151
|
Lemaître G, Nissan X, Baldeschi C, Peschanski M. Concise Review: Epidermal Grafting: The Case for Pluripotent Stem Cells. Stem Cells 2011; 29:895-9. [DOI: 10.1002/stem.636] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
152
|
Pringle S, De Bari C, Dell'Accio F, Przyborski S, Cooke MJ, Minger SL, Grigoriadis AE. Mesenchymal differentiation propensity of a human embryonic stem cell line. Cell Prolif 2011; 44:120-7. [PMID: 21401753 DOI: 10.1111/j.1365-2184.2011.00744.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES To characterize basal differentiation tendencies of a human embryonic stem (hES) cell line, KCL-002. MATERIALS AND METHODS In vitro specification and differentiation of hES cells were carried out using embryoid body (EB) cultures and tests of pluripotency and in vivo differentiation were performed by teratoma assays in SCID mice. Real-time PCR, immunohistochemistry, flow cytometry and histological analyses were used to identify expression of genes and proteins associated with the ectodermal, endodermal and mesodermal germ layers. RESULTS Undifferentiated KCL-002 cells expressed characteristic markers of pluripotent stem cells such as Nanog, Sox-2, Oct-4 and TRA 1-60. When differentiated in vitro as EB cultures, expression of pluripotency, endodermal and ectodermal markers decreased rapidly. In contrast, mesodermal and mesenchymal markers such as VEGFR-2, α-actin and vimentin increased during EB differentiation as shown by qPCR, immunostaining and flow cytometric analyses. Teratoma formation in SCID mice demonstrated the potential to form all germ layers in vivo with a greater proportion of the tumours containing mesenchymal derivatives. CONCLUSIONS The data presented suggest that the KCL-002 hES cell line is pluripotent and harbours a bias in basal differentiation tendencies towards mesodermal and mesenchymal lineage cells. Characterizing innate differentiation propensities of hES cell lines is important for understanding heterogeneity between different cell lines and for further studies aimed at deriving specific lineages from hES cells.
Collapse
Affiliation(s)
- S Pringle
- Stem Cell Laboratory, King's College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
153
|
Generation of keratinocytes from normal and recessive dystrophic epidermolysis bullosa-induced pluripotent stem cells. Proc Natl Acad Sci U S A 2011; 108:8797-802. [PMID: 21555586 DOI: 10.1073/pnas.1100332108] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Embryonic stem cells (ESCs) have an unlimited proliferative capacity and extensive differentiation capability. They are an alternative source for regenerative therapies with a potential role in the treatment of several human diseases. The clinical use of ESCs, however, has significant ethical and biological obstacles related to their derivation from embryos and potential for immunological rejection, respectively. These disadvantages can be circumvented by the alternative use of induced pluripotent stem cells (iPSCs), which are generated from an individual's (autologous) somatic cells by exogenous expression of defined transcription factors and have biological characteristics similar to ESCs. In recent years, patient-specific iPSCs have been generated to study disease mechanisms and develop iPSC-based therapies. The development of iPSC-based therapies for skin diseases requires successful differentiation of iPSCs into cellular components of the skin, including epidermal keratinocytes. Here, we succeeded in generating iPSCs not only from normal human fibroblasts but also from fibroblasts isolated from the skin of two patients with recessive dystrophic epidermolysis bullosa. Moreover, we differentiated both of these iPSCs into keratinocytes with high efficiency, and generated 3D skin equivalents using iPSC-derived keratinocytes, suggesting that they were fully functional. Our studies indicate that autologous iPSCs have the potential to provide a source of cells for regenerative therapies for specific skin diseases.
