151
|
Priantti JN, Vilbert M, Madeira T, Moraes FCA, Hein ECK, Saeed A, Cavalcante L. Efficacy and Safety of Rechallenge with BRAF/MEK Inhibitors in Advanced Melanoma Patients: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:3754. [PMID: 37568570 PMCID: PMC10417341 DOI: 10.3390/cancers15153754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
This systematic review and meta-analysis aims to evaluate the efficacy and safety of rechallenging advanced melanoma patients with BRAFi/MEKi. Seven studies, accounting for 400 patients, were included. Most patients received immunotherapy before the rechallenge, and 79% underwent rechallenge with the combination of BRAFi/MEKi. We found a median progression-free survival of 5 months and overall survival of 9.8 months. The one-year survival rate was 42.63%. Regarding response, ORR was 34% and DCR 65%. There were no new or unexpected safety concerns. Rechallenge with BRAFi/MEKi can improve outcomes in advanced melanoma patients with refractory disease. These findings have significant implications for clinical practice, particularly in the setting of progressive disease in later lines and limited treatment options.
Collapse
Affiliation(s)
- Jonathan N. Priantti
- School of Medicine, Federal University of Amazonas—UFAM, Manaus 69020-160, AM, Brazil
| | - Maysa Vilbert
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
- Division of Medical Oncology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Thiago Madeira
- School of Medicine, Federal University of Minas Gerais—UFMG, Belo Horizonte 30130-100, MG, Brazil
| | | | - Erica C. Koch Hein
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
- Division of Medical Oncology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Hematology and Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology and Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ludimila Cavalcante
- Department of Medical Oncology, Novant Health Cancer Institute, Charlotte, NC 28204, USA
| |
Collapse
|
152
|
Patinote C, Raevens S, Baumann A, Pellegrin E, Bonnet PA, Deleuze-Masquéfa C. [1,2,4]triazolo[4,3- a]quinoxaline as Novel Scaffold in the Imiqualines Family: Candidates with Cytotoxic Activities on Melanoma Cell Lines. Molecules 2023; 28:5478. [PMID: 37513350 PMCID: PMC10384284 DOI: 10.3390/molecules28145478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Cutaneous melanoma is one of the most aggressive human cancers and is the deadliest form of skin cancer, essentially due to metastases. Novel therapies are always required, since cutaneous melanoma develop resistance to oncogenic pathway inhibition treatment. The Imiqualine family is composed of heterocycles diversely substituted around imidazo[1,2-a]quinoxaline, imidazo[1,2-a]pyrazine, imidazo[1,5-a]quinoxaline, and pyrazolo[1,5-a]quinoxaline scaffolds, which display interesting activities on a panel of cancer cell lines, especially melanoma cell lines. We have designed and prepared novel compounds based on the [1,2,4]triazolo[4,3-a]quinoxaline scaffold through a common synthetic route, using 1-chloro-2-hydrazinoquinoxaline and an appropriate aldehyde. Cyclization is ensured by an oxidation-reduction mechanism using chloranil. The substituents on positions 1 and 8 were chosen based on previous structure-activity relationship (SAR) studies conducted within our heterocyclic Imiqualine family. Physicochemical parameters of all compounds have also been predicted. A375 melanoma cell line viability has been evaluated for 16 compounds. Among them, three novel [1,2,4]triazolo[4,3-a]quinoxalines display cytotoxic activities. Compounds 16a and 16b demonstrate relative activities in the micromolar range (respectively, 3158 nM and 3527 nM). Compound 17a shows the best EC50 of the novel series (365 nM), even if EAPB02303 remains the lead of the entire Imiqualine family (3 nM).
Collapse
Affiliation(s)
- Cindy Patinote
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, (CNRS, ENSCM, Université de Montpellier), 1919 Route de Mende, 34090 Montpellier, France
| | - Sandy Raevens
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, (CNRS, ENSCM, Université de Montpellier), 1919 Route de Mende, 34090 Montpellier, France
| | - Amélie Baumann
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, (CNRS, ENSCM, Université de Montpellier), 1919 Route de Mende, 34090 Montpellier, France
| | - Eloise Pellegrin
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, (CNRS, ENSCM, Université de Montpellier), 1919 Route de Mende, 34090 Montpellier, France
| | - Pierre-Antoine Bonnet
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, (CNRS, ENSCM, Université de Montpellier), 1919 Route de Mende, 34090 Montpellier, France
| | - Carine Deleuze-Masquéfa
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 F16, (CNRS, ENSCM, Université de Montpellier), 1919 Route de Mende, 34090 Montpellier, France
| |
Collapse
|
153
|
Han X, Ge P, Liu S, Yang D, Zhang J, Wang X, Liang W. Efficacy and safety of bevacizumab in patients with malignant melanoma: a systematic review and PRISMA-compliant meta-analysis of randomized controlled trials and non-comparative clinical studies. Front Pharmacol 2023; 14:1163805. [PMID: 37521468 PMCID: PMC10374288 DOI: 10.3389/fphar.2023.1163805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Background: Malignant melanoma is a highly aggressive cancer that spreads and metastasizes quickly. In recent years, the antiangiogenic drug bevacizumab has been trialed to treat malignant melanoma. We conducted the first meta-analysis to examine the efficacy and safety of bevacizumab combined with other drugs in malignant melanoma. Methods: We searched for randomized controlled trials (RCTs) and non-comparative clinical studies of bevacizumab combined with chemotherapy, targeted medicine, and interferon to treat malignant melanoma in PubMed, Embase, the Cochrane Library, and Web of Science. Meta-analysis of RCT was performed using Review Manager (version 5.4), and non-comparative meta-analysis was performed using R (version 4.0.3). The primary outcome was the objective response rate. Depending on the heterogeneity of the included studies, the pooled outcomes and 95% CI were calculated using either random-effects or fixed-effect models. Subgroup outcomes were calculated with possible relevant variables. Sensitivity analyses were carried out by excluding each study from the highly heterogeneous pooled results in turn. Funnel plot and Begg's test were used to test the included studies' potential publication bias. The level of significance was set at p < 0.05. Results: This meta-analysis included 20 trials: five RCTs and 15 non-comparative clinical studies with a total of 23 bevacizumab intervention arms. In 14 treatment arms, bevacizumab was combined with chemotherapy drugs such as fotemustine, dacarbazine, carboplatin/paclitaxel, and temozolomide. In six treatment arms, bevacizumab was combined with targeted medicines such as imatinib, everolimus, sorafenib, erlotinib, and temsirolimus. There were also six treatment arms that used bevacizumab in combination with interferon. The pooled objective response rate was 15.8% (95% CI, 11.4%-20.2%). Bevacizumab plus carboplatin/paclitaxel significantly increased the overall survival compared to carboplatin/paclitaxel (HR = 0.64, 95% CI, 0.49-0.85, p < 0.01). Fatigue, nausea, leukopenia, thrombocytopenia, and neutropenia were the most common adverse events. The pooled incidence of hypertension of all bevacizumab arms in malignant melanoma was 32.4% (95% CI, 24.5%-40.3%). Conclusion: This study showed that bevacizumab combined with chemotherapy might be effective and well-tolerated in patients with stage III or IV unresectable malignant melanoma. Systematic Review Registration: [https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=304625], identifier [CRD42022304625].
Collapse
Affiliation(s)
- Xiao Han
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pharmacy, The Fifth Affiliated Hospital of Sun Yat-sat University, Zhuhai, China
| | - Pu Ge
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Siyu Liu
- School of Stomatology, Shandong University, Jinan, China
| | - Dandan Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jinzi Zhang
- School of Humanities and Social Sciences, Harbin Medical University, Harbin, China
| | - Xinpei Wang
- Medical Equipment Department, Peking University First Hospital, Beijing, China
| | - Weiting Liang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
154
|
Boutros A, Tanda ET, Croce E, Catalano F, Ceppi M, Bruzzone M, Cecchi F, Arecco L, Fraguglia M, Pronzato P, Genova C, Del Mastro L, Lambertini M, Spagnolo F. Activity and safety of first-line treatments for advanced melanoma: A network meta-analysis. Eur J Cancer 2023; 188:64-79. [PMID: 37196485 DOI: 10.1016/j.ejca.2023.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Treatment options for advanced melanoma have increased with the US Food and Drug Administration approval of the anti-LAG3 plus anti-PD-1 relatlimab/nivolumab combination. To date, ipilimumab/nivolumab is the benchmark of overall survival, despite a high toxicity profile. Furthermore, in BRAF-mutant patients, BRAF/MEK inhibitors and the atezolizumab/vemurafenib/cobimetinib triplet are also available treatments, making the first-line therapy selection more complex. To address this issue, we conducted a systematic review and network meta-analysis of the available first-line treatment options in advanced melanoma. METHODS Randomised clinical trials of previously untreated, advanced melanoma were included if at least one intervention arm contained a BRAF/MEK or an immune-checkpoint inhibitor (ICI). The aim was to indirectly compare the ICIs combinations ipilimumab/nivolumab and relatlimab/nivolumab, and these combinations with all the other first-line treatment options for advanced melanoma (irrespective of BRAF status) in terms of activity and safety. The coprimary end-points were progression-free survival (PFS), overall response rate (ORR) and grade ≥3 treatment-related adverse events (≥ G3 TRAEs) rate, defined according to Common Terminology Criteria for Adverse Events. RESULTS A total of 9070 metastatic melanoma patients treated in 18 randomised clinical trials were included in the network meta-analysis. No difference in PFS and ORR was observed between ipilimumab/nivolumab and relatlimab/nivolumab (HR = 0.99 [95% CI 0.75-1.31] and RR = 0.99 [95% CI 0.78-1.27], respectively). The PD-(L)1/BRAF/MEK inhibitors triplet combinations were superior to ipilimumab/nivolumab in terms of both PFS (HR = 0.56 [95% CI 0.37-0.84]) and ORR (RR = 3.07 [95% CI 1.61-5.85]). Ipilimumab/nivolumab showed the highest risk of developing ≥ G3 TRAEs. Relatlimab/nivolumab trended to a lower risk of ≥ G3 TRAEs (RR = 0.71 [95% CI 0.30-1.67]) versus ipilimumab/nivolumab. CONCLUSION Relatlimab/nivolumab showed similar PFS and ORR compared to ipilimumab/nivolumab, with a trend for a better safety profile.
Collapse
Affiliation(s)
- Andrea Boutros
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy.
| | - Enrica Teresa Tanda
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Elena Croce
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy
| | - Fabio Catalano
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy
| | - Marcello Ceppi
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marco Bruzzone
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federica Cecchi
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Arecco
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy; Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Fraguglia
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy
| | - Paolo Pronzato
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Carlo Genova
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy; Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lucia Del Mastro
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy; Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Lambertini
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy; Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesco Spagnolo
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Surgical Sciences and Integrated Diagnostics (DISC), Plastic Surgery, University of Genova, Genoa, Italy
| |
Collapse
|
155
|
Perez MC, Depalo DK, Zager JS. A safety review of recently approved and late-stage trial treatments for metastatic melanoma: systemic and regional therapies. Expert Opin Drug Saf 2023; 22:789-797. [PMID: 37551723 DOI: 10.1080/14740338.2023.2245333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/30/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
INTRODUCTION Advanced melanoma accounts for the majority of skin cancer-associated deaths. Over the past 15 years, there has been a dramatic change in the treatment options and prognosis for patients with advanced melanoma secondary to the development of novel systemic immunotherapies (IO) and targeted therapies. In addition to these novel systemic therapies, regional therapies (intralesional and perfusional) also continue to play a major role in the management of these patients. AREAS COVERED In this article, we review recent updates in the management of advanced melanoma via Medline (PubMed) and Google Scholar, including recently published trials in the metastatic, adjuvant, and neoadjuvant settings. We also review recently published trials for regional therapies and discuss future directions in the management of patients with advanced melanoma. EXPERT OPINION A significant portion of patients with advanced melanoma will develop recurrent or progressive disease following treatment with IO or targeted therapy. Therefore, identifying not only the appropriate therapeutic agent but also the sequence and duration of treatment is pivotal for these patients.
Collapse
Affiliation(s)
- Matthew C Perez
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa FL, United States of America
| | - Danielle K Depalo
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa FL, United States of America
| | - Jonathan S Zager
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa FL, United States of America
| |
Collapse
|
156
|
Cipri S, Del Baldo G, Fabozzi F, Boccuto L, Carai A, Mastronuzzi A. Unlocking the power of precision medicine for pediatric low-grade gliomas: molecular characterization for targeted therapies with enhanced safety and efficacy. Front Oncol 2023; 13:1204829. [PMID: 37397394 PMCID: PMC10311254 DOI: 10.3389/fonc.2023.1204829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
In the past decade significant advancements have been made in the discovery of targetable lesions in pediatric low-grade gliomas (pLGGs). These tumors account for 30-50% of all pediatric brain tumors with generally a favorable prognosis. The latest 2021 WHO classification of pLGGs places a strong emphasis on molecular characterization for significant implications on prognosis, diagnosis, management, and the potential target treatment. With the technological advances and new applications in molecular diagnostics, the molecular characterization of pLGGs has revealed that tumors that appear similar under a microscope can have different genetic and molecular characteristics. Therefore, the new classification system divides pLGGs into several distinct subtypes based on these characteristics, enabling a more accurate strategy for diagnosis and personalized therapy based on the specific genetic and molecular abnormalities present in each tumor. This approach holds great promise for improving outcomes for patients with pLGGs, highlighting the importance of the recent breakthroughs in the discovery of targetable lesions.
Collapse
Affiliation(s)
- Selene Cipri
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Giada Del Baldo
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco Fabozzi
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Luigi Boccuto
- Healthcare Genetics Program, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC, United States
| | - Andrea Carai
- Department of Neurosciences, Neurosurgery Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
157
|
Inagaki C, Matoba R, Yuki S, Shiozawa M, Tsuji A, Inoue E, Muro K, Ichikawa W, Fujii M, Sunakawa Y. The BEETS (JACCRO CC-18) trial: an observational and translational study of BRAF-mutated metastatic colorectal cancer. Future Oncol 2023; 19:1165-1174. [PMID: 37458152 DOI: 10.2217/fon-2023-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/26/2023] [Indexed: 07/18/2023] Open
Abstract
For BRAF V600E-mutated metastatic colorectal cancer (mCRC), the BEACON phase 3 trial showed survival benefit of triplet therapy with cetuximab (anti-EGFR antibody), encorafenib (BRAF inhibitor) and binimetinib (MEK inhibitor) as well as doublet therapy with cetuximab and encorafenib over irinotecan-based chemotherapy plus anti-EGFR antibody. Both regimens are standards of care in Japan, but definite biomarkers for predicting efficacy and selecting treatment remain lacking. The mechanisms underlying resistance to these regimens also warrant urgent exploration to further evolve treatment. This prospective observational/translational study evaluated real-word clinical outcomes with cetuximab and encorafenib with or without binimetinib for BRAF-mutated mCRC patients and investigated biomarkers for response and resistance by collecting blood samples before and after treatment. Clinical Trial Registration: UMIN000045530 (https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000051983).
