODMAP), Centre de Génétique Moléculaire UPR2167, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, Associated with the Université Pierre et Marie Curie-Paris 6, Paris F-75005, France
- *To whom correspondence should be addressed. Tel: +33 1 69 157489; Fax: +33 1 69 157808;
| |
Collapse
|
157
|
Pei H, Liu J, Li J, Guo A, Zhou J, Xiang H. Mechanism for the TtDnaA-Tt-oriC cooperative interaction at high temperature and duplex opening at an unusual AT-rich region in Thermoanaerobacter tengcongensis. Nucleic Acids Res 2007; 35:3087-99. [PMID: 17452366 PMCID: PMC1888806 DOI: 10.1093/nar/gkm137] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Revised: 02/21/2007] [Accepted: 02/22/2007] [Indexed: 11/19/2022] Open
Abstract
Thermoanaerobacter tengcongensis is an anaerobic low-GC thermophilic bacterium. To further elucidate the replication initiation of chromosomal DNA at high temperature, the interaction between the replication initiator (TtDnaA) and the putative origin (Tt-oriC) in this thermophile was investigated. We found that efficient binding of TtDnaA to Tt-oriC at high temperature requires (i) at least two neighboring DnaA boxes, (ii) the specific feature of the TtDnaA Domain IV and (iii) the self-oligomerization of TtDnaA. Replacement of the TtDnaA Domain IV by the counterpart of Escherichia coli DnaA or disruption of its oligomerization by amino acid mutations (W9A/L20S) abolished the oriC-binding activity of TtDnaA at 60 degrees C, but not at 37 degrees C. Moreover, ATP-TtDnaA, but not ADP-TtDnaA or the oligomerization-deficient mutants was able to unwind the Tt-oriC duplex. The minimal oriC required for this duplex opening in vitro was demonstrated to consist of DnaA boxes 1-8 and an unusual AT-rich region. Interestingly, although no typical ATP-DnaA box was found in this AT-rich region, it was exclusively bound by ATP-TtDnaA and acted as the duplex-opening and replication-initiation site. Taken together, we propose that oligomerization of ATP-DnaA and simultaneously binding of several DnaA boxes and/or AT-rich region may be generally required in replication initiation at high temperature.
Collapse
Affiliation(s)
- Huadong Pei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, P. R. China, Graduate University of Chinese Academy of Sciences, Beijing 100039, P. R. China and School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100083, P. R. China
| | - Jingfang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, P. R. China, Graduate University of Chinese Academy of Sciences, Beijing 100039, P. R. China and School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100083, P. R. China
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, P. R. China, Graduate University of Chinese Academy of Sciences, Beijing 100039, P. R. China and School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100083, P. R. China
| | - Aobo Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, P. R. China, Graduate University of Chinese Academy of Sciences, Beijing 100039, P. R. China and School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100083, P. R. China
| | - Jian Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, P. R. China, Graduate University of Chinese Academy of Sciences, Beijing 100039, P. R. China and School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100083, P. R. China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, P. R. China, Graduate University of Chinese Academy of Sciences, Beijing 100039, P. R. China and School of Pharmaceutical Science, Peking University Health Science Center, Beijing 100083, P. R. China
| |
Collapse
|
158
|
Norais C, Hawkins M, Hartman AL, Eisen JA, Myllykallio H, Allers T. Genetic and physical mapping of DNA replication origins in Haloferax volcanii. PLoS Genet 2007; 3:e77. [PMID: 17511521 PMCID: PMC1868953 DOI: 10.1371/journal.pgen.0030077] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 03/05/2007] [Indexed: 11/18/2022] Open
Abstract
The halophilic archaeon Haloferax volcanii has a multireplicon genome, consisting of a main chromosome, three secondary chromosomes, and a plasmid. Genes for the initiator protein Cdc6/Orc1, which are commonly located adjacent to archaeal origins of DNA replication, are found on all replicons except plasmid pHV2. However, prediction of DNA replication origins in H. volcanii is complicated by the fact that this species has no less than 14 cdc6/orc1 genes. We have used a combination of genetic, biochemical, and bioinformatic approaches to map DNA replication origins in H. volcanii. Five autonomously replicating sequences were found adjacent to cdc6/orc1 genes and replication initiation point mapping was used to confirm that these sequences function as bidirectional DNA replication origins in vivo. Pulsed field gel analyses revealed that cdc6/orc1-associated replication origins are distributed not only on the main chromosome (2.9 Mb) but also on pHV1 (86 kb), pHV3 (442 kb), and pHV4 (690 kb) replicons. Gene inactivation studies indicate that linkage of the initiator gene to the origin is not required for replication initiation, and genetic tests with autonomously replicating plasmids suggest that the origin located on pHV1 and pHV4 may be dominant to the principal chromosomal origin. The replication origins we have identified appear to show a functional hierarchy or differential usage, which might reflect the different replication requirements of their respective chromosomes. We propose that duplication of H. volcanii replication origins was a prerequisite for the multireplicon structure of this genome, and that this might provide a means for chromosome-specific replication control under certain growth conditions. Our observations also suggest that H. volcanii is an ideal organism for studying how replication of four replicons is regulated in the context of the archaeal cell cycle.
Collapse
Affiliation(s)
- Cédric Norais
- Institut de Génétique et Microbiologie, Université Paris-Sud, Orsay, France
- CNRS, UMR8621, Orsay, France
| | - Michelle Hawkins
- Institute of Genetics, University of Nottingham, Nottingham, United Kingdom
| | - Amber L Hartman
- Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jonathan A Eisen
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - Hannu Myllykallio
- Institut de Génétique et Microbiologie, Université Paris-Sud, Orsay, France
- CNRS, UMR8621, Orsay, France
- * To whom correspondence should be addressed. E-mail: (HM); (TA)
| | - Thorsten Allers
- Institute of Genetics, University of Nottingham, Nottingham, United Kingdom
- * To whom correspondence should be addressed. E-mail: (HM); (TA)
| |
Collapse
|
159
|
Robinson NP, Bell SD. Extrachromosomal element capture and the evolution of multiple replication origins in archaeal chromosomes. Proc Natl Acad Sci U S A 2007; 104:5806-11. [PMID: 17392430 PMCID: PMC1851573 DOI: 10.1073/pnas.0700206104] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In all three domains of life, DNA replication begins at specialized loci termed replication origins. In bacteria, replication initiates from a single, clearly defined site. In contrast, eukaryotic organisms exploit a multitude of replication origins, dividing their genomes into an array of short contiguous units. Recently, the multiple replication origin paradigm has also been demonstrated within the archaeal domain of life, with the discovery that the hyperthermophilic archaeon Sulfolobus has three replication origins. However, the evolutionary mechanism driving the progression from single to multiple origin usage remains unclear. Here, we demonstrate that Aeropyrum pernix, a distant relative of Sulfolobus, has two origins. Comparison with the Sulfolobus origins provides evidence for evolution of replicon complexity by capture of extrachromosomal genetic elements. We additionally identify a previously unrecognized candidate archaeal initiator protein that is distantly related to eukaryotic Cdt1. Our data thus provide evidence that horizontal gene transfer, in addition to its well-established role in contributing to the information content of chromosomes, may fundamentally alter the manner in which the host chromosome is replicated.
Collapse
Affiliation(s)
- Nicholas P. Robinson
- Medical Research Council Cancer Cell Unit, Hutchison Medical Research Council Research Center, Hills Road, Cambridge CB2 0XZ, United Kingdom
- To whom correspondence may be addressed. E-mail: or
| | - Stephen D. Bell
- Medical Research Council Cancer Cell Unit, Hutchison Medical Research Council Research Center, Hills Road, Cambridge CB2 0XZ, United Kingdom
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
160
|
Lundgren M, Bernander R. Genome-wide transcription map of an archaeal cell cycle. Proc Natl Acad Sci U S A 2007; 104:2939-44. [PMID: 17307872 PMCID: PMC1815285 DOI: 10.1073/pnas.0611333104] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Relative RNA abundance was measured at different cell-cycle stages in synchronized cultures of the hyperthermophilic archaeon Sulfolobus acidocaldarius. Cyclic induction was observed for >160 genes, demonstrating central roles for transcriptional regulation and cell-cycle-specific gene expression in archaeal cell-cycle progression. Many replication genes were induced in a cell-cycle-specific manner, and novel replisome components are likely to be among the genes of unknown function with similar induction patterns. Candidate genes for the unknown genome segregation and cell division machineries were also identified, as well as seven transcription factors likely to be involved in cell-cycle control. Two serine-threonine protein kinases showed distinct cell-cycle-specific induction, suggesting regulation of the archaeal cell cycle also through protein modification. Two candidate recognition elements, CCR boxes, for transcription factors in control of cell-cycle regulons were identified among gene sets with similar induction kinetics. The results allow detailed characterization of the genome segregation, division, and replication processes and may, because of the extensive homologies between the archaeal and eukaryotic information machineries, also be applicable to core features of the eukaryotic cell cycle.
