151
|
Miyata S, Tominaga K, Sakashita E, Urabe M, Onuki Y, Gomi A, Yamaguchi T, Mieno M, Mizukami H, Kume A, Ozawa K, Watanabe E, Kawai K, Endo H. Comprehensive Metabolomic Analysis of IDH1 R132H Clinical Glioma Samples Reveals Suppression of β-oxidation Due to Carnitine Deficiency. Sci Rep 2019; 9:9787. [PMID: 31278288 PMCID: PMC6611790 DOI: 10.1038/s41598-019-46217-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 06/25/2019] [Indexed: 11/13/2022] Open
Abstract
Gliomas with Isocitrate dehydrogenase 1 (IDH1) mutation have alterations in several enzyme activities, resulting in various metabolic changes. The aim of this study was to determine a mechanism for the better prognosis of gliomas with IDH mutation by performing metabolomic analysis. To understand the metabolic state of human gliomas, we analyzed clinical samples obtained from surgical resection of glioma patients (grades II–IV) with or without the IDH1 mutation, and compared the results with U87 glioblastoma cells overexpressing IDH1 or IDH1R132H. In clinical samples of gliomas with IDH1 mutation, levels of D-2-hydroxyglutarate (D-2HG) were increased significantly compared with gliomas without IDH mutation. Gliomas with IDH mutation also showed decreased intermediates in the tricarboxylic acid cycle and pathways involved in the production of energy, amino acids, and nucleic acids. The marked difference in the metabolic profile in IDH mutant clinical glioma samples compared with that of mutant IDH expressing cells includes a decrease in β-oxidation due to acyl-carnitine and carnitine deficiencies. These metabolic changes may explain the lower cell division rate observed in IDH mutant gliomas and may provide a better prognosis in IDH mutant gliomas.
Collapse
Affiliation(s)
- Satsuki Miyata
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan.
| | - Kaoru Tominaga
- Department of Biochemistry, Jichi Medical University, Tochigi, Japan.
| | - Eiji Sakashita
- Department of Biochemistry, Jichi Medical University, Tochigi, Japan
| | - Masashi Urabe
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Yoshiyuki Onuki
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Akira Gomi
- Department of Pediatric Neurosurgery, Jichi Children's Medical Center, Jichi Medical University, Tochigi, Japan
| | - Takashi Yamaguchi
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Makiko Mieno
- Department of Medical Informatics, Center for Information, Jichi Medical University, Tochigi, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Akihiro Kume
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Keiya Ozawa
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Eiju Watanabe
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Hitoshi Endo
- Department of Biochemistry, Jichi Medical University, Tochigi, Japan.
| |
Collapse
|
152
|
Biau J, Chautard E, Berthault N, de Koning L, Court F, Pereira B, Verrelle P, Dutreix M. Combining the DNA Repair Inhibitor Dbait With Radiotherapy for the Treatment of High Grade Glioma: Efficacy and Protein Biomarkers of Resistance in Preclinical Models. Front Oncol 2019; 9:549. [PMID: 31275862 PMCID: PMC6593092 DOI: 10.3389/fonc.2019.00549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/05/2019] [Indexed: 12/23/2022] Open
Abstract
High grade glioma relapses occur often within the irradiated volume mostly due to a high resistance to radiation therapy (RT). Dbait (which stands for DNA strand break bait) molecules mimic DSBs and trap DNA repair proteins, thereby inhibiting repair of DNA damage induced by RT. Here we evaluate the potential of Dbait to sensitize high grade glioma to RT. First, we demonstrated the radiosensitizer properties of Dbait in 6/9 tested cell lines. Then, we performed animal studies using six cell derived xenograft and five patient derived xenograft models, to show the clinical potential and applicability of combined Dbait+RT treatment for human high grade glioma. Using a RPPA approach, we showed that Phospho-H2AX/H2AX and Phospho-NBS1/NBS1 were predictive of Dbait efficacy in xenograft models. Our results provide the preclinical proof of concept that combining RT with Dbait inhibition of DNA repair could be of benefit to patients with high grade glioma.
Collapse
Affiliation(s)
- Julian Biau
- Centre de Recherche, Institut Curie, PSL Research University, Paris, France.,UMR3347, CNRS, Orsay, France.,U1021, INSERM, Orsay, France.,Research Department, Université Paris Sud, Orsay, France.,INSERM, U1240 IMoST, Université Clermont Auvergne, Clermont Ferrand, France.,Radiotherapy Department, Centre Jean Perrin, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Emmanuel Chautard
- INSERM, U1240 IMoST, Université Clermont Auvergne, Clermont Ferrand, France.,Pathology Department, Centre Jean Perrin, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Nathalie Berthault
- Centre de Recherche, Institut Curie, PSL Research University, Paris, France.,UMR3347, CNRS, Orsay, France.,U1021, INSERM, Orsay, France.,Research Department, Université Paris Sud, Orsay, France
| | - Leanne de Koning
- Laboratory of Proteomic Mass Spectrometry, Centre de Recherche, Institut Curie, Paris, France.,Department of Translational Research, Institut Curie, PSL Research University, Paris, France
| | - Frank Court
- GReD Laboratory, CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Department, DRCI, Clermont-Ferrand Hospital, Clermont-Ferrand, France
| | - Pierre Verrelle
- Centre de Recherche, Institut Curie, PSL Research University, Paris, France.,Radiotherapy Department, Centre Jean Perrin, Université Clermont Auvergne, Clermont-Ferrand, France.,U1196, INSERM, UMR9187, CNRS, Orsay, France.,Radiotherapy Department, Institut Curie Hospital, Paris, France
| | - Marie Dutreix
- Centre de Recherche, Institut Curie, PSL Research University, Paris, France.,UMR3347, CNRS, Orsay, France.,U1021, INSERM, Orsay, France.,Research Department, Université Paris Sud, Orsay, France
| |
Collapse
|
153
|
Triarico S, Maurizi P, Mastrangelo S, Attinà G, Capozza MA, Ruggiero A. Improving the Brain Delivery of Chemotherapeutic Drugs in Childhood Brain Tumors. Cancers (Basel) 2019; 11:824. [PMID: 31200562 PMCID: PMC6627959 DOI: 10.3390/cancers11060824] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/27/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022] Open
Abstract
The central nervous system (CNS) may be considered as a sanctuary site, protected from systemic chemotherapy by the meninges, the cerebrospinal fluid (CSF) and the blood-brain barrier (BBB). Consequently, parenchymal and CSF exposure of most antineoplastic agents following intravenous (IV) administration is lower than systemic exposure. In this review, we describe the different strategies developed to improve delivery of antineoplastic agents into the brain in primary and metastatic CNS tumors. We observed that several methods, such as BBB disruption (BBBD), intra-arterial (IA) and intracavitary chemotherapy, are not routinely used because of their invasiveness and potentially serious adverse effects. Conversely, intrathecal (IT) chemotherapy has been safely and widely practiced in the treatment of pediatric primary and metastatic tumors, replacing the neurotoxic cranial irradiation for the treatment of childhood lymphoma and acute lymphoblastic leukemia (ALL). IT chemotherapy may be achieved through lumbar puncture (LP) or across the Ommaya intraventricular reservoir, which are both described in this review. Additionally, we overviewed pharmacokinetics and toxic aspects of the main IT antineoplastic drugs employed for primary or metastatic childhood CNS tumors (such as methotrexate, cytosine arabinoside, hydrocortisone), with a concise focus on new and less used IT antineoplastic agents.