Collapse
Affiliation(s)
- Chiaki Inagaki
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osakasayama, Osaka 589-8511, Japan
| | - Ryo Matoba
- DNA Chip Research Inc., 1-15-1, Kaigan, Minato-ku, Tokyo 105-0022, Japan
| | - Satoshi Yuki
- Department of Gastroenterology & Hepatology, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
| | - Manabu Shiozawa
- Department of Surgery, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi Ward, Yokohama, Kanagawa 241-8515, Japan
| | - Akihito Tsuji
- Department of Clinical Oncology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Eisuke Inoue
- Showa University Research Administration Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Kei Muro
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan
| | - Wataru Ichikawa
- Division of Medical Oncology, Showa University Fujigaoka Hospital, 1-30 Fujigaoka, Aoba-ku, Yokohama, Kanagawa 227-8501, Japan
| | - Masashi Fujii
- Japan Clinical Cancer Research Organization (JACCRO), 1-64 Kanda-Jimbocho, Chiyoda-ku, Tokyo 101-0051, Japan
| | - Yu Sunakawa
- Department of Clinical Oncology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| |
Collapse
|
158
|
Kobayashi M, Onozawa M, Watanabe S, Nagashima T, Tamura K, Kubo Y, Ikeda A, Ochiai K, Michishita M, Bonkobara M, Kobayashi M, Hori T, Kawakami E. Establishment of a BRAF V595E-mutant canine prostate cancer cell line and the antitumor effects of MEK inhibitors against canine prostate cancer. Vet Comp Oncol 2023; 21:221-230. [PMID: 36745053 DOI: 10.1111/vco.12879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/07/2023] [Accepted: 01/24/2023] [Indexed: 02/07/2023]
Abstract
Canine prostate cancer (cPCa) is a malignant neoplasm with no effective therapy. The BRAF V595E mutation, corresponding to the human BRAF V600E mutation, is found frequently in cPCa. Activating BRAF mutations are recognized as oncogenic drivers, and blockade of MAPK/ERK phosphorylation may be an effective therapeutic target against BRAF-mutated tumours. The aim of this study was to establish a novel cPCa cell line and to clarify the antitumor effects of MEK inhibitors on cPCa in vitro and in vivo. We established the novel CHP-2 cPCa cell line that was derived from the prostatic tissue of a cPCa patient. Sequencing of the canine BRAF gene in two cPCa cell lines revealed the presence of the BRAF V595E mutation. MEK inhibitors (trametinib, cobimetinib and mirdametinib) strongly suppressed cell proliferation in vitro, and trametinib showed the highest efficacy against cPCa cells with minimal cytotoxicity to non-cancer COPK cells. Furthermore, we orally administered 0.3 or 1.0 mg/kg trametinib to CHP-2 xenografted mice and examined its antitumor effects in vivo. Trametinib reduced tumour volume, decreased phosphorylated ERK levels, and lowered Ki-67 expression in xenografts in a dose-dependent manner. Although no clear adverse events were observed with administration, trametinib-treated xenografts showed osteogenesis that was independent of dosage. Our results indicate that trametinib induces cell cycle arrest by inhibiting ERK activation, resulting in cPCa tumour regression in a dose-dependent manner. MEK inhibitors, in addition to BRAF inhibitors, may be a targeted agent option for cPCa with the BRAF V595E mutation.
Collapse
Affiliation(s)
- Masanori Kobayashi
- Laboratory of Reproduction, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Moe Onozawa
- Laboratory of Reproduction, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Shiho Watanabe
- Laboratory of Reproduction, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Tomokazu Nagashima
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kyoichi Tamura
- Laboratory of Veterinary Clinical Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yoshiaki Kubo
- Veterinary Medical Teaching Hospital, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Akiko Ikeda
- Laboratory of Reproduction, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kazuhiko Ochiai
- Laboratory of Veterinary Hygiene, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Masaki Michishita
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Makoto Bonkobara
- Laboratory of Veterinary Clinical Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Masato Kobayashi
- Laboratory of Reproduction, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Tatsuya Hori
- Laboratory of Reproduction, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Eiichi Kawakami
- Laboratory of Reproduction, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
- Japan Institute of Small Animal Reproduction (Bio Art), Tokyo, Japan
| |
Collapse
|
159
|
Haist M, Stege H, Kuske M, Bauer J, Klumpp A, Grabbe S, Bros M. Combination of immune-checkpoint inhibitors and targeted therapies for melanoma therapy: The more, the better? Cancer Metastasis Rev 2023; 42:481-505. [PMID: 37022618 PMCID: PMC10348973 DOI: 10.1007/s10555-023-10097-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/27/2023] [Indexed: 04/07/2023]
Abstract
The approval of immune-checkpoint inhibitors (CPI) and mitogen activated protein kinase inhibitors (MAPKi) in recent years significantly improved the treatment management and survival of patients with advanced malignant melanoma. CPI aim to counter-act receptor-mediated inhibitory effects of tumor cells and immunomodulatory cell types on effector T cells, whereas MAPKi are intended to inhibit tumor cell survival. In agreement with these complementary modes of action preclinical data indicated that the combined application of CPI and MAPKi or their optimal sequencing might provide additional clinical benefit. In this review the rationale and preclinical evidence that support the combined application of MAPKi and CPI either in concurrent or consecutive regimens are presented. Further, we will discuss the results from clinical trials investigating the sequential or combined application of MAPKi and CPI for advanced melanoma patients and their implications for clinical practice. Finally, we outline mechanisms of MAPKi and CPI cross-resistance which limit the efficacy of currently available treatments, as well as combination regimens.
Collapse
Affiliation(s)
- Maximilian Haist
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Henner Stege
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Michael Kuske
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Julia Bauer
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Annika Klumpp
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| |
Collapse
|
160
|
Nelson BE, Reddy NK, Huse JT, Amini B, Nardo M, Gouda M, Weathers SP, Subbiah V. Histological transformation to gliosarcoma with combined BRAF/MEK inhibition in BRAF V600E mutated glioblastoma. NPJ Precis Oncol 2023; 7:47. [PMID: 37231247 DOI: 10.1038/s41698-023-00398-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
The identification of BRAF V600 mutation in multiple cancers beyond melanoma and the development of combined BRAF and MEK targeting agents have altered the landscape of tissue-agnostic precision oncology therapies with an impact on survival outcomes. Despite initial efficacy, resistance emerges, and it is pertinent to identify putative resistance mechanisms. We report a case of recurrent glioblastoma (GBM) harboring BRAF V600E alteration who initially responded to combined BRAF + MEK inhibition and subsequently developed treatment resistance by histological transformation to gliosarcoma and acquisition of oncogenic KRAS G12D and an NF1 L1083R mutation. This documented case represents an initial evidence of a developing phenomenon in cancer research as it provides the first evidence of an emergent KRAS G12D/NF1 L1083R aberration with histological transformation occurring concurrently with primary BRAF V600E-altered glioblastoma as a previously unrecognized acquired mechanism of resistance in the setting of combined BRAF and MEK inhibition. This novel finding not only sheds new light on the RAS/MAPK pathway but also highlights the potential for morphological transformation to gliosarcoma, underscoring the critical need for further investigation in this area.
Collapse
Affiliation(s)
- Blessie Elizabeth Nelson
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neha K Reddy
- Department of Internal Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Jason T Huse
- Department of Pathology and Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Behrang Amini
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mirella Nardo
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohamed Gouda
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shiao-Pei Weathers
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- MD Anderson Cancer Network, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
161
|
Mannucci M, Fontana V, Campanella D, Filiberti RA, Pronzato P, Rosa A. A Descriptive Study of Repeated Hospitalizations and Survival of Patients with Metastatic Melanoma in the Northern Italian Region during 2004-2019. Curr Oncol 2023; 30:5266-5278. [PMID: 37366883 DOI: 10.3390/curroncol30060400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Survival rates for metastatic melanoma (MM) patients have improved in recent years, leading to major expenses and health resource use. We conducted a non-concurrent prospective study to describe the burden of hospitalization in a real-world setting for patients with MM. METHODS Patients were tracked throughout all hospital stays in 2004-2019 by means of hospital discharges. The number of hospitalizations, the rehospitalization rate, the average time spent in the hospital and the time span between consecutive admissions were evaluated. Relative survival was also calculated. RESULTS Overall, 1570 patients were identified at the first stay (56.5% in 2004-2011 and 43.7% in 2012-2019). A total of 8583 admissions were retrieved. The overall rehospitalization rate was 1.78 per patient/year (95%CI = 1.68-1.89); it increased significantly with the period of first stay (1.51, 95%CI = 1.40-1.64 in 2004-2011 and 2.11, 95%CI = 1.94-2.29 thereafter). The median time span between hospitalizations was lower for patients hospitalized after 2011 (16 vs. 26 months). An improvement in survival for males was highlighted. CONCLUSIONS The hospitalization rate of patients with MM was higher in the last years of the study. Compared with a shorter length of stay, patients were admitted to hospitals with a higher frequency. Knowledge of the burden of MM is essential for planning the allocation of healthcare resources.
Collapse
Affiliation(s)
- Matilde Mannucci
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Vincenzo Fontana
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Dalila Campanella
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Rosa Angela Filiberti
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Paolo Pronzato
- Medical Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Alessandra Rosa
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
162
|
Du F, Yang LH, Liu J, Wang J, Fan L, Duangmano S, Liu H, Liu M, Wang J, Zhong X, Zhang Z, Wang F. The role of mitochondria in the resistance of melanoma to PD-1 inhibitors. J Transl Med 2023; 21:345. [PMID: 37221594 DOI: 10.1186/s12967-023-04200-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/14/2023] [Indexed: 05/25/2023] Open
Abstract
Malignant melanoma is one of the most common tumours and has the highest mortality rate of all types of skin cancers worldwide. Traditional and novel therapeutic approaches, including surgery, targeted therapy and immunotherapy, have shown good efficacy in the treatment of melanoma. At present, the mainstay of treatment for melanoma is immunotherapy combined with other treatment strategies. However, immune checkpoint inhibitors, such as PD-1 inhibitors, are not particularly effective in the clinical treatment of patients with melanoma. Changes in mitochondrial function may affect the development of melanoma and the efficacy of PD-1 inhibitors. To elucidate the role of mitochondria in the resistance of melanoma to PD-1 inhibitors, this review comprehensively summarises the role of mitochondria in the occurrence and development of melanoma, targets related to the function of mitochondria in melanoma cells and changes in mitochondrial function in different cells in melanoma resistant to PD-1 inhibitors. This review may help to develop therapeutic strategies for improving the clinical response rate of PD-1 inhibitors and prolonging the survival of patients by activating mitochondrial function in tumour and T cells.
Collapse
Affiliation(s)
- Fei Du
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lu-Han Yang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jiao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jian Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lianpeng Fan
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Suwit Duangmano
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Minghua Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jun Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xiaolin Zhong
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Fang Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
163
|
Wang A, Liu J, Li X, Zou F, Qi Z, Qi S, Liu Q, Wang Z, Cao J, Jiang Z, Wang B, Ge J, Wang L, Wang W, Liu J, Liu Q. Discovery of a highly potent pan-RAF inhibitor IHMT-RAF-128 for cancer treatment. Eur J Pharmacol 2023; 952:175752. [PMID: 37164118 DOI: 10.1016/j.ejphar.2023.175752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
Although rat sarcoma viral oncogene homolog (RAS) mutations occur in about 30% of solid tumors, targeting RAS mutations other than KRAS-G12C is still challenging. As an alternative approach, developing inhibitors targeting RAF, the downstream effector of RAS signaling, is currently one of the main strategies for cancer therapy. Selective v-raf murine sarcoma viral oncogene homolog B1 (BRAF)-V600E inhibitors Vemurafenib, Encorafenib, and Dabrafenib have been approved by FDA and received remarkable clinical responses, but these drugs are ineffective against RAS mutant tumors due to limited inhibition on dimerized RAF. In this study, we developed a highly potent pan-RAF inhibitor, IHMT-RAF-128, which exhibited similarly high efficacies in inhibiting both partners of the RAF dimer, and showed potent anti-tumor efficacy against a variety of cancer cells harboring either RAF or RAS mutations, especially Adagrasib and Sotorasib (AMG510) resistant-KRAS-G12C secondary mutations, such as KRAS-G12C-Y96C and KRAS-G12C-H95Q. In addition, IHMT-RAF-128 showed excellent pharmacokinetic profile (PK), and the bioavailability in mice and rats were 63.9%, and 144.1%, respectively. Furthermore, IHMT-RAF-128 exhibited potent anti-tumor efficacy on xenograft mouse tumor models in a dose-dependent manner without any obvious toxicities. Together, these results support further investigation of IHMT-RAF-128 as a potential clinical drug candidate for the treatment of cancer patients with RAF or RAS mutations.
Collapse
Affiliation(s)
- Aoli Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Juan Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Xixiang Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Ziping Qi
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Shuang Qi
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Qingwang Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Zuowei Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Jiangyan Cao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Zongru Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Juan Ge
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Li Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui, 230088, PR China.
| |
Collapse
|
164
|
Limberg J, Egan CE, Gray KD, Singh M, Loewenstein Z, Yang Y, Riascos MC, Al Asadi H, Safe P, El Eshaky S, Liang H, Ullmann TM, Wang W, Li W, Zhang T, Xiang J, Stefanova D, Jin MM, Zarnegar R, Fahey TJ, Min IM. Activation of the JAK/STAT Pathway Leads to BRAF Inhibitor Resistance in BRAFV600E Positive Thyroid Carcinoma. Mol Cancer Res 2023; 21:397-410. [PMID: 36790391 PMCID: PMC10159921 DOI: 10.1158/1541-7786.mcr-21-0832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/25/2022] [Accepted: 01/11/2023] [Indexed: 02/16/2023]
Abstract
A subset of thyroid cancers, recurrent differentiated thyroid cancers and anaplastic thyroid cancer (ATC), are difficult to treat by thyroidectomy and systemic therapy. A common mutation in thyroid cancer, BRAFV600E, has targetable treatment options; however, the results have been disappointing in thyroid cancers compared with BRAFV600E melanoma, as thyroid cancers quickly become resistant to BRAFV600E inhibitor (BRAFi). Here, we studied the molecular pathway that is induced in BRAFV600E thyroid cancer cells and patient-derived tumor samples in response to BRAFi, vemurafenib, using RNA-sequencing and molecular analysis. Both inducible response to BRAFi and acquired BRAFi resistance in BRAFV600E thyroid cancer cells showed significant activation of the JAK/STAT pathway. Functional analyses revealed that the combination of BRAFi and inhibitors of JAK/STAT pathway controlled BRAFV600E thyroid cancer cell growth. The Cancer Genome Atlas data analysis demonstrated that potent activation of the JAK/STAT signaling was associated with shorter recurrence rate in patients with differentiated thyroid cancer. Analysis of tumor RNA expression in patients with poorly differentiated thyroid cancer and ATC also support that enhanced activity of JAK/STAT signaling pathway is correlated with worse prognosis. Our study demonstrates that JAK/STAT pathway is activated as BRAFV600E thyroid cancer cells develop resistance to BRAFi and that this pathway is a potential target for anticancer activity and to overcome drug resistance that commonly develops to treatment with BRAFi in thyroid cancer. IMPLICATIONS Dual inhibition of BRAF and JAK/STAT signaling pathway is a potential therapeutic treatment for anticancer activity and to overcome drug resistance to BRAFi in thyroid cancer.