Collapse
Affiliation(s)
- Magnus Lundgren
- Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Rolf Bernander
- Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, SE-752 36 Uppsala, Sweden
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
161
|
Abstract
The archaeal DNA replication machinery bears striking similarity to that of eukaryotes and is clearly distinct from the bacterial apparatus. In recent years, considerable advances have been made in understanding the biochemistry of the archaeal replication proteins. Furthermore, a number of structures have now been obtained for individual components and higher-order assemblies of archaeal replication factors, yielding important insights into the mechanisms of DNA replication in both archaea and eukaryotes.
Collapse
Affiliation(s)
- Elizabeth R Barry
- MRC Cancer Cell Unit, Hutchison MRC Research Centre, Hills Road, Cambridge CB2 2XZ, United Kingdom
| | | |
Collapse
|
162
|
Robinson NP, Blood KA, McCallum SA, Edwards PAW, Bell SD. Sister chromatid junctions in the hyperthermophilic archaeon Sulfolobus solfataricus. EMBO J 2007; 26:816-24. [PMID: 17255945 PMCID: PMC1794387 DOI: 10.1038/sj.emboj.7601529] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 12/07/2006] [Indexed: 01/28/2023] Open
Abstract
Although the Archaea exhibit an intriguing combination of bacterial- and eukaryotic-like features, it is not known how these prokaryotic cells segregate their chromosomes before the process of cell division. In the course of our analysis of the third replication origin in the archaeon Sulfolobus solfataricus, we identify and characterise sister chromatid junctions in this prokaryote. This pairing appears to be mediated by hemicatenane-like structures, and we provide evidence that these junctions persist in both replicating and postreplicative cells. These data, in conjunction with fluorescent in situ hybridisation analyses, suggest that Sulfolobus chromosomes have a significant period of postreplicative sister chromatid synapsis, a situation that is more reminiscent of eukaryotic than bacterial chromosome segregation mechanisms.
Collapse
Affiliation(s)
- Nicholas P Robinson
- Medical Research Council Cancer Cell Unit, Hutchison MRC Research Centre, Cambridge, UK
| | - Katherine A Blood
- Department of Pathology, Hutchison MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Simon A McCallum
- Medical Research Council Cancer Cell Unit, Hutchison MRC Research Centre, Cambridge, UK
| | - Paul A W Edwards
- Department of Pathology, Hutchison MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Stephen D Bell
- Medical Research Council Cancer Cell Unit, Hutchison MRC Research Centre, Cambridge, UK
- Medical Research Council Cancer Cell Unit, Hutchison Medical Research Council Centre, Hills Road, Cambridge CB2 2XZ, UK. Tel.: +44 1223 763 311; Fax: +44 1223 763 296; E-mail: or
| |
Collapse
|
163
|
Götz D, Paytubi S, Munro S, Lundgren M, Bernander R, White MF. Responses of hyperthermophilic crenarchaea to UV irradiation. Genome Biol 2007; 8:R220. [PMID: 17931420 PMCID: PMC2246294 DOI: 10.1186/gb-2007-8-10-r220] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 08/09/2007] [Accepted: 10/11/2007] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND DNA damage leads to cellular responses that include the increased expression of DNA repair genes, repression of DNA replication and alterations in cellular metabolism. Archaeal information processing pathways resemble those in eukaryotes, but archaeal damage response pathways remain poorly understood. RESULTS We analyzed the transcriptional response to UV irradiation in two related crenarchaea, Sulfolobus solfataricus and Sulfolobus acidocaldarius. Sulfolobus species encounter high levels of DNA damage in nature, as they inhabit high temperature, aerobic environments and are exposed to sunlight. No increase in expression of DNA repair genes following UV irradiation was observed. There was, however, a clear transcriptional response, including repression of DNA replication and chromatin proteins. Differential effects on the expression of the three transcription factor B (tfb) genes hint at a mechanism for the modulation of transcriptional patterns in response to DNA damage. TFB3, which is strongly induced following UV irradiation, competes with TFB1 for binding to RNA polymerase in vitro, and may act as a repressor of transcription or an alternative transcription factor for certain promoters. CONCLUSION A clear response to DNA damage was observed, with down-regulation of the DNA replication machinery, changes in transcriptional regulatory proteins, and up-regulation of the biosynthetic enzymes for beta-carotene, which has UV protective properties, and proteins that detoxify reactive oxygen species. However, unlike eukaryotes and bacteria, there was no induction of DNA repair proteins in response to DNA damage, probably because these are expressed constitutively to deal with increased damage arising due to high growth temperatures.
Collapse
Affiliation(s)
- Dorothee Götz
- Aquapharm Bio-Discoveries, European Centre for Marine Biotechnology, Dunbeg, Oban PA37 1QA, UK
| | - Sonia Paytubi
- Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Stacey Munro
- Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Magnus Lundgren
- Department of Molecular Evolution, Uppsala University, Norbyvägen 18C, SE-752 36, Uppsala, Sweden
| | - Rolf Bernander
- Department of Molecular Evolution, Uppsala University, Norbyvägen 18C, SE-752 36, Uppsala, Sweden
| | - Malcolm F White
- Department of Molecular Evolution, Uppsala University, Norbyvägen 18C, SE-752 36, Uppsala, Sweden
| |
Collapse
|
164
|
Sun C, Zhou M, Li Y, Xiang H. Molecular characterization of the minimal replicon and the unidirectional theta replication of pSCM201 in extremely halophilic archaea. J Bacteriol 2006; 188:8136-44. [PMID: 16997958 PMCID: PMC1698213 DOI: 10.1128/jb.00988-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A 3,463-bp plasmid, pSCM201, was isolated from a halophilic archaeon, Haloarcula sp. strain AS7094. The minimal replicon that is essential and sufficient for autonomous replication and stable maintenance in Haloarcula hispanica was determined by deletion analysis of the plasmid. This minimal replicon ( approximately 1.8 kb) consisted of only two functionally related segments: (i) a putative origin (ori201) containing an AT-rich region and sets of repeats and (ii) an adjacent gene encoding a putative replication initiation protein (Rep201). Electron microscopic observation and Southern blotting analysis demonstrated that pSCM201 replicates via a theta mechanism. Precise mapping of the putative origin suggested that the replication initiated from a fixed site close to the AT-rich region and proceeded unidirectionally toward the downstream rep201 gene, which was further confirmed by electron microscopic analysis of the ClaI-digested replication intermediates. To our knowledge, this is the first unidirectional theta replication plasmid experimentally identified in the domain of archaea. It provides a novel plasmid system to conduct research on archaeal DNA replication.
Collapse
Affiliation(s)
- Chaomin Sun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
| | | | | | | |
Collapse
|
165
|
Ozaki S, Fujimitsu K, Kurumizaka H, Katayama T. The DnaA homolog of the hyperthermophilic eubacterium Thermotoga maritima forms an open complex with a minimal 149-bp origin region in an ATP-dependent manner. Genes Cells 2006; 11:425-38. [PMID: 16611245 DOI: 10.1111/j.1365-2443.2006.00950.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Escherichia coli, ATP-DnaA, but not ADP-DnaA, forms an initiation complex that undergoes site-specific duplex DNA unwinding, open complex formation. However, it remains unclear how highly the ATP-dependent activation of the initiation factor is conserved in evolution. The hyperthermophile Thermotoga maritima is one of the most ancient eubacteria in evolution. Here, we show that the DnaA homolog (tmaDnaA) of this bacterium forms open complexes with the predicted origin region (tma-oriC) in vitro. TmaDnaA has a strong and specific affinity for ATP/ADP as well as for 12-mer repeating sequences within the tma-oriC. Unlike ADP-tmaDnaA, ATP-tmaDnaA is highly cooperative in DNA binding and forms open complexes in a manner that depends on temperature and the superhelical tension of the tma-oriC-bearing plasmid. The minimal tma-oriC required for unwinding is a 149-bp region containing five repeats of the 12-mer sequence and two AT-rich 9-mer repeats. TmaDnaA-binding to the 12-mer motif provokes DNA bending. The 9-mer region is the duplex-unwinding site. The tmaDnaA-binding and unwinding motifs of tma-oriC share sequence homology with corresponding archaeal and eukaryotic sequences. These findings suggest that the ATP-dependent molecular switch of the initiator and the mechanisms in the replication initiation complex are highly conserved in eubacterial evolution.
