151
|
Rossing P, Frimodt-Møller M, Persson F. Precision Medicine and/or Biomarker Based Therapy in T2DM: Ready for Prime Time? Semin Nephrol 2023; 43:151430. [PMID: 37862744 DOI: 10.1016/j.semnephrol.2023.151430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Approximately 30-40% of people with type 2 diabetes mellitus develop chronic kidney disease. This is characterised by elevated blood pressure, declining kidney function and enhanced cardiovascular morbidity and mortality. Increased albuminuria and decreasing estimated glomerular function has to be evaluated regularly to diagsnose kidney disease. New biomarkers may facilitate early diagnosis and provide infomation on undlying pathology thereby supporting early precision intervention for the optimal benefit. A number of biomarkers have been suggested but are not yet implemented in clinical practice. iI the future such bimarkers may pave the way for personalized treatment.
Collapse
Affiliation(s)
- Peter Rossing
- Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | | | - Frederik Persson
- Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| |
Collapse
|
152
|
Barratt J, Rovin B, Wong MG, Alpers CE, Bieler S, He P, Inrig J, Komers R, Heerspink HJ, Mercer A, Noronha IL, Radhakrishnan J, Rheault MN, Rote W, Trachtman H, Trimarchi H, Perkovic V, PROTECT investigators 17. IgA Nephropathy Patient Baseline Characteristics in the Sparsentan PROTECT Study. Kidney Int Rep 2023; 8:1043-1056. [PMID: 37180506 PMCID: PMC10166729 DOI: 10.1016/j.ekir.2023.02.1086] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/25/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Sparsentan is a novel single-molecule dual endothelin angiotensin receptor antagonist with hemodynamic and anti-inflammatory properties and is not an immunosuppressant. The ongoing phase 3 PROTECT trial examines sparsentan in adults with IgA nephropathy (IgAN). Methods The PROTECT trial (NCT03762850) is a multicenter, international, randomized, double-blind, parallel-group, active-controlled study. The efficacy and safety of sparsentan versus the active control irbesartan is being evaluated in adults with biopsy-proven IgAN and proteinuria ≥1.0 g/d despite maximized treatment with an angiotensin-converting enzyme inhibitor (ACEi) and/or angiotensin receptor blocker (ARB) for at least 12 weeks. Blinded and aggregated baseline characteristics are reported descriptively and compared to contemporary phase 3 trials with patients with IgAN. Results The primary analysis population includes 404 patients who were randomized and received study drug (median age, 46 years). Enrolled patients were from Europe (53%), Asia Pacific (27%), and North America (20%). Baseline median urinary protein excretion was 1.8 g/d. The range of estimated glomerular filtration rate (eGFR) was broad with the largest proportion of patients (35%) in chronic kidney disease (CKD) stage 3B. Before transitioning to study medication, mean systolic/diastolic blood pressure was 129/82 mm Hg, with the majority of patients (63.4%) receiving the maximum labeled ACEi or ARB dose. Patients in Asian versus non-Asian regions included a higher percentage of females, had lower blood pressures, and included lower proportions of patients with a history of hypertension and baseline antihypertensive treatment. Conclusions Patient enrollment in PROTECT, with differing racial backgrounds and across CKD stages, will allow for important characterization of the treatment effect of sparsentan in patients with IgAN with proteinuria at high risk of kidney failure.
Collapse
Affiliation(s)
- Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, UK
| | - Brad Rovin
- Division of Nephrology, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Muh Geot Wong
- Department of Renal Medicine, Concord Repatriation General Hospital, Concord, New South Wales, Australia
- Concord Clinical School, University of Sydney, Concord, New South Wales, Australia
| | - Charles E. Alpers
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | | | - Ping He
- Travere Therapeutics Inc., San Diego, California, USA
| | - Jula Inrig
- Travere Therapeutics Inc., San Diego, California, USA
| | - Radko Komers
- Travere Therapeutics Inc., San Diego, California, USA
| | - Hiddo J.L. Heerspink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Irene L. Noronha
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Division of Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Jai Radhakrishnan
- Division of Nephrology, Columbia University, New York, New York, USA
| | - Michelle N. Rheault
- Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - William Rote
- Travere Therapeutics Inc., San Diego, California, USA
| | - Howard Trachtman
- Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Hernán Trimarchi
- The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
- Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Vlado Perkovic
- The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - PROTECT investigators17
- Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, UK
- Division of Nephrology, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Renal Medicine, Concord Repatriation General Hospital, Concord, New South Wales, Australia
- Concord Clinical School, University of Sydney, Concord, New South Wales, Australia
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Travere Therapeutics Inc., San Diego, California, USA
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
- JAMCO Pharma Consulting, Stockholm, Sweden
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Division of Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
- Division of Nephrology, Columbia University, New York, New York, USA
- Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
- Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
- Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
153
|
Lin WR, Liu KH, Ling TC, Wang MC, Lin WH. Role of antidiabetic agents in type 2 diabetes patients with chronic kidney disease. World J Diabetes 2023; 14:352-363. [PMID: 37122432 PMCID: PMC10130897 DOI: 10.4239/wjd.v14.i4.352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/10/2023] [Accepted: 04/04/2023] [Indexed: 04/12/2023] Open
Abstract
Insulin resistance is a condition in which the target tissues have a decreased response to insulin signaling, resulting in glucose uptake defect, and an increased blood sugar level. Pancreatic beta cells thus enhance insulin production to compensate. This situation may cause further beta cell dysfunction and failure, which can lead diabetes mellitus (DM). Insulin resistance is thus an important cause of the development of type 2 DM. Insulin resistance has also been found to have a strong relationship with cardiovascular disease and is common in chronic kidney disease (CKD) patients. The mechanisms of insulin resistance in CKD are complex and multifactorial. They include physical inactivity, inflammation and oxidative stress, metabolic acidosis, vitamin D deficiency, adipose tissue dysfunction, uremic toxins, and renin-angiotensin-aldosterone system activation. Currently, available anti-diabetic agents, such as biguanides, sulfonylureas, thiazolidinediones, alfa-glucosidase inhibitors, glucagon-like peptide-1-based agents, and sodium-glucose co-transporter-2 inhibitors, have different effects on insulin resistance. In this short review, we describe the potential mechanisms of insulin resistance in CKD patients. We also review the interaction of currently available anti-diabetic medications with insulin resistance.
Collapse
Affiliation(s)
- Wei-Ren Lin
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Kuan-Hung Liu
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Tsai-Chieh Ling
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Ming-Cheng Wang
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Wei-Hung Lin
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan
| |
Collapse
|
154
|
Loeffler I, Ziller N. Sex-Related Aspects in Diabetic Kidney Disease-An Update. J Clin Med 2023; 12:jcm12082834. [PMID: 37109170 PMCID: PMC10145498 DOI: 10.3390/jcm12082834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Differences between the sexes exist in many diseases, and in most cases, being a specific sex is considered a risk factor in the development and/or progression. This is not quite so clear in diabetic kidney disease (DKD), the development and severity of which depends on many general factors, such as the duration of diabetes mellitus, glycemic control, and biological risk factors. Similarly, sex-specific factors, such as puberty or andro-/menopause, also determine the microvascular complications in both the male and female sex. In particular, the fact that diabetes mellitus itself influences sex hormone levels, which in turn seem to be involved in renal pathophysiology, highlights the complexity of the question of sex differences in DKD. The major objective of this review is to summarize and simplify the current knowledge on biological sex-related aspects in the development/progression but also treatment strategies of human DKD. It also highlights findings from basic preclinical research that may provide explanations for these differences.
Collapse
Affiliation(s)
- Ivonne Loeffler
- Department of Internal Medicine III, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| | - Nadja Ziller
- Department of Internal Medicine III, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| |
Collapse
|
155
|
Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K, Huang L, Liu Y. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther 2023; 8:152. [PMID: 37037849 PMCID: PMC10086073 DOI: 10.1038/s41392-023-01400-z] [Citation(s) in RCA: 216] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 04/12/2023] Open
Abstract
Vascular complications of diabetes pose a severe threat to human health. Prevention and treatment protocols based on a single vascular complication are no longer suitable for the long-term management of patients with diabetes. Diabetic panvascular disease (DPD) is a clinical syndrome in which vessels of various sizes, including macrovessels and microvessels in the cardiac, cerebral, renal, ophthalmic, and peripheral systems of patients with diabetes, develop atherosclerosis as a common pathology. Pathological manifestations of DPDs usually manifest macrovascular atherosclerosis, as well as microvascular endothelial function impairment, basement membrane thickening, and microthrombosis. Cardiac, cerebral, and peripheral microangiopathy coexist with microangiopathy, while renal and retinal are predominantly microangiopathic. The following associations exist between DPDs: numerous similar molecular mechanisms, and risk-predictive relationships between diseases. Aggressive glycemic control combined with early comprehensive vascular intervention is the key to prevention and treatment. In addition to the widely recommended metformin, glucagon-like peptide-1 agonist, and sodium-glucose cotransporter-2 inhibitors, for the latest molecular mechanisms, aldose reductase inhibitors, peroxisome proliferator-activated receptor-γ agonizts, glucokinases agonizts, mitochondrial energy modulators, etc. are under active development. DPDs are proposed for patients to obtain more systematic clinical care requires a comprehensive diabetes care center focusing on panvascular diseases. This would leverage the advantages of a cross-disciplinary approach to achieve better integration of the pathogenesis and therapeutic evidence. Such a strategy would confer more clinical benefits to patients and promote the comprehensive development of DPD as a discipline.
Collapse
Affiliation(s)
- Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yanfei Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
- The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Shiwei Liu
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Mengqi Gao
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Wenting Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Keji Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Luqi Huang
- China Center for Evidence-based Medicine of TCM, China Academy of Chinese Medical Sciences, Beijing, 100010, China.
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
156
|
Yang Q, Lang Y, Yang W, Yang F, Yang J, Wu Y, Xiao X, Qin C, Zou Y, Zhao Y, Kang D, Liu F. Efficacy and safety of drugs for people with type 2 diabetes mellitus and chronic kidney disease on kidney and cardiovascular outcomes: A systematic review and network meta-analysis of randomized controlled trials. Diabetes Res Clin Pract 2023; 198:110592. [PMID: 36842477 DOI: 10.1016/j.diabres.2023.110592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
AIM To evaluate the comparative efficacy and safety of promising kidney protection drugs, including sodium-glucose cotransporter-2 inhibitors (SGLT-2Is), glucagon-like peptide-1 receptor agonists (GLP-1RAs), dipeptidyl-peptidase IV Inhibitors (DPP-4Is), aldosterone receptor agonists (MRAs), endothelin receptor antagonist (ERAs), pentoxifylline (PTF), and pirfenidone (PFD), on cardiovascular and kidney outcomes in type 2 diabetes (T2DM) and chronic kidney disease (CKD) population. METHODS PubMed, Embase, and Cochrane Library were searched from inception to August 12, 2022. We used the Bayesian model for network meta-analyses, registered in the PROSPERO (CRD42022343601). RESULTS This network meta-analysis identified 2589 citations, and included 27 eligible trials, enrolling 50,237 patients. All results presented below were moderate to high quality. For kidney outcomes, SGLT-2Is were optimal in terms of reducing composite kidney events (RR 0.69, 95%CI 0.61-0.79), and slowing eGFR slope (MD1.34, 95%CI 1.06-1.62). Then MRAs (RR 0.77, 95%CI 0.68-0.88; MD 1.31, 95%CI 0.89-1.74), GLP-1RAs (RR 0.78, 95%CI 0.62-0.97; MD 0.75, 95%CI 0.46-1.05), and ERAs (RR 0.75, 95%CI 0.57-0.99; MD 0.7, 95%CI 0.3-1.1) were followed in parallel. For cardiovascular outcomes, SGLT-2 inhibitors were also among the best for lowing the risk of heart failure hospitalization (RR 0.67, 95%CI 0.57-0.78), followed by GLP-1RAs (RR 0.73, 95%CI 0.55-0.97) and MRAs (RR 0.79, 95%CI 0.67-0.92). SGLT-2Is (RR 0.8, 95%CI 0.71-0.89) and GLP-1RAs (RR 0.72, 95%CI 0.6-0.86) had comparable effects to reduce the risk of major adverse cardiovascular events. MRAs were possibly associated with increased drug discontinuation due to adverse events (RR 1.21, 95%CI 1.05-1.38). For the hyperkalemia outcome, MRAs (RR 2.08, 95%CI 1.86-2.33) were linked to the risk of hyperkalemia, whereas SGLT-2Is (RR 0.78, 95%CI 0.65-0.93) were in contrast. CONCLUSIONS SGLT-2Is significantly reduced kidney and cardiovascular risk in T2DM and CKD, subsequently GLP-1RAs and MRAs. SGLT-2Is-MRAs combination might be a recommended treatment regimen for maximizing kidney and cardiovascular protection but with a low risk of hyperkalemia in T2DM and CKD.