Collapse
Affiliation(s)
- Jessica Limberg
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065
| | - Caitlin E. Egan
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065
| | | | - Mandeep Singh
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065
| | | | - Yanping Yang
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065
| | | | - Hala Al Asadi
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065
| | - Parima Safe
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065
| | - Steve El Eshaky
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065
| | - Heng Liang
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065
| | | | - Weibin Wang
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065
| | - Wei Li
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065
| | - Tuo Zhang
- Genomics Resource Core Facility, Weill Cornell Medicine, New York, NY 10065
| | - Jenny Xiang
- Genomics Resource Core Facility, Weill Cornell Medicine, New York, NY 10065
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065
| | | | - Moonsoo M. Jin
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065
| | - Rasa Zarnegar
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065
| | - Thomas J. Fahey
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065
| | - Irene M. Min
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065
| |
Collapse
|
165
|
Huang X, Gou W, Song Q, Huang Y, Wen C, Bo X, Jiang X, Feng J, Gao H. A BRAF mutation-associated gene risk model for predicting the prognosis of melanoma. Heliyon 2023; 9:e15939. [PMID: 37205993 PMCID: PMC10189240 DOI: 10.1016/j.heliyon.2023.e15939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/21/2023] Open
Abstract
BRAF mutation plays an important role in the pathogenesis and progression of melanoma and is correlated to the prognosis of melanoma patients. However, fewer studies have attempted to develop a BRAF mutation-associated gene risk model for predicting the prognosis of melanoma. The current research explores BRAF mutation-related biological features in melanoma and establishes a prognostic signature. First, we identified three significantly enriched KEGG pathways (glycosphingolipid biosynthesis - ganglio series, ether lipid metabolism, and glycosaminoglycan biosynthesis - keratan sulfate) and corresponding genes in the BRAF mutant group by gene set enrichment analysis. We then developed a prognostic signature based on 7 BRAF-associated genes (PLA2G2D, FUT8, PLA2G4E, PLA2G5, PLA2G1B, B3GNT2, and ST3GAL5) and assessed its prediction accuracy using ROC curve analysis. Finally, the nomogram was established according to the prognostic signature and independent clinical characteristics to predict the survival of melanoma patients. Furthermore, we found higher proportions of naive B cells, plasma cells, CD8 T cells, CD4 memory-activated T cells, and regulatory T cells in the low-risk group. Whereas lower proportions of M0, M1, and M2 macrophages and resting NK cells were observed in the high-risk group. The analysis also showed a significantly higher expression of immune checkpoint molecules (PD-1, PD-L1, CTLA4, BTLA, CD28, CD80, CD86, HAVCR2, ICOS, LAG3, and TIGIT) in the low-risk group. Our results provide novel insights into the effect of BRAF mutation on melanoma growth and indicate a promising direction toward immunotherapy and precision medicine in melanoma patients.
Collapse
Affiliation(s)
- Xiang Huang
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Wanrong Gou
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qinxian Song
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yan Huang
- Department of Dermatology, Suining First People's Hospital, Suining, 629000, Sichuan, China
| | - Chunlei Wen
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xue Bo
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xian Jiang
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jianguo Feng
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hong Gao
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| |
Collapse
|
166
|
Yang TT, Yu S, Ke CLK, Cheng ST. The Genomic Landscape of Melanoma and Its Therapeutic Implications. Genes (Basel) 2023; 14:genes14051021. [PMID: 37239381 DOI: 10.3390/genes14051021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/25/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Melanoma is one of the most aggressive malignancies of the skin. The genetic composition of melanoma is complex and varies among different subtypes. With the aid of recent technologies such as next generation sequencing and single-cell sequencing, our understanding of the genomic landscape of melanoma and its tumor microenvironment has become increasingly clear. These advances may provide explanation to the heterogenic treatment outcomes of melanoma patients under current therapeutic guidelines and provide further insights to the development of potential new therapeutic targets. Here, we provide a comprehensive review on the genetics related to melanoma tumorigenesis, metastasis, and prognosis. We also review the genetics affecting the melanoma tumor microenvironment and its relation to tumor progression and treatment.
Collapse
Affiliation(s)
- Ting-Ting Yang
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Dermatology, Pingtung Hospital, Ministry of Health and Welfare, Pingtung 900, Taiwan
| | - Sebastian Yu
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chiao-Li Khale Ke
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Psychiatry, Kaohsiung Municipal SiaoGang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
| | - Shih-Tsung Cheng
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
167
|
Manzari Tavakoli G, Mirzapour MH, Razi S, Rezaei N. Targeting ferroptosis as a cell death pathway in Melanoma: From molecular mechanisms to skin cancer treatment. Int Immunopharmacol 2023; 119:110215. [PMID: 37094541 DOI: 10.1016/j.intimp.2023.110215] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/30/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023]
Abstract
Melanoma, the most aggressive form of human skin cancer, has been under investigation to reach the most efficient treatment. Surgical resection for early-diagnosed primary melanoma, targeted therapies, and immune checkpoint inhibitors for advanced/metastatic melanoma is the best clinical approach. Ferroptosis, a newly identified iron-dependent cell death pathway, which is morphologically and biochemically different from apoptosis and necrosis, has been reported to be involved in several cancers. Ferroptosis inducers could provide therapeutic options in case of resistance to conventional therapies for advanced/metastatic melanoma. Recently developed ferroptosis inducers, MEK and BRAF inhibitors, miRNAs such as miR-137 and miR-9, and novel strategies for targeting major histocompatibility complex (MHC) class II in melanoma can provide new opportunities for melanoma treatment. Combining ferroptosis inducers with targeted therapies or immune checkpoint inhibitors increases patient response rates. Here we review the mechanisms of ferroptosis and its environmental triggers. We also discuss the pathogenesis and current treatments of melanoma. Moreover, we aim to elucidate the relationship between ferroptosis and melanoma and ferroptosis implications to develop new therapeutic strategies against melanoma.
Collapse
Affiliation(s)
- Gita Manzari Tavakoli
- Department of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Hossein Mirzapour
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
168
|
Oosting SF, Barriuso J, Bottomley A, Galotti M, Gyawali B, Kiesewetter B, Latino NJ, Martinelli F, Pe M, Pentheroudakis G, Roitberg F, Vachon H, de Vries EGE, Piccart M, Cherny NI. Methodological and reporting standards for quality-of-life data eligible for European Society for Medical Oncology-Magnitude of Clinical Benefit Scale (ESMO-MCBS) credit. Ann Oncol 2023; 34:431-439. [PMID: 36549587 DOI: 10.1016/j.annonc.2022.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/24/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The European Society for Medical Oncology-Magnitude of Clinical Benefit Scale (ESMO-MCBS) has been developed to grade clinical benefit of cancer therapies. Improvement in quality of life (QoL) is considered relevant, especially in the non-curative setting. This is reflected by an upgrade of the preliminary ESMO-MCBS score if QoL is improved compared to the control arm or a downgrade if an improvement in progression-free survival is not paralleled by an improvement in QoL or overall survival. Given the importance of QoL for the final score, a need to ensure the robustness of QoL data was recognised. DESIGN A checklist was created based on existing guidelines for QoL research. Field testing was carried out using clinical trials that either received an adjustment of the preliminary ESMO-MCBS score based on QoL or had QoL as the primary endpoint. Several rounds of revision and re-testing of the checklist were undertaken until a final consensus was reached. RESULTS The final checklist consists of four items and can be applied if three prerequisites are met: (i) QoL is at least a secondary endpoint, (ii) evidence of reliability and validity of the instrument is provided, and (iii) a statistically and clinically significant improvement in QoL is observed. The four items on the checklist pertain to the (i) hypothesis, (ii) compliance and missing data, (iii) presentation of the results, and (iv) statistical and clinical relevance. Field testing revealed that a clear QoL hypothesis and correction for multiple testing were mostly lacking, while the main statistical method was always described. CONCLUSIONS Implementation of the ESMO-MCBS QoL checklist will facilitate objective and transparent decision making on QoL data within the ESMO-MCBS scoring process. Trials published until 1 January 2025 will have to meet the prerequisites and at least two items for crediting QoL benefit in the final ESMO-MCBS score. Trials published thereafter will have to meet all four items.
Collapse
Affiliation(s)
- S F Oosting
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - J Barriuso
- The Christie NHS Foundation Trust and Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK. https://twitter.com/DrJorgeBarriuso
| | - A Bottomley
- Quality of Life Department, European Organisation for Research and Treatment of Cancer, Brussels, Belgium. https://twitter.com/andrewbottom0
| | - M Galotti
- ESMO Head Office, Lugano, Switzerland. https://twitter.com/MartinaGalotti
| | - B Gyawali
- Department of Oncology, Queen's University, Kingston, Canada; Department of Public Health Sciences, Queen's University, Kingston, Canada; Division of Cancer Care and Epidemiology, Queen's University, Kingston, Canada. https://twitter.com/oncology_bg
| | - B Kiesewetter
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - N J Latino
- ESMO Head Office, Lugano, Switzerland. https://twitter.com/NicolaJaneLatin
| | - F Martinelli
- Quality of Life Department, European Organisation for Research and Treatment of Cancer, Brussels, Belgium
| | - M Pe
- Quality of Life Department, European Organisation for Research and Treatment of Cancer, Brussels, Belgium. https://twitter.com/madeline_pe
| | - G Pentheroudakis
- ESMO Head Office, Lugano, Switzerland. https://twitter.com/GPentheroudakis
| | - F Roitberg
- WHO Cancer Management Consultant, Geneva, Switzerland; Hospital Sírio Libanês, São Paulo, Brazil. https://twitter.com/FroitbergM
| | - H Vachon
- Quality of Life Department, European Organisation for Research and Treatment of Cancer, Brussels, Belgium
| | - E G E de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands. https://twitter.com/VriesElisabeth
| | - M Piccart
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - N I Cherny
- Cancer Pain and Palliative Medicine Service, Department of Medical Oncology, Shaare Zedek Medical Center, Jerusalem, Israel. https://twitter.com/ChernyNathan
| |
Collapse
|
169
|
Pham JP, Joshua AM, da Silva IP, Dummer R, Goldinger SM. Chemotherapy in Cutaneous Melanoma: Is There Still a Role? Curr Oncol Rep 2023; 25:609-621. [PMID: 36988735 PMCID: PMC10164011 DOI: 10.1007/s11912-023-01385-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 03/30/2023]
Abstract
Abstract
Purpose of Review
In the preceding decade, the management of metastatic cutaneous melanoma has been revolutionised with the development of highly effective therapies including immune checkpoint inhibitors (specifically CTLA-4 and PD-1 inhibitors) and targeted therapies (BRAF and MEK inhibitors). The role of chemotherapy in the contemporary management of melanoma is undefined.
Recent Findings
Extended analyses highlight substantially improved 5-year survival rates of approximately 50% in patients with metastatic melanoma treated with first-line therapies. However, most patients will progress on these first-line treatments. Sequencing of chemotherapy following failure of targeted and immunotherapies is associated with low objective response rates and short progression-free survival, and thus, meaningful benefits to patients are minimal.
Summary
Chemotherapy has limited utility in the contemporary management of cutaneous melanoma (with a few exceptions, discussed herein) and should not be the standard treatment sequence following failure of first-line therapies. Instead, enrolment onto clinical trials should be standard-of-care in these patients.
Collapse
Affiliation(s)
- James P Pham
- Medical Oncology, The Kinghorn Cancer Centre, St. Vincent's Hospital Sydney, Darlinghurst, NSW, Australia
- School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Anthony M Joshua
- Medical Oncology, The Kinghorn Cancer Centre, St. Vincent's Hospital Sydney, Darlinghurst, NSW, Australia
- School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Hospital, Darlinghurst, NSW, Australia
- Melanoma Institute Australia, The University of Sydney, Wollstonecraft, NSW, Australia
| | - Ines P da Silva
- Melanoma Institute Australia, The University of Sydney, Wollstonecraft, NSW, Australia
- Medical Oncology, Blacktown Hospital, Blacktown, NSW, Australia
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Simone M Goldinger
- Department of Dermatology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.
- Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
170
|
Wang P, Jia X, Lu B, Huang H, Liu J, Liu X, Wu Q, Hu Y, Li P, Wei H, Liu T, Zhao D, Zhang L, Tian X, Jiang Y, Qiao Y, Nie W, Ma X, Bai R, Peng C, Dong Z, Liu K. Erianin suppresses constitutive activation of MAPK signaling pathway by inhibition of CRAF and MEK1/2. Signal Transduct Target Ther 2023; 8:96. [PMID: 36872366 PMCID: PMC9986241 DOI: 10.1038/s41392-023-01329-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/26/2022] [Accepted: 01/18/2023] [Indexed: 03/07/2023] Open
Abstract
Constitutive activation of RAS-RAF-MEK-ERK signaling pathway (MAPK pathway) frequently occurs in many cancers harboring RAS or RAF oncogenic mutations. Because of the paradoxical activation induced by a single use of BRAF or MEK inhibitors, dual-target RAF and MEK treatment is thought to be a promising strategy. In this work, we evaluated erianin is a novel inhibitor of CRAF and MEK1/2 kinases, thus suppressing constitutive activation of the MAPK signaling pathway induced by BRAF V600E or RAS mutations. KinaseProfiler enzyme profiling, surface plasmon resonance (SPR), isothermal titration calorimetry (ITC), cellular thermal shift assay, computational docking, and molecular dynamics simulations were utilized to screen and identify erianin binding to CRAF and MEK1/2. Kinase assay, luminescent ADP detection assay, and enzyme kinetics assay were investigated to identify the efficiency of erianin in CRAF and MEK1/2 kinase activity. Notably, erianin suppressed BRAF V600E or RAS mutant melanoma and colorectal cancer cell by inhibiting MEK1/2 and CRAF but not BRAF kinase activity. Moreover, erianin attenuated melanoma and colorectal cancer in vivo. Overall, we provide a promising leading compound for BRAF V600E or RAS mutant melanoma and colorectal cancer through dual targeting of CRAF and MEK1/2.