Collapse
Affiliation(s)
- Shogo Ozaki
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
166
|
Grainge I, Gaudier M, Schuwirth BS, Westcott SL, Sandall J, Atanassova N, Wigley DB. Biochemical analysis of a DNA replication origin in the archaeon Aeropyrum pernix. J Mol Biol 2006; 363:355-69. [PMID: 16978641 DOI: 10.1016/j.jmb.2006.07.076] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 07/26/2006] [Accepted: 07/26/2006] [Indexed: 11/29/2022]
Abstract
We have characterised the interaction of the Aeropyrum pernix origin recognition complex proteins (ORC1 and ORC2) with DNA using DNase I footprinting. Each protein binds upstream of its respective gene. However, ORC1 protein alone interacts more tightly with an additional region containing multiple origin recognition box (ORB) sites that we show to be a replication origin. At this origin, there are four ORB elements disposed either side of an A+T-rich region. An ORC1 protein dimer binds at each of these ORB sites. Once all four ORB sites have bound ORC1 protein, there is a transition to a higher-order assembly with a defined alteration in topology and superhelicity. Furthermore, after this transition, the A+T-rich region becomes sensitive to digestion by DNase I and P1 nuclease, revealing that the transition promotes distortion of the DNA in this region, presumably as a prelude to loading of MCM helicase.
Collapse
Affiliation(s)
- Ian Grainge
- Cancer Research UK, Clare Hall Laboratories, The London Research Institute, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3LD, UK
| | | | | | | | | | | | | |
Collapse
|
167
|
Kasiviswanathan R, Shin JH, Kelman Z. DNA binding by the Methanothermobacter thermautotrophicus Cdc6 protein is inhibited by the minichromosome maintenance helicase. J Bacteriol 2006; 188:4577-80. [PMID: 16740965 PMCID: PMC1482948 DOI: 10.1128/jb.00168-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Cdc6 proteins from the archaeon Methanothermobacter thermautotrophicus were previously shown to bind double-stranded DNA. It is shown here that the proteins also bind single-stranded DNA. Using minichromosome maintenance (MCM) helicase mutant proteins unable to bind DNA, it was found that the interaction of MCM with Cdc6 inhibits the DNA binding activity of Cdc6.
Collapse
Affiliation(s)
- Rajesh Kasiviswanathan
- University of Maryland Biotechnology Institute, Center for Advanced Research in Biotechnology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | | | | |
Collapse
|
168
|
Bolhuis H, Palm P, Wende A, Falb M, Rampp M, Rodriguez-Valera F, Pfeiffer F, Oesterhelt D. The genome of the square archaeon Haloquadratum walsbyi : life at the limits of water activity. BMC Genomics 2006; 7:169. [PMID: 16820047 PMCID: PMC1544339 DOI: 10.1186/1471-2164-7-169] [Citation(s) in RCA: 226] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 07/04/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The square halophilic archaeon Haloquadratum walsbyi dominates NaCl-saturated and MgCl2 enriched aquatic ecosystems, which imposes a serious desiccation stress, caused by the extremely low water activity. The genome sequence was analyzed and physiological and physical experiments were carried out in order to reveal how H. walsbyi has specialized into its narrow and hostile ecological niche and found ways to cope with the desiccation stress. RESULTS A rich repertoire of proteins involved in phosphate metabolism, phototrophic growth and extracellular protective polymers, including the largest archaeal protein (9159 amino acids), a homolog to eukaryotic mucins, are amongst the most outstanding features. A relatively low GC content (47.9%), 15-20% less than in other halophilic archaea, and one of the lowest coding densities (76.5%) known for prokaryotes might be an indication for the specialization in its unique environment CONCLUSION Although no direct genetic indication was found that can explain how this peculiar organism retains its square shape, the genome revealed several unique adaptive traits that allow this organism to thrive in its specific and extreme niche.
Collapse
Affiliation(s)
- Henk Bolhuis
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, The Netherlands
| | - Peter Palm
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andy Wende
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Michaela Falb
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Markus Rampp
- Computer Center of the Max-Planck-Society, Max Planck Institute of Plasma Physics, Garching, Germany
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group and División de Microbiología, Universidad Miguel Hernandez, Alicante, Spain
| | - Friedhelm Pfeiffer
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Dieter Oesterhelt
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
169
|
Jiang Y, Yao S, Helinski D, Toukdarian A. Functional analysis of two putative chromosomal replication origins from Pseudomonas aeruginosa. Plasmid 2006; 55:194-200. [PMID: 16376988 DOI: 10.1016/j.plasmid.2005.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 11/10/2005] [Accepted: 11/11/2005] [Indexed: 11/19/2022]
Abstract
Two autonomously replicating elements previously isolated from Pseudomonas aeruginosa were characterized in vitro for pre-priming complex formation using combinations of replication proteins from P. aeruginosa and Escherichia coli. The results of these studies showed that the P. aeruginosa DnaA and DnaB proteins could form a pre-priming complex on plasmid templates containing either of the two autonomously replicating elements of P. aeruginosa, pYJ50 (containing oriCI), and pYJ52 (containing oriCII), or the E. coli chromosomal origin (plasmid pYJ2). The E. coli DnaA, DnaB, and DnaC proteins were also able to form a pre-priming complex on pYJ2, pYJ50, and pYJ52. Neither pYJ50 nor pYJ52 could be established in E. coli, suggesting a block in steps subsequent to the formation of the pre-priming complex. Similarly, pYJ2 could not be established in P. aeruginosa. Since pYJ50 and pYJ52 could be established in P. aeruginosa and both putative origins form a pre-priming complex in vitro, attempts were made to delete each of these two putative origins. The results indicate that the oriCI sequence is essential for cell viability under typical laboratory growth conditions but that oriCII is not.
Collapse
Affiliation(s)
- Yong Jiang
- Division of Biological Sciences and Center for Molecular Genetics, University of California San Diego, La Jolla, CA 92093-0322, USA
| | | | | | | |
Collapse
|
170
|
DasSarma S, Berquist BR, Coker JA, DasSarma P, Müller JA. Post-genomics of the model haloarchaeon Halobacterium sp. NRC-1. SALINE SYSTEMS 2006; 2:3. [PMID: 16542428 PMCID: PMC1447603 DOI: 10.1186/1746-1448-2-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 03/16/2006] [Indexed: 11/21/2022]
Abstract
Halobacteriumsp. NRC-1 is an extremely halophilic archaeon that is easily cultured and genetically tractable. Since its genome sequence was completed in 2000, a combination of genetic, transcriptomic, proteomic, and bioinformatic approaches have provided insights into both its extremophilic lifestyle as well as fundamental cellular processes common to all life forms. Here, we review post-genomic research on this archaeon, including investigations of DNA replication and repair systems, phototrophic, anaerobic, and other physiological capabilities, acidity of the proteome for function at high salinity, and role of lateral gene transfer in its evolution.