Collapse
|
154
|
Rustad KC, Sorkin M, Levi B, Longaker MT, Gurtner GC. Strategies for organ level tissue engineering. Organogenesis 2011; 6:151-7. [PMID: 21197216 DOI: 10.4161/org.6.3.12139] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/16/2010] [Accepted: 04/21/2010] [Indexed: 01/22/2023] Open
Abstract
The field of tissue engineering has made considerable strides since it was first described in the late 1980s. The advent and subsequent boom in stem cell biology, emergence of novel technologies for biomaterial development and further understanding of developmental biology have contributed to this accelerated progress. However, continued efforts to translate tissue-engineering strategies into clinical therapies have been hampered by the problems associated with scaling up laboratory methods to produce large, complex tissues. The significant challenges faced by tissue engineers include the production of an intact vasculature within a tissue-engineered construct and recapitulation of the size and complexity of a whole organ. Here we review the basic components necessary for bioengineering organs-biomaterials, cells and bioactive molecules-and discuss various approaches for augmenting these principles to achieve organ level tissue engineering. Ultimately, the successful translation of tissue-engineered constructs into everyday clinical practice will depend upon the ability of the tissue engineer to "scale up" every aspect of the research and development process.
Collapse
Affiliation(s)
- Kristine C Rustad
- Stanford University, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford, CA, USA
| | | | | | | | | |
Collapse
|
155
|
Huang L, Wong YP, Gu H, Cai YJ, Ho Y, Wang CC, Leung TY, Burd A. Stem cell-like properties of human umbilical cord lining epithelial cells and the potential for epidermal reconstitution. Cytotherapy 2011; 13:145-55. [DOI: 10.3109/14653249.2010.509578] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
156
|
Manton KJ, Richards S, Van Lonkhuyzen D, Cormack L, Leavesley D, Upton Z. A chimeric vitronectin: IGF-I protein supports feeder-cell-free and serum-free culture of human embryonic stem cells. Stem Cells Dev 2011; 19:1297-305. [PMID: 20128657 DOI: 10.1089/scd.2009.0504] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The therapeutic use of human embryonic stem (hES) cells is severely limited by safety concerns regarding their culture in media containing animal-derived or nondefined factors and on animal-derived feeder cells. Thus, there is a pressing need to develop culture techniques that are xeno-free, fully defined, and synthetic. Our laboratory has discovered that insulin-like growth factor (IGF) and vitronectin (VN) bind to each other resulting in synergistic short-term functional effects in several cell types, including keratinocytes and breast epithelial cells. We have further refined this complex into a single chimeric VN:IGF-I protein that functionally mimics the effects obtained upon binding of IGF-I to VN. The aim of the current study was to determine whether hES cells can be serially propagated in feeder-cell-free and serum-free conditions using medium containing our novel chimeric VN:IGF-I protein. Here we demonstrate that hES cells can be serially propagated and retain their undifferentiated state in vitro for up to 35 passages in our feeder-cell-free, serum-free, chemically defined media. We have utilized real-time polymerase chain reaction (PCR), immunofluorescence, and fluorescence-activated cell sorter (FACS) analysis to show that the hES cells have maintained an undifferentiated phenotype. In vitro differentiation assays demonstrated that the hES cells retain their pluripotent potential and the karyotype of the hES cells remains unchanged. This study demonstrates that the novel, fully defined, synthetic VN:IGF-I chimera-containing medium described herein is a viable alternative to media containing serum, and that in conjunction with laminin-coated plates facilitates feeder-cell-free and serum-free growth of hES.
Collapse
Affiliation(s)
- Kerry J Manton
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia.