Collapse
Affiliation(s)
- Penglei Wang
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Xuechao Jia
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Bingbing Lu
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Han Huang
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Jialin Liu
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Xuejiao Liu
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Qiong Wu
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Yamei Hu
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Pan Li
- China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Huifang Wei
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Tingting Liu
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Dengyun Zhao
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Lingwei Zhang
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Xueli Tian
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Yanan Jiang
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China
| | - Yan Qiao
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China
| | - Wenna Nie
- China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Xinli Ma
- China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China
| | - Ruihua Bai
- The Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Zigang Dong
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China. .,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China. .,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, 450000, Zhengzhou, China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, 450000, Zhengzhou, China. .,Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China.
| | - Kangdong Liu
- Department of Pathophysiology, Basic Medicine Research Center, School of Basic Medical Sciences, AMS, Zhengzhou University, 450000, Zhengzhou, China. .,China-US (Henan) Hormel Cancer Institute, 450000, Zhengzhou, China. .,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, 450000, Zhengzhou, China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, 450000, Zhengzhou, China. .,Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
171
|
van Breeschoten J, van den Eertwegh AJM, Hilarius DL, Haanen JB, Blank CU, Aarts MJB, van den Berkmortel FWPJ, de Groot JWB, Hospers GAP, Kapiteijn E, Piersma D, van Rijn RS, Stevense-den Boer MA, van der Veldt AAM, Vreugdenhil G, Boers-Sonderen MJ, Manevski D, Suijkerbuijk KPM, Wouters MWJM, de Wreede LC. Population mortality in advanced melanoma patients with and without response and progression; data from the Dutch Melanoma Treatment Registry. Eur J Cancer 2023; 182:132-143. [PMID: 36773402 DOI: 10.1016/j.ejca.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
INTRODUCTION When analysing patient survival, one is often interested in cause of death. Little is known about the presence of population mortality in advanced melanoma patients. The aim of this study was to assess population mortality after different response states in advanced melanoma patients in the Netherlands, and analyse the contribution of disease and population mortality for different age groups. METHODS We selected patients diagnosed between 2013 and 2019 with unresectable IIIC or stage IV melanoma, registered in the Dutch Melanoma Treatment Registry. A multi-state model with response states integrating population mortality was fitted. One-year landmark analyses were performed to assess outcomes after each response state. RESULTS Overall, 5119 patients were selected. Five-year probabilities of melanoma-related mortality in patients alive in complete response at one year after diagnosis increased with age, and was 17.2% (95% confidence interval: 13.0-21.4) for patients aged <65 years and 28.7% (95% confidence interval: 24.3-33.1) in patients aged ≥80 years. Population mortality only played a large role for older patients (75 years and above) alive at 1 year after diagnosis with a partial or complete response. CONCLUSION Even though survival outcomes of advanced melanoma patients have improved over the last decade, the vast majority of patients still die due to melanoma-related mortality.
Collapse
Affiliation(s)
- Jesper van Breeschoten
- Dutch Institute for Clinical Auditing, Rijnsburgerweg 10, Leiden, 2333AA, the Netherlands; Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan, 1118, Amsterdam, 1081HZ, the Netherlands
| | - Alfons J M van den Eertwegh
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan, 1118, Amsterdam, 1081HZ, the Netherlands
| | - Doranne L Hilarius
- Department of Pharmacy, Rode Kruis Ziekenhuis, Vondellaan 13, Beverwijk, 1942LE, the Netherlands
| | - John B Haanen
- Department of Medical Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066CX, the Netherlands
| | - Christian U Blank
- Department of Medical Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066CX, the Netherlands; Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066CX, the Netherlands
| | - Maureen J B Aarts
- Department of Medical Oncology, GROW School of Oncology and Developmental Biology, Maastricht University Medical Centre+, P. Debyelaan 25, Maastricht, 6229 HX, the Netherlands
| | | | | | - Geke A P Hospers
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, Groningen, 9713GZ, the Netherlands
| | - Ellen Kapiteijn
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333ZA, the Netherlands
| | - Djura Piersma
- Department of Internal Medicine, Medisch Spectrum Twente, Koningsplein 1, Enschede, 7512KZ, the Netherlands
| | - Rozemarijn S van Rijn
- Department of Internal Medicine, Medical Centre Leeuwarden, Henri Dunantweg 2, Leeuwarden, 8934AD, the Netherlands
| | | | - Astrid A M van der Veldt
- Department of Medical Oncology and Radiology & Nuclear Medicine, Erasmus Medical Centre, 's-Gravendijkwal 230, Rotterdam, 3015CE, the Netherlands
| | - Gerard Vreugdenhil
- Department of Internal Medicine, Maxima Medical Centre, De Run 4600, Eindhoven, 5504DB, the Netherlands
| | - Marye J Boers-Sonderen
- Department of Medical Oncology, Radboud University Medical Centre, Geert Grooteplein Zuid 10, Nijmegen, 6525GA, the Netherlands
| | - Damjan Manevski
- Institute for Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Karijn P M Suijkerbuijk
- Department of Medical Oncology, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht, 3584CX, the Netherlands
| | - Michel W J M Wouters
- Dutch Institute for Clinical Auditing, Rijnsburgerweg 10, Leiden, 2333AA, the Netherlands; Department of Biomedical Data Sciences, Leiden University Medical Center, Einthovenweg 20, Leiden, 2333ZC, the Netherlands; Department of Surgical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066CX, the Netherlands
| | - Liesbeth C de Wreede
- Department of Biomedical Data Sciences, Leiden University Medical Center, Einthovenweg 20, Leiden, 2333ZC, the Netherlands; DKMS Clinical Trials Unit, Dresden, Germany.
| |
Collapse
|
172
|
Kostrzewa CE, Luo L, Arora A, Seshan VE, Ernstoff MS, Edmiston SN, Conway K, Gorlov I, Busam K, Orlow I, Hernando-Monge E, Thomas NE, Berwick M, Begg CB, Shen R. Pathway Alterations in Stage II/III Primary Melanoma. JCO Precis Oncol 2023; 7:e2200439. [PMID: 36926987 PMCID: PMC10309586 DOI: 10.1200/po.22.00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/12/2022] [Accepted: 01/26/2023] [Indexed: 03/18/2023] Open
Abstract
PURPOSE Genomic classification of melanoma has thus far focused on the mutational status of BRAF, NRAS, and NF1. The clinical utility of this classification remains limited, and the landscape of alterations in other oncogenic signaling pathways is underexplored. METHODS Using primary samples from the InterMEL study, a retrospective cohort of cases with specimens collected from an international consortium with participating institutions throughout the United States and Australia, with oversampling of cases who ultimately died of melanoma, we examined mutual exclusivity and co-occurrence of genomic alterations in 495 stage II/III primary melanomas across 11 cancer pathways. Somatic mutation and copy number alterations were analyzed from next-generation sequencing using a clinical sequencing panel. RESULTS Mutations in the RTK-RAS pathway were observed in 81% of cases. Other frequently occurring pathways were TP53 (31%), Cell Cycle (30%), and PI3K (18%). These frequencies are generally lower than was observed in The Cancer Genome Atlas, where the specimens analyzed were predominantly obtained from metastases. Overall, 81% of the cases had at least one targetable mutation. The RTK-RAS pathway was the only pathway that demonstrated strong and statistically significant mutual exclusivity. However, this strong mutual exclusivity signal was evident only for the three common genes in the pathway (BRAF, NRAS, and NF1). Analysis of co-occurrence of different pathways exhibited no positive significant trends. However, interestingly, a high frequency of cases with none of these pathways represented was observed, 8.4% of cases versus 4.0% expected (P < .001). A higher frequency of RTK-RAS singletons (with no other pathway alteration) was observed compared with The Cancer Genome Atlas. Clonality analyses suggest strongly that both the cell cycle and RTK-RAS pathways represent early events in melanogenesis. CONCLUSION Our results confirm the dominance of mutations in the RTK-RAS pathway. The presence of many mutations in several well-known, actionable pathways suggests potential avenues for targeted therapy in these early-stage cases.
Collapse
Affiliation(s)
- Caroline E. Kostrzewa
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Li Luo
- Department of Internal Medicine and the UNM Comprehensive Cancer Center, Albuquerque, NM
| | - Arshi Arora
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Venkatraman E. Seshan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Sharon N. Edmiston
- Department of Dermatology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Kathleen Conway
- Department of Dermatology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC
| | - Ivan Gorlov
- Epidemiology and Population Science, Baylor Medical Center, Houston, TX
| | - Klaus Busam
- Department of Pathology and Laboratory Science, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Nancy E. Thomas
- Department of Dermatology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Marianne Berwick
- Department of Internal Medicine and the UNM Comprehensive Cancer Center, Albuquerque, NM
| | - Colin B. Begg
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ronglai Shen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
173
|
Barrionuevo E, Cornier PG, Delpiccolo CML, Mata EG, Roguin LP, Blank VC. Antiangiogenic activity of the penicillin derivative TAP7f in melanoma. J Mol Med (Berl) 2023; 101:249-263. [PMID: 36688961 DOI: 10.1007/s00109-023-02287-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/19/2022] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
Previously , we demonstrated that the non-antibiotic penicillin derivative TAP7f inhibited melanoma metastasis in vitro and in vivo through the downregulation of β-catenin and integrin αVβ3. As angiogenesis is required for tumor growth and metastasis, we decided to explore the possible antiangiogenic effect of TAP7f. We found that TAP7f inhibited proliferation, migration, tube formation, and actin cytoskeleton organization of human endothelial cells. In a gel plug assay, an in vivo model for angiogenesis, TAP7f also blocked vascular formation induced by fibroblast growth factor 2. Furthermore, when murine B16-F10 melanoma cells pre-treated with TAP7f were injected intradermally in mice, we observed a decrease in the number and thickness of the capillaries surrounding the tumor. Additionally, TAP7f downregulated vascular endothelial growth factor (VEGF) and platelet-derived growth factor-B (PDGF-B) expression in B16-F10 cells and VEGF receptor expression in HMEC-1 endothelial cells. When the antitumor effect of TAP7f was studied in C57BL/6 J mice challenged with B16-F10 melanoma cells, a significant reduction of tumor growth was observed. Furthermore, a decreased expression of VEGF, PDGF-B, and the endothelial cell marker CD34 was observed in tumors from TAP7f-treated mice. Together, our results suggest that the antiangiogenic activity of TAP7f contributes to its antitumor and antimetastatic action and positions this penicillin derivative as an alternative or complementary agent for the treatment of melanoma. KEY MESSAGES: • TAP7f inhibits proliferation, migration, tube formation, and actin cytoskeleton organization of endothelial cells. • TAP7f downregulates VEGF receptor expression in endothelial cells. • TAP7f downregulates VEGF and PDGF expression in melanoma cells. • TAP7f inhibits angiogenesis in vivo.
Collapse
Affiliation(s)
- Elizabeth Barrionuevo
- Laboratorio de Oncología y Transducción de Señales, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Patricia G Cornier
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Química Rosario (CONICET-UNR), Universidad Nacional de Rosario, Rosario, Argentina
| | - Carina M L Delpiccolo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Química Rosario (CONICET-UNR), Universidad Nacional de Rosario, Rosario, Argentina
| | - Ernesto G Mata
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Química Rosario (CONICET-UNR), Universidad Nacional de Rosario, Rosario, Argentina
| | - Leonor P Roguin
- Laboratorio de Oncología y Transducción de Señales, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Viviana C Blank
- Laboratorio de Oncología y Transducción de Señales, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.
- , Buenos Aires, 956, C1113AAD, Argentina.
| |
Collapse
|
174
|
Egeler MD, van Leeuwen M, Fraterman I, van den Heuvel NMJ, Boekhout AH, Lai-Kwon J, Wilthagen EA, Eriksson H, Haanen JB, Wilgenhof S, Ascierto PA, van Akkooi ACJ, van de Poll-Franse LV. Common toxicities associated with immune checkpoint inhibitors and targeted therapy in the treatment of melanoma: A systematic scoping review. Crit Rev Oncol Hematol 2023; 183:103919. [PMID: 36736511 DOI: 10.1016/j.critrevonc.2023.103919] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/23/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION This systematic scoping review compares the toxicities experienced by patients receiving immune checkpoint inhibitors (ICIs) or targeted therapy (TT) for stage III (resected and unresectable) and stage IV melanoma. METHODS OVID Medline, Embase, and PsycInfo were searched to identify Phase III trials reporting toxicities of FDA-approved ICIs and TT for advanced melanoma. AEs that were reported by ≥ 10% of patients in the evaluated trials were included. RESULTS Toxicity profiles of 11208 patients from 24 studies were reviewed. The rate of AEs was lower with ICIs compared to TT. However, ICIs were associated with higher rates of long-term or permanent AEs compared to TT, where toxicities generally were shortterm and reversible with treatment discontinuation. CONCLUSION The toxicity profiles of ICIs and TT vary substantially. Whilst the rate of AEs was lower with ICIs than during TT, it was also associated with higher rates of potentially chronic AEs.