Collapse
Affiliation(s)
- Shiladitya DasSarma
- University of Maryland Biotechnology Institute, Center of Marine Biotechnology, 701 E. Pratt Street, Suite 236, Baltimore, MD 21202, USA
| | - Brian R Berquist
- University of Maryland Biotechnology Institute, Center of Marine Biotechnology, 701 E. Pratt Street, Suite 236, Baltimore, MD 21202, USA
| | - James A Coker
- University of Maryland Biotechnology Institute, Center of Marine Biotechnology, 701 E. Pratt Street, Suite 236, Baltimore, MD 21202, USA
| | - Priya DasSarma
- University of Maryland Biotechnology Institute, Center of Marine Biotechnology, 701 E. Pratt Street, Suite 236, Baltimore, MD 21202, USA
| | - Jochen A Müller
- Department of Biology, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA
| |
Collapse
|
171
|
Yamashiro K, Yokobori SI, Oshima T, Yamagishi A. Structural analysis of the plasmid pTA1 isolated from the thermoacidophilic archaeon Thermoplasma acidophilum. Extremophiles 2006; 10:327-35. [PMID: 16493526 DOI: 10.1007/s00792-005-0502-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 12/04/2005] [Indexed: 11/25/2022]
Abstract
Thermoplasma acidophilum is a thermoacidophilic archaeon that grows optimally at pH1.8 and 56 degrees C and has no cell wall. Plasmid pTA1 was found in some strains of the species. We sequenced plasmid pTA1 and analyzed the open reading frames (ORFs). pTA1 was found to be a circular DNA molecule of 15,723 bp. Eighteen ORFs were found; none of the gene products except ORF1 had sequence similarity to known proteins. ORF1 showed similarity to Cdc6, which is involved in genome-replication initiation in Eukarya and Archaea. T. acidophilum has two Cdc6 homologues in the genome. The homologue found in pTA1 is most similar to Tvo3, one of the three Cdc6 homologues found in the genome of Thermoplasma volcanium, among all of the Cdc6 family proteins. The phylogenetic analysis suggested that plasmid pTA1 is possibly originated from the chromosomal DNA of Thermoplasma.
Collapse
Affiliation(s)
- Kan Yamashiro
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | |
Collapse
|
172
|
Marinsek N, Barry ER, Makarova KS, Dionne I, Koonin EV, Bell SD. GINS, a central nexus in the archaeal DNA replication fork. EMBO Rep 2006; 7:539-45. [PMID: 16485022 PMCID: PMC1479547 DOI: 10.1038/sj.embor.7400649] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 01/25/2006] [Accepted: 01/26/2006] [Indexed: 11/10/2022] Open
Abstract
In eukaryotes, the GINS complex is essential for DNA replication and has been implicated as having a role at the replication fork. This complex consists of four paralogous GINS subunits, Psf1, Psf2, Psf3 and Sld5. Here, we identify an archaeal GINS homologue as a direct interaction partner of the MCM helicase. The core archaeal GINS complex contains two subunits that are poorly conserved homologues of the eukaryotic GINS subunits, in complex with a protein containing a domain homologous to the DNA-binding domain of bacterial RecJ. Interaction studies show that archaeal GINS interacts directly with the heterodimeric core primase. Our data suggest that GINS is important in coordinating the architecture of the replication fork and provide a mechanism to couple progression of the MCM helicase on the leading strand with priming events on the lagging strand.
Collapse
Affiliation(s)
- Nina Marinsek
- MRC Cancer Cell Unit, Hutchison MRC Research Centre, Hills Road, Cambridge CB2 2XZ, UK
| | - Elizabeth R Barry
- MRC Cancer Cell Unit, Hutchison MRC Research Centre, Hills Road, Cambridge CB2 2XZ, UK
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, Room 5N503, 8600 Rockville Pike, Bethesda, Maryland 20894, USA
| | - Isabelle Dionne
- MRC Cancer Cell Unit, Hutchison MRC Research Centre, Hills Road, Cambridge CB2 2XZ, UK
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, Room 5N503, 8600 Rockville Pike, Bethesda, Maryland 20894, USA
| | - Stephen D Bell
- MRC Cancer Cell Unit, Hutchison MRC Research Centre, Hills Road, Cambridge CB2 2XZ, UK
- Tel: +44 1223 763311; Fax +44 1223 763311; E-mail:
| |
Collapse
|
173
|
Duggin IG, Bell SD. The chromosome replication machinery of the archaeon Sulfolobus solfataricus. J Biol Chem 2006; 281:15029-32. [PMID: 16467299 DOI: 10.1074/jbc.r500029200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the three domains of life, the archaea, bacteria, and eukarya, there are two general lineages of DNA replication proteins: the bacterial and the eukaryal/archaeal lineages. The hyperthermophilic archaeon Sulfolobus solfataricus provides an attractive model for biochemical study of DNA replication. Its relative simplicity in both genomic and biochemical contexts, together with high protein thermostability, has already provided insight into the function of the more complex yet homologous molecules of the eukaryotic domain. Here, we provide an overview of recent insights into the functioning of the chromosome replication machinery of S. solfataricus, focusing on some of the relatively well characterized core components that act at the DNA replication fork.
Collapse
Affiliation(s)
- Iain G Duggin
- MRC Cancer Cell Unit, Hutchison/Medical Research Council Research Centre, Hills Road, Cambridge CB2 2XZ, United Kingdom
| | | |
Collapse
|
174
|
Worning P, Jensen LJ, Hallin PF, Staerfeldt HH, Ussery DW. Origin of replication in circular prokaryotic chromosomes. Environ Microbiol 2006; 8:353-61. [PMID: 16423021 DOI: 10.1111/j.1462-2920.2005.00917.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To predict origins of replication in prokaryotic chromosomes, we analyse the leading and lagging strands of 200 chromosomes for differences in oligomer composition and show that these correlate strongly with taxonomic grouping, lifestyle and molecular details of the replication process. While all bacteria have a preference for Gs over Cs on the leading strand, we discover that the direction of the A/T skew is determined by the polymerase-alpha subunit that replicates the leading strand. The strength of the strand bias varies greatly between both phyla and environments and appears to correlate with growth rate. Finally we observe much greater diversity of skew among archaea than among bacteria. We have developed a program that accurately locates the origins of replication by measuring the differences between leading and lagging strand of all oligonucleotides up to 8 bp in length. The program and results for all publicly available genomes are available from http://www.cbs.dtu.dk/services/GenomeAtlas/suppl/origin.
Collapse
Affiliation(s)
- Peder Worning
- Biological Sciences, AstraZeneca R and D Lund, Sweden
| | | | | | | | | |
Collapse
|
175
|
Lipps G. Plasmids and viruses of the thermoacidophilic crenarchaeote Sulfolobus. Extremophiles 2006; 10:17-28. [PMID: 16397749 DOI: 10.1007/s00792-005-0492-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Accepted: 07/15/2005] [Indexed: 11/28/2022]
Abstract
The crenarchaeote Sulfolobus spp. is a host for a remarkably large spectrum of viruses and plasmids. The genetic elements characterized so far indicate a large degree of novelty in terms of morphology (viruses) and in terms of genome content (plasmids and viruses). The viruses and conjugative plasmids encode a great number of conserved proteins of unknown function due to the lack of sequence similarity to functionally characterized proteins. These apparently essential proteins remain to be studied and should help to understand the physiology and genetics of the respective genetic elements as well as the host. Sulfolobus is one of the best-studied archaeons and could develop into an important model organism of the crenarchaea and the archaea.
Collapse
Affiliation(s)
- Georg Lipps
- Institute of Biochemistry, University of Bayreuth, Universitätstrasse 30, 95440, Bayreuth, Germany.
| |
Collapse
|
176
|
van der Oost J, Walther J, Brouns SJJ, van de Werken HJG, Snijders APL, Wright PC, Andersson A, Bernander R, de Vos WM. 9 Functional Genomics of the Thermo-Acidophilic Archaeon Sulfolobus solfataricus. METHODS IN MICROBIOLOGY 2006. [DOI: 10.1016/s0580-9517(08)70012-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
177
|
Zawilak-PAWLIK A, Kois A, Majka J, Jakimowicz D, Smulczyk-Krawczyszyn A, Messer W, Zakrzewska-Czerwińska J. Architecture of bacterial replication initiation complexes: orisomes from four unrelated bacteria. Biochem J 2005; 389:471-81. [PMID: 15790315 PMCID: PMC1175125 DOI: 10.1042/bj20050143] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bacterial chromosome replication is mediated by single initiator protein, DnaA, that interacts specifically with multiple DnaA boxes located within the origin (oriC). We compared the architecture of the DnaA-origin complexes of evolutionarily distantly related eubacteria: two Gram-negative organisms, Escherichia coli and Helicobacter pylori, and two Gram-positive organisms, Mycobacterium tuberculosis and Streptomyces coelicolor. Their origins vary in size (from approx. 200 to 1000 bp) and number of DnaA boxes (from 5 to 19). The results indicate that: (i) different DnaA proteins exhibit various affinities toward single DnaA boxes, (ii) spatial arrangement of two DnaA boxes is crucial for the H. pylori and S. coelicolor DnaA proteins, but not for E. coli and M. tuberculosis proteins, and (iii) the oriC regions are optimally adjusted to their cognate DnaA proteins. The primary functions of multiple DnaA boxes are to determine the positioning and order of assembly of the DnaA molecules. Gradual transition from the sequence-specific binding of the DnaA protein to binding through co-operative protein-protein interactions seems to be a common conserved strategy to generate oligomeric initiator complexes bound to multiple sites within the chromosomal, plasmid and virial origins.