Collapse
Affiliation(s)
- Qing Yang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Yanlin Lang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Wenjie Yang
- Division of Project Design and Statistics, West China Hospital of Sichuan University, Chengdu, China
| | - Fenghao Yang
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Jia Yang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Yucheng Wu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Xiang Xiao
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Chunmei Qin
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Yutong Zou
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Yuancheng Zhao
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Deying Kang
- Division of Project Design and Statistics, West China Hospital of Sichuan University, Chengdu, China
| | - Fang Liu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China; Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
157
|
Sindhu D, Sharma GS, Kumbala D. Management of diabetic kidney disease: where do we stand?: A narrative review. Medicine (Baltimore) 2023; 102:e33366. [PMID: 37000108 PMCID: PMC10063294 DOI: 10.1097/md.0000000000033366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 04/01/2023] Open
Abstract
Diabetic kidney disease is the leading cause of chronic kidney disease and end-stage renal disease. The pathogenesis and risk factors for the development of diabetic kidney disease are complex and multifaceted, resulting in glomerular hypertrophy, tubulointerstitial inflammation, and fibrosis. The clinical staging progresses over 5 stages from early hyperfiltration to overt nephropathy. Primary prevention like glycaemic control, control of blood pressure, treatment of dyslipidemia and lifestyle modifications have shown promising benefits. Despite widespread research, very few drugs are available to retard disease progression. More literature and research are needed to fill these lacunae. We carried out a literature search focusing on newer updates in diabetic kidney disease pathophysiology, diagnosis and management using a PubMed search through the National library of medicine using keywords "Diabetic kidney disease," and "Diabetic nephropathy" till the year 2022. We have summarized the relevant information from those articles.
Collapse
Affiliation(s)
- Devada Sindhu
- Department of Nephrology, AIIMS Rishikesh, Dehradun, India
| | | | - Damodar Kumbala
- Diagnostic and Interventional Nephrologist, Renal Associates of Baton Rogue, Baton Rogue, LA
| |
Collapse
|
158
|
Heerspink HJL, Radhakrishnan J, Alpers CE, Barratt J, Bieler S, Diva U, Inrig J, Komers R, Mercer A, Noronha IL, Rheault MN, Rote W, Rovin B, Trachtman H, Trimarchi H, Wong MG, Perkovic V. Sparsentan in patients with IgA nephropathy: a prespecified interim analysis from a randomised, double-blind, active-controlled clinical trial. Lancet 2023; 401:1584-1594. [PMID: 37015244 DOI: 10.1016/s0140-6736(23)00569-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND Sparsentan is a novel, non-immunosuppressive, single-molecule, dual endothelin and angiotensin receptor antagonist being examined in an ongoing phase 3 trial in adults with IgA nephropathy. We report the prespecified interim analysis of the primary proteinuria efficacy endpoint, and safety. METHODS PROTECT is an international, randomised, double-blind, active-controlled study, being conducted in 134 clinical practice sites in 18 countries. The study examines sparsentan versus irbesartan in adults (aged ≥18 years) with biopsy-proven IgA nephropathy and proteinuria of 1·0 g/day or higher despite maximised renin-angiotensin system inhibitor treatment for at least 12 weeks. Participants were randomly assigned in a 1:1 ratio to receive sparsentan 400 mg once daily or irbesartan 300 mg once daily, stratified by estimated glomerular filtration rate at screening (30 to <60 mL/min per 1·73 m2 and ≥60 mL/min per 1·73 m2) and urine protein excretion at screening (≤1·75 g/day and >1·75 g/day). The primary efficacy endpoint was change from baseline to week 36 in urine protein-creatinine ratio based on a 24-h urine sample, assessed using mixed model repeated measures. Treatment-emergent adverse events (TEAEs) were safety endpoints. All endpoints were examined in all participants who received at least one dose of randomised treatment. The study is ongoing and is registered with ClinicalTrials.gov, NCT03762850. FINDINGS Between Dec 20, 2018, and May 26, 2021, 404 participants were randomly assigned to sparsentan (n=202) or irbesartan (n=202) and received treatment. At week 36, the geometric least squares mean percent change from baseline in urine protein-creatinine ratio was statistically significantly greater in the sparsentan group (-49·8%) than the irbesartan group (-15·1%), resulting in a between-group relative reduction of 41% (least squares mean ratio=0·59; 95% CI 0·51-0·69; p<0·0001). TEAEs with sparsentan were similar to irbesartan. There were no cases of severe oedema, heart failure, hepatotoxicity, or oedema-related discontinuations. Bodyweight changes from baseline were not different between the sparsentan and irbesartan groups. INTERPRETATION Once-daily treatment with sparsentan produced meaningful reduction in proteinuria compared with irbesartan in adults with IgA nephropathy. Safety of sparsentan was similar to irbesartan. Future analyses after completion of the 2-year double-blind period will show whether these beneficial effects translate into a long-term nephroprotective potential of sparsentan. FUNDING Travere Therapeutics.
Collapse
Affiliation(s)
- Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, Netherlands; The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia.
| | | | - Charles E Alpers
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester General Hospital, Leicester, UK
| | - Stewart Bieler
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, Groningen, Netherlands
| | | | - Jula Inrig
- Travere Therapeutics, San Diego, CA, USA
| | | | | | - Irene L Noronha
- Laboratory of Cellular, Genetic, and Molecular Nephrology, Division of Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Michelle N Rheault
- Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis, MN, USA
| | | | - Brad Rovin
- Division of Nephrology, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Howard Trachtman
- Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Hernán Trimarchi
- The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia; Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Muh Geot Wong
- Department of Renal Medicine, Concord Repatriation General Hospital, Concord, NSW, Australia; Concord Clinical School, University of Sydney, Concord, NSW, Australia
| | - Vlado Perkovic
- The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia; Faculty of Medicine & Health, University of New South Wales Sydney, Sydney, NSW, Australia
| |
Collapse
|
159
|
Lundberg S, Bergen K. We can go further in non-immunosuppressive treatment of IgA nephropathy. Lancet 2023; 401:1548-1550. [PMID: 37015245 DOI: 10.1016/s0140-6736(23)00630-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/06/2023]
Affiliation(s)
- Sigrid Lundberg
- Division of Nephrology, Department of Clinical Sciences, Danderyd University Hospital, Karolinska Institutet, 18288 Stockholm, Sweden.
| | - Karin Bergen
- Division of Nephrology, Department of Clinical Sciences, Danderyd University Hospital, Karolinska Institutet, 18288 Stockholm, Sweden
| |
Collapse
|
160
|
Johnston JG, Welch AK, Cain BD, Sayeski PP, Gumz ML, Wingo CS. Aldosterone: Renal Action and Physiological Effects. Compr Physiol 2023; 13:4409-4491. [PMID: 36994769 PMCID: PMC11472823 DOI: 10.1002/cphy.c190043] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Aldosterone exerts profound effects on renal and cardiovascular physiology. In the kidney, aldosterone acts to preserve electrolyte and acid-base balance in response to changes in dietary sodium (Na+ ) or potassium (K+ ) intake. These physiological actions, principally through activation of mineralocorticoid receptors (MRs), have important effects particularly in patients with renal and cardiovascular disease as demonstrated by multiple clinical trials. Multiple factors, be they genetic, humoral, dietary, or otherwise, can play a role in influencing the rate of aldosterone synthesis and secretion from the adrenal cortex. Normally, aldosterone secretion and action respond to dietary Na+ intake. In the kidney, the distal nephron and collecting duct are the main targets of aldosterone and MR action, which stimulates Na+ absorption in part via the epithelial Na+ channel (ENaC), the principal channel responsible for the fine-tuning of Na+ balance. Our understanding of the regulatory factors that allow aldosterone, via multiple signaling pathways, to function properly clearly implicates this hormone as central to many pathophysiological effects that become dysfunctional in disease states. Numerous pathologies that affect blood pressure (BP), electrolyte balance, and overall cardiovascular health are due to abnormal secretion of aldosterone, mutations in MR, ENaC, or effectors and modulators of their action. Study of the mechanisms of these pathologies has allowed researchers and clinicians to create novel dietary and pharmacological targets to improve human health. This article covers the regulation of aldosterone synthesis and secretion, receptors, effector molecules, and signaling pathways that modulate its action in the kidney. We also consider the role of aldosterone in disease and the benefit of mineralocorticoid antagonists. © 2023 American Physiological Society. Compr Physiol 13:4409-4491, 2023.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Amanda K Welch
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
161
|
Guo Y, Wang M, Liu Y, Pang Y, Tian L, Zhao J, Liu M, Shen C, Meng Y, Wang Y, Cai Z, Zhao W. BaoShenTongLuo formula protects against podocyte injury by regulating AMPK-mediated mitochondrial biogenesis in diabetic kidney disease. Chin Med 2023; 18:32. [PMID: 36967383 PMCID: PMC10040124 DOI: 10.1186/s13020-023-00738-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Mitochondrial dysfunction is considered to be an important contributor in podocyte injury under diabetic conditions. The BaoShenTongLuo (BSTL) formula has been shown to reduce podocyte damage and postpone the progression of diabetic kidney disease (DKD). The potential mechanisms underlying the effects of BSTL, however, have yet to be elucidated. In this study, we aimed to investigate whether the effects of BSTL are related to the regulation of mitochondrial biogenesis via the adenosine monophosphate-activated protein kinase (AMPK) pathway. METHODS High-Performance Liquid Chromatography Electrospray Ionization Mass Spectrometer (HPLC-ESI-MS) analysis was performed to investigate the characteristics of pure compounds in BSTL. db/db mice and mouse podocyte clone-5 (MPC5) cells were exposed to high glucose (HG) to induce DKD and podocyte damage. Body weight, random blood glucose, urinary albumin/creatinine ratio (UACR), indicators of renal function and renal histological lesions were measured. Markers of podocyte injury, mitochondrial morphology, mitochondrial deoxyribonucleic acid (mtDNA) content, mitochondrial respiratory chain complexes activities, reactive oxygen species (ROS) production, and mitochondrial membrane potential (MMP) levels were assessed. Protein expressions of AMPK, peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), transcription factor A (TFAM), mitochondrial fusion protein 2 (MFN2) and dynamin-related protein 1 (DRP1) were also detected. MPC5 cells were transfected with AMPKα small interfering RNA (AMPKα siRNA) to determine the underlying mechanisms of BSTL improvement of mitochondrial function under diabetic conditions. RESULTS In vivo, treatment with BSTL reduced the UACR levels, reversed the histopathological changes in renal tissues, and alleviated the podocyte injury observed in db/db mice. After BSTL treatment, the decreased mtDNA content and mitochondrial respiratory chain complex I, III, and IV activities were significantly improved, and these effects were accompanied by maintenance of the protein expression of p-AMPKαT172, PGC-1α, TFAM and MFN2. The in vitro experiments also showed that BSTL reduced podocyte apoptosis, suppressed excessive cellular ROS production, and reversed the decreased in MMP that were observed under HG conditions. More importantly, the effects of BSTL in enhancing mitochondrial biogenesis and reducing podocyte apoptosis were inhibited in AMPKα siRNA-treated podocytes. CONCLUSION BSTL plays a crucial role in protecting against podocyte injury by regulating the AMPK-mediated mitochondrial biogenesis in DKD.
Collapse
Affiliation(s)
- Yifan Guo
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Mengdi Wang
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yufei Liu
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yanyu Pang
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Lei Tian
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Jingwen Zhao
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Mengchao Liu
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Cun Shen
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yuan Meng
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yuefen Wang
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Zhen Cai
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Wenjing Zhao
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
162
|
Huang R, Fu P, Ma L. Kidney fibrosis: from mechanisms to therapeutic medicines. Signal Transduct Target Ther 2023; 8:129. [PMID: 36932062 PMCID: PMC10023808 DOI: 10.1038/s41392-023-01379-7] [Citation(s) in RCA: 254] [Impact Index Per Article: 127.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Chronic kidney disease (CKD) is estimated to affect 10-14% of global population. Kidney fibrosis, characterized by excessive extracellular matrix deposition leading to scarring, is a hallmark manifestation in different progressive CKD; However, at present no antifibrotic therapies against CKD exist. Kidney fibrosis is identified by tubule atrophy, interstitial chronic inflammation and fibrogenesis, glomerulosclerosis, and vascular rarefaction. Fibrotic niche, where organ fibrosis initiates, is a complex interplay between injured parenchyma (like tubular cells) and multiple non-parenchymal cell lineages (immune and mesenchymal cells) located spatially within scarring areas. Although the mechanisms of kidney fibrosis are complicated due to the kinds of cells involved, with the help of single-cell technology, many key questions have been explored, such as what kind of renal tubules are profibrotic, where myofibroblasts originate, which immune cells are involved, and how cells communicate with each other. In addition, genetics and epigenetics are deeper mechanisms that regulate kidney fibrosis. And the reversible nature of epigenetic changes including DNA methylation, RNA interference, and chromatin remodeling, gives an opportunity to stop or reverse kidney fibrosis by therapeutic strategies. More marketed (e.g., RAS blockage, SGLT2 inhibitors) have been developed to delay CKD progression in recent years. Furthermore, a better understanding of renal fibrosis is also favored to discover biomarkers of fibrotic injury. In the review, we update recent advances in the mechanism of renal fibrosis and summarize novel biomarkers and antifibrotic treatment for CKD.