Collapse
Affiliation(s)
- Silvia Triarico
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy.
| | - Palma Maurizi
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy.
| | - Stefano Mastrangelo
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy.
| | - Giorgio Attinà
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy.
| | - Michele Antonio Capozza
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy.
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy.
| |
Collapse
|
154
|
Hart MG, Grant GRL, Solyom EF, Grant R, Cochrane Gynaecological, Neuro‐oncology and Orphan Cancer Group. Biopsy versus resection for high-grade glioma. Cochrane Database Syst Rev 2019; 6:CD002034. [PMID: 31169915 PMCID: PMC6553559 DOI: 10.1002/14651858.cd002034.pub2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND This is an update of the original review published in the Cochrane Database of Systematic Reviews Issue 1, 2000 and updated in 2003, 2007 and 2010.People with a presumed high-grade glioma (HGG) identified by clinical evaluation and radiological investigation have two initial surgical options: biopsy or resection. In certain situations, such as severe raised intracranial pressure, surgical resection is clinically indicated. Where surgical resection is not feasible, biopsy is the only reasonable option. Most people fall somewhere between these extremes, and in such circumstances it is uncertain which procedure is the best surgical option for the patient. Opinion is divided regarding the relative risks and benefits of each procedure. OBJECTIVES To estimate the clinical effectiveness of surgical resection compared to biopsy in people with a new presumptive diagnosis of HGG. SEARCH METHODS We updated our searches of the following databases to 12 September 2018: Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, and Embase. We also handsearched the Journal of Neuro-Oncology and Neuro-Oncology from 2010 to 2018 (including all conference abstracts). SELECTION CRITERIA We included randomised controlled trials (RCTs) involving people of all ages with a presumed diagnosis of HGG based upon clinical and radiological investigation. Interventions included any form of biopsy or resection. Surgery was at the time of initial presentation and not for recurrence. DATA COLLECTION AND ANALYSIS Two reviews authors independently assessed the search results for relevance and undertook critical appraisal according to prespecified guidelines. Outcome measures included survival, time to progression/progression-free survival, quality of life, symptom control, adverse events, and mortality. MAIN RESULTS We identified a single RCT of biopsy versus resection in presumed HGG. No other articles met the inclusion criteria. Personal communication revealed that an RCT of biopsy versus resection in elderly people with HGG is underway. Further communication as part of this 2018 update revealed that the results of this study are due to be published in 2019. AUTHORS' CONCLUSIONS There is no high-quality evidence on biopsy versus resection for HGG that can be used to guide management. The single included RCT was of inadequate methodology to reach reliable conclusions. Further large, multicentred RCTs are required to conclusively answer the question of whether biopsy or resection is the best initial surgical management for HGG.
Collapse
Affiliation(s)
- Michael G Hart
- Addenbrookes HospitalAcademic Division of Neurosurgery, Department of Clinical NeurosciencesBox 167CambridgeUKCB2 0QQ
| | | | - Emma F Solyom
- University of St AndrewsSt AndrewsFifeScotlandUKKY16 9AJ
| | - Robin Grant
- Western General HospitalEdinburgh Centre for Neuro‐Oncology (ECNO)Crewe RoadEdinburghScotlandUKEH4 2XU
| | | |
Collapse
|
155
|
The effect of nanoscale surface electrical properties of partially biodegradable PEDOT-co-PDLLA conducting polymers on protein adhesion investigated by atomic force microscopy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:468-478. [DOI: 10.1016/j.msec.2019.01.103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/10/2019] [Accepted: 01/23/2019] [Indexed: 11/20/2022]
|
156
|
Reulen HJ, Suero Molina E, Zeidler R, Gildehaus FJ, Böning G, Gosewisch A, Stummer W. Intracavitary radioimmunotherapy of high-grade gliomas: present status and future developments. Acta Neurochir (Wien) 2019; 161:1109-1124. [PMID: 30980242 DOI: 10.1007/s00701-019-03882-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/20/2019] [Indexed: 02/07/2023]
Abstract
There is a distinct need for new and second-line therapies to delay or prevent local tumor regrowth after current standard of care therapy. Intracavitary radioimmunotherapy, in combination with radiotherapy, is discussed in the present review as a therapeutic strategy of high potential. We performed a systematic literature search following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA). The available body of literature on intracavitary radioimmunotherapy (iRIT) in glioblastoma and anaplastic astrocytomas is presented. Several past and current phase I and II clinical trials, using mostly an anti-tenascin monoclonal antibody labeled with I-131, have shown median overall survival of 19-25 months in glioblastoma, while adverse events remain low. Tenascin, followed by EGFR and variants, or smaller peptides have been used as targets, and most clinical studies were performed with I-131 or Y-90 as radionuclides while only recently Re-188, I-125, and Bi-213 were applied. The pharmacokinetics of iRIT, as well as the challenges encountered with this therapy, is comprehensively discussed. This promising approach deserves further exploration in future studies by incorporating several innovative modifications.