Collapse
Affiliation(s)
- Anna Zawilak-PAWLIK
- *Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114 Wrocław, Poland
| | - Agnieszka Kois
- *Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114 Wrocław, Poland
| | - Jerzy Majka
- †Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, U.S.A
| | - Dagmara Jakimowicz
- *Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114 Wrocław, Poland
- ‡John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, U.K
| | - Aleksandra Smulczyk-Krawczyszyn
- *Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114 Wrocław, Poland
| | - Walter Messer
- §Max-Planck-Institut für Molekulare Genetik, Berlin-Dahlem, Ihnenstrasse 73, D-14195 Germany
| | - Jolanta Zakrzewska-Czerwińska
- *Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114 Wrocław, Poland
- To whom correspondence should be addressed (email )
| |
Collapse
|
178
|
Kelman Z, White MF. Archaeal DNA replication and repair. Curr Opin Microbiol 2005; 8:669-76. [PMID: 16242991 DOI: 10.1016/j.mib.2005.10.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 10/05/2005] [Indexed: 11/22/2022]
Abstract
Since the first archaeal genome was sequenced, much attention has been focused on the study of these unique microorganisms. We have learnt that although archaeal DNA metabolic processes (replication, recombination and repair) are more similar to the metabolic processes of Eukarya than those of Bacteria, Archaea are not simply 'mini Eukarya'. They are, in fact, a mosaic of the eukaryal and bacterial systems that also possess archaeal-specific features. Recent biochemical and structural studies of the proteins that participate in archaeal DNA replication and repair have increased our understanding of these processes.
Collapse
Affiliation(s)
- Zvi Kelman
- University of Maryland Biotechnology Institute, Center for Advanced Research in Biotechnology, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
| | | |
Collapse
|
179
|
Martin W. Archaebacteria (Archaea) and the origin of the eukaryotic nucleus. Curr Opin Microbiol 2005; 8:630-7. [PMID: 16242992 DOI: 10.1016/j.mib.2005.10.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 10/07/2005] [Indexed: 10/25/2022]
Abstract
The eukaryotic nucleus is a unique structure. Because it lacks an obvious homologue or precursor among prokaryotes, ideas about its evolutionary origin are diverse. Current attempts to derive the nuclear membrane focus on invaginations of the plasma membrane in a prokaryote, endosymbiosis of an archaebacterium within a eubacterial host, or the origin of a genuinely new membrane system following the origin of mitochondria in an archaebacterial host. Recent reports point to ways in which different ideas regarding the origin of the nucleus might someday be discriminated.
Collapse
Affiliation(s)
- William Martin
- Institut für Botanik III, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
180
|
Lundgren M, Bernander R. Archaeal cell cycle progress. Curr Opin Microbiol 2005; 8:662-8. [PMID: 16249118 DOI: 10.1016/j.mib.2005.10.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 10/11/2005] [Indexed: 11/19/2022]
Abstract
The discovery of multiple chromosome replication origins in Sulfolobus species has added yet another eukaryotic trait to the archaea, and brought new levels of complexity to the cell cycle in terms of initiation of chromosome replication, replication termination and chromosome decatenation. Conserved repeated DNA elements--origin recognition boxes--have been identified in the origins of replication, and shown to bind the Orc1/Cdc6 proteins involved in cell cycle control. The origin recognition boxes aid in the identification and characterization of new origins, and their conservation suggests that most archaea have a similar replication initiation mechanism. Cell-cycle-dependent variation in Orc1/Cdc6 levels has been demonstrated, reminiscent of variations in cyclin levels during the eukaryotic cell cycle. Information about archaeal chromosome segregation is also accumulating, including the identification of a protein that binds to short regularly spaced repeats that might constitute centromere-like elements. In addition, studies of cell-cycle-specific gene expression have potential to reveal, in the near future, missing components in crenarchaeal chromosome replication, genome segregation and cell division. Together with an increased number of physiological and cytological investigations of the overall organization of the cell cycle, rapid progress of the archaeal cell cycle field is evident, and archaea, in particular Sulfolobus species, are emerging as simple and powerful models for the eukaryotic cell cycle.
Collapse
Affiliation(s)
- Magnus Lundgren
- Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, Norbyvägen 18C, SE-752 36 Uppsala, Sweden
| | | |
Collapse
|
181
|
Nikolaou C, Almirantis Y. A study on the correlation of nucleotide skews and the positioning of the origin of replication: different modes of replication in bacterial species. Nucleic Acids Res 2005; 33:6816-22. [PMID: 16321966 PMCID: PMC1301597 DOI: 10.1093/nar/gki988] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Deviations from Chargaff's 2nd parity rule, according to which A approximately T and G approximately C in single stranded DNA, have been associated with replication as well as with transcription in prokaryotes. Based on observations regarding mainly the transcription-replication co-linearity in a large number of prokaryotic species, we formulate the hypothesis that the replication procedure may follow different modes between genomes throughout which the skews clearly follow different patterns. We draw the conclusion that multiple functional sites of origin of replication may exist in the genomes of most archaea and in some exceptional cases of eubacteria, while in the majority of eubacteria, replication occurs through a single fixed origin.
Collapse
Affiliation(s)
- Christoforos Nikolaou
- Institute of Biology, National Centre of Scientific Research Demokritos, 15310 Athens, Greece.
| | | |
Collapse
|
182
|
Mehra P, Biswas AK, Gupta A, Gourinath S, Chitnis CE, Dhar SK. Expression and characterization of human malaria parasite Plasmodium falciparum origin recognition complex subunit 1. Biochem Biophys Res Commun 2005; 337:955-66. [PMID: 16216221 DOI: 10.1016/j.bbrc.2005.09.131] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 09/21/2005] [Indexed: 10/25/2022]
Abstract
In eukaryotes, the origin recognition complex (ORC) is essential for the initiation of DNA replication. The largest subunit of this complex (ORC1) has a regulatory role in origin activation. Here we report the cloning and functional characterization of Plasmodium falciparum ORC1 homolog. Using immunofluorescence and immunoelectron microscopy, we show here that PfORC1 is expressed in the nucleus during the late trophozoite and schizont stages where maximum amount of DNA replication takes place. Homology modelling of the carboxy terminal region of PfORC1 (781-1033) using Saccharomyces pombe Cdc6/Cdc18 homolog as a template reveals the presence of a similar AAA+ type nucleotide-binding fold. This region shows ATPase activity in vitro that is important for the origin activity. To our knowledge, this is the first evidence of an individual ORC subunit that shows ATPase activity. These observations strongly suggest that PfORC1 might be involved in DNA replication initiation during the blood stage of the parasitic life cycle.
Collapse
Affiliation(s)
- Parul Mehra
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 67, India
| | | | | | | | | | | |
Collapse
|
183
|
Chen L, Brügger K, Skovgaard M, Redder P, She Q, Torarinsson E, Greve B, Awayez M, Zibat A, Klenk HP, Garrett RA. The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J Bacteriol 2005; 187:4992-9. [PMID: 15995215 PMCID: PMC1169522 DOI: 10.1128/jb.187.14.4992-4999.2005] [Citation(s) in RCA: 237] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sulfolobus acidocaldarius is an aerobic thermoacidophilic crenarchaeon which grows optimally at 80 degrees C and pH 2 in terrestrial solfataric springs. Here, we describe the genome sequence of strain DSM639, which has been used for many seminal studies on archaeal and crenarchaeal biology. The circular genome carries 2,225,959 bp (37% G+C) with 2,292 predicted protein-encoding genes. Many of the smaller genes were identified for the first time on the basis of comparison of three Sulfolobus genome sequences. Of the protein-coding genes, 305 are exclusive to S. acidocaldarius and 866 are specific to the Sulfolobus genus. Moreover, 82 genes for untranslated RNAs were identified and annotated. Owing to the probable absence of active autonomous and nonautonomous mobile elements, the genome stability and organization of S. acidocaldarius differ radically from those of Sulfolobus solfataricus and Sulfolobus tokodaii. The S. acidocaldarius genome contains an integrated, and probably encaptured, pARN-type conjugative plasmid which may facilitate intercellular chromosomal gene exchange in S. acidocaldarius. Moreover, it contains genes for a characteristic restriction modification system, a UV damage excision repair system, thermopsin, and an aromatic ring dioxygenase, all of which are absent from genomes of other Sulfolobus species. However, it lacks genes for some of their sugar transporters, consistent with it growing on a more limited range of carbon sources. These results, together with the many newly identified protein-coding genes for Sulfolobus, are incorporated into a public Sulfolobus database which can be accessed at http://dac.molbio.ku.dk/dbs/Sulfolobus.