Collapse
Affiliation(s)
- Mees D Egeler
- Department of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Marieke van Leeuwen
- Department of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Itske Fraterman
- Department of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Noelle M J van den Heuvel
- Department of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Annelies H Boekhout
- Department of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Julia Lai-Kwon
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Erica A Wilthagen
- Scientific Information Service, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Hanna Eriksson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Medical Unit Head-Neck-, Lung-, Skin Cancer, Skin Cancer Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - John B Haanen
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sofie Wilgenhof
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Paolo A Ascierto
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", Napoli, Italy
| | - Alexander C J van Akkooi
- Melanoma Institute Australia, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Lonneke V van de Poll-Franse
- Department of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Research & Development, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, the Netherlands; Department of Medical and Clinical Psychology, Center of Research on Psychology in Somatic diseases (CoRPS), Tilburg University, Tilburg, the Netherlands
| |
Collapse
|
175
|
Li K, Liu Y, Han J, Gui J, Zhang X. The genetic alterations of rectal neuroendocrine tumor and indications for therapy and prognosis: a systematic review. Endocr J 2023; 70:197-205. [PMID: 36403965 DOI: 10.1507/endocrj.ej22-0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Neuroendocrine tumors (NETs) are a type of rare tumor that can occur at multiple organs. Rectal NETs are the most common NETs in gastrointestinal tract. Due to the rarity of rectal NETs in rectal cancer, the molecular features and the correlation with patient therapeutic response and prognosis have not been investigated in detail. In this review, we focused on the molecular features, potential therapeutic targets and prognosis of rectal NETs. By summarizing the relevant studies, we established the mutational landscape of rectal NETs and identified a series of large fragment variations. Driver genes including TP53, APC, KRAS, BRAF, RB1, CDKN2A and PTEN were found as the top mutated genes. Large fragment alterations mainly involved known driver genes, including APC, TP53, CCNE1, MYC, TERT, RB1 and ATM. Germline mutations of APC, MUTYH, MSH6, MLH1 and MSH2 associated with Lynch syndrome or FAP were also found in rectal NETs. The BRAF-V600E mutation was reported as an actionable target in rectal NETs, and the combined BRAF/MEK inhibitors were found to be effective targeting BRAF-V600E in advanced or metastatic NETs. The known prognostic risk factors of rectal adenocarcinoma, including a series of demographic and clinicopathological factors were also prognostic factors for rectal NETs. Furthermore, three types of markers, including genetic alterations, protein expression levels and methylation, were also suggested as prognostic factors for rectal NETs. In summary, we established the landscape of mutations and large-fragment alterations of rectal NETs, and identified potential therapeutic targets and a series of prognostic factors. Future studies may focus on the optimization of therapeutic strategies based on potential actionable biomarkers.
Collapse
Affiliation(s)
- Ke Li
- Department of Endocrinology, Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing 101300, China
| | - Ying Liu
- Department of Endocrinology, Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing 101300, China
| | - Junge Han
- Department of Endocrinology, Fangshan Hospital Beijing University of Chinese Medicine, Beijing 102400, China
| | - Jianhua Gui
- Department of Endocrinology, Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing 101300, China
| | - Xiuyuan Zhang
- Department of Endocrinology, Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing 101300, China
| |
Collapse
|
176
|
3D Spheroid Configurations Are Possible Indictors for Evaluating the Pathophysiology of Melanoma Cell Lines. Cells 2023; 12:cells12050759. [PMID: 36899895 PMCID: PMC10000690 DOI: 10.3390/cells12050759] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
To study the molecular mechanisms responsible for inducing the spatial proliferation of malignant melanomas (MM), three-dimension (3D) spheroids were produced from several MM cell lines including SK-mel-24, MM418, A375, WM266-4, and SM2-1, and their 3D architectures and cellular metabolisms were evaluated by phase-contrast microscopy and Seahorse bio-analyzer, respectively. Several transformed horizontal configurations were observed within most of these 3D spheroids, and the degree of their deformity was increased in the order: WM266-4, SM2-1, A375, MM418, and SK-mel-24. An increased maximal respiration and a decreased glycolytic capacity were observed within the lesser deformed two MM cell lines, WM266-4 and SM2-1, as compared with the most deformed ones. Among these MM cell lines, two distinct cell lines, WM266-4 and SK-mel-24, whose 3D appearances were the closest and farthest, respectively, from being horizontally circular-shaped, were subjected to RNA sequence analyses. Bioinformatic analyses of the differentially expressed genes (DEGs) identified KRAS and SOX2 as potential master regulatory genes for inducing these diverse 3D configurations between WM266-4 and SK-mel-24. The knockdown of both factors altered the morphological and functional characteristics of the SK-mel-24 cells, and in fact, their horizontal deformity was significantly reduced. A qPCR analysis indicated that the levels of several oncogenic signaling related factors, including KRAS and SOX2, PCG1α, extracellular matrixes (ECMs), and ZO1 had fluctuated among the five MM cell lines. In addition, and quite interestingly, the dabrafenib and trametinib resistant A375 (A375DT) cells formed globe shaped 3D spheroids and showed different profiles in cellular metabolism while the mRNA expression of these molecules that were tested as above were different compared with A375 cells. These current findings suggest that 3D spheroid configuration has the potential for serving as an indicator of the pathophysiological activities associated with MM.
Collapse
|
177
|
Gouda M, Subbiah V. Precision oncology for BRAF-mutant cancers with BRAF and MEK inhibitors: from melanoma to tissue-agnostic therapy. ESMO Open 2023; 8:100788. [PMID: 36842301 PMCID: PMC9984800 DOI: 10.1016/j.esmoop.2023.100788] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 02/26/2023] Open
Abstract
BRAF activation occurs as part of the mitogen-activated protein kinase (MAPK) cellular signaling pathway which leads to increased cellular proliferation and survival. Mutations in BRAF can result in unbridled activation of downstream kinases with subsequent uncontrolled cellular growth that formulate the basis for oncogenesis in multiple tumor types. Targeting BRAF by selective inhibitors has been one of the early successes in precision oncology. Agents have been explored either as monotherapy or in combination with MEK inhibition in BRAF V600-mutant pan-cancers and with EGFR inhibition in colorectal cancer. Spectrum of BRAF inhibition has evolved from being melanoma-specific to being a pan-cancer target. In this article, we review BRAF and MEK inhibitor drug development journey from tissue-specific melanoma, non-small-cell lung cancer, and anaplastic thyroid cancer to tissue-agnostic approvals.
Collapse
Affiliation(s)
- M.A. Gouda
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, USA,Department of Clinical Oncology, Faculty of Medicine, Menoufia University, Shebin Al-Kom, Menoufia, Egypt
| | - V. Subbiah
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, USA,Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston,MD Anderson Cancer Network, The University of Texas MD Anderson Cancer Center, Houston, USA,Correspondence to: Prof. Vivek Subbiah, Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Unit 455, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA. Tel: +1-713-563-1930 @VivekSubbiah
| |
Collapse
|
178
|
Kemper M, Krekeler C, Menck K, Lenz G, Evers G, Schulze AB, Bleckmann A. Liquid Biopsies in Lung Cancer. Cancers (Basel) 2023; 15:1430. [PMID: 36900221 PMCID: PMC10000706 DOI: 10.3390/cancers15051430] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
As lung cancer has the highest cancer-specific mortality rates worldwide, there is an urgent need for new therapeutic and diagnostic approaches to detect early-stage tumors and to monitor their response to the therapy. In addition to the well-established tissue biopsy analysis, liquid-biopsy-based assays may evolve as an important diagnostic tool. The analysis of circulating tumor DNA (ctDNA) is the most established method, followed by other methods such as the analysis of circulating tumor cells (CTCs), microRNAs (miRNAs), and extracellular vesicles (EVs). Both PCR- and NGS-based assays are used for the mutational assessment of lung cancer, including the most frequent driver mutations. However, ctDNA analysis might also play a role in monitoring the efficacy of immunotherapy and its recent accomplishments in the landscape of state-of-the-art lung cancer therapy. Despite the promising aspects of liquid-biopsy-based assays, there are some limitations regarding their sensitivity (risk of false-negative results) and specificity (interpretation of false-positive results). Hence, further studies are needed to evaluate the usefulness of liquid biopsies for lung cancer. Liquid-biopsy-based assays might be integrated into the diagnostic guidelines for lung cancer as a tool to complement conventional tissue sampling.
Collapse
Affiliation(s)
- Marcel Kemper
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| | - Carolin Krekeler
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| | - Kerstin Menck
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| | - Georg Lenz
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| | - Georg Evers
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| | - Arik Bernard Schulze
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| | - Annalen Bleckmann
- Department of Medicine A for Hematology, Oncology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149 Muenster, Germany
| |
Collapse
|
179
|
Pandey GK, Landman N, Neikes HK, Hulsman D, Lieftink C, Beijersbergen R, Kolluri KK, Janes SM, Vermeulen M, Badhai J, van Lohuizen M. Genetic screens reveal new targetable vulnerabilities in BAP1-deficient mesothelioma. Cell Rep Med 2023; 4:100915. [PMID: 36657447 PMCID: PMC9975229 DOI: 10.1016/j.xcrm.2022.100915] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/06/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023]
Abstract
More than half of patients with malignant mesothelioma show alterations in the BAP1 tumor-suppressor gene. Being a member of the Polycomb repressive deubiquitinating (PR-DUB) complex, BAP1 loss results in an altered epigenome, which may create new vulnerabilities that remain largely unknown. Here, we performed a CRISPR-Cas9 kinome screen in mesothelioma cells that identified two kinases in the mevalonate/cholesterol biosynthesis pathway. Furthermore, our analysis of chromatin, expression, and genetic perturbation data in mesothelioma cells suggests a dependency on PR complex 2 (PRC2)-mediated silencing. Pharmacological inhibition of PRC2 elevates the expression of cholesterol biosynthesis genes only in BAP1-deficient mesothelioma, thereby sensitizing these cells to the combined targeting of PRC2 and the mevalonate pathway. Finally, by subjecting autochthonous Bap1-deficient mesothelioma mice or xenografts to mevalonate pathway inhibition (zoledronic acid) and PRC2 inhibition (tazemetostat), we demonstrate a potent anti-tumor effect, suggesting a targeted combination therapy for Bap1-deficient mesothelioma.
Collapse
Affiliation(s)
- Gaurav Kumar Pandey
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Nick Landman
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Hannah K Neikes
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Danielle Hulsman
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, NKI Robotics and Screening Center, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roderick Beijersbergen
- Division of Molecular Carcinogenesis, NKI Robotics and Screening Center, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Krishna Kalyan Kolluri
- Lung for Living Research Centre, UCL Respiratory, University College London, Rayne Building, London, UK
| | - Sam M Janes
- Lung for Living Research Centre, UCL Respiratory, University College London, Rayne Building, London, UK
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Jitendra Badhai
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands.
| | - Maarten van Lohuizen
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
180
|
Molecular Heterogeneity in BRAF-Mutant Gliomas: Diagnostic, Prognostic, and Therapeutic Implications. Cancers (Basel) 2023; 15:cancers15041268. [PMID: 36831610 PMCID: PMC9954401 DOI: 10.3390/cancers15041268] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/25/2023] [Accepted: 02/04/2023] [Indexed: 02/19/2023] Open
Abstract
Over the last few decades, deciphering the alteration of molecular pathways in brain tumors has led to impressive changes in diagnostic refinement. Among the molecular abnormalities triggering and/or driving gliomas, alterations in the MAPK pathway reign supreme in the pediatric population, as it is encountered in almost all low-grade pediatric gliomas. Activating abnormalities in the MAPK pathway are also present in both pediatric and adult high-grade gliomas. Across those alterations, BRAF p.V600E mutations seem to define homogeneous groups of tumors in terms of prognosis. The recent development of small molecules inhibiting this pathway retains the attention of neurooncologists on BRAF-altered tumors, as conventional therapies showed no significant effect, nor prolonged efficiency on the high-grade or low-grade unresectable forms. Nevertheless, tumoral heterogeneity and especially molecular alteration(s) associated with MAPK-pathway abnormalities are not fully understood with respect to how they might lead to the specific dismal prognosis of those gliomas and/or affect their response to targeted therapies. This review is an attempt to provide comprehensive information regarding molecular alterations related to the aggressiveness modulation in BRAF-mutated gliomas and the current knowledge on how to use those targeted therapies in such situations.
Collapse
|
181
|
Human epidermal growth factor receptor 3 serves as a novel therapeutic target for acral melanoma. Cell Death Discov 2023; 9:54. [PMID: 36765036 PMCID: PMC9918519 DOI: 10.1038/s41420-023-01358-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Acral melanoma (AM) is a rare, life-threatening skin cancer. Since AM bears unique features, existing therapies for other types of malignant melanomas have limited effects and the establishment of effective treatments for AM is strongly desired. Human epidermal growth factor receptor 3 (HER3) is a receptor tyrosine kinase that is frequently elevated in tumors and contributes to tumor progression, so it is considered a promising therapeutic target for tumors. This study was established to evaluate the potential of HER3-targeted therapy to treat AM by investigating the expression and function of HER3. HER3 expression was immunohistochemically analyzed in AM lesions of 72 patients and in AM cell lines. To investigate function of HER3, effects of HER3 inhibition on cell proliferation, apoptosis/survival, anchorage-independent growth, and underlying signals were assessed. HER3 was expressed in patients' AM tissues with various intensities and HER3 expression was significantly correlated with patient's disease-free survival. In vitro analyses revealed that HER3 is more highly expressed in AM cells than in normal epidermal melanocytes. AM cells were also shown to be sensitive to the cytotoxic part of a HER3-targeted antibody-drug conjugate. Inhibition of HER3 did not affect cell proliferation, whereas it decreased the anchorage-independent growth of AM cells likely through affecting the nuclear translocation of Yes-associated protein. It is implied that HER3 may serve as a novel therapeutic target for AM.
Collapse
|
182
|
Poizeau F, Balusson F, Lemaitre F, Tron C, Pracht M, Russo D, Dinulescu M, Lesimple T, Oger E, Dupuy A. The concomitant use of proton pump inhibitors and BRAF/MEK inhibitors in metastatic melanoma. Br J Dermatol 2023; 188:482-490. [PMID: 36760148 DOI: 10.1093/bjd/ljac085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/27/2022] [Accepted: 11/02/2022] [Indexed: 02/11/2023]
Abstract
BACKGROUND Proton-pump inhibitors (PPIs) are commonly used by patients with cancer, although they could reduce the absorption of oral anticancer targeted therapies. The US Food and Drug Administration states that the effect of PPIs on the efficacy of dabrafenib use by patients with metastatic melanoma is unknown. As a precautionary measure, the European Society for Medical Oncology recommends avoiding PPIs for patients receiving dabrafenib. OBJECTIVES To determine the effect of the concomitant use of PPIs and BRAF/MEK inhibitors in patients with metastatic melanoma. METHODS Patients with advanced melanoma receiving BRAF/MEK inhibitors as first-line treatments between 2015 and 2017 in France were selected using the French National Health Insurance database. We compared time-to-treatment discontinuation (TTD) and overall survival (OS) according to concomitant PPI exposure. We balanced the baseline characteristics of patients exposed and nonexposed to PPIs using an overlap weighting method based on a propensity score. RESULTS The metastatic melanoma cohort comprised 1028 patients receiving BRAF/MEK inhibitors, including 361 (35.1%) patients using PPIs. PPI users had more comorbidities and a more severe metastatic disease. After having equally distributed metastatic sites and comorbidities across patients exposed and nonexposed to PPIs, concomitant PPI use was not associated with shorter TTD [weighted hazard ratio (wHR) 1.03, 95% confidence interval (CI) 0.86-1.24] or OS (wHR 1.11, 95% CI 0.88-1.39). Consistent results were observed when restricting the population to patients receiving dabrafenib, or when narrowing exposure to PPIs with stronger inhibition of cytochromes. CONCLUSIONS In a population-based cohort of patients with advanced melanoma, the concomitant use of PPIs and BRAF/MEK inhibitors was not associated with worse outcome.