Collapse
Affiliation(s)
| | - Eric Suero Molina
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany.
| | - Reinhard Zeidler
- Helmholtz-Zentrum Munich, German Research Center for Environmental Health, Research Group Gene Vectors, Munich, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany
| | | | - Guido Böning
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Astrid Gosewisch
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| |
Collapse
|
157
|
Overall Survival in Malignant Glioma Is Significantly Prolonged by Neurosurgical Delivery of Etoposide and Temozolomide from a Thermo-Responsive Biodegradable Paste. Clin Cancer Res 2019; 25:5094-5106. [DOI: 10.1158/1078-0432.ccr-18-3850] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/11/2019] [Accepted: 05/17/2019] [Indexed: 11/16/2022]
|
158
|
Enríquez Pérez J, Fritzell S, Kopecky J, Visse E, Darabi A, Siesjö P. The effect of locally delivered cisplatin is dependent on an intact immune function in an experimental glioma model. Sci Rep 2019; 9:5632. [PMID: 30948731 PMCID: PMC6449367 DOI: 10.1038/s41598-019-42001-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
Several chemotherapeutic drugs are now considered to exert anti-tumour effects, by inducing an immune-promoting inflammatory response. Cisplatin is a potent chemotherapeutic agent used in standard medulloblastoma but not glioblastoma protocols. There is no clear explanation for the differences in clinical efficacy of cisplatin between medulloblastomas and glioblastomas, despite the fact that cisplatin is effective in vitro against the latter. Systemic toxicity is often dose limiting but could tentatively be reduced by intratumoral administration. We found that intratumoral cisplatin can cure GL261 glioma-bearing C57BL/6 mice and this effect was abolished in GL261-bearing NOD-scid IL2rγnull (NSG) mice. Contrary to previous results with intratumoral temozolomide cisplatin had no additive or synergistic effect with whole cell either GL261 wild-type or GM-CSF-transfected GL261 cells whole cell vaccine-based immunotherapy. While whole tumour cell immunizations increased CD8+ T-cells and decreased F4/80+ macrophages intratumorally, cisplatin had no effect on these cell populations. Taken together, our results demonstrate that intratumoral cisplatin treatment was effective with a narrow therapeutic window and may be an efficient approach for glioma or other brain tumour treatment.
Collapse
Affiliation(s)
- Julio Enríquez Pérez
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Sara Fritzell
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jan Kopecky
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Edward Visse
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Anna Darabi
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Peter Siesjö
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- Division of Neurosurgery, Department of Clinical Sciences, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
159
|
Nita L, Chiriac A, Bercea M, Ghilan A, Rusu A, Dumitriu R, Mititelu-Tartau L. Multifunctional hybrid 3D network based on hyaluronic acid and a copolymer containing pendant spiroacetal moieties. Int J Biol Macromol 2019; 125:191-202. [DOI: 10.1016/j.ijbiomac.2018.12.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023]
|
160
|
Thon N, Tonn JC, Kreth FW. The surgical perspective in precision treatment of diffuse gliomas. Onco Targets Ther 2019; 12:1497-1508. [PMID: 30863116 PMCID: PMC6390867 DOI: 10.2147/ott.s174316] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Over the last decade, advances in molecular and imaging-based biomarkers have induced a more versatile diagnostic classification and prognostic evaluation of glioma patients. This, in combination with a growing therapeutic armamentarium, enables increasingly individualized, risk-benefit-optimized treatment strategies. This path to precision medicine in glioma patients requires surgical procedures to be reassessed within multidimensional management considerations. This article attempts to integrate the surgical intervention into a dynamic network of versatile diagnostic characterization, prognostic assessment, and multimodal treatment options in the light of the latest 2016 World Health Organization (WHO) classification of diffuse brain tumors, WHO grade II, III, and IV. Special focus is set on surgical aspects such as resectability, extent of resection, and targeted surgical strategies including minimal invasive stereotactic biopsy procedures, convection enhanced delivery, and photodynamic therapy. Moreover, the influence of recent advances in radiomics/radiogenimics on the process of surgical decision-making will be touched.
Collapse
Affiliation(s)
- Niklas Thon
- Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany,
| | - Joerg-Christian Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany,
| | | |
Collapse
|
161
|
Ōmura S, Crump A. Lactacystin: first-in-class proteasome inhibitor still excelling and an exemplar for future antibiotic research. J Antibiot (Tokyo) 2019; 72:189-201. [PMID: 30755736 PMCID: PMC6760633 DOI: 10.1038/s41429-019-0141-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/12/2018] [Accepted: 01/07/2019] [Indexed: 01/28/2023]
Abstract
Lactacystin exemplifies the role that serendipity plays in drug discovery and why “finding things without actually looking for them” retains such a pivotal role in the search for the useful properties of chemicals. The first proteasome inhibitor discovered, lactacystin stimulated new possibilities in cancer control. New and innovative uses are regularly being found for lactacystin, including as a model to study dementia, while new formulations and delivery systems may facilitate its use clinically as an anticancer agent. All this provides yet more evidence that we need a comprehensive, collaborative and coordinated programme to fully investigate all new and existing chemical compounds, especially those of microbial origin. We need to do so in order to avoid failing to detect and successfully exploit unsought yet potentially life-saving or extremely advantageous properties of microbial metabolites.