Collapse
Affiliation(s)
- Lanming Chen
- Danish Archaea Centre, Institute of Molecular Biology, Copenhagen University
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
De Felice M, Esposito L, Rossi M, Pisani FM. Biochemical characterization of two Cdc6/ORC1-like proteins from the crenarchaeon Sulfolobus solfataricus. Extremophiles 2005; 10:61-70. [PMID: 16179962 DOI: 10.1007/s00792-005-0473-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Accepted: 07/13/2005] [Indexed: 10/25/2022]
Abstract
The biological role of archaeal proteins, homologous to the eukaryal replication initiation factors of cell division control (Cdc6) and origin recognition complex (ORC1), has not yet been clearly established. The hyperthermophilic crenarchaeon Sulfolobus solfataricus (referred to as Sso) possesses three Cdc6/ORC1-like factors, which are named Sso Cdc6-1, Cdc6-2 and Cdc6-3. This study is a report on the biochemical characterization of Sso Cdc6-1 and Cdc6-3. It has been found that either Sso Cdc6-1 or Cdc6-3 behave as monomers in solutions by gel filtration analyses. Both factors are able to bind to various single-stranded and double-stranded DNA ligands, but Sso Cdc6-3 shows a higher DNA-binding affinity. It has also been observed that either Sso Cdc6-1 or Cdc6-3 inhibit the DNA unwinding activity of the S. solfataricus homo-hexameric mini-chromosome maintenance (MCM)-like DNA helicase (Sso MCM); although they strongly stimulate the interaction of the Sso MCM with bubble-containing synthetic oligonucleotides. The study has also showed, with surface plasmon resonance measurements, that Sso Cdc6-2 physically interacts with either Sso Cdc6-1 or Sso Cdc6-3. These findings may provide important clues needed to understand the biological role that is played by each of these three Cdc6 factors during the DNA replication initiation process in the S. solfataricus cells.
Collapse
Affiliation(s)
- Mariarita De Felice
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via P. Castellino, 111, 80131, Napoli, Italy
| | | | | | | |
Collapse
|
185
|
Ettema TJG, de Vos WM, van der Oost J. Discovering novel biology by in silico archaeology. Nat Rev Microbiol 2005; 3:859-69. [PMID: 16175172 DOI: 10.1038/nrmicro1268] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Archaea are prokaryotes that evolved in parallel with bacteria. Since the discovery of the distinct status of the Archaea, extensive physiological and biochemical research has been conducted to elucidate the molecular basis of their remarkable lifestyle and their unique biology. Here, we discuss how in-depth comparative genomics has been used to improve the annotation of archaeal genomes. Combined with experimental verification, bioinformatic analysis contributes to the ongoing discovery of novel metabolic conversions and control mechanisms, and as such to a better understanding of the intriguing biology of the Archaea.
Collapse
Affiliation(s)
- Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University, 6703 CT Wageningen, The Netherlands
| | | | | |
Collapse
|
186
|
Kasiviswanathan R, Shin JH, Kelman Z. Interactions between the archaeal Cdc6 and MCM proteins modulate their biochemical properties. Nucleic Acids Res 2005; 33:4940-50. [PMID: 16150924 PMCID: PMC1201339 DOI: 10.1093/nar/gki807] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The origin recognition complex, Cdc6 and the minichromosome maintenance (MCM) complex play essential roles in the initiation of eukaryotic DNA replication. Homologs of these proteins may play similar roles in archaeal replication initiation. While the interactions among the eukaryotic initiation proteins are well documented, the protein-protein interactions between the archaeal proteins have not yet been determined. Here, an extensive structural and functional analysis of the interactions between the Methanothermobacter thermautotrophicus MCM and the two Cdc6 proteins (Cdc6-1 and -2) identified in the organism is described. The main contact between Cdc6 and MCM occurs via the N-terminal portion of the MCM protein. It was found that Cdc6-MCM interaction, but not Cdc6-DNA binding, plays the predominant role in regulating MCM helicase activity. In addition, the data showed that the interactions with MCM modulate the autophosphorylation of Cdc6-1 and -2. The results also suggest that MCM and DNA may compete for Cdc6-1 protein binding. The implications of these observations for the initiation of archaeal DNA replication are discussed.
Collapse
Affiliation(s)
| | | | - Zvi Kelman
- To whom correspondence should be addressed. Tel: +1 240 314 6294; Fax: +1 240 314 6255;
| |
Collapse
|
187
|
Henneke G, Flament D, Hübscher U, Querellou J, Raffin JP. The hyperthermophilic euryarchaeota Pyrococcus abyssi likely requires the two DNA polymerases D and B for DNA replication. J Mol Biol 2005; 350:53-64. [PMID: 15922358 DOI: 10.1016/j.jmb.2005.04.042] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 04/11/2005] [Accepted: 04/19/2005] [Indexed: 11/25/2022]
Abstract
DNA polymerases carry out DNA synthesis during DNA replication, DNA recombination and DNA repair. During the past five years, the number of DNA polymerases in both eukarya and bacteria has increased to at least 19 and multiple biological roles have been assigned to many DNA polymerases. Archaea, the third domain of life, on the other hand, have only a subset of the eukaryotic-like DNA polymerases. The diversity among the archaeal DNA polymerases poses the intriguing question of their functional tasks. Here, we focus on the two identified DNA polymerases, the family B DNA polymerase B (PabpolB) and the family D DNA polymerase D (PabpolD) from the hyperthermophilic euryarchaeota Pyrococcus abyssi. Our data can be summarized as follows: (i) both Pabpols are DNA polymerizing enzymes exclusively; (ii) their DNA binding properties as tested in gel shift competition assays indicated that PabpolD has a preference for a primed template; (iii) PabPolD is a primer-directed DNA polymerase independently of the primer composition whereas PabpolB behaves as an exclusively DNA primer-directed DNA polymerase; (iv) PabPCNA is required for PabpolD to perform efficient DNA synthesis but not PabpolB; (v) PabpolD, but not PabpolB, contains strand displacement activity; (vii) in the presence of PabPCNA, however, both Pabpols D and B show strand displacement activity; and (viii) we show that the direct interaction between PabpolD and PabPCNA is DNA-dependent. Our data imply that PabPolD might play an important role in DNA replication likely together with PabpolB, suggesting that archaea require two DNA polymerases at the replication fork.
Collapse
Affiliation(s)
- Ghislaine Henneke
- IFREMER, UMR 6197, Laboratoire de Microbiologie et Environnements Extrêmes, DRV/VP/LM2E, BP 70, F-29280 Plouzané, France.
| | | | | | | | | |
Collapse
|
188
|
Haddad A, Rose RW, Pohlschröder M. The Haloferax volcanii FtsY homolog is critical for haloarchaeal growth but does not require the A domain. J Bacteriol 2005; 187:4015-22. [PMID: 15937164 PMCID: PMC1151737 DOI: 10.1128/jb.187.12.4015-4022.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The targeting of many Sec substrates to the membrane-associated translocation pore requires the cytoplasmic signal recognition particle (SRP). In Eukarya and Bacteria it has been shown that membrane docking of the SRP-substrate complex occurs via the universally conserved SRP receptor (Sralpha/beta and FtsY, respectively). While much has been learned about the archaeal SRP in recent years, few studies have examined archaeal Sralpha/FtsY homologs. In the present study the FtsY homolog of Haloferax volcanii was characterized in its native host. Disruption of the sole chromosomal copy of ftsY in H. volcanii was possible only under conditions where either the full-length haloarchaeal FtsY or an amino-terminally truncated version of this protein lacking the A domain, was expressed in trans. Subcellular fractionation analysis of H. volcanii ftsY deletion strains expressing either one of the complementing proteins revealed that in addition to a cytoplasmic pool, both proteins cofractionate with the haloarchaeal cytoplasmic membrane. Moreover, membrane localization of the universally conserved SRP subunit SRP54, the key binding partner of FtsY, was detected in both H. volcanii strains. These analyses suggest that the H. volcanii FtsY homolog plays a crucial role but does not require its A domain for haloarchaeal growth.