Collapse
Affiliation(s)
- Florence Poizeau
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France.,Department of Dermatology, Univ Rennes, CHU Rennes, Rennes, France
| | - Frédéric Balusson
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - Florian Lemaitre
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France.,INSERM, Centre d'Investigation Clinique 1414, F-35000 Rennes, France
| | - Camille Tron
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France.,INSERM, Centre d'Investigation Clinique 1414, F-35000 Rennes, France
| | - Marc Pracht
- Department of Medical Oncology, Centre Eugène Marquis, Rennes, France
| | - David Russo
- Department of Dermatology, CHU Rennes, Rennes, France
| | | | - Thierry Lesimple
- Department of Medical Oncology, Centre Eugène Marquis, Rennes, France
| | - Emmanuel Oger
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - Alain Dupuy
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France.,Department of Dermatology, Univ Rennes, CHU Rennes, Rennes, France
| |
Collapse
|
183
|
Allard-Coutu A, Dobson V, Schmitz E, Shah H, Nessim C. The Evolution of the Sentinel Node Biopsy in Melanoma. Life (Basel) 2023; 13:life13020489. [PMID: 36836846 PMCID: PMC9966203 DOI: 10.3390/life13020489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/11/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
The growing repertoire of approved immune-checkpoint inhibitors and targeted therapy has revolutionized the adjuvant treatment of melanoma. While the treatment of primary cutaneous melanoma remains wide local excision (WLE), the management of regional lymph nodes continues to evolve in light of practice-changing clinical trials and dramatically improved adjuvant therapy. With large multicenter studies reporting no benefit in overall survival for completion lymph node dissection (CLND) after a positive sentinel node biopsy (SLNB), controversy remains regarding patient selection and clinical decision-making. This review explores the evolution of the SLNB in cutaneous melanoma in the context of a rapidly changing adjuvant treatment landscape, summarizing the key clinical trials which shaped current practice guidelines.
Collapse
Affiliation(s)
- Alexandra Allard-Coutu
- Department of General Surgery, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Correspondence:
| | | | - Erika Schmitz
- Department of General Surgery, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Hely Shah
- Department of Medical Oncology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Carolyn Nessim
- Department of General Surgery, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
184
|
Ni JJ, Zhang ZZ, Ge MJ, Chen JY, Zhuo W. Immune-based combination therapy to convert immunologically cold tumors into hot tumors: an update and new insights. Acta Pharmacol Sin 2023; 44:288-307. [PMID: 35927312 PMCID: PMC9889774 DOI: 10.1038/s41401-022-00953-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023]
Abstract
As a breakthrough strategy for cancer treatment, immunotherapy mainly consists of immune checkpoint inhibitors (ICIs) and other immunomodulatory drugs that provide a durable protective antitumor response by stimulating the immune system to fight cancer. However, due to the low response rate and unique toxicity profiles of immunotherapy, the strategies of combining immunotherapy with other therapies have attracted enormous attention. These combinations are designed to exert potent antitumor effects by regulating different processes in the cancer-immunity cycle. To date, immune-based combination therapy has achieved encouraging results in numerous clinical trials and has received Food and Drug Administration (FDA) approval for certain cancers with more studies underway. This review summarizes the emerging strategies of immune-based combination therapy, including combinations with another immunotherapeutic strategy, radiotherapy, chemotherapy, anti-angiogenic therapy, targeted therapy, bacterial therapy, and stroma-targeted therapy. Here, we highlight the rationale of immune-based combination therapy, the biomarkers and the clinical progress for these immune-based combination therapies.
Collapse
Affiliation(s)
- Jiao-Jiao Ni
- Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Zi-Zhen Zhang
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Jie Ge
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Hangzhou, 310006, China
| | - Jing-Yu Chen
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Wei Zhuo
- Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
185
|
Garofalo C, Cerantonio A, Muscoli C, Mollace V, Viglietto G, De Marco C, Cristiani CM. Helper Innate Lymphoid Cells-Unappreciated Players in Melanoma Therapy. Cancers (Basel) 2023; 15:cancers15030933. [PMID: 36765891 PMCID: PMC9913873 DOI: 10.3390/cancers15030933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) and targeted therapy have dramatically changed the outcome of metastatic melanoma patients. Although immune checkpoints were developed based on the biology of adaptive T cells, they have subsequently been shown to be expressed by other subsets of immune cells. Similarly, the immunomodulatory properties of targeted therapy have been studied primarily with respect to T lymphocytes, but other subsets of immune cells could be affected. Innate lymphoid cells (ILCs) are considered the innate counterpart of T lymphocytes and include cytotoxic natural killer cells, as well as three helper subsets, ILC1, ILC2 and ILC3. Thanks to their tissue distribution and their ability to respond rapidly to environmental stimuli, ILCs play a central role in shaping immunity. While the role of NK cells in melanoma physiopathology and therapy is well established, little is known about the other helper ILC subsets. In this review, we summarize recent findings on the ability of the melanoma TME to influence the phenotype and functional plasticity of helper ILCs and highlight how this subset may in turn shape the TME. We also discuss changes in the melanoma TME induced by targeted therapy that could affect helper ILC functions, the expression of immune checkpoints on this subset and how their inhibition by ICIs may modulate helper ILC function and contribute to therapeutic efficacy.
Collapse
Affiliation(s)
- Cinzia Garofalo
- Department of Experimental and Clinical Medicine, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Annamaria Cerantonio
- Department of Experimental and Clinical Medicine, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Carolina Muscoli
- Department of Health Science, Institute of Research for Food Safety & Health (IRC-FSH), “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Science, Institute of Research for Food Safety & Health (IRC-FSH), “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Carmela De Marco
- Department of Experimental and Clinical Medicine, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Costanza Maria Cristiani
- Department of Experimental and Clinical Medicine, “Magna Græcia” University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence:
| |
Collapse
|
186
|
Rossi E, Schinzari G, Cellini F, Balducci M, Pasqualoni M, Maiorano BA, Fionda B, Longo S, Deodato F, Di Stefani A, Peris K, Gambacorta MA, Tortora G. Dabrafenib-Trametinib and Radiotherapy for Oligoprogressive BRAF Mutant Advanced Melanoma. Biomedicines 2023; 11:biomedicines11020394. [PMID: 36830931 PMCID: PMC9953646 DOI: 10.3390/biomedicines11020394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The clinical management of metastatic melanoma has been changed by BRAF (BRAFi) and MEK inhibitors (MEKi), which represent a standard treatment for BRAF-mutant melanoma. In oligoprogressive melanoma patients with BRAF mutations, target therapy can be combined with loco-regional radiotherapy (RT). However, the association of BRAF/MEK inhibitors and RT needs to be carefully monitored for potential increased toxicity. Despite the availability of some reports regarding the tolerability of RT + target therapy, data on simultaneous RT and BRAFi/MEKi are limited and mostly focused on the BRAFi vemurafenib. Here, we report a series of metastatic melanoma patients who received fractioned RT regimens for oligoprogressive disease in combination with the BRAFi dabrafenib and the MEKi trametinib, which have continued beyond progression. None of the cases developed relevant adverse events while receiving RT or interrupted dabrafenib and trametinib administration. These cases suggest that a long period of dabrafenib/trametinib interruption during radiotherapy for oligoprogressive disease can be avoided. Prospective trials are warranted to assess the efficacy and safety of the contemporary administration of BRAF/MEK inhibitors and radiotherapy for oligoprogressive disease.
Collapse
Affiliation(s)
- Ernesto Rossi
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Correspondence: or
| | - Giovanni Schinzari
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Medical Oncology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesco Cellini
- Radioterapia Oncologica ed Ematologia, Dipartimento di Diagnostica per Immagini, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Radioterapia Oncologica ed Ematologia, Dipartimento Universitario Diagnostica per Immagini, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Mario Balducci
- Radioterapia Oncologica ed Ematologia, Dipartimento di Diagnostica per Immagini, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | | | - Brigida Anna Maiorano
- Oncology Unit, IRCCS Foundation Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Bruno Fionda
- Radioterapia Oncologica ed Ematologia, Dipartimento di Diagnostica per Immagini, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Silvia Longo
- Radioterapia Oncologica ed Ematologia, Dipartimento di Diagnostica per Immagini, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Deodato
- Radioterapia Oncologica ed Ematologia, Dipartimento Universitario Diagnostica per Immagini, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- UOC Radioterapia Oncologica Molise ART, Gemelli Molise Hospital, 86100 Campobasso, Italy
| | - Alessandro Di Stefani
- Dermatology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Ketty Peris
- Dermatology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dermatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Antonietta Gambacorta
- Radioterapia Oncologica ed Ematologia, Dipartimento di Diagnostica per Immagini, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Radioterapia Oncologica ed Ematologia, Dipartimento Universitario Diagnostica per Immagini, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giampaolo Tortora
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Medical Oncology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
187
|
Forsberg EMV, Riise R, Saellström S, Karlsson J, Alsén S, Bucher V, Hemminki AE, Olofsson Bagge R, Ny L, Nilsson LM, Rönnberg H, Nilsson JA. Treatment with Anti-HER2 Chimeric Antigen Receptor Tumor-Infiltrating Lymphocytes (CAR-TILs) Is Safe and Associated with Antitumor Efficacy in Mice and Companion Dogs. Cancers (Basel) 2023; 15:cancers15030648. [PMID: 36765608 PMCID: PMC9913266 DOI: 10.3390/cancers15030648] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Patients with metastatic melanoma have a historically poor prognosis, but recent advances in treatment options, including targeted therapy and immunotherapy, have drastically improved the outcomes for some of these patients. However, not all patients respond to available treatments, and around 50% of patients with metastatic cutaneous melanoma and almost all patients with metastases of uveal melanoma die of their disease. Thus, there is a need for novel treatment strategies for patients with melanoma that do not benefit from the available therapies. Chimeric antigen receptor-expressing T (CAR-T) cells are largely unexplored in melanoma. Traditionally, CAR-T cells have been produced by transducing blood-derived T cells with a virus expressing CAR. However, tumor-infiltrating lymphocytes (TILs) can also be engineered to express CAR, and such CAR-TILs could be dual-targeting. To this end, tumor samples and autologous TILs from metastasized human uveal and cutaneous melanoma were expanded in vitro and transduced with a lentiviral vector encoding an anti-HER2 CAR construct. When infused into patient-derived xenograft (PDX) mouse models carrying autologous tumors, CAR-TILs were able to eradicate melanoma, even in the absence of antigen presentation by HLA. To advance this concept to the clinic and assess its safety in an immune-competent and human-patient-like setting, we treated four companion dogs with autologous anti-HER2 CAR-TILs. We found that these cells were tolerable and showed signs of anti-tumor activity. Taken together, CAR-TIL therapy is a promising avenue for broadening the tumor-targeting capacity of TILs in patients with checkpoint immunotherapy-resistant melanoma.
Collapse
Affiliation(s)
- Elin M. V. Forsberg
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Center for Cancer Research, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska University Hospital, 40530 Gothenburg, Sweden
| | - Rebecca Riise
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Center for Cancer Research, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska University Hospital, 40530 Gothenburg, Sweden
| | - Sara Saellström
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Joakim Karlsson
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Center for Cancer Research, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska University Hospital, 40530 Gothenburg, Sweden
- Harry Perkins Institute of Medical Research, University of Western Australia, Perth, WA 6009, Australia
| | - Samuel Alsén
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Center for Cancer Research, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska University Hospital, 40530 Gothenburg, Sweden
| | - Valentina Bucher
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Center for Cancer Research, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska University Hospital, 40530 Gothenburg, Sweden
| | - Akseli E. Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Department of Oncology, Comprehensive Cancer Centre, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Roger Olofsson Bagge
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Center for Cancer Research, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska University Hospital, 40530 Gothenburg, Sweden
| | - Lars Ny
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Center for Cancer Research, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska University Hospital, 40530 Gothenburg, Sweden
| | - Lisa M. Nilsson
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Center for Cancer Research, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska University Hospital, 40530 Gothenburg, Sweden
- Harry Perkins Institute of Medical Research, University of Western Australia, Perth, WA 6009, Australia
| | - Henrik Rönnberg
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Jonas A. Nilsson
- Sahlgrenska Translational Melanoma Group, Sahlgrenska Center for Cancer Research, Departments of Surgery and Oncology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska University Hospital, 40530 Gothenburg, Sweden
- Harry Perkins Institute of Medical Research, University of Western Australia, Perth, WA 6009, Australia
- Correspondence: or ; Tel.: +61-08-6151-0979
| |
Collapse
|
188
|
Resistance to BRAF Inhibitors: EZH2 and Its Downstream Targets as Potential Therapeutic Options in Melanoma. Int J Mol Sci 2023; 24:ijms24031963. [PMID: 36768289 PMCID: PMC9916477 DOI: 10.3390/ijms24031963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Activating BRAF mutations occurs in 50-60% of malignant melanomas. Although initially treatable, the development of resistance to BRAF-targeted therapies (BRAFi) is a major challenge and limits their efficacy. We have previously shown that the BRAFV600E signaling pathway mediates the expression of EZH2, an epigenetic regulator related to melanoma progression and worse overall survival. Therefore, we wondered whether inhibition of EZH2 would be a way to overcome resistance to vemurafenib. We found that the addition of an EZH2 inhibitor to vemurafenib improved the response of melanoma cells resistant to BRAFi with regard to decreased viability, cell-cycle arrest and increased apoptosis. By next-generation sequencing, we revealed that the combined inhibition of BRAF and EZH2 dramatically suppresses pathways of mitosis and cell cycle. This effect was linked to the downregulation of Polo-kinase 1 (PLK1), a key regulator of cell cycle and proliferation. Subsequently, when we inhibited PLK1, we found decreased cell viability of melanoma cells resistant to BRAFi. When we inhibited both BRAF and PLK1, we achieved an improved response of BRAFi-resistant melanoma cells, which was comparable to the combined inhibition of BRAF and EZH2. These results thus reveal that targeting EZH2 or its downstream targets, such as PLK1, in combination with BRAF inhibitors are potential novel therapeutic options in melanomas with BRAF mutations.