Collapse
Affiliation(s)
- Rongshuang Huang
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
163
|
Trionfetti F, Marchant V, González-Mateo GT, Kawka E, Márquez-Expósito L, Ortiz A, López-Cabrera M, Ruiz-Ortega M, Strippoli R. Novel Aspects of the Immune Response Involved in the Peritoneal Damage in Chronic Kidney Disease Patients under Dialysis. Int J Mol Sci 2023; 24:5763. [PMID: 36982834 PMCID: PMC10059714 DOI: 10.3390/ijms24065763] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Chronic kidney disease (CKD) incidence is growing worldwide, with a significant percentage of CKD patients reaching end-stage renal disease (ESRD) and requiring kidney replacement therapies (KRT). Peritoneal dialysis (PD) is a convenient KRT presenting benefices as home therapy. In PD patients, the peritoneum is chronically exposed to PD fluids containing supraphysiologic concentrations of glucose or other osmotic agents, leading to the activation of cellular and molecular processes of damage, including inflammation and fibrosis. Importantly, peritonitis episodes enhance peritoneum inflammation status and accelerate peritoneal injury. Here, we review the role of immune cells in the damage of the peritoneal membrane (PM) by repeated exposure to PD fluids during KRT as well as by bacterial or viral infections. We also discuss the anti-inflammatory properties of current clinical treatments of CKD patients in KRT and their potential effect on preserving PM integrity. Finally, given the current importance of coronavirus disease 2019 (COVID-19) disease, we also analyze here the implications of this disease in CKD and KRT.
Collapse
Affiliation(s)
- Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Vanessa Marchant
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Guadalupe T. González-Mateo
- Cell-Cell Communication & Inflammation Unit, Centre for Molecular Biology “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain
- Premium Research, S.L., 19005 Guadalajara, Spain
| | - Edyta Kawka
- Department of Pathophysiology, Poznan University of Medical Sciences, 10 Fredry St., 61-701 Poznan, Poland
| | - Laura Márquez-Expósito
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Alberto Ortiz
- IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Manuel López-Cabrera
- Cell-Cell Communication & Inflammation Unit, Centre for Molecular Biology “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| |
Collapse
|
164
|
Reiterová J, Tesař V. Current and Future Therapeutical Options in Alport Syndrome. Int J Mol Sci 2023; 24:5522. [PMID: 36982595 PMCID: PMC10056269 DOI: 10.3390/ijms24065522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Alport syndrome (AS) is a hereditary kidney disease caused by pathogenic variants in COL4A3 and COL4A4 genes with autosomal recessive or autosomal dominant transmission or in the COL4A5 gene with X-linked inheritance. Digenic inheritance was also described. Clinically it is associated with microscopic hematuria, followed by proteinuria and chronic renal insufficiency with end-stage renal disease in young adults. Nowadays, there is no curative treatment available. The inhibitors of RAS (renin-angiotensin system) since childhood slow the progression of the disease. Sodium-glucose cotransporter-2 inhibitors seem to be promising drugs from DAPA-CKD (dapagliflozin-chronic kidney disease) study, but only a limited number of patients with Alport syndrome was included. Endothelin type A receptor and angiotensin II type 1 receptor combined inhibitors, and lipid-lowering agents are used in ongoing studies in patients with AS and focal segmental glomerulosclerosis (FSGS). Hydroxychloroquine in AS is studied in a clinical trial in China. Molecular genetic diagnosis of AS is crucial not only for prognosis prediction but also for future therapeutic options. Different types of mutations will require various types of gene, RNA, or protein therapy to improve the function, the of final protein product.
Collapse
Affiliation(s)
- Jana Reiterová
- Department of Nephrology, First Faculty of Medicine, Charles University, General University Hospital in Prague, 128 08 Prague, Czech Republic
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, General University Hospital in Prague, 128 08 Prague, Czech Republic
| | - Vladimír Tesař
- Department of Nephrology, First Faculty of Medicine, Charles University, General University Hospital in Prague, 128 08 Prague, Czech Republic
| |
Collapse
|
165
|
Block TJ, Cooper ME. Clinical trials with reno-vascular end points in patients with diabetes: Changing the scenario over the past 20 years. Presse Med 2023; 52:104178. [PMID: 37783423 DOI: 10.1016/j.lpm.2023.104178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/29/2023] [Accepted: 07/19/2023] [Indexed: 10/04/2023] Open
Abstract
Major clinical advances over the last 20 years in the area of diabetic kidney disease (DKD) have been confirmed in large seminal clinical trials. These findings add to the previously identified benefits resulting from intensive glucose and blood pressure control therapies. Furthermore, newer glucose lowering treatments such as SGLT2 inhibitors and GLP-1 agonists appear very promising and are likely to transform the management and outlook of DKD over the next decade. In addition, novel mineralocorticoid receptor antagonists and a recently reported trial with an endothelin receptor blocker also have the potential to change clinical practice.
Collapse
Affiliation(s)
- Tomasz J Block
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Mark E Cooper
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
166
|
Costello HM, Juffre A, Cheng KY, Bratanatawira P, Crislip GR, Zietara A, Spires DR, Staruschenko A, Douma LG, Gumz ML. The circadian clock protein PER1 is important in maintaining endothelin axis regulation in Dahl salt-sensitive rats. Can J Physiol Pharmacol 2023; 101:136-146. [PMID: 36450128 PMCID: PMC9992312 DOI: 10.1139/cjpp-2022-0134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Endothelin-1 (ET-1) is a peptide hormone that acts on its receptors to regulate sodium handling in the kidney's collecting duct. Dysregulation of the endothelin axis is associated with various diseases, including salt-sensitive hypertension and chronic kidney disease. Previously, our lab has shown that the circadian clock gene PER1 regulates ET-1 levels in mice. However, the regulation of ET-1 by PER1 has never been investigated in rats. Therefore, we used a novel model where knockout of Per1 was performed in Dahl salt-sensitive rat background (SS Per1 -/-) to test a hypothesis that PER1 regulates the ET-1 axis in this model. Here, we show increased renal ET-1 peptide levels and altered endothelin axis gene expression in several tissues, including the kidney, adrenal glands, and liver in SS Per1 -/- compared with control SS rats. Edn1 antisense lncRNA Edn1-AS, which has previously been suggested to be regulated by PER1, was also altered in SS Per1 -/- rats compared with control SS rats. These data further support the hypothesis that PER1 is a negative regulator of Edn1 and is important in the regulation of the endothelin axis in a tissue-specific manner.
Collapse
Affiliation(s)
- Hannah M. Costello
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610
| | - Alexandria Juffre
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610
| | - Kit-Yan Cheng
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610
| | - Phillip Bratanatawira
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610
| | - G. Ryan Crislip
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610
| | - Adrian Zietara
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33602
| | - Denisha R. Spires
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33602
- James A. Haley Veterans’ Hospital, Tampa, FL 33612
| | - Lauren G. Douma
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610
| | - Michelle L. Gumz
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL 32610
| |
Collapse
|
167
|
Rossi GP, Barton M, Dhaun N, Rizzoni D, Seccia TM. Challenges in the evaluation of endothelial cell dysfunction: a statement from the European Society of Hypertension Working Group on Endothelin and Endothelial Factors. J Hypertens 2023; 41:369-379. [PMID: 36728915 DOI: 10.1097/hjh.0000000000003314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Endothelial cell function is mediated by different mechanisms in different vascular beds. Moreover, in humans, endothelial cell dysfunction triggers and accelerates the progression of cardiovascular and chronic kidney diseases. Progression of such diseases can be in part mitigated by the control of cardiovascular risk factors and drugs targeting different systems, including endothelin receptor antagonists (ERAs), renin-angiotensin aldosterone antagonists and agents affecting glucose metabolism, all of which were shown to improve endothelial cell function. In recent years, the microRNAs, which are endogenous regulators of gene expression, have been identified as transmitters of information from endothelial cells to vascular smooth muscle cells, suggesting that they can entail tools to assess the endothelial cell dysfunction in arterial hypertension and target for pharmacologic intervention. This article critically reviews current challenges and limitations of available techniques for the invasive and noninvasive assessment of endothelial cell function, and also discusses therapeutic aspects as well as directions for future research in the areas of endothelial cell biology and pathophysiology in humans.
Collapse
Affiliation(s)
- Gian Paolo Rossi
- Emergency Medicine Unit and European Society of Hypertension Specialized Center of Excellence for Hypertension, Department of Medicine-DIMED, University of Padua, Padova, Italy
| | - Matthias Barton
- Molecular Internal Medicine, University of Zürich, and Andreas Grüntzig Foundation, Zürich, Switzerland
| | - Neeraj Dhaun
- University/British Heart Foundation Centre of Research Excellence, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Damiano Rizzoni
- Department of Clinical and Experimental Sciences, University of Brescia and Division of Medicine, Istituto Clinico Città di Brescia, Brescia, Italy
| | - Teresa M Seccia
- Emergency Medicine Unit and European Society of Hypertension Specialized Center of Excellence for Hypertension, Department of Medicine-DIMED, University of Padua, Padova, Italy
| |
Collapse
|
168
|
Mohandes S, Doke T, Hu H, Mukhi D, Dhillon P, Susztak K. Molecular pathways that drive diabetic kidney disease. J Clin Invest 2023; 133:165654. [PMID: 36787250 PMCID: PMC9927939 DOI: 10.1172/jci165654] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Kidney disease is a major driver of mortality among patients with diabetes and diabetic kidney disease (DKD) is responsible for close to half of all chronic kidney disease cases. DKD usually develops in a genetically susceptible individual as a result of poor metabolic (glycemic) control. Molecular and genetic studies indicate the key role of podocytes and endothelial cells in driving albuminuria and early kidney disease in diabetes. Proximal tubule changes show a strong association with the glomerular filtration rate. Hyperglycemia represents a key cellular stress in the kidney by altering cellular metabolism in endothelial cells and podocytes and by imposing an excess workload requiring energy and oxygen for proximal tubule cells. Changes in metabolism induce early adaptive cellular hypertrophy and reorganization of the actin cytoskeleton. Later, mitochondrial defects contribute to increased oxidative stress and activation of inflammatory pathways, causing progressive kidney function decline and fibrosis. Blockade of the renin-angiotensin system or the sodium-glucose cotransporter is associated with cellular protection and slowing kidney function decline. Newly identified molecular pathways could provide the basis for the development of much-needed novel therapeutics.
Collapse
Affiliation(s)
- Samer Mohandes
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tomohito Doke
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hailong Hu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dhanunjay Mukhi
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Poonam Dhillon
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine;,Institute for Diabetes, Obesity, and Metabolism;,Department of Genetics; and,Kidney Innovation Center; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
169
|
Martínez-Díaz I, Martos N, Llorens-Cebrià C, Álvarez FJ, Bedard PW, Vergara A, Jacobs-Cachá C, Soler MJ. Endothelin Receptor Antagonists in Kidney Disease. Int J Mol Sci 2023; 24:3427. [PMID: 36834836 PMCID: PMC9965540 DOI: 10.3390/ijms24043427] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023] Open
Abstract
Endothelin (ET) is found to be increased in kidney disease secondary to hyperglycaemia, hypertension, acidosis, and the presence of insulin or proinflammatory cytokines. In this context, ET, via the endothelin receptor type A (ETA) activation, causes sustained vasoconstriction of the afferent arterioles that produces deleterious effects such as hyperfiltration, podocyte damage, proteinuria and, eventually, GFR decline. Therefore, endothelin receptor antagonists (ERAs) have been proposed as a therapeutic strategy to reduce proteinuria and slow the progression of kidney disease. Preclinical and clinical evidence has revealed that the administration of ERAs reduces kidney fibrosis, inflammation and proteinuria. Currently, the efficacy of many ERAs to treat kidney disease is being tested in randomized controlled trials; however, some of these, such as avosentan and atrasentan, were not commercialized due to the adverse events related to their use. Therefore, to take advantage of the protective properties of the ERAs, the use of ETA receptor-specific antagonists and/or combining them with sodium-glucose cotransporter 2 inhibitors (SGLT2i) has been proposed to prevent oedemas, the main ERAs-related deleterious effect. The use of a dual angiotensin-II type 1/endothelin receptor blocker (sparsentan) is also being evaluated to treat kidney disease. Here, we reviewed the main ERAs developed and the preclinical and clinical evidence of their kidney-protective effects. Additionally, we provided an overview of new strategies that have been proposed to integrate ERAs in kidney disease treatment.
Collapse
Affiliation(s)
- Irene Martínez-Díaz
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Nerea Martos
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Carmen Llorens-Cebrià
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | | | | | - Ander Vergara
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Conxita Jacobs-Cachá
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Maria José Soler
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| |
Collapse
|
170
|
Chung EYM, Badve SV, Heerspink HJL, Wong MG. Endothelin receptor antagonists in kidney protection for diabetic kidney disease and beyond? Nephrology (Carlton) 2023; 28:97-108. [PMID: 36350038 PMCID: PMC10100079 DOI: 10.1111/nep.14130] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022]
Abstract
The burden of chronic kidney disease is increasing worldwide, largely due to the increasing global prevalence of diabetes mellitus and hypertension. While renin angiotensin system inhibitors and sodium-glucose cotransporter two inhibitors are the management cornerstone for reducing kidney and cardiovascular complications in patients with diabetic and non-diabetic kidney disease (DKD), they are partially effective and further treatments are needed to prevent the progression to kidney failure. Endothelin receptor antagonism represent a potential additional therapeutic option due to its beneficial effect on pathophysiological processes involved in progressive kidney disease including proteinuria, which are independently associated with progression of kidney disease. This review discusses the biological mechanisms of endothelin receptor antagonists (ERA) in kidney protection, the efficacy and safety of ERA in randomised controlled trials reporting on kidney outcomes, and its potential future use in both diabetic and non-DKDs.