Collapse
Affiliation(s)
- Satoshi Ōmura
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Andy Crump
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| |
Collapse
|
162
|
Multicenter, single arm, phase II trial on the efficacy of ortataxel in recurrent glioblastoma. J Neurooncol 2019; 142:455-462. [PMID: 30726533 DOI: 10.1007/s11060-019-03116-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/31/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND PURPOSE Glioblastoma (GBM) is the most aggressive and frequent subtype of all malignant gliomas. At the time of recurrence, therapeutic options are lacking. Ortataxel, a second-generation taxane was reported to be effective in pre-clinical and phase I clinical studies. The aim of this study was to evaluate a potential therapeutic activity of ortataxel in patients with GBM recurring after surgery and first line treatment. METHODS In this phase II study, according to a two stage design, adult patients with histologically confirmed GBM in recurrence after surgery or biopsy, standard radiotherapy and chemotherapy with temozolomide were considered eligible. Patients included were treated with ortataxel 75 mg/m2 i.v. every 3 weeks until disease progression. The primary objective of the study was to evaluate the activity of ortataxel in terms of progression free survival (PFS) at 6 months after the enrollment. PFS, overall survival at 9 months after the enrollment, objective response rate, compliance and safety were evaluated as secondary endpoints. RESULTS Between Nov 26, 2013 and Dec 12, 2015, 40 patients were recruited across six centres. The number of patients alive and free from progression at 6 months after the enrollment, observed in the first stage was four (11.4%), out of 35 patients included in the analysis, below the minimum number of events (7 out of 33) required to continue the study with the second stage The most important toxicities were neutropenia and hepatotoxicity that occurred in 13.2% of patients and leukopenia that occurred in 15.8% of patients. CONCLUSION Overall ortataxel treatment fail to demonstrate a significant activity in recurrent GBM patients. However in a limited number of patients the drug produced a benefit that lasted for a long time. TRIAL REGISTRATION This study is registered with ClinicalTrials.gov, number NCT01989884.
Collapse
|
163
|
Biodegradable wafers releasing Temozolomide and Carmustine for the treatment of brain cancer. J Control Release 2019; 295:93-101. [DOI: 10.1016/j.jconrel.2018.12.048] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 12/24/2018] [Accepted: 12/29/2018] [Indexed: 12/12/2022]
|
164
|
Tabet A, Jensen MP, Parkins CC, Patil PG, Watts C, Scherman OA. Designing Next-Generation Local Drug Delivery Vehicles for Glioblastoma Adjuvant Chemotherapy: Lessons from the Clinic. Adv Healthc Mater 2019; 8:e1801391. [PMID: 30632715 DOI: 10.1002/adhm.201801391] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/03/2018] [Indexed: 12/11/2022]
Abstract
To date, the clinical outcomes and survival rates for patients with glioblastoma (GB) remain poor. A promising approach to disease-modification involves local delivery of adjuvant chemotherapy into the resection cavity, thus circumventing the restrictions imposed by the blood-brain barrier. The clinical performance of the only FDA-approved local therapy for GB [carmustine (BCNU)-loaded polyanhydride wafers], however, has been disappointing. There is an unmet medical need in the local treatment of GB for drug delivery vehicles that provide sustained local release of small molecules and combination drugs over several months. Herein, key quantitative lessons from the use of local and systemic adjuvant chemotherapy for GB in the clinic are outlined, and it is discussed how these can inform the development of next-generation therapies. Several recent approaches are highlighted, and it is proposed that long-lasting soft materials can capture the value of stiff BCNU-loaded wafers while addressing a number of unmet medical needs. Finally, it is suggested that improved communication between materials scientists, biomedical scientists, and clinicians may facilitate translation of these materials into the clinic and ultimately lead to improved clinical outcomes.
Collapse
Affiliation(s)
- Anthony Tabet
- Melville Laboratory for Polymer Synthesis; Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| | - Melanie P. Jensen
- Division of Neurosurgery; Department of Clinical Neurosciences; Addenbrooke's Hospital; University of Cambridge; Hills Road Cambridge CB2 0QQ UK
| | - Christopher C. Parkins
- Melville Laboratory for Polymer Synthesis; Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| | - Parag G. Patil
- Department of Neurosurgery; University of Michigan Medical School; Ann Arbor MI 48109 USA
| | - Colin Watts
- Division of Neurosurgery; Department of Clinical Neurosciences; Addenbrooke's Hospital; University of Cambridge; Hills Road Cambridge CB2 0QQ UK
- Department of Neurosurgery; Birmingham Brain Cancer Program; Institute of Cancer and Genomic Sciences; University of Birmingham; Birmingham B15 2TT UK
| | - Oren A. Scherman
- Melville Laboratory for Polymer Synthesis; Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
165
|
Lu G, Rao M, Zhu P, Liang B, El-Nazer RT, Fonkem E, Bhattacharjee MB, Zhu JJ. Triple-drug Therapy With Bevacizumab, Irinotecan, and Temozolomide Plus Tumor Treating Fields for Recurrent Glioblastoma: A Retrospective Study. Front Neurol 2019; 10:42. [PMID: 30766509 PMCID: PMC6366009 DOI: 10.3389/fneur.2019.00042] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/14/2019] [Indexed: 12/11/2022] Open
Abstract
Clinical studies treating pediatric and adult solid tumors, such as glioblastoma (GBM), with a triple-drug regimen of temozolomide (TMZ), bevacizumab (BEV), and irinotecan (IRI) [TBI] have demonstrated various efficacies, but with no unexpected toxicities. The TBI regimen has never been studied in recurrent GBM (rGBM) patients. In this retrospective study, we investigated the outcomes and side effects of rGBM patients who had received the TBI regimen. We identified 48 adult rGBM patients with a median age of 56 years (range: 26-76), who received Tumor Treating Fields (TTFields) treatment for 30 days or longer, and concurrent salvage chemotherapies. The patients were classified into two groups based on chemotherapies received: TBI with TTFields (TBI+T, N = 18) vs. bevacizumab (BEV)-based chemotherapies with TTFields (BBC+T, N = 30). BBC regimens were either BEV monotherapy, BEV+IRI or BEV+CCNU. Patients in TBI+T group received on average 19 cycles of TMZ, 26 and 21 times infusions with BEV and IRI, respectively. Median overall survival (OS) and progression-free survival (PFS) for rGBM (OS-R and PFS-R) patients who received TBI+T were 18.9 and 10.7 months, respectively. In comparison, patients who received BBC+T treatment had OS-R and PFS-R of 11.8 (P > 0.05) and 4.7 (P < 0.05) months, respectively. Although the median PFS results were significantly different by 1.5 months (6.6 vs. 5.1) between TBI+T and BBC+T groups, the median OS difference of 14.7 months (32.5 vs. 17.8) was more pronounced, P < 0.05. Patients tolerated TBI+T or BBC+T treatments well and there were no unexpected toxicities. The most common side effects from TBI+T treatment included grade III hypertension (38.9%) and leukopenia (22.2%). In conclusion, the TBI regimen might play a role in the improvement of PFS-R and OS-R among rGBM patients. Prospective studies with a larger sample size are warranted to study the efficacy and toxicity of TBI+T regimen for rGBM.