| | | | | | | | | | | |
Collapse
|
157
|
Wobus AM, Löser P. Present state and future perspectives of using pluripotent stem cells in toxicology research. Arch Toxicol 2011; 85:79-117. [PMID: 21225242 PMCID: PMC3026927 DOI: 10.1007/s00204-010-0641-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 12/21/2010] [Indexed: 02/08/2023]
Abstract
The use of novel drugs and chemicals requires reliable data on their potential toxic effects on humans. Current test systems are mainly based on animals or in vitro–cultured animal-derived cells and do not or not sufficiently mirror the situation in humans. Therefore, in vitro models based on human pluripotent stem cells (hPSCs) have become an attractive alternative. The article summarizes the characteristics of pluripotent stem cells, including embryonic carcinoma and embryonic germ cells, and discusses the potential of pluripotent stem cells for safety pharmacology and toxicology. Special attention is directed to the potential application of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) for the assessment of developmental toxicology as well as cardio- and hepatotoxicology. With respect to embryotoxicology, recent achievements of the embryonic stem cell test (EST) are described and current limitations as well as prospects of embryotoxicity studies using pluripotent stem cells are discussed. Furthermore, recent efforts to establish hPSC-based cell models for testing cardio- and hepatotoxicity are presented. In this context, methods for differentiation and selection of cardiac and hepatic cells from hPSCs are summarized, requirements and implications with respect to the use of these cells in safety pharmacology and toxicology are presented, and future challenges and perspectives of using hPSCs are discussed.
Collapse
Affiliation(s)
- Anna M Wobus
- In Vitro Differentiation Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany.
| | | |
Collapse
|
158
|
Prabhakaran MP, Venugopal J, Ghasemi-Mobarakeh L, Kai D, Jin G, Ramakrishna S. Stem Cells and Nanostructures for Advanced Tissue Regeneration. BIOMEDICAL APPLICATIONS OF POLYMERIC NANOFIBERS 2011. [DOI: 10.1007/12_2011_113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
159
|
Differentiation of mouse induced pluripotent stem cells into a multipotent keratinocyte lineage. J Invest Dermatol 2010; 131:857-64. [PMID: 21150926 DOI: 10.1038/jid.2010.364] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent breakthroughs in the generation of induced pluripotent stem cells (iPSCs) have provided a novel renewable source of cells with embryonic stem cell-like properties, which may potentially be used for gene therapy and tissue engineering. Although iPSCs have been differentiated into various cell types, iPSC-derived keratinocytes have not yet been obtained. In this study, we report the in vitro differentiation of mouse iPSCs into a keratinocyte lineage through sequential applications of retinoic acid and bone-morphogenetic protein-4 and growth on collagen IV-coated plates. We show that iPSCs can be differentiated into functional keratinocytes capable of regenerating a fully differentiated epidermis, hair follicles, and sebaceous glands in an in vivo environment. Keratinocytes derived from iPSCs displayed characteristics similar to those of primary keratinocytes with respect to gene and protein expression, as well as their ability to differentiate in vitro and to reconstitute normal skin and its appendages in an in vivo assay. At present, no effective therapeutic treatments are available for many genetic skin diseases. The development of methods for the efficient differentiation of iPSCs into a keratinocyte lineage will enable us to determine whether genetically corrected autologous iPSCs can be used to generate a permanent corrective therapy for these diseases.
Collapse
|
160
|
Petrova A, Ilic D, McGrath JA. Stem cell therapies for recessive dystrophic epidermolysis bullosa. Br J Dermatol 2010; 163:1149-56. [PMID: 20716209 DOI: 10.1111/j.1365-2133.2010.09981.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human epidermis is composed of a stratified squamous epithelium that provides a mechanical barrier against the external environment and which is renewed every 3-4 weeks by resident stem cells in the epidermis. However, in the inherited skin fragility disorder, recessive dystrophic epidermolysis bullosa (RDEB), there is recurrent trauma-induced subepidermal blistering that disrupts epidermal homeostasis and is likely to deplete the epidermal stem cell pool. This review article discusses the nature of epidermal stem cells and other stem cell populations in the skin, as well as other possible extracutaneous sources of stem cells, that might have physiological or therapeutic relevance to cell therapy approaches for RDEB. Strategies to identify, create and use cells with multipotent or pluripotent properties are explored and current clinical experience of stem cell therapy in RDEB is reviewed. There is currently no single optimal therapy for patients with RDEB, but cell therapy technologies are evolving and hold great potential for modifying disease severity and improving quality of life for people living with RDEB.