Collapse
Affiliation(s)
- Edmund Y M Chung
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Sunil V Badve
- Renal and Metabolic Division, The George Institute for Global Health, University of New South Wales, Newtown, New South Wales, Australia.,Department of Renal Medicine, St George Hospital, Kogarah, New South Wales, Australia
| | - Hiddo J L Heerspink
- Renal and Metabolic Division, The George Institute for Global Health, University of New South Wales, Newtown, New South Wales, Australia.,Department of Clinical Pharmacoy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Muh Geot Wong
- Department of Renal Medicine, Concord Repatriation General Hospital, University of Sydney, Concord, New South Wales, Australia
| |
Collapse
|
171
|
Kala P, Vaňourková Z, Škaroupková P, Kompanowska-Jezierska E, Sadowski J, Walkowska A, Veselka J, Táborský M, Maxová H, Vaněčková I, Červenka L. Endothelin type A receptor blockade increases renoprotection in congestive heart failure combined with chronic kidney disease: Studies in 5/6 nephrectomized rats with aorto-caval fistula. Biomed Pharmacother 2023; 158:114157. [PMID: 36580726 DOI: 10.1016/j.biopha.2022.114157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Association of congestive heart failure (CHF) and chronic kidney disease (CKD) worsens the patient's prognosis and results in poor survival rate. The aim of this study was to examine if addition of endothelin type A (ETA) receptor antagonist to the angiotensin-converting enzyme inhibitor (ACEi) will bring additional beneficial effects in experimental rats. METHODS CKD was induced by 5/6 renal mass reduction (5/6 NX) and CHF was elicited by volume overload achieved by creation of aorto-caval fistula (ACF). The follow-up was 24 weeks after the first intervention (5/6 NX). The treatment regimens were initiated 6 weeks after 5/6 NX and 2 weeks after ACF creation. RESULTS The final survival in untreated group was 15%. The treatment with ETA receptor antagonist alone or ACEi alone and the combined treatment improved the survival rate to 64%, 71% and 75%, respectively, however, the difference between the combination and either single treatment regimen was not significant. The combined treatment exerted best renoprotection, causing additional reduction in albuminuria and reducing renal glomerular and tubulointerstitial injury as compared with ACE inhibition alone. CONCLUSIONS Our results show that treatment with ETA receptor antagonist attenuates the CKD- and CHF-related mortality, and addition of ETA receptor antagonist to the standard blockade of RAS by ACEi exhibits additional renoprotective actions.
Collapse
Affiliation(s)
- Petr Kala
- Department of Cardiology, University Hospital Motol and 2nd Faculty of Medicine, Charles University, Prague, Czech Republic; Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - Zdenka Vaňourková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petra Škaroupková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Elżbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Science, Warsaw, Poland
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Science, Warsaw, Poland
| | - Agnieszka Walkowska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Science, Warsaw, Poland
| | - Josef Veselka
- Department of Cardiology, University Hospital Motol and 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Miloš Táborský
- Department of Internal Medicine I, Cardiology, University Hospital Olomouc and Palacký University, Olomouc, Czech Republic
| | - Hana Maxová
- Department of Pathophysiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ivana Vaněčková
- Institute of Physiology, Czech Academy of Sciences, Czech Republic
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Internal Medicine I, Cardiology, University Hospital Olomouc and Palacký University, Olomouc, Czech Republic
| |
Collapse
|
172
|
Alkhatib L, Velez Diaz LA, Varma S, Chowdhary A, Bapat P, Pan H, Kukreja G, Palabindela P, Selvam SA, Kalra K. Lifestyle Modifications and Nutritional and Therapeutic Interventions in Delaying the Progression of Chronic Kidney Disease: A Review. Cureus 2023; 15:e34572. [PMID: 36874334 PMCID: PMC9981552 DOI: 10.7759/cureus.34572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Chronic kidney disease (CKD) is a debilitating progressive illness that affects more than 10% of the world's population. In this literature review, we discussed the roles of nutritional interventions, lifestyle modifications, hypertension (HTN) and diabetes mellitus (DM) control, and medications in delaying the progression of CKD. Walking, weight loss, low-protein diet (LPD), adherence to the alternate Mediterranean (aMed) diet, and Alternative Healthy Eating Index (AHEI)-2010 slow the progression of CKD. However, smoking and binge alcohol drinking increase the risk of CKD progression. In addition, hyperglycemia, altered lipid metabolism, low-grade inflammation, over-activation of the renin-angiotensin-aldosterone system (RAAS), and overhydration (OH) increase diabetic CKD progression. The Kidney Disease: Improving Global Outcomes (KDIGO) guidelines recommend blood pressure (BP) control of <140/90 mmHg in patients without albuminuria and <130/80 mmHg in patients with albuminuria to prevent CKD progression. Medical therapies aim to target epigenetic alterations, fibrosis, and inflammation. Currently, RAAS blockade, sodium-glucose cotransporter-2 (SGLT2) inhibitors, pentoxifylline, and finerenone are approved for managing CKD. In addition, according to the completed Study of Diabetic Nephropathy with Atrasentan (SONAR), atrasentan, an endothelin receptor antagonist (ERA), decreased the risk of renal events in diabetic CKD patients. However, ongoing trials are studying the role of other agents in slowing the progression of CKD.
Collapse
Affiliation(s)
- Lean Alkhatib
- Internal Medicine, Royal Medical Services, Amman, JOR
| | | | - Samyukta Varma
- Internal Medicine, Madurai Medical College, Madurai, IND
| | - Arsh Chowdhary
- Nephrology, Smt. Kashibai Navale Medical College and General Hospital, Pune, IND
| | - Prachi Bapat
- General Medicine, Smt. Kashibai Navale Medical College and General Hospital, Pune, IND
| | - Hai Pan
- Pathology, Tianjin University of Chinese Medicine, Tianjin, CHN
| | - Geetika Kukreja
- Internal Medicine and Hematology/Oncology, Henry Ford Health System, Clinton Township, USA
| | | | | | - Kartik Kalra
- Nephrology, Geisinger Medical Center, Danville, USA
| |
Collapse
|
173
|
Rayego-Mateos S, Rodrigues-Diez RR, Fernandez-Fernandez B, Mora-Fernández C, Marchant V, Donate-Correa J, Navarro-González JF, Ortiz A, Ruiz-Ortega M. Targeting inflammation to treat diabetic kidney disease: the road to 2030. Kidney Int 2023; 103:282-296. [PMID: 36470394 DOI: 10.1016/j.kint.2022.10.030] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/05/2022] [Accepted: 10/31/2022] [Indexed: 12/07/2022]
Abstract
Diabetic kidney disease (DKD) is one of the fastest growing causes of chronic kidney disease and associated morbidity and mortality. Preclinical research has demonstrated the involvement of inflammation in its pathogenesis and in the progression of kidney damage, supporting clinical trials designed to explore anti-inflammatory strategies. However, the recent success of sodium-glucose cotransporter-2 inhibitors and the nonsteroidal mineralocorticoid receptor antagonist finerenone has changed both guidelines and standard of care, rendering obsolete older studies directly targeting inflammatory mediators and the clinical development was discontinued for most anti-inflammatory drugs undergoing clinical trials for DKD in 2016. Given the contribution of inflammation to the pathogenesis of DKD, we review the impact on kidney inflammation of the current standard of care, therapies undergoing clinical trials, or repositioned drugs for DKD. Moreover, we review recent advances in the molecular regulation of inflammation in DKD and discuss potential novel therapeutic strategies with clinical relevance. Finally, we provide a road map for future research aimed at integrating the growing knowledge on inflammation and DKD into clinical practice to foster improvement of patient outcomes.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain; Ricord2040, Instituto de Salud Carlos II, Spain
| | - Raul R Rodrigues-Diez
- Ricord2040, Instituto de Salud Carlos II, Spain; Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias ISPA, Oviedo, Asturias, Spain
| | - Beatriz Fernandez-Fernandez
- Ricord2040, Instituto de Salud Carlos II, Spain; Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Carmen Mora-Fernández
- Ricord2040, Instituto de Salud Carlos II, Spain; Research Unit, University Hospital Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Vanessa Marchant
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain; Ricord2040, Instituto de Salud Carlos II, Spain
| | - Javier Donate-Correa
- Ricord2040, Instituto de Salud Carlos II, Spain; Research Unit, University Hospital Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Juan F Navarro-González
- Ricord2040, Instituto de Salud Carlos II, Spain; Research Unit, University Hospital Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain; Nephrology Service, University Hospital Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Alberto Ortiz
- Ricord2040, Instituto de Salud Carlos II, Spain; Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain; Ricord2040, Instituto de Salud Carlos II, Spain.
| |
Collapse
|
174
|
SGLT2 Inhibitors in Diabetic and Non-Diabetic Chronic Kidney Disease. Biomedicines 2023; 11:biomedicines11020279. [PMID: 36830815 PMCID: PMC9953060 DOI: 10.3390/biomedicines11020279] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Results from recent randomized controlled trials on inhibitors of the sodium-glucose cotransporter 2 (SGLT2) have determined a paradigm shift in the treatment of patients with type 2 diabetes mellitus. These agents have been shown not only to ameliorate metabolic control, but also to independently protect from cardiovascular events and to reduce the progression of chronic kidney disease (CKD) in these patients. The magnitude of the nephroprotective effect observed in these studies is likely to make SGLT2 inhibitors the most impactful drug class for the treatment of diabetic patients with CKD since the discovery of renin-angiotensin system inhibitors. Even more surprisingly, SGLT2 inhibitors have also been shown to slow CKD progression in non-diabetic individuals with varying degrees of proteinuria, suggesting that activation of SGLT2 is involved in the pathogenesis of CKD independent of its etiology. As indications continue to expand, it is still unclear whether the observed benefits of SGLT2 inhibitors may extend to CKD patients at lower risk of progression and if their association with other agents may confer additional protection.
Collapse
|
175
|
The membrane-associated protein 17 (MAP17) is up-regulated in response to empagliflozin on top of RAS blockade in experimental diabetic nephropathy. Clin Sci (Lond) 2023; 137:87-104. [PMID: 36524468 DOI: 10.1042/cs20220447] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have proven to delay diabetic kidney disease (DKD) progression on top of the standard of care with the renin-angiotensin system (RAS) blockade. The molecular mechanisms underlying the synergistic effect of SGLT2i and RAS blockers is poorly understood. We gave a SGLT2i (empagliflozin), an angiotensin-converting enzyme inhibitor (ramipril), or a combination of both drugs for 8 weeks to diabetic (db/db) mice. Vehicle-treated db/db and db/m mice were used as controls. At the end of the experiment, mice were killed, and the kidneys were saved to perform a differential high-throughput proteomic analysis by mass spectrometry using isobaric tandem mass tags (TMT labeling) that allow relative quantification of the identified proteins. The differential proteomic analysis revealed 203 proteins differentially expressed in one or more experimental groups (false discovery rate < 0.05 and Log2 fold change ≥ ±1). Fourteen were differentially expressed in the kidneys from the db/db mice treated with empagliflozin with ramipril. Among them, MAP17 was up-regulated. These findings were subsequently validated by Western blot. The combined therapy of empagliflozin and ramipril up-regulated MAP17 in the kidney of a diabetic mice model. MAP17 is a major scaffolding protein of the proximal tubular cells that places transporters together, namely SGLT2 and NHE3. Our results suggest that SGLT2i on top of RAS blockade may protect the kidney by boosting the inactivation of NHE3 via the up-regulation of key scaffolder proteins such as MAP17.
Collapse
|
176
|
Rojas-Rivera JE, García-Carro C, Ávila AI, Espino M, Espinosa M, Fernández-Juárez G, Fulladosa X, Goicoechea M, Macía M, Morales E, Porras LFQ, Praga M. Consensus document of the Spanish Group for the Study of the Glomerular Diseases (GLOSEN) for the diagnosis and treatment of lupus nephritis. Nefrologia 2023; 43:6-47. [PMID: 37211521 DOI: 10.1016/j.nefroe.2023.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 05/23/2023] Open
Abstract
A significant number of patients with systemic lupus erythematosus (between 20% and 60% according to different reported series) develop lupus nephritis in the course of its evolution, which directly influences their quality of life and vital prognosis. In recent years, the greater knowledge about the pathogenesis of systemic lupus and lupus nephritis has allowed relevant advances in the diagnostic approach and treatment of these patients, achieving the development of drugs specifically aimed at blocking key pathogenic pathways of the disease. Encouragingly, these immunomodulatory agents have shown in well-powered, randomized clinical trials good clinical efficacy in the medium-term, defined as proteinuria remission and preservation of kidney function, with an acceptable safety profile and good patient tolerability. All this has made it possible to reduce the use of corticosteroids and other potentially more toxic therapies, as well as to increase the use of combined therapies. The present consensus document carried out by the Glomerular Diseases Working Group of the Spanish Society of Nephrology (GLOSEN), collects in a practical and summarized, but rigorous way, the best currently available evidence about the diagnosis, treatment, and follow-up of lupus nephritis patients, including cases of special situations, with the main objective of providing updated information and well-founded clinical recommendations to treating physicians, to improve the diagnostic and therapeutic approach to our patients.