Collapse
Affiliation(s)
- Guangrong Lu
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, TX, United States
| | - Mayank Rao
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, TX, United States
| | - Ping Zhu
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, TX, United States
- Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, UTHealth School of Public Health, Houston, TX, United States
| | - Buqing Liang
- Baylor Scott and White Health, Temple, TX, United States
| | | | - Ekokobe Fonkem
- Baylor Scott and White Health, Temple, TX, United States
| | - Meenakshi B. Bhattacharjee
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, TX, United States
| | - Jay-Jiguang Zhu
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, TX, United States
| |
Collapse
|
166
|
Mandel JJ, Yust-Katz S, Patel AJ, Cachia D, Liu D, Park M, Yuan Y, Kent TA, de Groot JF. Inability of positive phase II clinical trials of investigational treatments to subsequently predict positive phase III clinical trials in glioblastoma. Neuro Oncol 2019; 20:113-122. [PMID: 29016865 DOI: 10.1093/neuonc/nox144] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Glioblastoma is the most common primary malignant brain tumor in adults, but effective therapies are lacking. With the scarcity of positive phase III trials, which are increasing in cost, we examined the ability of positive phase II trials to predict statistically significant improvement in clinical outcomes of phase III trials. Methods A PubMed search was conducted to identify phase III clinical trials performed in the past 25 years for patients with newly diagnosed or recurrent glioblastoma. Trials were excluded if they did not examine an investigational chemotherapy or agent, if they were stopped early owing to toxicity, if they lacked prior phase II studies, or if a prior phase II study was negative. Results Seven phase III clinical trials in newly diagnosed glioblastoma and 4 phase III clinical trials in recurrent glioblastoma met the inclusion criteria. Only 1 (9%) phase III study documented an improvement in overall survival and changed the standard of care. Conclusion The high failure rate of phase III trials demonstrates the urgent need to increase the reliability of phase II trials of treatments for glioblastoma. Strategies such as the use of adaptive trial designs, Bayesian statistics, biomarkers, volumetric imaging, and mathematical modeling warrant testing. Additionally, it is critical to increase our expectations of phase II trials so that positive findings increase the probability that a phase III trial will be successful.
Collapse
Affiliation(s)
- Jacob J Mandel
- Baylor College of Medicine, Department of Neurology, Houston, Texas, USA
| | - Shlomit Yust-Katz
- Rabin Medical Center, Department of Neurosurgery, Petah Tikva, Israel
| | - Akash J Patel
- Baylor College of Medicine, Department of Neurology, Houston, Texas, USA
| | - David Cachia
- Medical University of South Carolina, Department of Neurosurgery, Charleston, South Carolina, USA
| | - Diane Liu
- The University of Texas MD Anderson Cancer Center, Department of Biostatistics, Houston, Texas, USA
| | - Minjeong Park
- The University of Texas MD Anderson Cancer Center, Department of Biostatistics, Houston, Texas, USA
| | - Ying Yuan
- The University of Texas MD Anderson Cancer Center, Department of Biostatistics, Houston, Texas, USA
| | - Thomas A Kent
- Baylor College of Medicine, Department of Neurology, Houston, Texas, USA
| | - John F de Groot
- The University of Texas MD Anderson Cancer Center, Department of Neuro-Oncology, Houston, Texas, USA
| |
Collapse
|
167
|
Hadjipanayis CG, Stummer W. 5-ALA and FDA approval for glioma surgery. J Neurooncol 2019; 141:479-486. [PMID: 30644008 DOI: 10.1007/s11060-019-03098-y] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/09/2019] [Indexed: 12/14/2022]
Abstract
The US Food and Drug Administration (FDA) approved 5-aminolevulinic acid (5-ALA; Gleolan®; photonamic GmbH and Co. KG) for use as an intraoperative optical imaging agent in patients with suspected high-grade gliomas (HGGs) in 2017. This was the first ever optical imaging agent approved as an adjunct for the visualization of malignant tissue during surgery for brain tumors. The approval occurred a decade after European approval and a multicenter, phase III randomized trial which confirmed that surgeons using 5-ALA fluorescence-guided surgery as a surgical adjunct could achieve more complete resections of tumors in HGG patients and better patient outcomes than with conventional microsurgery. Much of the delay in the US FDA approval of 5-ALA stemmed from its conceptualization as a therapeutic and not as an intraoperative imaging tool. We chronicle the challenges encountered during the US FDA approval process to highlight a new standard for approval of intraoperative optical imaging agents in brain tumors.
Collapse
Affiliation(s)
- Constantinos G Hadjipanayis
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurosurgery, Mount Sinai Beth Israel, New York, NY, USA.