Collapse
Affiliation(s)
- Alex Haddad
- Department of Biology, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|
189
|
Abstract
Replication of DNA is essential for the propagation of life. It is somewhat surprising then that, despite the vital nature of this process, cellular organisms show a great deal of variety in the mechanisms that they employ to ensure appropriate genome duplication. This diversity is manifested along classical evolutionary lines, with distinct combinations of replicon architecture and replication proteins being found in the three domains of life: the Bacteria, the Eukarya and the Archaea. Furthermore, although there are mechanistic parallels, even within a given domain of life, the way origins of replication are defined shows remarkable variation.
Collapse
Affiliation(s)
- Nicholas P Robinson
- MRC Cancer Cell Unit, Hutchison MRC Research Centre, Hills Road, Cambridge, UK
| | | |
Collapse
|
190
|
Guy CP, Bolt EL. Archaeal Hel308 helicase targets replication forks in vivo and in vitro and unwinds lagging strands. Nucleic Acids Res 2005; 33:3678-90. [PMID: 15994460 PMCID: PMC1168952 DOI: 10.1093/nar/gki685] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutations in mammalian and Drosophila Hel308 and PolQ paralogues cause genome instability but their helicase functions are mysterious. By in vivo and in vitro analysis, we show that Hel308 from archaea (Hel308a) may act at stalled replication forks. Introducing hel308a into Escherichia coli dnaE strains that conditionally accumulate stalled forks caused synthetic lethality, an effect indistinguishable from E.coli RecQ. Further analysis in vivo indicated that the effect of hel308a is exerted independently of homologous recombination. The minimal biochemical properties of Hel308a protein were the same as human Hel308. We describe how helicase actions of Hel308a at fork structures lead specifically to displacement of lagging strands. The invading strand of D-loops is also targeted. Using archaeal Hel308, we propose models of action for the helicase domain of PolQ, promoting loading of the translesion polymerase domain. We speculate that removal of lagging strands at stalled forks by Hel308 promotes the formation of initiation zones, priming restart of lagging strand synthesis.
Collapse
Affiliation(s)
| | - Edward L. Bolt
- To whom correspondence should be addressed. Tel: +44 0115 9709404; Fax: +44 0115 9709906;
| |
Collapse
|
191
|
Zhang R, Zhang CT. Identification of replication origins in archaeal genomes based on the Z-curve method. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:335-46. [PMID: 15876567 PMCID: PMC2685548 DOI: 10.1155/2005/509646] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Z-curve is a three-dimensional curve that constitutes a unique representation of a DNA sequence, i.e., both the Z-curve and the given DNA sequence can be uniquely reconstructed from the other. We employed Z-curve analysis to identify one replication origin in the Methanocaldococcus jannaschii genome, two replication origins in the Halobacterium species NRC-1 genome and one replication origin in the Methanosarcina mazei genome. One of the predicted replication origins of Halobacterium species NRC-1 is the same as a replication origin later identified by in vivo experiments. The Z-curve analysis of the Sulfolobus solfataricus P2 genome suggested the existence of three replication origins, which is also consistent with later experimental results. This review aims to summarize applications of the Z-curve in identifying replication origins of archaeal genomes, and to provide clues about the locations of as yet unidentified replication origins of the Aeropyrum pernix K1, Methanococcus maripaludis S2, Picrophilus torridus DSM 9790 and Pyrobaculum aerophilum str. IM2 genomes.
Collapse
Affiliation(s)
- Ren Zhang
- Department of Epidemiology and Biostatistics, Tianjin Cancer Institute and Hospital, Tianjin 300060, China
| | - Chun-Ting Zhang
- Department of Physics, Tianjin University, Tianjin 300072, China
- Corresponding author ()
| |
Collapse
|
192
|
Greve B, Jensen S, Phan H, Brügger K, Zillig W, She Q, Garrett RA. Novel RepA-MCM proteins encoded in plasmids pTAU4, pORA1 and pTIK4 from Sulfolobus neozealandicus. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:319-25. [PMID: 15876565 PMCID: PMC2685554 DOI: 10.1155/2005/159218] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Three plasmids isolated from the crenarchaeal thermoacidophile Sulfolobus neozealandicus were characterized. Plasmids pTAU4 (7,192 bp), pORA1 (9,689 bp) and pTIK4 (13,638 bp) show unusual properties that distinguish them from previously characterized cryptic plasmids of the genus Sulfolobus. Plasmids pORA1 and pTIK4 encode RepA proteins, only the former of which carries the novel polymerase-primase domain of other known Sulfolobus plasmids. Plasmid pTAU4 encodes a mini-chromosome maintenance protein homolog and no RepA protein; the implications for DNA replication are considered. Plasmid pORA1 is the first Sulfolobus plasmid to be characterized that does not encode the otherwise highly conserved DNA-binding PlrA protein. Another encoded protein appears to be specific for the New Zealand plasmids. The three plasmids should provide useful model systems for functional studies of these important crenarchaeal proteins.
Collapse
Affiliation(s)
- Bo Greve
- Danish Archaea Centre, Institute of Molecular Biology, University of Copenhagen, Sølvgade 83H, DK-1307 Copenhagen, Denmark
| | - Susanne Jensen
- Danish Archaea Centre, Institute of Molecular Biology, University of Copenhagen, Sølvgade 83H, DK-1307 Copenhagen, Denmark
| | - Hoa Phan
- Danish Archaea Centre, Institute of Molecular Biology, University of Copenhagen, Sølvgade 83H, DK-1307 Copenhagen, Denmark
| | - Kim Brügger
- Danish Archaea Centre, Institute of Molecular Biology, University of Copenhagen, Sølvgade 83H, DK-1307 Copenhagen, Denmark
| | - Wolfram Zillig
- Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany
| | - Qunxin She
- Danish Archaea Centre, Institute of Molecular Biology, University of Copenhagen, Sølvgade 83H, DK-1307 Copenhagen, Denmark
| | - Roger A. Garrett
- Danish Archaea Centre, Institute of Molecular Biology, University of Copenhagen, Sølvgade 83H, DK-1307 Copenhagen, Denmark
- Corresponding author ()
| |
Collapse
|
193
|
Abstract
Archaea represent a considerable fraction of the prokaryotic world in marine and terrestrial ecosystems, indicating that organisms from this domain might have a large impact on global energy cycles. However, many novel archaeal lineages that have been detected by molecular phylogenetic approaches have remained elusive because no laboratory-cultivated strains are available. Environmental genomic analyses have recently provided clues about the potential metabolic strategies of several of the uncultivated and abundant archaeal species, including non-thermophilic terrestrial and marine crenarchaeota and methanotrophic euryarchaeota. These initial studies of natural archaeal populations also revealed an unexpected degree of genomic variation that indicates considerable heterogeneity among archaeal strains. Here, we review genomic studies of uncultivated archaea within a framework of the phylogenetic diversity and ecological distribution of this domain.
Collapse
Affiliation(s)
- Christa Schleper
- Department of Biology, University of Bergen, Jahnebakken 5, N-5020 Bergen, Norway.
| | | | | |
Collapse
|
194
|
Marsh VL, Peak-Chew SY, Bell SD. Sir2 and the Acetyltransferase, Pat, Regulate the Archaeal Chromatin Protein, Alba. J Biol Chem 2005; 280:21122-8. [PMID: 15824122 DOI: 10.1074/jbc.m501280200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DNA binding affinity of Alba, a chromatin protein of the archaeon Sulfolobus solfataricus P2, is regulated by acetylation of lysine 16. Here we identify an acetyltransferase that specifically acetylates Alba on this residue. The effect of acetylation is to lower the affinity of Alba for DNA. Remarkably, the acetyltransferase is conserved not only in archaea but also in bacteria where it appears to play a role in metabolic regulation. Therefore, our data suggest that S. solfataricus has co-opted this bacterial regulatory system to generate a rudimentary form of chromatin regulation.