Collapse
Affiliation(s)
- Jorge E Rojas-Rivera
- Hospital Universitario Fundación Jiménez Díaz, Servicio de Nefrología e Hipertensión, Madrid, Spain; Department of Medicine, Universidad Autónoma de Madrid, Servicio de Nefrología, Madrid, Spain.
| | - Clara García-Carro
- Hospital Universitario Clínico San Carlos, Servicio de Nefrología. Madrid, Spain.
| | - Ana I Ávila
- Hospital Dr. Peset, Servicio de Nefrología, Valencia, Spain
| | - Mar Espino
- Hospital Universitario 12 de Octubre, Servicio de Nefrología, Madrid, Spain
| | - Mario Espinosa
- Hospital Universitario Reina Sofía, Servicio de Nefrología, Cordoba, Spain
| | | | - Xavier Fulladosa
- Hospital Universitario de Bellvitge, L'Hospitalet de Llobregat, Servicio de Nefrología, Barcelona, Spain
| | - Marian Goicoechea
- Hospital Universitario Gregorio Marañón, Servicio de Nefrología, Madrid, Spain
| | - Manuel Macía
- Hospital Universitario Nuestra Señora de la Candelaria, Servicio de Nefrología, Tenerife, Spain
| | - Enrique Morales
- Hospital Universitario 12 de Octubre, Servicio de Nefrología, Madrid, Spain; Instituto de Investigación Hospital Universitario 12 de Octubre, Servicio de Nefrología, Madrid, Spain; Departamento de Medicina, Universidad Complutense, Servicio de Nefrología, Madrid, Spain
| | - Luis F Quintana Porras
- Hospital Clínic de Barcelona, Servicio de Nefrología, Barcelona, Spain; Departamento de Medicina, Universidad de Barcelona, IDIBAPS, Servicio de Nefrología, Barcelona, Spain
| | - Manuel Praga
- Instituto de Investigación Hospital Universitario 12 de Octubre, Servicio de Nefrología, Madrid, Spain; Departamento de Medicina, Universidad Complutense, Servicio de Nefrología, Madrid, Spain
| |
Collapse
|
177
|
Kala P, Gawrys O, Miklovič M, Vaňourková Z, Škaroupková P, Jíchová Š, Sadowski J, Kompanowska-Jezierska E, Walkowska A, Veselka J, Táborský M, Maxová H, Vaněčková I, Červenka L. Endothelin type A receptor blockade attenuates aorto-caval fistula-induced heart failure in rats with angiotensin II-dependent hypertension. J Hypertens 2023; 41:99-114. [PMID: 36204993 PMCID: PMC9794157 DOI: 10.1097/hjh.0000000000003307] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/06/2022] [Accepted: 09/07/2022] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Evaluation of the effect of endothelin type A (ET A ) receptor blockade on the course of volume-overload heart failure in rats with angiotensin II-dependent hypertension. METHODS Ren-2 renin transgenic rats (TGR) were used as a model of hypertension. Heart failure was induced by creating an aorto-caval fistula (ACF). Selective ET A receptor blockade was achieved by atrasentan. For comparison, other rat groups received trandolapril, an angiotensin-converting enzyme inhibitor (ACEi). Animals first underwent ACF creation and 2 weeks later the treatment with atrasentan or trandolapril, alone or combined, was applied; the follow-up period was 20 weeks. RESULTS Eighteen days after creating ACF, untreated TGR began to die, and none was alive by day 79. Both atrasentan and trandolapril treatment improved the survival rate, ultimately to 56% (18 of 31 animals) and 69% (22 of 32 animals), respectively. Combined ACEi and ET A receptor blockade improved the final survival rate to 52% (17 of 33 animals). The effects of the three treatment regimens on the survival rate did not significantly differ. All three treatment regimens suppressed the development of cardiac hypertrophy and lung congestion, decreased left ventricle (LV) end-diastolic volume and LV end-diastolic pressure, and improved LV systolic contractility in ACF TGR as compared with their untreated counterparts. CONCLUSION The treatment with ET A receptor antagonist delays the onset of decompensation of volume-overload heart failure and improves the survival rate in hypertensive TGR with ACF-induced heart failure. However, the addition of ET A receptor blockade did not enhance the beneficial effects beyond those obtained with standard treatment with ACEi alone.
Collapse
Affiliation(s)
- Petr Kala
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine
- Department of Cardiology, University Hospital Motol and 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Olga Gawrys
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Science, Warsaw, Poland
| | - Matúš Miklovič
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine
| | - Zdenka Vaňourková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine
| | - Petra Škaroupková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine
| | - Šárka Jíchová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Science, Warsaw, Poland
| | - Elzbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Science, Warsaw, Poland
| | - Agnieszka Walkowska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Science, Warsaw, Poland
| | - Josef Veselka
- Department of Cardiology, University Hospital Motol and 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Miloš Táborský
- Department of Internal Medicine I, Cardiology, University Hospital Olomouc and Palacký University, Olomouc
| | - Hana Maxová
- Department of Pathophysiology, 2nd Faculty of Medicine, Charles University
| | - Ivana Vaněčková
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine
- Department of Internal Medicine I, Cardiology, University Hospital Olomouc and Palacký University, Olomouc
| |
Collapse
|
178
|
|
179
|
Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, Guo JY, Liu FH, Chang Q, Zhang YX, Liu CG, Zhao YH. The sirtuin family in health and disease. Signal Transduct Target Ther 2022; 7:402. [PMID: 36581622 PMCID: PMC9797940 DOI: 10.1038/s41392-022-01257-8] [Citation(s) in RCA: 355] [Impact Index Per Article: 118.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 12/30/2022] Open
Abstract
Sirtuins (SIRTs) are nicotine adenine dinucleotide(+)-dependent histone deacetylases regulating critical signaling pathways in prokaryotes and eukaryotes, and are involved in numerous biological processes. Currently, seven mammalian homologs of yeast Sir2 named SIRT1 to SIRT7 have been identified. Increasing evidence has suggested the vital roles of seven members of the SIRT family in health and disease conditions. Notably, this protein family plays a variety of important roles in cellular biology such as inflammation, metabolism, oxidative stress, and apoptosis, etc., thus, it is considered a potential therapeutic target for different kinds of pathologies including cancer, cardiovascular disease, respiratory disease, and other conditions. Moreover, identification of SIRT modulators and exploring the functions of these different modulators have prompted increased efforts to discover new small molecules, which can modify SIRT activity. Furthermore, several randomized controlled trials have indicated that different interventions might affect the expression of SIRT protein in human samples, and supplementation of SIRT modulators might have diverse impact on physiological function in different participants. In this review, we introduce the history and structure of the SIRT protein family, discuss the molecular mechanisms and biological functions of seven members of the SIRT protein family, elaborate on the regulatory roles of SIRTs in human disease, summarize SIRT inhibitors and activators, and review related clinical studies.
Collapse
Affiliation(s)
- Qi-Jun Wu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huan-Huan Chen
- grid.412467.20000 0004 1806 3501Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue-Fei Yu
- grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Le Lv
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Yang Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ya-Shu Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gang Zheng
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun-Qi Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing-Yi Guo
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Chang
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Xiao Zhang
- grid.412467.20000 0004 1806 3501Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cai-Gang Liu
- grid.412467.20000 0004 1806 3501Department of Cancer, Breast Cancer Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
180
|
Watanabe K, Sato E, Mishima E, Miyazaki M, Tanaka T. What's New in the Molecular Mechanisms of Diabetic Kidney Disease: Recent Advances. Int J Mol Sci 2022; 24:570. [PMID: 36614011 PMCID: PMC9820354 DOI: 10.3390/ijms24010570] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease, including end-stage kidney disease, and increases the risk of cardiovascular mortality. Although the treatment options for DKD, including angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, sodium-glucose cotransporter 2 inhibitors, and mineralocorticoid receptor antagonists, have advanced, their efficacy is still limited. Thus, a deeper understanding of the molecular mechanisms of DKD onset and progression is necessary for the development of new and innovative treatments for DKD. The complex pathogenesis of DKD includes various different pathways, and the mechanisms of DKD can be broadly classified into inflammatory, fibrotic, metabolic, and hemodynamic factors. Here, we summarize the recent findings in basic research, focusing on each factor and recent advances in the treatment of DKD. Collective evidence from basic and clinical research studies is helpful for understanding the definitive mechanisms of DKD and their regulatory systems. Further comprehensive exploration is warranted to advance our knowledge of the pathogenesis of DKD and establish novel treatments and preventive strategies.
Collapse
Affiliation(s)
- Kimio Watanabe
- Dialysis Center, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Emiko Sato
- Division of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Eikan Mishima
- Division of Nephrology, Rheumatology and Endocrinology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Mariko Miyazaki
- Dialysis Center, Tohoku University Hospital, Sendai 980-8574, Japan
- Division of Nephrology, Rheumatology and Endocrinology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Tetsuhiro Tanaka
- Division of Nephrology, Rheumatology and Endocrinology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
181
|
Simonini M, Vezzoli G. New Landmarks to Slow the Progression of Chronic Kidney Disease. J Clin Med 2022; 12:2. [PMID: 36614804 PMCID: PMC9821050 DOI: 10.3390/jcm12010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic kidney disease (CKD) is a serious condition whose incidence is steadily rising, particularly in the Western world, due to the increasing prevalence of diabetes, hypertension, and obesity, which are nowadays the major causes of CKD in the Western population, as well as the aging of the population [...].
Collapse
Affiliation(s)
- Marco Simonini
- Nephrology and Dialysis Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giuseppe Vezzoli
- Department of Nephrology and Dialysis, Vita Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
182
|
Tziastoudi M, Theoharides TC, Nikolaou E, Efthymiadi M, Eleftheriadis T, Stefanidis I. Key Genetic Components of Fibrosis in Diabetic Nephropathy: An Updated Systematic Review and Meta-Analysis. Int J Mol Sci 2022; 23:15331. [PMID: 36499658 PMCID: PMC9736240 DOI: 10.3390/ijms232315331] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022] Open
Abstract
Renal fibrosis (RF) constitutes the common end-point of all kinds of chronic kidney disease (CKD), regardless of the initial cause of disease. The aim of the present study was to identify the key players of fibrosis in the context of diabetic nephropathy (DN). A systematic review and meta-analysis of all available genetic association studies regarding the genes that are included in signaling pathways related to RF were performed. The evaluated studies were published in English and they were included in PubMed and the GWAS Catalog. After an extensive literature review and search of the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, eight signaling pathways related to RF were selected and all available genetic association studies of these genes were meta-analyzed. ACE, AGT, EDN1, EPO, FLT4, GREM1, IL1B, IL6, IL10, IL12RB1, NOS3, TGFB1, IGF2/INS/TH cluster, and VEGFA were highlighted as the key genetic components driving the fibrosis process in DN. The present systematic review and meta-analysis indicate, as key players of fibrosis in DN, sixteen genes. However, the results should be interpreted with caution because the number of studies was relatively small.
Collapse
Affiliation(s)
- Maria Tziastoudi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Theoharis C. Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02155, USA
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02155, USA
- Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02155, USA
- Institute of Neuro-Immune Medicine, Nova Southeastern University, Clearwater, FL 33314, USA
| | - Evdokia Nikolaou
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Maria Efthymiadi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Theodoros Eleftheriadis
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
183
|
Schlaich MP, Bellet M, Weber MA, Danaietash P, Bakris GL, Flack JM, Dreier RF, Sassi-Sayadi M, Haskell LP, Narkiewicz K, Wang JG. Dual endothelin antagonist aprocitentan for resistant hypertension (PRECISION): a multicentre, blinded, randomised, parallel-group, phase 3 trial. Lancet 2022; 400:1927-1937. [PMID: 36356632 DOI: 10.1016/s0140-6736(22)02034-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Resistant hypertension is associated with increased cardiovascular risk. The endothelin pathway has been implicated in the pathogenesis of hypertension, but it is currently not targeted therapeutically, thereby leaving this relevant pathophysiological pathway unopposed with currently available drugs. The aim of the study was to assess the blood pressure lowering efficacy of the dual endothelin antagonist aprocitentan in patients with resistant hypertension. METHODS PRECISION was a multicentre, blinded, randomised, parallel-group, phase 3 study, which was done in hospitals or research centres in Europe, North America, Asia, and Australia. Patients were eligible for randomisation if their sitting systolic blood pressure was 140 mm Hg or higher despite taking standardised background therapy consisting of three antihypertensive drugs, including a diuretic. The study consisted of three sequential parts: part 1 was the 4-week double-blind, randomised, and placebo-controlled part, in which patients received aprocitentan 12·5 mg, aprocitentan 25 mg, or placebo in a 1:1:1 ratio; part 2 was a 32-week single (patient)-blind part, in which all patients received aprocitentan 25 mg; and part 3 was a 12-week double-blind, randomised, and placebo-controlled withdrawal part, in which patients were re-randomised to aprocitentan 25 mg or placebo in a 1:1 ratio. The primary and key secondary endpoints were changes in unattended office systolic blood pressure from baseline to week 4 and from withdrawal baseline to week 40, respectively. Secondary endpoints included 24-h ambulatory blood pressure changes. The study is registered on ClinicalTrials.gov, NCT03541174. FINDINGS The PRECISION study was done from June 18, 2018, to April 25, 2022. 1965 individuals were screened and 730 were randomly assigned. Of these 730 patients, 704 (96%) completed part 1 of the study; of these, 613 (87%) completed part 2 and, of these, 577 (94%) completed part 3 of the study. The least square mean (SE) change in office systolic blood pressure at 4 weeks was -15·3 (SE 0·9) mm Hg for aprocitentan 12·5 mg, -15·2 (0·9) mm Hg for aprocitentan 25 mg, and -11·5 (0·9) mm Hg for placebo, for a difference versus placebo of -3·8 (1·3) mm Hg (97·5% CI -6·8 to -0·8, p=0·0042) and -3·7 (1·3) mm Hg (-6·7 to -0·8; p=0·0046), respectively. The respective difference for 24 h ambulatory systolic blood pressure was -4·2 mm Hg (95% CI -6·2 to -2·1) and -5·9 mm Hg (-7·9 to -3·8). After 4 weeks of withdrawal, office systolic blood pressure significantly increased with placebo versus aprocitentan (5·8 mm Hg, 95% CI 3·7 to 7·9, p<0·0001). The most frequent adverse event was mild-to-moderate oedema or fluid retention, occurring in 9%, 18%, and 2% for patients receiving aprocitentan 12·5 mg, 25 mg, and placebo, during the 4-week double-blind part, respectively. This event led to discontinuation in seven patients treated with aprocitentan. During the trial, a total of 11 treatment-emergent deaths occurred, none of which were regarded by the investigators to be related to study treatment. INTERPRETATION In patients with resistant hypertension, aprocitentan was well tolerated and superior to placebo in lowering blood pressure at week 4 with a sustained effect at week 40. FUNDING Idorsia Pharmaceuticals and Janssen Biotech.