Collapse
|
189
|
Iaccarino A, Nacchio M, Acanfora G, Pisapia P, Malapelle U, Bellevicine C, Troncone G, Vigliar E. Multiple predictive biomarker testing in melanoma: Another challenge in identifying the optimal approach on cytological samples. Cytopathology 2023; 34:198-203. [PMID: 36658094 DOI: 10.1111/cyt.13211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023]
Abstract
BACKGROUND The management of cutaneous melanoma has changed dramatically in recent years thanks to the development of tyrosine kinase and immune-checkpoint inhibitors (ICIs). Thus, multiple biomarker testing is becoming ever more important for the identification of patients who are potentially eligible for these treatments. One reliable approach to the molecular evaluation of metastatic melanoma is fine needle cytology (FNC). To examine the utility of this approach for assessing PD-L1 expression levels, we evaluated the cellular adequacy of residual cell block (CB) material from metastatic melanomas that were previously tested for BRAF and NRAS mutations. METHODS We retrieved from our internal archives a series of FNC samples of metastatic melanoma that had been subjected to molecular testing on residual CB material or a dedicated needle rinse between January 2016 and July 2022. Real-time polymerase chain reaction was used to assess BRAF and NRAS status, and an SP263 assay was employed to ascertain PD-L1 expression levels. RESULTS Overall, n = 19 cases were selected. Of these, 11 (57.9%) cases revealed a BRAF exon 15 p.V600E mutation, one case (5.3%) revealed NRAS mutation, and seven cases (36.8%) showed no mutations. Regarding PD-L1 assessment, 16/19 (84.2%) cases were deemed adequate, meaning they contained at least 100 viable cells. CONCLUSIONS We highlighted the feasibility of assessing PD-L1 expression levels in residual CB material from metastatic melanomas previously tested for BRAF and NRAS mutations. Moreover, we pointed out that FNC needle rinses may be an alternative source of nucleic acids for molecular testing, preserving CB material for immunocytochemistry evaluation.
Collapse
Affiliation(s)
- Antonino Iaccarino
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - Mariantonia Nacchio
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - Gennaro Acanfora
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - Pasquale Pisapia
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - Claudio Bellevicine
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - Elena Vigliar
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
190
|
Lee K, Cho D, Jang J, Choi K, Jeong HO, Seo J, Jeong WK, Lee S. RAMP: response-aware multi-task learning with contrastive regularization for cancer drug response prediction. Brief Bioinform 2023; 24:6865135. [PMID: 36460623 DOI: 10.1093/bib/bbac504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 12/05/2022] Open
Abstract
The accurate prediction of cancer drug sensitivity according to the multiomics profiles of individual patients is crucial for precision cancer medicine. However, the development of prediction models has been challenged by the complex crosstalk of input features and the resistance-dominant drug response information contained in public databases. In this study, we propose a novel multidrug response prediction framework, response-aware multitask prediction (RAMP), via a Bayesian neural network and restrict it by soft-supervised contrastive regularization. To utilize network embedding vectors as representation learning features for heterogeneous networks, we harness response-aware negative sampling, which applies cell line-drug response information to the training of network embeddings. RAMP overcomes the prediction accuracy limitation induced by the imbalance of trained response data based on the comprehensive selection and utilization of drug response features. When trained on the Genomics of Drug Sensitivity in Cancer dataset, RAMP achieved an area under the receiver operating characteristic curve > 89%, an area under the precision-recall curve > 59% and an $\textrm{F}_1$ score > 52% and outperformed previously developed methods on both balanced and imbalanced datasets. Furthermore, RAMP predicted many missing drug responses that were not included in the public databases. Our results showed that RAMP will be suitable for the high-throughput prediction of cancer drug sensitivity and will be useful for guiding cancer drug selection processes. The Python implementation for RAMP is available at https://github.com/hvcl/RAMP.
Collapse
Affiliation(s)
- Kanggeun Lee
- Department of Computer Science and Engineering at Korea University
| | - Dongbin Cho
- Department of Computer Science at Hanyang University
| | - Jinho Jang
- Department of Biomedical Engineering at UNIST
| | - Kang Choi
- Department of Computer Science at Hanyang University
| | | | - Jiwon Seo
- Department of Computer Science at Hanyang University
| | - Won-Ki Jeong
- Department of Computer Science and Engineering at Korea University
| | - Semin Lee
- Department of Biomedical Engineering at UNIST
| |
Collapse
|
191
|
Gorry C, McCullagh L, O'Donnell H, Barrett S, Schmitz S, Barry M, Curtin K, Beausang E, Barry R, Coyne I. Neoadjuvant treatment for stage III and IV cutaneous melanoma. Cochrane Database Syst Rev 2023; 1:CD012974. [PMID: 36648215 PMCID: PMC9844053 DOI: 10.1002/14651858.cd012974.pub2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Cutaneous melanoma is amongst the most aggressive of all skin cancers. Neoadjuvant treatment is a form of induction therapy, given to shrink a cancerous tumour prior to the main treatment (usually surgery). The purpose is to improve survival and surgical outcomes. This review systematically appraises the literature investigating the use of neoadjuvant treatment for stage III and IV cutaneous melanoma. OBJECTIVES To assess the effects of neoadjuvant treatment in adults with stage III or stage IV melanoma according to the seventh edition American Joint Committee on Cancer (AJCC) staging system. SEARCH METHODS We searched the following databases up to 10 August 2021 inclusive: Cochrane Skin Specialised Register, CENTRAL, MEDLINE, Embase, LILACS and four trials registers, together with reference checking and contact with study authors to identify additional studies. We also handsearched proceedings from specific conferences from 2016 to 2020 inclusive. SELECTION CRITERIA Randomised controlled trials (RCTs) of people with stage III and IV melanoma, comparing neoadjuvant treatment strategies (using targeted treatments, immunotherapies, radiotherapy, topical treatments or chemotherapy) with any of these agents or current standard of care (SOC), were eligible for inclusion. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Primary outcomes were overall survival (OS) and adverse effects (AEs). Secondary outcomes included time to recurrence (TTR), quality of life (QOL), and overall response rate (ORR). We used GRADE to evaluate the certainty of the evidence. MAIN RESULTS We included eight RCTs involving 402 participants. Studies enrolled adults, mostly with stage III melanoma, investigated immunotherapies, chemotherapy, or targeted treatments, and compared these with surgical excision with or without adjuvant treatment. Duration of follow-up and therapeutic regimens varied, which, combined with heterogeneity in the population and definitions of the endpoints, precluded meta-analysis of all identified studies. We performed a meta-analysis including three studies. We are very uncertain if neoadjuvant treatment increases OS when compared to no neoadjuvant treatment (hazard ratio (HR) 0.43, 95% confidence interval (CI) 0.15 to 1.21; 2 studies, 171 participants; very low-certainty evidence). Neoadjuvant treatment may increase the rate of AEs, but the evidence is very uncertain (26% versus 16%, risk ratio (RR) 1.58, 95% CI 0.97 to 2.55; 2 studies, 162 participants; very low-certainty evidence). We are very uncertain if neoadjuvant treatment increases TTR (HR 0.51, 95% CI 0.22 to 1.17; 2 studies, 171 participants; very low-certainty evidence). Studies did not report ORR as a comparative outcome or measure QOL data. We are very uncertain whether neoadjuvant targeted treatment with dabrafenib and trametinib increases OS (HR 0.28, 95% CI 0.03 to 2.25; 1 study, 21 participants; very low-certainty evidence) or TTR (HR 0.02, 95% CI 0.00 to 0.22; 1 study, 21 participants; very low-certainty evidence) when compared to surgery. The study did not report comparative rates of AEs and overall response, and did not measure QOL. We are very uncertain if neoadjuvant immunotherapy with talimogene laherparepvec increases OS when compared to no neoadjuvant treatment (HR 0.49, 95% CI 0.15 to 1.64; 1 study, 150 participants, very low-certainty evidence). It may have a higher rate of AEs, but the evidence is very uncertain (16.5% versus 5.8%, RR 2.84, 95% CI 0.96 to 8.37; 1 study, 142 participants; very low-certainty evidence). We are very uncertain if it increases TTR (HR 0.75, 95% CI 0.31 to 1.79; 1 study, 150 participants; very low-certainty evidence). The study did not report comparative ORRs or measure QOL. OS was not reported for neoadjuvant immunotherapy (combined ipilimumab and nivolumab) when compared to the combination of ipilimumab and nivolumab as adjuvant treatment. There may be little or no difference in the rate of AEs between these treatments (9%, RR 1.0, 95% CI 0.75 to 1.34; 1 study, 20 participants; low-certainty evidence). The study did not report comparative ORRs or measure TTR and QOL. Neoadjuvant immunotherapy (combined ipilimumab and nivolumab) likely results in little to no difference in OS when compared to neoadjuvant nivolumab monotherapy (P = 0.18; 1 study, 23 participants; moderate-certainty evidence). It may increase the rate of AEs, but the certainty of this evidence is very low (72.8% versus 8.3%, RR 8.73, 95% CI 1.29 to 59; 1 study, 23 participants); this trial was halted early due to observation of disease progression preventing surgical resection in the monotherapy arm and the high rate of treatment-related AEs in the combination arm. Neoadjuvant combination treatment may lead to higher ORR, but the evidence is very uncertain (72.8% versus 25%, RR 2.91, 95% CI 1.02 to 8.27; 1 study, 23 participants; very low-certainty evidence). It likely results in little to no difference in TTR (P = 0.19; 1 study, 23 participants; low-certainty evidence). The study did not measure QOL. OS was not reported for neoadjuvant immunotherapy (combined ipilimumab and nivolumab) when compared to neoadjuvant sequential immunotherapy (ipilimumab then nivolumab). Only Grade 3 to 4 immune-related AEs were reported; fewer were reported with combination treatment, and the sequential treatment arm closed early due to a high incidence of severe AEs. The neoadjuvant combination likely results in a higher ORR compared to sequential neoadjuvant treatment (60.1% versus 42.3%, RR 1.42, 95% CI 0.87 to 2.32; 1 study, 86 participants; low-certainty evidence). The study did not measure TTR and QOL. No data were reported on OS, AEs, TTR, or QOL for the comparison of neoadjuvant interferon (HDI) plus chemotherapy versus neoadjuvant chemotherapy. Neoadjuvant HDI plus chemotherapy may have little to no effect on ORR, but the evidence is very uncertain (33% versus 22%, RR 1.75, 95% CI 0.62 to 4.95; 1 study, 36 participants; very low-certainty evidence). AUTHORS' CONCLUSIONS We are uncertain if neoadjuvant treatment increases OS or TTR compared with no neoadjuvant treatment, and it may be associated with a slightly higher rate of AEs. There is insufficient evidence to support the use of neoadjuvant treatment in clinical practice. Priorities for research include the development of a core outcome set for neoadjuvant trials that are adequately powered, with validation of pathological and radiological responses as intermediate endpoints, to investigate the relative benefits of neoadjuvant treatment compared with adjuvant treatment with immunotherapies or targeted therapies.
Collapse
Affiliation(s)
- Claire Gorry
- National Centre for Pharmacoeconomics, St James's Hospital, Dublin, Ireland
| | - Laura McCullagh
- National Centre for Pharmacoeconomics, St James's Hospital, Dublin, Ireland
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Dublin, Ireland
| | - Helen O'Donnell
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Dublin, Ireland
| | - Sarah Barrett
- Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity St James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Susanne Schmitz
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Dublin, Ireland
| | - Michael Barry
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Dublin, Ireland
| | - Kay Curtin
- Melanoma Support Ireland, Dublin, Ireland
| | - Eamon Beausang
- Plastic and Reconstructive Surgery, St James's Hospital, Dublin, Ireland
| | - Rupert Barry
- Department of Dermatology, St James's Hospital, Dublin, Ireland
| | - Imelda Coyne
- School of Nursing & Midwifery, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
192
|
An Immunogenic Cell Death-Related Gene Signature Reflects Immune Landscape and Predicts Prognosis in Melanoma Independently of BRAF V600E Status. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1189022. [PMID: 36704723 PMCID: PMC9871414 DOI: 10.1155/2023/1189022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023]
Abstract
Immunogenic cell death (ICD) is a type of regulated cell death that can activate adaptive immune response, and its ability to reshape the tumor microenvironment via multiple mechanisms may contribute to immunotherapy. The treatment options for patients with skin cutaneous melanoma (SKCM) vary based on BRAF V600E statuses. However, all standard treatments include immunotherapy. Therefore, it is critical to identify ICD-associated signatures that can help classify patients according to benefits from ICD immunotherapy. In this study, data on melanoma samples with BRAF V600E mutation (BRAF V600E-mutant melanoma) and melanoma samples with wild-type BRAF V600E alleles (BRAF V600E WT melanoma) were collected from The Cancer Genome Atlas (TCGA) database. The ICD-related (ICD-high and ICD-low) subgroups of patients with BRAF V600E WT melanoma were established via consensus clustering. The analyses of survival, differentially expressed genes (DEGs), functional annotation, and immune landscape were performed in these two subgroups. Results showed that ICD-high subgroup was correlated with a positive overall survival (OS) and active tumor immune landscape. A model comprising seven prognosis ICD-related gene biomarkers was developed. Survival analysis and receiver operating characteristic (ROC) curve evaluation in both cohorts with BRAF V600E WT and BRAF V600E-mutant melanoma showed an accurate prognostic estimation of ICD-related risk signature. There was a correlation between immune cell infiltration and immunotherapy response and risk score. Thus, the ICD risk signature was closely associated with the tumor's immune microenvironment. Our results may provide insights to further individualize and improve precision therapeutic decision-making in BRAF V600E-mutant and WT melanoma.
Collapse
|
193
|
Capogiri M, De Micheli AJ, Lassaletta A, Muñoz DP, Coppé JP, Mueller S, Guerreiro Stucklin AS. Response and resistance to BRAF V600E inhibition in gliomas: Roadblocks ahead? Front Oncol 2023; 12:1074726. [PMID: 36698391 PMCID: PMC9868954 DOI: 10.3389/fonc.2022.1074726] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
BRAFV600E represents the most common BRAF mutation in all human cancers. Among central nervous system (CNS) tumors, BRAFV600E is mostly found in pediatric low-grade gliomas (pLGG, ~20%) and, less frequently, in pediatric high-grade gliomas (pHGG, 5-15%) and adult glioblastomas (GBM, ~5%). The integration of BRAF inhibitors (BRAFi) in the treatment of patients with gliomas brought a paradigm shift to clinical care. However, not all patients benefit from treatment due to intrinsic or acquired resistance to BRAF inhibition. Defining predictors of response, as well as developing strategies to prevent resistance to BRAFi and overcome post-BRAFi tumor progression/rebound growth are some of the main challenges at present in the field. In this review, we outline current achievements and limitations of BRAF inhibition in gliomas, with a special focus on potential mechanisms of resistance. We discuss future directions of targeted therapy for BRAFV600E mutated gliomas, highlighting how insights into resistance to BRAFi could be leveraged to improve outcomes.