| | - Walter Stummer
- Department of Neurosurgery, Universitätsklinikum Münster, Münster, Germany
| |
Collapse
|
168
|
Tian Y, Mi G, Chen Q, Chaurasiya B, Li Y, Shi D, Zhang Y, Webster TJ, Sun C, Shen Y. Acid-Induced Activated Cell-Penetrating Peptide-Modified Cholesterol-Conjugated Polyoxyethylene Sorbitol Oleate Mixed Micelles for pH-Triggered Drug Release and Efficient Brain Tumor Targeting Based on a Charge Reversal Mechanism. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43411-43428. [PMID: 30508486 DOI: 10.1021/acsami.8b15147] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Glioblastoma multiforme is the most devastating malignant brain tumor in adults. Even with the standard care of therapy, the prognosis remains dismal due to tumor heterogeneity, tumor infiltration, and, more importantly, the restrictive nature of the blood-brain barrier (BBB). To overcome the challenge of effectively delivering therapeutic cargo into the brain, herein a "smart", multifunctional polymeric micelle was developed using a cholesterol-conjugated polyoxyethylene sorbitol oleate. A cell-penetrating peptide, arginine-glycine repeats (RG)5, was incorporated into the micelles to improve cellular uptake, while a pH-sensitive masking sequence, histidine-glutamic acid repeats (HE)5, was introduced for charge shielding to minimize nonspecific binding and uptake at physiological pH. Results demonstrated that (RG)5- and (HE)5-modified mixed micelles were optimized using this strategy to effectively mask the cationic charges of the activated cell-penetrating peptide (RG)5 at physiological pH, i.e., limiting internalization, and were selectively triggered in response to a mildly acidic microenvironment in vitro based on a charge reversal mechanism. In vivo results further confirmed that such micelles preferentially accumulated in both brain and tumor tissues in both xenograft and orthotropic glioma mouse models. Furthermore, micelles significantly inhibited tumor growth with limited toxicity to peripheral tissues. The combination of BBB penetration, tumor targeting, potent efficacy, and high tolerance of these micelles strongly suggests that they could be a promising candidate for safe and effective drug delivery to the brain.
Collapse
Affiliation(s)
- Yu Tian
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - Gujie Mi
- Department of Chemical Engineering, 313 Snell Engineering Center , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Qian Chen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - Birendra Chaurasiya
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - Yanan Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - Di Shi
- Department of Chemical Engineering, 313 Snell Engineering Center , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Yong Zhang
- Children's Hospital of Nanjing Medical University , Nanjing 210008 , China
| | - Thomas J Webster
- Department of Chemical Engineering, 313 Snell Engineering Center , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Chunmeng Sun
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - Yan Shen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| |
Collapse
|
169
|
Królicki L, Bruchertseifer F, Kunikowska J, Koziara H, Królicki B, Jakuciński M, Pawlak D, Apostolidis C, Mirzadeh S, Rola R, Merlo A, Morgenstern A. Safety and efficacy of targeted alpha therapy with 213Bi-DOTA-substance P in recurrent glioblastoma. Eur J Nucl Med Mol Imaging 2018; 46:614-622. [DOI: 10.1007/s00259-018-4225-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022]
|
170
|
Abstract
OBJECTIVE To describe the currently accepted standard-of-care practice for surgical and medical management of newly diagnosed high-grade glioma. DATA SOURCES Peer-reviewed journals, nationally accepted guidelines, and personal experience of the authors. CONCLUSION There is a widely accepted standard-of-care treatment protocol for patients with newly diagnosed high-grade glioma that includes maximal safe resection followed by radiation therapy with concurrent and adjuvant temozolomide. The regimen is well-tolerated and side effects are manageable. IMPLICATIONS FOR NURSING PRACTICE Nurses who are involved in the care of patients with newly diagnosed high-grade glioma should be familiar with the regimen and its side effects to provide crucial patient and caregiver education in an accurate and beneficial manner.
Collapse
|
171
|
Laub CK, Stefanik J, Doherty L. Approved Treatments for Patients with Recurrent High-grade Gliomas. Semin Oncol Nurs 2018; 34:486-493. [PMID: 30392759 DOI: 10.1016/j.soncn.2018.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVES To review the existing glioma literature and National Comprehensive Cancer Network current standard-of care guidelines for recurrent high-grade glioma, which includes surgery, radiation, and systemic therapies. DATA SOURCES PubMed, MedlinePlus, Science Direct, National Comprehensive Cancer Network, and Google Scholar were searched. Key words for databases were high-grade glioma, glioblastoma, recurrent, surgery, radiation, and systemic therapy. CONCLUSION Approved treatments for patients with recurrent high-grade glioma are limited and do not significantly impact progression-free survival rates, nor do they offer long-term benefit in symptom improvement or quality of life. Particular consideration for progression versus pseudoprogression should be evaluated before pursuing recurrent therapies. IMPLICATIONS FOR NURSING PRACTICE Given the limited availability of standard-of-care treatments, clinical trials should be prioritized to maximize future treatment options. Individual performance status, genetic and molecular profiles, as well as goals of care and quality of life are important considerations in the context of treatment plans.
Collapse
|
172
|
Chen Y, Zhang J, Xu Y. Adaptive lasso for accelerated hazards models. J STAT COMPUT SIM 2018. [DOI: 10.1080/00949655.2018.1491579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Yuhui Chen
- The Department of Mathematics, The University of Alabama, Tuscaloosa, AL, USA
| | - Jiajia Zhang
- Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Yangyang Xu
- The Department of Mathematics, The University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
173
|
Yu F, Asghar S, Zhang M, Zhang J, Ping Q, Xiao Y. Local strategies and delivery systems for the treatment of malignant gliomas. J Drug Target 2018; 27:367-378. [PMID: 30101621 DOI: 10.1080/1061186x.2018.1509982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Glioma is one of the most common type of malignant tumours with high morbidity and mortality rates. Due to the particular features of the brain, such as blood-brain barrier or blood-tumour barrier, therapeutic agents are ineffective by systemic administration. The tumour inevitably recurs and devitalises patients. Herein, an overview of the localised gliomas treatment strategies is provided, including direct intratumoural/intracerebral injection, convection-enhanced delivery, and the implant of biodegradable polymer systems. The advantages and disadvantages of each therapy are discussed. Subsequently, we have reviewed the recent developments of therapeutic delivery systems aimed at transporting sufficient amounts of antineoplastic drugs into the brain tumour sites while minimising the potential side effects. To treat gliomas, localised and controlled delivery of drugs at their desired site of action is preferred as it reduces toxicity and increases treatment efficiency. Simultaneously, various drug delivery systems (DDS) have been used to enhance drug delivery to the brain. Use of non-conventional DDS for localised therapy has greatly expanded the spectrum of drugs available for the treatment of malignant tumours. Use smart DDS via localised delivery strategies, in combination with radiotherapy and multiple drug loading would serve as a promising approach to treat gliomas.