Collapse
Affiliation(s)
- Markus P Schlaich
- Dobney Hypertension Centre, Royal Perth Hospital Research Foundation, Medical School, The University of Western Australia, Perth, WA, Australia; Department of Cardiology and Department of Nephrology, Royal Perth Hospital, Perth, WA, Australia.
| | - Marc Bellet
- Global Clinical Development, Idorsia Pharmaceuticals, Allschwil, Switzerland
| | - Michael A Weber
- Downstate College of Medicine, State University of New York, Brooklyn, NY, USA
| | - Parisa Danaietash
- Global Clinical Development, Idorsia Pharmaceuticals, Allschwil, Switzerland
| | - George L Bakris
- Department of Medicine, American Heart Association Comprehensive Hypertension Center, The University of Chicago Medicine, Chicago, IL, USA
| | - John M Flack
- Division of General Internal Medicine, Hypertension Section, Department of Medicine, Hypertension Section, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Roland F Dreier
- Global Clinical Development, Idorsia Pharmaceuticals, Allschwil, Switzerland
| | | | - Lloyd P Haskell
- The Janssen Pharmaceutical Companies of Johnson & Johnson, Raritan, NJ, USA
| | - Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Medical University of Gdańsk, Gdańsk, Poland
| | - Ji-Guang Wang
- Department of Hypertension, The Shanghai Institute of Hypertension, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
184
|
Donate-Correa J, Sanchez-Niño MD, González-Luis A, Ferri C, Martín-Olivera A, Martín-Núñez E, Fernandez-Fernandez B, Tagua VG, Mora-Fernández C, Ortiz A, Navarro-González JF. Repurposing drugs for highly prevalent diseases: pentoxifylline, an old drug and a new opportunity for diabetic kidney disease. Clin Kidney J 2022; 15:2200-2213. [PMID: 36381364 PMCID: PMC9664582 DOI: 10.1093/ckj/sfac143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 11/30/2022] Open
Abstract
Diabetic kidney disease is one of the most frequent complications in patients with diabetes and constitutes a major cause of end-stage kidney disease. The prevalence of diabetic kidney disease continues to increase as a result of the growing epidemic of diabetes and obesity. Therefore, there is mounting urgency to design and optimize novel strategies and drugs that delay the progression of this pathology and contain this trend. The new approaches should go beyond the current therapy focussed on the control of traditional risk factors such as hyperglycaemia and hypertension. In this scenario, drug repurposing constitutes an economic and feasible approach based on the discovery of useful activities for old drugs. Pentoxifylline is a nonselective phosphodiesterase inhibitor currently indicated for peripheral artery disease. Clinical trials and meta-analyses have shown renoprotection secondary to anti-inflammatory and antifibrotic effects in diabetic patients treated with this old known drug, which makes pentoxifylline a candidate for repurposing in diabetic kidney disease.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, Madrid, Spain
| | - María Dolores Sanchez-Niño
- Departamento de Nefrología e Hipertensión, IIS-Fundación Jiménez Díaz y Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ainhoa González-Luis
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Escuela de doctorado, Universidad de La Laguna, La Laguna, Spain
| | - Carla Ferri
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Escuela de doctorado, Universidad de La Laguna, La Laguna, Spain
| | - Alberto Martín-Olivera
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Escuela de doctorado, Universidad de La Laguna, La Laguna, Spain
| | - Ernesto Martín-Núñez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Fernandez-Fernandez
- Departamento de Nefrología e Hipertensión, IIS-Fundación Jiménez Díaz y Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040 (RD21/0005/0001), Instituto de Salud Carlos III, Madrid, Spain
| | - Víctor G Tagua
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Ortiz
- Departamento de Nefrología e Hipertensión, IIS-Fundación Jiménez Díaz y Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040 (RD21/0005/0001), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan F Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
185
|
Kim Y, Kim W, Kim JK, Moon JY, Park S, Park CW, Park HS, Song SH, Yoo TH, Lee SY, Lee EY, Lee J, Jin K, Cha DR, Cha JJ, Han SY, On behalf of the Korean Diabetic Kidney Disease Working Group. Blood Pressure Control in Patients with Diabetic Kidney Disease. Electrolyte Blood Press 2022; 20:39-48. [PMID: 36688208 PMCID: PMC9827046 DOI: 10.5049/ebp.2022.20.2.39] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most common cause of end-stage kidney disease. Blood pressure (BP) control can reduce the risks of cardiovascular (CV) morbidity, mortality, and kidney disease progression. Recently, the Kidney Disease: Improving Global Outcomes (KDIGO) guidelines have suggested the implementation of a more intensive BP control with a target systolic BP (SBP) of <120 mmHg based on the evidence that the CV benefits obtained is outweighed by the kidney injury risk associated with a lower BP target. However, an extremely low BP level may paradoxically aggravate renal function and CV outcomes. Herein, we aimed to review the existing literature regarding optimal BP control using medications for DKD.
Collapse
Affiliation(s)
- Yaeni Kim
- Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University, Seoul, Republic of Korea
| | - Won Kim
- Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Jwa-Kyung Kim
- Department of Internal Medicine & Kidney Research Institute, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Ju Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Samel Park
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Cheol Whee Park
- Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University, Seoul, Republic of Korea
| | - Hoon Suk Park
- Division of Nephrology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, The Catholic University, Seoul, Republic of Korea
| | - Sang Heon Song
- Department of Internal Medicine & Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, Republic of Korea
| | - So-Young Lee
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Eun Young Lee
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Jeonghwan Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Kyubok Jin
- Department of Internal Medicine, Keimyung University School of Medicine, Keimyung University Kidney Institute, Daegu, Republic of Korea
| | - Dae Ryong Cha
- Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Jin Joo Cha
- Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Sang Youb Han
- Department of Internal Medicine, Inje University College of Medicine, Ilsan-Paik Hospital, Goyang, Republic of Korea
| | | |
Collapse
|
186
|
Selvaskandan H, Gonzalez-Martin G, Barratt J, Cheung CK. IgA nephropathy: an overview of drug treatments in clinical trials. Expert Opin Investig Drugs 2022; 31:1321-1338. [PMID: 36588457 DOI: 10.1080/13543784.2022.2160315] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION IgA nephropathy (IgAN) is the commonest primary glomerulonephritis worldwide and may progress to end-stage kidney disease (ESKD) within a 10-20 year period. Its slowly progressive course has made clinical trials challenging to perform, however the acceptance of proteinuria reduction as a surrogate end point has significantly improved the feasibility of conducting clinical trials in IgAN, with several novel and repurposed therapies currently undergoing assessment. Already, interim results are demonstrating value to some of these, offering great hope to those with IgAN. AREAS COVERED This review explores the rationale, candidates, clinical precedents, and trial status of therapies that are currently or have recently been evaluated for efficacy in IgAN. All IgAN trials registered with the U.S. National Library of Medicine; ClinicalTrials.gov were reviewed. EXPERT OPINION For the first time, effective treatment options beyond supportive care are becoming available for those with IgAN. This is the culmination of commendable international efforts and signifies a new era for those with IgAN. As more therapies become available, future challenges will revolve around deciding which treatments are most appropriate for individual patients, which is likely to push IgAN into the realm of precision medicine.
Collapse
Affiliation(s)
- Haresh Selvaskandan
- John Walls Renal Unit, University Hospitals Leicester NHS Trust, Leicester, UK.,Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | | | - Jonathan Barratt
- John Walls Renal Unit, University Hospitals Leicester NHS Trust, Leicester, UK.,Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Chee Kay Cheung
- John Walls Renal Unit, University Hospitals Leicester NHS Trust, Leicester, UK.,Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
187
|
Limonte CP, Kretzler M, Pennathur S, Pop-Busui R, de Boer IH. Present and future directions in diabetic kidney disease. J Diabetes Complications 2022; 36:108357. [PMID: 36403478 PMCID: PMC9764992 DOI: 10.1016/j.jdiacomp.2022.108357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022]
Abstract
Diabetic kidney disease (DKD) is the leading cause of kidney failure and is associated with substantial risk of cardiovascular disease, morbidity, and mortality. Traditionally, DKD prevention and management have focused on addressing hyperglycemia, hypertension, obesity, and renin-angiotensin system activation as important risk factors for disease. Over the last decade, sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide-1 receptor agonists have been shown to meaningfully reduce risk of diabetes-related kidney and cardiovascular complications. Additional agents demonstrating benefit in DKD such as non-steroidal mineralocorticoid receptor antagonists and endothelin A receptor antagonists are further contributing to the growing arsenal of DKD therapies. With the availability of greater therapeutic options comes the opportunity to individually optimize DKD prevention and management. Novel applications of transcriptomic, proteomic, and metabolomic/lipidomic technologies, as well as use of artificial intelligence and reinforced learning methods through consortia such as the Kidney Precision Medicine Project and focused studies in established cohorts hold tremendous promise for advancing our understanding and treatment of DKD. Specifically, enhanced understanding of the molecular mechanisms underlying DKD pathophysiology may allow for the identification of new mechanism-based DKD subtypes and the development and implementation of targeted therapies. Implementation of personalized care approaches has the potential to revolutionize DKD care.
Collapse
Affiliation(s)
- Christine P Limonte
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA, USA; Kidney Research Institute, University of Washington, Seattle, WA, USA.
| | - Matthias Kretzler
- Division of Nephrology, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Subramaniam Pennathur
- Division of Nephrology, University of Michigan, Ann Arbor, MI, USA; Michigan Regional Comprehensive Metabolomics Resource Core, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Rodica Pop-Busui
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Ian H de Boer
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA, USA; Kidney Research Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
188
|
Heimbürger SMN, Hoe B, Nielsen CN, Bergman NC, Skov-Jeppesen K, Hartmann B, Holst JJ, Dela F, Overgaard J, Størling J, Vilsbøll T, Dejgaard TF, Havelund JF, Gorshkov V, Kjeldsen F, Færgeman NJ, Madsen MR, Christensen MB, Knop FK. GIP Affects Hepatic Fat and Brown Adipose Tissue Thermogenesis but Not White Adipose Tissue Transcriptome in Type 1 Diabetes. J Clin Endocrinol Metab 2022; 107:3261-3274. [PMID: 36111559 DOI: 10.1210/clinem/dgac542] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 02/13/2023]
Abstract
CONTEXT Glucose-dependent insulinotropic polypeptide (GIP) has been proposed to exert insulin-independent effects on lipid and bone metabolism. OBJECTIVE We investigated the effects of a 6-day subcutaneous GIP infusion on circulating lipids, white adipose tissue (WAT), brown adipose tissue (BAT), hepatic fat content, inflammatory markers, respiratory exchange ratio (RER), and bone homeostasis in patients with type 1 diabetes. METHODS In a randomized, placebo-controlled, double-blind, crossover study, 20 men with type 1 diabetes underwent a 6-day continuous subcutaneous infusion with GIP (6 pmol/kg/min) and placebo (saline), with an interposed 7-day washout period. RESULTS During GIP infusion, participants (26 ± 8 years [mean ± SD]; BMI 23.8 ± 1.8 kg/m2; glycated hemoglobin A1c 51 ± 10 mmol/mol [6.8 ± 3.1%]) experienced transiently increased circulating concentrations of nonesterified fatty acid (NEFA) (P = 0.0005), decreased RER (P = 0.009), indication of increased fatty acid β-oxidation, and decreased levels of the bone resorption marker C-terminal telopeptide (P = 0.000072) compared with placebo. After 6 days of GIP infusion, hepatic fat content was increased by 12.6% (P = 0.007) and supraclavicular skin temperature, a surrogate indicator of BAT activity, was increased by 0.29 °C (P < 0.000001) compared with placebo infusion. WAT transcriptomic profile as well as circulating lipid species, proteome, markers of inflammation, and bone homeostasis were unaffected. CONCLUSION Six days of subcutaneous GIP infusion in men with type 1 diabetes transiently decreased bone resorption and increased NEFA and β-oxidation. Further, hepatic fat content, and supraclavicular skin temperature were increased without affecting WAT transcriptomics, the circulating proteome, lipids, or inflammatory markers.