Collapse
Affiliation(s)
- A Petrova
- St John's Institute of Dermatology, Dermatology Research Laboratories, Floor 9 Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | | | | |
Collapse
|
161
|
Hu X, Yu W, Sun H, Wang X, Han C. Epidermal cells delivered for cutaneous wound healing. J DERMATOL TREAT 2010; 23:224-37. [DOI: 10.3109/09546634.2010.495741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
162
|
Abstract
Human pluripotent stem cells are a biological resource most commonly considered for their potential in cell therapy or, as it is now called, ‘regenerative medicine’. However, in the near future, their most important application for human health may well be totally different, as they are more and more envisioned as opening new routes for pharmacological research. Pluripotent stem cells indeed possess the main attributes that make them theoretically fully equipped for the development of cell-based assays in the fields of drug discovery and predictive toxicology. These cells are characterized by: (i) an unlimited self-renewal capacity, which make them an inexhaustible source of cells; (ii) the potential to differentiate into any cell phenotype of the body at any stage of differentiation, with probably the notable exception, however, of the most mature forms of many lineages; and (iii) the ability to express genotypes of interest via the selection of donors, whether they be of embryonic origin, through pre-implantation genetic diagnosis, or adults, by genetic reprogramming of somatic cells, so-called iPSCs (induced pluripotent stem cells). In the present review, we provide diverse illustrations of the use of pluripotent stem cells in drug discovery and predictive toxicology, using either human embryonic stem cell lines or iPSC lines.
Collapse
|
163
|
Ramirez JM, Bai Q, Dijon-Grinand M, Assou S, Gerbal-Chaloin S, Hamamah S, De Vos J. Human pluripotent stem cells: from biology to cell therapy. World J Stem Cells 2010; 2:24-33. [PMID: 21607113 PMCID: PMC3097919 DOI: 10.4252/wjsc.v2.i2.24] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/08/2010] [Accepted: 03/15/2010] [Indexed: 02/06/2023] Open
Abstract
Human pluripotent stem cells (PSCs), encompassing embryonic stem cells and induced pluripotent stem cells, proliferate extensively and differentiate into virtually any desired cell type. PSCs endow regenerative medicine with an unlimited source of replacement cells suitable for human therapy. Several hurdles must be carefully addressed in PSC research before these theoretical possibilities are translated into clinical applications. These obstacles are: (1) cell proliferation; (2) cell differentiation; (3) genetic integrity; (4) allogenicity; and (5) ethical issues. We discuss these issues and underline the fact that the answers to these questions lie in a better understanding of the biology of PSCs. To contribute to this aim, we have developed a free online expression atlas, Amazonia!, that displays for each human gene a virtual northern blot for PSC samples and adult tissues (http://www.amazonia.transcriptome.eu).
Collapse
Affiliation(s)
- Jean-Marie Ramirez
- Jean-Marie Ramirez, Qiang Bai, Marilyne Dijon-Grinand, Said Assou, Samir Hamamah, John De Vos, INSERM, U847, Montpellier, F 34000, France
| | | | | | | | | | | | | |
Collapse
|
164
|
Editors' Picks. J Invest Dermatol 2010. [DOI: 10.1038/jid.2010.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
165
|
Peschanski M, Lemaitre G, Nissan X, Baldeschi C. Epidermis grafting: from adult to embryonic stem cells. Regen Med 2010; 5:157-9. [PMID: 20210574 DOI: 10.2217/rme.10.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
166
|
Nissan X, Lemaitre G, Peschanski M, Baldeschi C. Les cellules souches pluripotentes font peau neuve. Med Sci (Paris) 2010; 26:5-8. [DOI: 10.1051/medsci/20102615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
167
|
|
168
|
Affiliation(s)
- Holger Schlüter
- Epithelial Stem Cell Biology Laboratory, Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia
| | | |
Collapse
|