Collapse
Affiliation(s)
- Feng Yu
- a Department of Pharmaceutics, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , People's Republic of China
| | - Sajid Asghar
- b Faculty of Pharmaceutical Sciences , Government College University Faisalabad , Faisalabad , Pakistan
| | - Mei Zhang
- a Department of Pharmaceutics, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , People's Republic of China
| | - Jingwei Zhang
- a Department of Pharmaceutics, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , People's Republic of China
| | - Qineng Ping
- a Department of Pharmaceutics, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , People's Republic of China
| | - Yanyu Xiao
- a Department of Pharmaceutics, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , People's Republic of China
| |
Collapse
|
174
|
Personalized therapeutic delivery in the neurosurgical operating room. Proc Natl Acad Sci U S A 2018; 115:8846-8848. [PMID: 30127023 DOI: 10.1073/pnas.1812559115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
175
|
Brudno Y, Pezone MJ, Snyder TK, Uzun O, Moody CT, Aizenberg M, Mooney DJ. Replenishable drug depot to combat post-resection cancer recurrence. Biomaterials 2018; 178:373-382. [PMID: 29779862 PMCID: PMC6075722 DOI: 10.1016/j.biomaterials.2018.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/16/2018] [Accepted: 05/03/2018] [Indexed: 01/05/2023]
Abstract
Local drug presentation made possible by drug-eluting depots has demonstrated benefits in a vast array of diseases, including in cancer, microbial infection and in wound healing. However, locally-eluting depots are single-use systems that cannot be refilled or reused after implantation at inaccessible sites, limiting their clinical utility. New strategies to noninvasively refill drug-eluting depots could dramatically enhance their clinical use. In this report we present a refillable hydrogel depot system based on bioorthogonal click chemistry. The click-modified hydrogel depots capture prodrug refills from the blood and subsequently release active drugs locally in a sustained manner. Capture of the systemically-administered refills serves as an efficient and non-toxic method to repeatedly refill depots. Refillable depots in combination with prodrug refills achieve sustained release at precancerous tumor sites to improve cancer therapy while eliminating systemic side effects. The ability to target tissues without enhanced permeability could allow the use of refillable depots in cancer and many other medical applications.
Collapse
Affiliation(s)
- Yevgeny Brudno
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Cir., Boston, MA 02115, USA; School of Engineering and Applied Sciences, Harvard University, 29 Oxford St., Cambridge, MA 02138, USA; Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, 911 Oval Drive, Raleigh, NC 27695, USA; Lineberger Comprehensive Cancer Center, University of North Carolina - Chapel Hill, 450 West Dr, Chapel Hill, NC 27599, USA
| | - Matthew J Pezone
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Cir., Boston, MA 02115, USA
| | - Tracy K Snyder
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Cir., Boston, MA 02115, USA
| | - Oktay Uzun
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Cir., Boston, MA 02115, USA
| | - Christopher T Moody
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, 911 Oval Drive, Raleigh, NC 27695, USA
| | - Michael Aizenberg
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Cir., Boston, MA 02115, USA
| | - David J Mooney
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Cir., Boston, MA 02115, USA; School of Engineering and Applied Sciences, Harvard University, 29 Oxford St., Cambridge, MA 02138, USA.
| |
Collapse
|
176
|
Abstract
Aggressive neurosurgical resection to achieve sustained local control is essential for prolonging survival in patients with lower-grade glioma. However, progression in many of these patients is characterized by local regrowth. Most lower-grade gliomas harbor isocitrate dehydrogenase 1 (IDH1) or IDH2 mutations, which sensitize to metabolism-altering agents. To improve local control of IDH mutant gliomas while avoiding systemic toxicity associated with metabolic therapies, we developed a precision intraoperative treatment that couples a rapid multiplexed genotyping tool with a sustained release microparticle (MP) drug delivery system containing an IDH-directed nicotinamide phosphoribosyltransferase (NAMPT) inhibitor (GMX-1778). We validated our genetic diagnostic tool on clinically annotated tumor specimens. GMX-1778 MPs showed mutant IDH genotype-specific toxicity in vitro and in vivo, inducing regression of orthotopic IDH mutant glioma murine models. Our strategy enables immediate intraoperative genotyping and local application of a genotype-specific treatment in surgical scenarios where local tumor control is paramount and systemic toxicity is therapeutically limiting.
Collapse
|
177
|
Talebian S, Foroughi J, Wade SJ, Vine KL, Dolatshahi-Pirouz A, Mehrali M, Conde J, Wallace GG. Biopolymers for Antitumor Implantable Drug Delivery Systems: Recent Advances and Future Outlook. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706665. [PMID: 29756237 DOI: 10.1002/adma.201706665] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/15/2018] [Indexed: 06/08/2023]
Abstract
In spite of remarkable improvements in cancer treatments and survivorship, cancer still remains as one of the major causes of death worldwide. Although current standards of care provide encouraging results, they still cause severe systemic toxicity and also fail in preventing recurrence of the disease. In order to address these issues, biomaterial-based implantable drug delivery systems (DDSs) have emerged as promising therapeutic platforms, which allow local administration of drugs directly to the tumor site. Owing to the unique properties of biopolymers, they have been used in a variety of ways to institute biodegradable implantable DDSs that exert precise spatiotemporal control over the release of therapeutic drug. Here, the most recent advances in biopolymer-based DDSs for suppressing tumor growth and preventing tumor recurrence are reviewed. Novel emerging biopolymers as well as cutting-edge polymeric microdevices deployed as implantable antitumor DDSs are discussed. Finally, a review of a new therapeutic modality within the field, which is based on implantable biopolymeric DDSs, is given.