Collapse
Affiliation(s)
- Sebastian Møller Nguyen Heimbürger
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Translational Pharmacology, Zealand Pharma A/S, 2860 Søborg, Denmark
| | - Bjørn Hoe
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Chris Neumann Nielsen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
| | - Natasha Chidekel Bergman
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
| | - Kirsa Skov-Jeppesen
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bolette Hartmann
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Juul Holst
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Flemming Dela
- Xlab, Center for Healthy Ageing, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Geriatrics, Bispebjerg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark
| | - Julie Overgaard
- Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Joachim Størling
- Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thomas Fremming Dejgaard
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Jesper Foged Havelund
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Vladimir Gorshkov
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Frank Kjeldsen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Nils Joakim Færgeman
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | | | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark
| | - Filip Krag Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
189
|
Chen DQ, Wu J, Li P. Therapeutic mechanism and clinical application of Chinese herbal medicine against diabetic kidney disease. Front Pharmacol 2022; 13:1055296. [PMID: 36408255 PMCID: PMC9669587 DOI: 10.3389/fphar.2022.1055296] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 12/25/2023] Open
Abstract
Diabetic kidney disease (DKD) is the major complications of type 1 and 2 diabetes, and is the predominant cause of chronic kidney disease and end-stage renal disease. The treatment of DKD normally consists of controlling blood glucose and improving kidney function. The blockade of renin-angiotensin-aldosterone system and the inhibition of sodium glucose cotransporter 2 (SGLT2) have become the first-line therapy of DKD, but such treatments have been difficult to effectively block continuous kidney function decline, eventually resulting in kidney failure and cardiovascular comorbidities. The complex mechanism of DKD highlights the importance of multiple therapeutic targets in treatment. Chinese herbal medicine (active compound, extract and formula) synergistically improves metabolism regulation, suppresses oxidative stress and inflammation, inhibits mitochondrial dysfunction, and regulates gut microbiota and related metabolism via modulating GLP-receptor, SGLT2, Sirt1/AMPK, AGE/RAGE, NF-κB, Nrf2, NLRP3, PGC-1α, and PINK1/Parkin pathways. Clinical trials prove the reliable evidences for Chinese herbal medicine against DKD, but more efforts are still needed to ensure the efficacy and safety of Chinese herbal medicine. Additionally, the ideal combined therapy of Chinese herbal medicine and conventional medicine normally yields more favorable benefits on DKD treatment, laying the foundation for novel strategies to treat DKD.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| | - Jun Wu
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
190
|
Lees JS, Dobbin SJH, Elyan BMP, Gilmour DF, Tomlinson LP, Lang NN, Mark PB. A systematic review and meta-analysis of the effect of intravitreal VEGF inhibitors on cardiorenal outcomes. Nephrol Dial Transplant 2022:6786281. [PMID: 36318455 DOI: 10.1093/ndt/gfac305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Vascular endothelial growth factor inhibitors (VEGFi) have transformed the treatment of many retinal diseases, including diabetic maculopathy. Increasing evidence supports systemic absorption of intravitreal VEGFi and development of significant cardiorenal side effects. METHODS Systematic review and meta-analysis (PROSPERO: CRD42020189037) of randomised controlled trials of intravitreal VEGFi treatments (bevacizumab, ranibizumab and aflibercept) for any eye disease. Outcomes of interest were cardiorenal side effects (hypertension, proteinuria, kidney function decline and heart failure). Fixed-effects meta-analyses were conducted where possible. RESULTS There were 78 trials (81 comparisons; 13 175 participants) that met criteria for inclusion: 47% were trials in diabetic eye disease. Hypertension (29 trials; 8570 participants) was equally common in VEGFi and control groups (7.3 versus 5.4%; RR 1.08 [0.91; 1.28]). New or worsening heart failure (10 trials; 3384 participants) had similar incidence in VEGFi and control groups (RR 1.03 [0.70; 1.51]). Proteinuria (5 trials; 1902 participants) was detectable in some VEGFi-treated participants (0.2%) but not controls (0.0%; RR 4.43 [0.49; 40.0]). Kidney function decline (9 trials; 3471 participants) was similar in VEGFi and control groups. In participants with diabetic eye disease, risk of all-cause mortality was higher in VEGFi-treated participants (RR 1.62 [1.04; 2.46]). CONCLUSION In trials of intravitreal VEGFi, we did not identify an increased risk of cardiorenal outcomes, though these outcomes were reported in only a minority of cases. There was an increased risk of death in VEGFi-treated participants with diabetic eye disease. Additional scrutiny of post-licensing observational data may improve recognition of safety concerns in VEGFi-treated patients.
Collapse
Affiliation(s)
- Jennifer S Lees
- School of Cardiovascular and Metabolic Health, College of Medical and Veterinary Sciences, University of Glasgow, Glasgow, UK
| | - Stephen J H Dobbin
- School of Cardiovascular and Metabolic Health, College of Medical and Veterinary Sciences, University of Glasgow, Glasgow, UK
| | - Benjamin M P Elyan
- School of Cardiovascular and Metabolic Health, College of Medical and Veterinary Sciences, University of Glasgow, Glasgow, UK
| | | | | | - Ninian N Lang
- School of Cardiovascular and Metabolic Health, College of Medical and Veterinary Sciences, University of Glasgow, Glasgow, UK
| | - Patrick B Mark
- School of Cardiovascular and Metabolic Health, College of Medical and Veterinary Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
191
|
Smeijer JD, Koomen JV, Kohan DE, McMurray JJV, Bakris GL, Correa‐Rotter R, Hou F, Kitzman DW, Makino H, Mayer G, Nowicki M, Perkovic V, Rossing P, Tobe S, Parving H, de Zeeuw D, Heerspink HJL. Organic Anion Transporter Gene Variants Associated With Plasma Exposure and Long-Term Response to Atrasentan in Patients With Diabetic Kidney Disease. Clin Pharmacol Ther 2022; 112:1098-1107. [PMID: 35892316 PMCID: PMC9804438 DOI: 10.1002/cpt.2721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/10/2022] [Indexed: 01/07/2023]
Abstract
Plasma exposure of the endothelin receptor antagonist atrasentan varies between individuals and is associated with nephroprotective effects and the risk of heart failure. We examined the influence of genetic polymorphisms on atrasentan plasma exposure and pharmacodynamic effects. We performed a substudy of the Study of Diabetic Nephropathy With Atrasentan (SONAR) trial which enrolled adults with type 2 diabetes and chronic kidney disease (estimated glomerular filtration rate: 25-75 mL/min/1.73 m2 , and a urine albumin-to-creatinine ratio of 300-5,000 mg/g). Single nucleotide polymorphisms (SNPs) were determined for prespecified membrane transporters, metabolizing enzymes, and the endothelin-1 peptide. The associations among genotype, atrasentan plasma exposure, and the effect of atrasentan on the prespecified kidney and heart failure hospitalization (HHF) outcomes was assessed with Cox proportional hazards regression models. Of 3,668 patients randomized, 2,329 (63.5%) consented to genotype analysis. Two SNPs in the SLCO1B1 gene (rs4149056 and rs2306283), encoding the hepatic organic anion transporter 1B1 (OATP1B1), showed the strongest association with atrasentan plasma exposure. Based on their SLCO1B1 genotype, patients were classified into normal (atrasentan area under the plasma-concentration time curve from zero to infinity (AUC0-inf ) 41.3 ng·h/mL) or slow (atrasentan AUC0-inf 49.7 ng·h/mL, P < 0.001) OATP1B1 transporter phenotypes. Among patients with a normal OATP1B1 phenotype, the hazard ratio (HR) with atrasentan for the primary kidney and HHF outcomes were 0.61 (95% confidence interval (CI): 0.45-0.81) and 1.35 (95% CI: 0.84-2.13), respectively. In the slow transporter phenotype, HRs for kidney and HHF outcomes were 1.95 (95% CI: 0.95-4.03, P-interaction normal phenotype = 0.004), and 4.18 (95% CI: 1.37-12.7, P-interaction normal phenotype = 0.060), respectively. OATP1B1 gene polymorphisms are associated with significant between-patient variability in atrasentan plasma exposure and long-term efficacy and safety.
Collapse
Affiliation(s)
- J. David Smeijer
- Department of Clinical Pharmacy and PharmacologyUniversity of GroningenGroningenThe Netherlands
| | - Jeroen V. Koomen
- Department of Clinical Pharmacy and PharmacologyUniversity of GroningenGroningenThe Netherlands
| | - Donald E. Kohan
- Division of NephrologyUniversity of Utah HealthSalt Lake CityUtahUSA
| | - John J. V. McMurray
- British Heart Foundation Cardiovascular Research CentreUniversity of GlasgowGlasgowUK
| | - George L. Bakris
- American Society of Hypertension Comprehensive Hypertension CenterUniversity of Chicago Medicine and Biological SciencesChicagoIllinoisUSA
| | | | - Fan‐Fan Hou
- Division of Nephrology, Nanfang HospitalSouthern Medical University, National Clinical Research Center for Kidney DiseaseGuangzhouChina
| | - Dalane W. Kitzman
- Sections on Cardiovascular Disease and GeriatricsWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | | | - Gert Mayer
- Department of Internal Medicine IV (Nephrology and Hypertension)Medical University of InnsbruckInnsbruckAustria
| | - Michal Nowicki
- Department of Nephrology, Hypertension and Kidney TransplantationMedical University of LodzLodzPoland
| | - Vlado Perkovic
- George Institute for Global HealthNewtownNew South WalesAustralia,University of New South WalesSydneyNew South WalesAustralia
| | - Peter Rossing
- Steno Diabetes CenterGentofteDenmark,Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Sheldon Tobe
- Division of Nephrology, Sunnybrook Health Sciences CentreUniversity of Toronto and the Northern Ontario School of MedicineTorontoOntarioCanada
| | - Hans‐Henrik Parving
- Department of Medical EndocrinologyRigshospitalet Copenhagen University HospitalCopenhagenDenmark
| | - Dick de Zeeuw
- Department of Clinical Pharmacy and PharmacologyUniversity of GroningenGroningenThe Netherlands
| | - Hiddo J. L. Heerspink
- Department of Clinical Pharmacy and PharmacologyUniversity of GroningenGroningenThe Netherlands,George Institute for Global HealthNewtownNew South WalesAustralia
| |
Collapse
|
192
|
Heerspink HJL, Sattar N, Pavo I, Haupt A, Duffin KL, Yang Z, Wiese RJ, Tuttle KR, Cherney DZI. Effects of tirzepatide versus insulin glargine on kidney outcomes in type 2 diabetes in the SURPASS-4 trial: post-hoc analysis of an open-label, randomised, phase 3 trial. Lancet Diabetes Endocrinol 2022; 10:774-785. [PMID: 36152639 DOI: 10.1016/s2213-8587(22)00243-1] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND In the SURPASS-4 trial, the dual GIP and GLP-1 receptor agonist tirzepatide reduced HbA1c concentrations, bodyweight, and blood pressure more than titrated daily insulin glargine in people with type 2 diabetes inadequately controlled on oral diabetes treatments and with high cardiovascular risk. We aimed to compare the effects of tirzepatide and insulin glargine on kidney parameters and outcomes in people with type 2 diabetes. METHODS We did a post-hoc analysis of data from SURPASS-4, a randomised, open-label, parallel-group, phase 3 study at 187 sites (including private practice, research institutes, and hospitals) in 14 countries. Eligible participants were adults (age ≥18 years), with type 2 diabetes treated with any combination of metformin, sulfonylurea, or SGLT2 inhibitor, and with baseline HbA1c of 7·5-10·5% (58-91 mmol/mol), BMI of 25 kg/m2 or greater, and established cardiovascular disease or a high risk of cardiovascular events. Randomisation via an interactive web-response system was 1:1:1:3 to a once-weekly subcutaneous injection of tirzepatide (5 mg, 10 mg, or 15 mg) or a once-daily subcutaneous injection of titrated insulin glargine (100 U/mL). The study included up to 104 weeks of treatment, with a median treatment duration of 85 weeks. We compared the rates of estimated glomerular filtration rate (eGFR) decline and the urine albumin-creatinine ratio (UACR) between the combined tirzepatide groups and the insulin glargine group in the modified intention-to-treat population. The kidney composite outcome was time to first occurrence of eGFR decline of at least 40% from baseline, end-stage kidney disease, death owing to kidney failure, or new-onset macroalbuminuria. This study is registered with ClinicalTrials.gov, NCT03730662. FINDINGS Between Nov 20, 2018, and Dec 30, 2019, we screened 3045 people, of whom 1043 (34%) were ineligible, and 2002 (66%) were randomly assigned to a study drug (997 to tirzepatide and 1005 to insulin glargine). 1995 (>99%) of 2002 received at least one dose of tirzepatide (n=995) or insulin glargine (n=1000). At baseline, participants had a mean eGFR of 81·3 (SD 21·11) mL/min per 1·73 m2 and a median UACR of 15·0 mg/g (IQR 5·0-55·8). The mean rate of eGFR decline was -1·4 (SE 0·2) mL/min per 1·73 m2 per year in the combined tirzepatide groups and -3·6 (0·2) mL/min per 1·73 m2 per year in the insulin group (between-group difference 2·2 [95% CI 1·6 to 2·8]). Compared with insulin glargine, the reduction in the annual rate of eGFR decline induced by tirzepatide was more pronounced in participants with eGFR less than 60 mL/min per 1·73 m2 than in those with eGFR 60 mL/min per 1·73 m2 or higher (between-group difference 3·7 [95% CI 2·4 to 5·1]). UACR increased from baseline to follow-up with insulin glargine (36·9% [95% CI 26·0 to 48·7]) but not with tirzepatide (-6·8% [-14·1 to 1·1]; between-group difference -31·9% [-37·7 to -25·7]). Participants who received tirzepatide showed a significantly lower occurrence of the composite kidney endpoint compared with those who received insulin glargine (hazard ratio 0·58 [95% CI 0·43 to 0·80]). INTERPRETATION Our analysis suggests that in people with type 2 diabetes and high cardiovascular risk, tirzepatide slowed the rate of eGFR decline and reduced UACR in clinically meaningful ways compared with insulin glargine. FUNDING Eli Lilly and Company.