Collapse
Affiliation(s)
- Victoria L Marsh
- Medical Research Council Cancer Cell Unit, Hutchison Medical Research Council Research Centre, Hills Road, Cambridge CB2 2XZ, United Kingdom
| | | | | |
Collapse
|
195
|
Karlin S, Brocchieri L, Campbell A, Cyert M, Mrázek J. Genomic and proteomic comparisons between bacterial and archaeal genomes and related comparisons with the yeast and fly genomes. Proc Natl Acad Sci U S A 2005; 102:7309-14. [PMID: 15883367 PMCID: PMC1129125 DOI: 10.1073/pnas.0502314102] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial, archaeal, yeast, and fly genomes are compared with respect to predicted highly expressed (PHX) genes and several genomic properties. There is a striking difference in the status of PHX ribosomal protein (RP) genes where the archaeal genome generally encodes more RP genes and fewer PHX RPs compared with bacterial genomes. The increase in RPs in archaea and eukaryotes compared with that in bacteria may reflect a more complex set of interactions in archaea and eukaryotes in regulating translation, e.g., differences in structure requiring scaffolding of longer rRNA molecules, expanded interactions with the chaperone machinery, and, in eukaryotic interactions with endoplasmic reticulum components. The yeast genome is similar to fast-growing bacteria in PHX genes but also features several cytoskeletal genes, including actin and tropomyosin, and several signal transduction regulatory proteins from the 14.3.3 family. The most PHX genes of Drosophila encode cytoskeletal and exoskeletal proteins. We found that the preference of a microorganism for an anaerobic metabolism correlates with the number of PHX enzymes of the glycolysis pathway that well exceeds the number of PHX enzymes acting in the tricarboxylic acid cycle. Conversely, if the number of PHX enzymes of the tricarboxylic acid cycle well exceeds the PHX enzymes of glycolysis, an aerobic metabolism is preferred. Where the numbers are approximately commensurate, a facultative growth behavior prevails.
Collapse
Affiliation(s)
- Samuel Karlin
- Department of Mathematics, Stanford University, Stanford, CA 94305-2125, USA.
| | | | | | | | | |
Collapse
|
196
|
Gerdes K, Christensen SK, Løbner-Olesen A. Prokaryotic toxin–antitoxin stress response loci. Nat Rev Microbiol 2005; 3:371-82. [PMID: 15864262 DOI: 10.1038/nrmicro1147] [Citation(s) in RCA: 832] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although toxin-antitoxin gene cassettes were first found in plasmids, recent database mining has shown that these loci are abundant in free-living prokaryotes, including many pathogenic bacteria. For example, Mycobacterium tuberculosis has 38 chromosomal toxin-antitoxin loci, including 3 relBE and 9 mazEF loci. RelE and MazF are toxins that cleave mRNA in response to nutritional stress. RelE cleaves mRNAs that are positioned at the ribosomal A-site, between the second and third nucleotides of the A-site codon. It has been proposed that toxin-antitoxin loci function in bacterial programmed cell death, but evidence now indicates that these loci provide a control mechanism that helps free-living prokaryotes cope with nutritional stress.
Collapse
Affiliation(s)
- Kenn Gerdes
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | | | | |
Collapse
|
197
|
Goodchild A, Raftery M, Saunders NFW, Guilhaus M, Cavicchioli R. Biology of the cold adapted archaeon, Methanococcoides burtonii determined by proteomics using liquid chromatography-tandem mass spectrometry. J Proteome Res 2005; 3:1164-76. [PMID: 15595725 DOI: 10.1021/pr0498988] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genome sequence data of the cold-adapted archaeon, Methanococcoides burtonii, was linked to liquid chromatography-mass spectrometry analysis of the expressed-proteome to define the key biological processes functioning at 4 degrees C. 528 proteins ranging in pI from 3.5 to 13.2, and 3.5-230 kDa, were identified. 133 identities were for hypothetical proteins, and the analysis of these is described separately (Goodchild et al. manuscript in preparation). DNA replication and cell division involves eucaryotic-like histone and MC1-family DNA binding proteins, and 2 bacterial-like FtsZ proteins. Eucaryotic-like, core RNA polymerase machinery, a bacterial-like antiterminator, and numerous bacterial-like regulators enable transcription. Motility involves flagella synthesis regulated by a bacterial-like chemotaxis system. Lsmalpha and Lsmgamma were coexpressed raising the possibility of homo- and hetero-oligomeric complexes functioning in RNA processing. Expression of FKBP-type and cyclophilin-type peptidyl-prolyl cis-trans isomerases highlights the importance of protein folding, and novel characteristics of folding in the cold. Thirteen proteins from a superoperon system encoding proteasome and exosome subunits were expressed, supporting the functional interaction of transcription and translation pathways in archaea. Proteins involved in every step of methylotropic methanogenesis were identified. CO(2) appears to be fixed by a modified Calvin cycle, and by carbon monoxide dehydrogenase. Biosynthesis involves acetyl-CoA conversion to pyruvate by a non-oxidative pentose phosphate pathway, and gluconeogenesis for the conversion of pyruvate to carbohydrates. An incomplete TCA cycle may supply biosynthetic intermediates for amino acid biosynthesis. A novel finding was the expression of Tn11- and Tn12-family transposases, which has implications for genetic diversity and fitness of natural populations. Characteristics of the fundamental cellular processes inferred from the expressed-proteome highlight the evolutionary and functional complexity existing in this domain of life.
Collapse
Affiliation(s)
- Amber Goodchild
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052 NSW, Australia
| | | | | | | | | |
Collapse
|
198
|
Stillman B. Origin recognition and the chromosome cycle. FEBS Lett 2005; 579:877-84. [PMID: 15680967 DOI: 10.1016/j.febslet.2004.12.011] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 12/10/2004] [Accepted: 12/10/2004] [Indexed: 11/29/2022]
Abstract
Prior to the initiation of DNA replication, chromosomes must establish a biochemical mark that permits the recruitment in S phase of the DNA replication machinery that copies DNA. The process of chromosome replication in eukaryotes also must be coordinated with segregation of the duplicated chromosomes to daughter cells during mitosis. Protein complexes that utilize ATP coordinate events at origins of DNA replication and later they participate in the initiation of DNA replication. In eukaryotes, some of these proteins also play a part in later processes that ensure accurate inheritance of chromosomes in mitosis, including spindle attachment of chromosomes, accurate duplication of centrosomes and cytokinesis. A perspective of how ATP-dependent proteins accomplish this task in eukaryotes is discussed.
Collapse
Affiliation(s)
- Bruce Stillman
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
199
|
Abstract
Eukaryotic DNA replication begins at numerous but often poorly characterized sequences called origins, which are distributed fairly regularly along chromosomes. The elusive and idiosyncratic nature of origins in higher eukaryotes is now understood as resulting from a strong epigenetic influence on their specification, which provides flexibility in origin selection and allows for tailoring the dynamics of chromosome replication to the specific needs of cells. By contrast, the factors that assemble in trans to make these origins competent for replication and the kinases that trigger initiation are well conserved. Genome-wide and single-molecule approaches are being developed to elucidate the dynamics of chromosome replication. The notion that a well-coordinated progression of replication forks is crucial for many aspects of the chromosome cycle besides simply duplication begins to be appreciated.
Collapse
Affiliation(s)
- Etienne Schwob
- Institute of Molecular Genetics, CNRS UMR5535 and University Montpellier 2, 1919, route de Mende, 34293 Montpellier, France
| |
Collapse
|
200
|
Abstract
For decades, archaea were misclassified as bacteria because of their prokaryotic morphology. Molecular phylogeny eventually revealed that archaea, like bacteria and eukaryotes, are a fundamentally distinct domain of life. Genome analyses have confirmed that archaea share many features with eukaryotes, particularly in information processing, and therefore can serve as streamlined models for understanding eukaryotic biology. Biochemists and structural biologists have embraced the study of archaea but geneticists have been more wary, despite the fact that genetic techniques for archaea are quite sophisticated. It is time for geneticists to start asking fundamental questions about our distant relatives.
Collapse
Affiliation(s)
- Thorsten Allers
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | | |
Collapse
|