Collapse
Affiliation(s)
- Monica Capogiri
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zurich, Switzerland
| | - Andrea J. De Micheli
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zurich, Switzerland
| | - Alvaro Lassaletta
- Department of Pediatric Hematology and Oncology, Hospital Universitario Niño Jesús, Madrid, Spain
| | - Denise P. Muñoz
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, United States
| | - Jean-Philippe Coppé
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, United States
| | - Sabine Mueller
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zurich, Switzerland,Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, United States
| | - Ana S. Guerreiro Stucklin
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zurich, Switzerland,*Correspondence: Ana S. Guerreiro Stucklin,
| |
Collapse
|
194
|
He J, Huang W, Li X, Wang J, Nie Y, Li G, Wang X, Cao H, Chen X, Wang X. A new ferroptosis-related genetic mutation risk model predicts the prognosis of skin cutaneous melanoma. Front Genet 2023; 13:988909. [PMID: 36685905 PMCID: PMC9849373 DOI: 10.3389/fgene.2022.988909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Ferroptosis is an iron-dependent cell death mode and closely linked to various cancers, including skin cutaneous melanoma (SKCM). Although attempts have been made to construct ferroptosis-related gene (FRG) signatures for predicting the prognosis of SKCM, the prognostic impact of ferroptosis-related genetic mutations in SKCM remains lacking. This study aims to develop a prediction model to explain the relationship between ferroptosis-related genetic mutations and clinical outcomes of SKCM patients and to explore the potential value of ferroptosis in SKCM treatment. Methods: FRGs which significantly correlated with the prognosis of SKCM were firstly screened based on their single-nucleotide variant (SNV) status by univariate Cox regression analysis. Subsequently, the least absolute shrinkage and selection operator (LASSO) and Cox regressions were performed to construct a new ferroptosis-related genetic mutation risk (FerrGR) model for predicting the prognosis of SKCM. We then illustrate the survival and receiver operating characteristic (ROC) curves to evaluate the predictive power of the FerrGR model. Moreover, independent prognostic factors, genomic and clinical characteristics, immunotherapy, immune infiltration, and sensitive drugs were compared between high-and low-FerrGR groups. Results: The FerrGR model was developed with a good performance on survival and ROC analysis. It was a robust independent prognostic indicator and followed a nomogram constructed to predict prognostic outcomes for SKCM patients. Besides, FerrGR combined with tumor mutational burden (TMB) or MSI (microsatellite instability) was considered as a combined biomarker for immunotherapy response. The high FerrGR group patients were associated with an inhibitory immune microenvironment. Furthermore, potential drugs target to high FerrGR samples were predicted. Conclusion: The FerrGR model is valuable to predict prognosis and immunotherapy in SKCM patients. It offers a novel therapeutic option for SKCM.
Collapse
Affiliation(s)
- Jia He
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou, China,Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
| | - Wenting Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou, China
| | - Xinxin Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou, China
| | - Jingru Wang
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
| | - Yaxing Nie
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Guiqiang Li
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
| | - Xiaoxiang Wang
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
| | - Huili Cao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou, China
| | - Xiaodong Chen
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China,*Correspondence: Xusheng Wang, ; Xiaodong Chen,
| | - Xusheng Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou, China,*Correspondence: Xusheng Wang, ; Xiaodong Chen,
| |
Collapse
|
195
|
Di Nunno V, Gatto L, Tosoni A, Bartolini S, Franceschi E. Implications of BRAF V600E mutation in gliomas: Molecular considerations, prognostic value and treatment evolution. Front Oncol 2023; 12:1067252. [PMID: 36686797 PMCID: PMC9846085 DOI: 10.3389/fonc.2022.1067252] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Gliomas are molecularly heterogeneous brain tumors responsible for the most years of life lost by any cancer. High-grade gliomas have a poor prognosis and despite multimodal treatment including surgery, radiotherapy, and chemotherapy, exhibit a high recurrence rate. There is a need for new therapeutic approaches based on precision medicine informed by biomarker assessment and BRAF, a key regulator of MAPK signaling pathway, influencing cell differentiation, proliferation, migration and pro-tumorigenic activity, is emerging as a promising molecular target. V600E, is the most frequent BRAF alteration in gliomas, especially in pediatric low-grade astrocytomas, pleomorphic xanthoastrocytoma, papillary craniopharyngioma, epithelioid glioblastoma and ganglioglioma. The possible application of BRAF-targeted therapy in gliomas is continuously growing and there is preliminary evidence of prolonged disease control obtained by BRAF inhibitors in tumors harboring BRAF V600E mutation. The possibility of introducing targeted therapies into the treatment algorithm represents a paradigm shift for patients with BRAF V600E mutant recurrent high-grade and low-grade glioma and BRAF routine testing should be considered in clinical practice. The focus of this review is to summarize the molecular landscape of BRAF across glioma subtypes and the novel therapeutic strategies for BRAF V600E mutated tumors.
Collapse
Affiliation(s)
| | - Lidia Gatto
- Department of Oncology, AUSL Bologna, Bologna, Italy,*Correspondence: Lidia Gatto,
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
196
|
Schanknecht E, Bachari A, Nassar N, Piva T, Mantri N. Phytochemical Constituents and Derivatives of Cannabis sativa; Bridging the Gap in Melanoma Treatment. Int J Mol Sci 2023; 24:ijms24010859. [PMID: 36614303 PMCID: PMC9820847 DOI: 10.3390/ijms24010859] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Melanoma is deadly, physically impairing, and has ongoing treatment deficiencies. Current treatment regimens include surgery, targeted kinase inhibitors, immunotherapy, and combined approaches. Each of these treatments face pitfalls, with diminutive five-year survival in patients with advanced metastatic invasion of lymph and secondary organ tissues. Polyphenolic compounds, including cannabinoids, terpenoids, and flavonoids; both natural and synthetic, have emerging evidence of nutraceutical, cosmetic and pharmacological potential, including specific anti-cancer, anti-inflammatory, and palliative utility. Cannabis sativa is a wellspring of medicinal compounds whose direct and adjunctive application may offer considerable relief for melanoma suffers worldwide. This review aims to address the diverse applications of C. sativa's biocompounds in the scope of melanoma and suggest it as a strong candidate for ongoing pharmacological evaluation.
Collapse
Affiliation(s)
- Ellen Schanknecht
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Ava Bachari
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Nazim Nassar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Terrence Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- Correspondence:
| |
Collapse
|
197
|
Yang H, Zhou X, Fu D, Le C, Wang J, Zhou Q, Liu X, Yuan Y, Ding K, Xiao Q. Targeting RAS mutants in malignancies: successes, failures, and reasons for hope. Cancer Commun (Lond) 2023; 43:42-74. [PMID: 36316602 PMCID: PMC9859734 DOI: 10.1002/cac2.12377] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 10/13/2022] [Indexed: 01/22/2023] Open
Abstract
RAS genes are the most frequently mutated oncogenes and play critical roles in the development and progression of malignancies. The mutation, isoform (KRAS, HRAS, and NRAS), position, and type of substitution vary depending on the tissue types. Despite decades of developing RAS-targeted therapies, only small subsets of these inhibitors are clinically effective, such as the allele-specific inhibitors against KRASG12C . Targeting the remaining RAS mutants would require further experimental elucidation of RAS signal transduction, RAS-altered metabolism, and the associated immune microenvironment. This study reviews the mechanisms and efficacy of novel targeted therapies for different RAS mutants, including KRAS allele-specific inhibitors, combination therapies, immunotherapies, and metabolism-associated therapies.
Collapse
Affiliation(s)
- Hang Yang
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Xinyi Zhou
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Dongliang Fu
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Chenqin Le
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Jiafeng Wang
- Department of Pharmacology and Department of Gastroenterology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058P. R. China
| | - Quan Zhou
- Department of Cell BiologySchool of Basic Medical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Xiangrui Liu
- Department of Pharmacology and Department of Gastroenterology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Ying Yuan
- Department of Medical Oncologythe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310058P. R. China
| | - Kefeng Ding
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Qian Xiao
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| |
Collapse
|
198
|
Guaitoli G, Zullo L, Tiseo M, Dankner M, Rose AAN, Facchinetti F. Non-small-cell lung cancer: how to manage BRAF-mutated disease. Drugs Context 2023; 12:dic-2022-11-3. [PMID: 37168877 PMCID: PMC10166262 DOI: 10.7573/dic.2022-11-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/17/2023] [Indexed: 05/13/2023] Open
Abstract
BRAF mutations are reported in about 3-5% of non-small-cell lung cancer (NSCLC), almost exclusively in adenocarcinoma histology, and are classified into three different classes. The segmentation of BRAF mutations into V600 (class 1) and non-V600 (classes 2 and 3) relies on their biological characteristics and is of interest for predicting the therapeutic benefit of targeted therapies and immunotherapy. Given the relative rarity of this molecular subset of disease, evidence supporting treatment choices is limited. This review aims to offer a comprehensive update about available therapeutic options for patients with NSCLC harbouring BRAF mutations to guide the physician in the choice of treatment strategies. We collected the most relevant available data, from single-arm phase II studies and retrospective analyses conducted in advanced NSCLC, regarding the efficacy of BRAF and MEK inhibitors in both V600 and non-V600 BRAF mutations. We included case reports and smaller experiences that could provide information on specific alterations. With respect to immunotherapy, we reviewed retrospective evidence on immune-checkpoint inhibitors in this molecular subset, whereas data about chemo-immunotherapy in this molecular subgroup are lacking. Moreover, we included the available, though limited, retrospective evidence of immunotherapy as consolidation after chemo-radiation for unresectable stage III BRAF-mutant NSCLC, and an overview of ongoing clinical trials in the peri-operative setting that could open new perspectives in the future.
Collapse
Affiliation(s)
- Giorgia Guaitoli
- Université Paris-Saclay, Gustave Roussy, INSERM U981, Villejuif, France
- PhD Program Clinical & Experimental Medicine, University of Modena & Reggio Emilia, Modena, Italy
| | - Lodovica Zullo
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
- Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Marcello Tiseo
- Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Matthew Dankner
- Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - April AN Rose
- Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Francesco Facchinetti
- Université Paris-Saclay, Gustave Roussy, INSERM U981, Villejuif, France
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
199
|
Clinical Trials in Melanoma: Margins, Lymph Nodes, Targeted and Immunotherapy. Surg Oncol Clin N Am 2023; 32:47-63. [PMID: 36410921 DOI: 10.1016/j.soc.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Multiple randomized controlled trials have influenced the current standard of care for patients with cutaneous melanoma. Since the development of targeted and immune therapy, studies of adjuvant therapy for patients with resected stage III/IV melanoma have led to the approval of combined B-raf proto-oncogene (BRAF) and mitogen-activated protein kinase kinase inhibitors for patients with a BRAF mutation, and cytotoxic T-lymphocyte associated protein-4 or antiprogrammed cell death-1 therapy for patients without a BRAF mutation. This article discusses the details of the trials that have influenced these treatment decisions, in addition to discussing ongoing trials and possible future directions.
Collapse
|
200
|
Russi M, Valeri R, Marson D, Danielli C, Felluga F, Tintaru A, Skoko N, Aulic S, Laurini E, Pricl S. Some things old, new and borrowed: Delivery of dabrafenib and vemurafenib to melanoma cells via self-assembled nanomicelles based on an amphiphilic dendrimer. Eur J Pharm Sci 2023; 180:106311. [PMID: 36273785 DOI: 10.1016/j.ejps.2022.106311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Two clinically approved anticancer drugs targeting BRAF in melanoma patients - dabrafenib (DAB) and vemurafenib (VEM) - have been successfully encapsulated into nanomicelles formed upon self-assembly of an amphiphilic dendrimer AD based on two C18 aliphatic chains and a G2 PAMAM head. The process resulted in the formation of well-defined (∼10 nm) core-shell nanomicelles (NMs) with excellent encapsulation efficiency (∼70% for DAB and ∼60% for VEM) and good drug loading capacity (∼27% and ∼24% for DAB and VEM, respectively). Dynamic light scattering (DLS), transmission electron microscopy (TEM), small-angle x-ray scattering (SAXS), nuclear magnetic resonance (NMR), isothermal titration calorimetry (ITC), and molecular simulation (MS) experiments were used, respectively, to determine the size and structure of the empty and drug-loaded nanomicelles (DLNMs), along with the interactions between the NMs and their cargoes. The in vitro release data revealed profiles governed by Fickian diffusion; moreover, for both anticancer molecules, an acidic environment (pH = 5.0) facilitated drug release with respect to physiological pH conditions (pH = 7.4). Finally, both DAB- and VEM-loaded NMs elicited enhanced response with respect to free drug treatments in 4 different melanoma cell lines.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS) - DEA, University of Trieste, Piazzale Europa 1, Trieste 34127, Italy
| | - Rachele Valeri
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS) - DEA, University of Trieste, Piazzale Europa 1, Trieste 34127, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS) - DEA, University of Trieste, Piazzale Europa 1, Trieste 34127, Italy
| | - Chiara Danielli
- Department of Chemical and Pharmaceutical Sciences, DSCF, University of Trieste, Via Giorgeri 1, Trieste 34127, Italy
| | - Fulvia Felluga
- Department of Chemical and Pharmaceutical Sciences, DSCF, University of Trieste, Via Giorgeri 1, Trieste 34127, Italy
| | - Aura Tintaru
- Aix Marseille Univ, CNRS - Centre Interdisciplinaire de Nanosciences de Marseille (CINaM) UMR 7325 - Département IMMF - Campus Luminy, 163, Avenue de Luminy, Marseille 13288, France
| | - Natasa Skoko
- Biotechnology Development Unit, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS) - DEA, University of Trieste, Piazzale Europa 1, Trieste 34127, Italy; Biotechnology Development Unit, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS) - DEA, University of Trieste, Piazzale Europa 1, Trieste 34127, Italy.
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS) - DEA, University of Trieste, Piazzale Europa 1, Trieste 34127, Italy; Department of General Biophysics, University of Łódź, ul. Pomorska 141/143, Łódź 90-236, Poland
| |
Collapse
|