Collapse
Affiliation(s)
- Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands; The George Institute for Global Health, Sydney, NSW, Australia.
| | - Naveed Sattar
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Imre Pavo
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Axel Haupt
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | | | - David Z I Cherney
- Division of Nephrology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
193
|
Farrah TE, Melville V, Czopek A, Fok H, Bruce L, Mills NL, Bailey MA, Webb DJ, Dear JW, Dhaun N. Arterial stiffness, endothelial dysfunction and impaired fibrinolysis are pathogenic mechanisms contributing to cardiovascular risk in ANCA-associated vasculitis. Kidney Int 2022; 102:1115-1126. [PMID: 35998848 DOI: 10.1016/j.kint.2022.07.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 06/20/2022] [Accepted: 07/11/2022] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease is a complication of systemic inflammatory diseases including anti-neutrophil cytoplasm antibody-associated vasculitis (AAV). The mechanisms of cardiovascular morbidity in AAV are poorly understood, and risk-reduction strategies are lacking. Therefore, in a series of double-blind, randomized case-control forearm plethysmography and crossover systemic interventional studies, we examined arterial stiffness and endothelial function in patients with AAV in long-term disease remission and in matched healthy volunteers (32 each group). The primary outcome for the case-control study was the difference in endothelium-dependent vasodilation between health and AAV, and for the crossover study was the difference in pulse wave velocity (PWV) between treatment with placebo and selective endothelin-A receptor antagonism. Parallel in vitro studies of circulating monocytes and platelets explored mechanisms. Compared to healthy volunteers, patients with AAV had 30% reduced endothelium-dependent vasodilation and 50% reduced acute release of endothelial active tissue plasminogen activator (tPA), both significant in the case-control study. Patients with AAV had significantly increased arterial stiffness (PWV: 7.3 versus 6.4 m/s). Plasma endothelin-1 was two-fold higher in AAV and independently predicted PWV and tPA release. Compared to placebo, both selective endothelin-A and dual endothelin-A/B receptor blockade reduced PWV and increased tPA release in AAV in the crossover study. Mechanistically, patients with AAV had increased platelet activation, more platelet-monocyte aggregates, and altered monocyte endothelin receptor function, reflecting reduced endothelin-1 clearance. Patients with AAV in long-term remission have elevated cardiovascular risk and endothelin-1 contributes to this. Thus, our data support a role for endothelin-blockers to reduce cardiovascular risk by reducing arterial stiffness and increasing circulating tPA activity.
Collapse
Affiliation(s)
- Tariq E Farrah
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK; Clinical Research Centre, University of Edinburgh, Western General Hospital, Edinburgh, UK; Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Vanessa Melville
- Clinical Research Centre, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Alicja Czopek
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Henry Fok
- Department of Clinical Pharmacology, Kings College London, St Thomas' Hospital, London, UK
| | - Lorraine Bruce
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Nicholas L Mills
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK; Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Matthew A Bailey
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - David J Webb
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK; Clinical Research Centre, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - James W Dear
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Neeraj Dhaun
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK; Clinical Research Centre, University of Edinburgh, Western General Hospital, Edinburgh, UK; Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK.
| |
Collapse
|
194
|
Vergara A, Jacobs-Cacha C, Llorens-Cebria C, Ortiz A, Martinez-Diaz I, Martos N, Dominguez-Báez P, Van den Bosch MM, Bermejo S, Pieper MP, Benito B, Soler MJ. Enhanced Cardiorenal Protective Effects of Combining SGLT2 Inhibition, Endothelin Receptor Antagonism and RAS Blockade in Type 2 Diabetic Mice. Int J Mol Sci 2022; 23:12823. [PMID: 36361612 PMCID: PMC9656616 DOI: 10.3390/ijms232112823] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 07/30/2023] Open
Abstract
Treatments with sodium-glucose 2 cotransporter inhibitors (SGLT2i) or endothelin receptor antagonists (ERA) have shown cardiorenal protective effects. The present study aimed to evaluate the cardiorenal beneficial effects of the combination of SGLT2i and ERA on top of renin-angiotensin system (RAS) blockade. Type 2 diabetic mice (db/db) were treated with different combinations of an SGLT2i (empagliflozin), an ERA (atrasentan), and an angiotensin-converting enzyme inhibitor (ramipril) for 8 weeks. Vehicle-treated diabetic mice and non-diabetic mice were included as controls. Weight, blood glucose, blood pressure, and kidney and heart function were monitored during the study. Kidneys and heart were collected for histological examination and to study the intrarenal RAS. Treatment with empagliflozin alone or combined significantly decreased blood glucose compared to vehicle-treated db/db. The dual and triple therapies achieved significantly greater reductions in diastolic blood pressure than ramipril alone. Compared to vehicle-treated db/db, empagliflozin combined with ramipril or in triple therapy significantly prevented GFR increase, but only the triple combination exerted greater protection against podocyte loss. In the heart, empagliflozin alone or combined reduced cardiac isovolumetric relaxation time (IVRT) and left atrium (LA) diameter as compared to vehicle-treated db/db. However, only the triple therapy was able to reduce cardiomyocyte area. Importantly, the add-on triple therapy further enhanced the intrarenal ACE2/Ang(1-7)/Mas protective arm of the RAS. These data suggest that triple therapy with empagliflozin, atrasentan and ramipril show synergistic cardiorenal protective effects in a type 2 diabetic mouse model.
Collapse
Affiliation(s)
- Ander Vergara
- Nephrology and Kidney Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Nephrology Department, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Conxita Jacobs-Cacha
- Nephrology and Kidney Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Carmen Llorens-Cebria
- Nephrology and Kidney Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Alberto Ortiz
- IIS-Fundación Jiménez Diaz, Fundación Renal Iñigo Álvarez de Toledo-IRSIN, REDinREN, Instituto de Investigación Carlos III, Universidad Autónoma de Madrid, Av. de los Reyes Católicos 2, 28040 Madrid, Spain
| | - Irene Martinez-Diaz
- Nephrology and Kidney Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Nerea Martos
- Nephrology and Kidney Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Pamela Dominguez-Báez
- Nephrology and Kidney Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Mireia Molina Van den Bosch
- Nephrology and Kidney Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Sheila Bermejo
- Nephrology and Kidney Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Nephrology Department, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Michael Paul Pieper
- Cardio-Metabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397 Biberach an der Riß, Germany
| | - Begoña Benito
- Cardiology Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Cardiology Department, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Deparment of Medicine, Universitat Autònoma de Barcelona, Av. de Can Domènech, 08193 Bellaterra, Spain
| | - Maria Jose Soler
- Nephrology and Kidney Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Nephrology Department, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| |
Collapse
|
195
|
de Cos M, Meliambro K, Campbell KN. Novel Treatment Paradigms: Focal Segmental Glomerulosclerosis. Kidney Int Rep 2022; 8:30-35. [PMID: 36644367 PMCID: PMC9831941 DOI: 10.1016/j.ekir.2022.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a histologic pattern of injury defined by the presence of sclerosis in some (segmental) of certain glomeruli (focal). On electron microscopy, it is characterized by a variable degree of podocyte foot process effacement and gaps in the coverage of the glomerular basement membrane. The pattern of injury occurs when podocytes, highly differentiated cells with limited regenerative capacity, are reduced in number. The heterogeneity in underlying causes of podocyte loss results in equally variable clinical phenotypes. Recent work acknowledging advances in defining the genetic and immunologic basis of disease has redefined the classification of FSGS. Unprecedented clinical trial activity and efficacy of repurposed agents presents hope for improved therapeutic options. This minireview summarizes recent advances with a focus on novel treatment paradigms in FSGS.
Collapse
Affiliation(s)
- Marina de Cos
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kristin Meliambro
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kirk N. Campbell
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Correspondence: Kirk N. Campbell, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.
| |
Collapse
|
196
|
Costello HM, Johnston JG, Juffre A, Crislip GR, Gumz ML. Circadian clocks of the kidney: function, mechanism, and regulation. Physiol Rev 2022; 102:1669-1701. [PMID: 35575250 PMCID: PMC9273266 DOI: 10.1152/physrev.00045.2021] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/22/2022] Open
Abstract
An intrinsic cellular circadian clock is located in nearly every cell of the body. The peripheral circadian clocks within the cells of the kidney contribute to the regulation of a variety of renal processes. In this review, we summarize what is currently known regarding the function, mechanism, and regulation of kidney clocks. Additionally, the effect of extrarenal physiological processes, such as endocrine and neuronal signals, on kidney function is also reviewed. Circadian rhythms in renal function are an integral part of kidney physiology, underscoring the importance of considering time of day as a key biological variable. The field of circadian renal physiology is of tremendous relevance, but with limited physiological and mechanistic information on the kidney clocks this is an area in need of extensive investigation.
Collapse
Affiliation(s)
- Hannah M Costello
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Jermaine G Johnston
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida
| | - Alexandria Juffre
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| | - G Ryan Crislip
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Michelle L Gumz
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida
| |
Collapse
|
197
|
Documento de consenso del Grupo de Estudio de Enfermedades Glomerulares de la Sociedad Española de Nefrología (GLOSEN) para el diagnóstico y tratamiento de la nefritis lúpica. Nefrologia 2022. [DOI: 10.1016/j.nefro.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
198
|
Gumz ML, Hyndman KA. The Seventeenth International Conference on Endothelin (ET-17). Can J Physiol Pharmacol 2022; 100:10.1139/cjpp-2022-0091. [PMID: 36169157 PMCID: PMC10043037 DOI: 10.1139/cjpp-2022-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Seventeenth International Conference on Endothelin (ET-17) was held during 4-7 October 2021 and because of the SARS-CoV-2 pandemic it was held virtually. Sponsored by the American Physiological Society, ET-17 was held over 4 half-days, with exciting studies related to all organ systems presented. Since the Lancet article reporting the successful SONAR clinical trial with endothelin receptor A blockade in diabetic nephropathy, there has been renewed interest in the use of endothelin receptor antagonists in the treatment of a variety of diseases. From the rigorous preclinical studies to the latest clinical trials, ET-17 was full of exciting science, some of which is reported in this special issue. We welcomed new labs to the meeting and everyone left with the impression that ET-related research is a vibrant field with very significant discoveries being made.
Collapse
Affiliation(s)
- Michelle L. Gumz
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | - Kelly A. Hyndman
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
199
|
Salvador VD, Bakris GL. Novel antihypertensive agents for resistant hypertension: what does the future hold? Hypertens Res 2022; 45:1918-1928. [PMID: 36167808 DOI: 10.1038/s41440-022-01025-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022]
Abstract
Finding complementary compelling novel therapeutic agents for better control of blood pressure in people with resistant hypertension is moving into unchartered territory. The latest therapeutic developments explore approaches in the clinical arena that were either not examined or could only be examined in animal models two decades ago. Four main mechanisms have now been explored and operationalized in drug development: (a) mineralocorticoid receptor blockade using a nonsteroidal structure with many fewer side effects, (b) an aminopeptidase A inhibitor that has central effects on vasopressin, (c) a combined endothelin A and B receptor blocker and (d) an aldosterone synthase inhibitor devoid of glucocorticoid activity. All these agents are either completing Phase II development and starting Phase III or are involved in the ongoing recruitment of Phase III trials. Additionally, novel agents use antisense inhibition to block angiotensinogen development in the liver. These agents are discussed only for completeness, as they are still in Phase II trial development. Last, another agent that was initially being developed as an antihypertensive and once the data were reviewed by the company clearly showed efficacy as a heart failure agent was sacubitril/valsartan, which was ultimately approved. However, there are some discussions about reinvigorating the quest for an indication for hypertension, although no such steps have been formally initiated.
Collapse
Affiliation(s)
- Vincent D Salvador
- Department of Medicine, Am Heart Assoc. Comprehensive Hypertension Center, University of Chicago Medicine, Chicago, IL, USA
| | - George L Bakris
- Department of Medicine, Am Heart Assoc. Comprehensive Hypertension Center, University of Chicago Medicine, Chicago, IL, USA.
| |
Collapse
|
200
|
Endothelial and Vascular Smooth Muscle Dysfunction in Hypertension. Biochem Pharmacol 2022; 205:115263. [PMID: 36174768 DOI: 10.1016/j.bcp.2022.115263] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/11/2022]
Abstract
The development of essential hypertension involves several factors. Vascular dysfunction, characterized by endothelial dysfunction, low-grade inflammation and structural remodeling, plays an important role in the initiation and maintenance of essential hypertension. Although the mechanistic pathways by which essential hypertension develops are poorly understood, several pharmacological classes available on the clinical settings improve blood pressure by interfering in the cardiac output and/or vascular function. This review is divided in two major sections. The first section depicts the major molecular pathways as renin angiotensin aldosterone system (RAAS), endothelin, nitric oxide signalling pathway and oxidative stress in the development of vascular dysfunction. The second section describes the role of some pharmacological classes such as i) RAAS inhibitors, ii) dual angiotensin receptor-neprilysin inhibitors, iii) endothelin-1 receptor antagonists, iv) soluble guanylate cyclase modulators, v) phosphodiesterase type 5 inhibitors and vi) sodium-glucose cotransporter 2 inhibitors in the context of hypertension. Some classes are already approved in the treatment of hypertension, but others are not yet approved. However, due to their potential benefits these classes were included.
Collapse
|