Collapse
Affiliation(s)
- Sepehr Talebian
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Javad Foroughi
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Samantha J Wade
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
- School of Biological Sciences, University of Wollongong, NSW 2522, Australia
| | - Kara L Vine
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
- School of Biological Sciences, Centre for Medical and Molecular Bioscience, University of Wollongong, NSW 2522, Australia
| | - Alireza Dolatshahi-Pirouz
- Technical University of Denmark, DTU Nanotech, Center for Nanomedicine and Theranostics, 2800 Kongens Lyngby, Denmark
| | - Mehdi Mehrali
- Technical University of Denmark, DTU Nanotech, Center for Nanomedicine and Theranostics, 2800 Kongens Lyngby, Denmark
| | - João Conde
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, Harvard-MIT Division for Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, NSW 2522, Australia
| |
Collapse
|
178
|
Advances in Glioblastoma Operative Techniques. World Neurosurg 2018; 116:529-538. [DOI: 10.1016/j.wneu.2018.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 02/13/2018] [Indexed: 11/24/2022]
|
179
|
Re-irradiation for malignant glioma: Toward patient selection and defining treatment parameters for salvage. Adv Radiat Oncol 2018; 3:582-590. [PMID: 30370358 PMCID: PMC6200913 DOI: 10.1016/j.adro.2018.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/23/2022] Open
Abstract
Purpose Reirradiation for recurrent glioma remains controversial without knowledge of optimal patient selection, dose, fractionation, and normal tissue tolerances. We retrospectively evaluated outcomes and toxicity after conventionally fractionated reirradiation for recurrent high-grade glioma, along with the impact of concurrent chemotherapy. Methods and materials We conducted a retrospective review of patients reirradiated for high-grade glioma recurrence between 2007 and 2016 (including patients with initial low-grade glioma). Outcome metrics included overall survival (OS), prognostic factors for survival, and treatment-related toxicity. Results Patients (n = 118; median age 47 years; median Karnofsky performance status score: 80) were re-treated at a median of 28 months (range, 5-214 months) after initial radiation therapy. The median reirradiation dose was 41.4 Gy (range, 12.6-54.0 Gy) to a median lesion volume of 202 cm3 (range, 20-901 cm3). The median cumulative (initial radiation and reirradiation combined) potential maximum brainstem dose was 76.9 Gy (range, 5.0-108.3 Gy) and optic apparatus dose was 56.0 Gy (range, 4.5-90.9 Gy). Of the patients, 56% received concurrent temozolomide, 14%, bevacizumab, and 11%, temozolomide plus bevacizumab; 19% had no chemotherapy. The planned reirradiation was completed by 90% of patients. Median OS from the completion of reirradiation was 9.6 months (95% confidence interval [CI], 7.5-11.7 months) for all patients and 14.0, 11.5, and 6.7 months for patients with initial grade 2, 3, and 4 glioma, respectively. On multivariate analysis, better OS was observed with a >24-month interval between radiation treatments (hazard ratio [HR]: 0.3; 95% CI, 0.2-0.5; P < .001), reirradiation dose >41.4 Gy (HR: 0.6; 95% CI, 0.4-0.9; P = .03), and gross total resection before reirradiation (HR: 0.6, 95% CI, 0.3-0.9; P = .02). Radiation necrosis and grade ≥3 late neurotoxicity were both minimal (<5%). No symptomatic persistent brainstem or optic nerve/chiasm injury was identified. Conclusions Salvage reirradiation, even at doses >41.4 Gy in conventional fractionation, along with chemotherapy, was safe and well tolerated with meaningful survival duration. These data provide information that may be useful in implementing safe reirradiation treatments for appropriately selected patients and guiding future studies to define optimal reirradiation doses, maximal safe doses to critical structures, and the role of systemic therapy.
Collapse
|
180
|
Binder ZA, Thorne AH, Bakas S, Wileyto EP, Bilello M, Akbari H, Rathore S, Ha SM, Zhang L, Ferguson CJ, Dahiya S, Bi WL, Reardon DA, Idbaih A, Felsberg J, Hentschel B, Weller M, Bagley SJ, Morrissette JJD, Nasrallah MP, Ma J, Zanca C, Scott AM, Orellana L, Davatzikos C, Furnari FB, O'Rourke DM. Epidermal Growth Factor Receptor Extracellular Domain Mutations in Glioblastoma Present Opportunities for Clinical Imaging and Therapeutic Development. Cancer Cell 2018; 34:163-177.e7. [PMID: 29990498 PMCID: PMC6424337 DOI: 10.1016/j.ccell.2018.06.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 02/27/2018] [Accepted: 06/11/2018] [Indexed: 12/19/2022]
Abstract
We explored the clinical and pathological impact of epidermal growth factor receptor (EGFR) extracellular domain missense mutations. Retrospective assessment of 260 de novo glioblastoma patients revealed a significant reduction in overall survival of patients having tumors with EGFR mutations at alanine 289 (EGFRA289D/T/V). Quantitative multi-parametric magnetic resonance imaging analyses indicated increased tumor invasion for EGFRA289D/T/V mutants, corroborated in mice bearing intracranial tumors expressing EGFRA289V and dependent on ERK-mediated expression of matrix metalloproteinase-1. EGFRA289V tumor growth was attenuated with an antibody against a cryptic epitope, based on in silico simulation. The findings of this study indicate a highly invasive phenotype associated with the EGFRA289V mutation in glioblastoma, postulating EGFRA289V as a molecular marker for responsiveness to therapy with EGFR-targeting antibodies.
Collapse
Affiliation(s)
- Zev A Binder
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E Paul Wileyto
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michel Bilello
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hamed Akbari
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Saima Rathore
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sung Min Ha
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Logan Zhang
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cole J Ferguson
- Division of Neuropathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Sonika Dahiya
- Division of Neuropathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Wenya Linda Bi
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Woman's Hospital, Harvard Medical Center, Boston, MA 02115, USA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ahmed Idbaih
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris 75013, France
| | - Joerg Felsberg
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, Moorenstrasse 5, Duesseldorf 40225, Germany
| | - Bettina Hentschel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Medical Faculty, Härtelstrasse 16, Leipzig 04107, Germany
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich 8091, Switzerland
| | - Stephen J Bagley
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer J D Morrissette
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - MacLean P Nasrallah
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jianhui Ma
- Ludwig Institute for Cancer Research, La Jolla, San Diego 92093, USA
| | - Ciro Zanca
- Ludwig Institute for Cancer Research, La Jolla, San Diego 92093, USA
| | - Andrew M Scott
- Olivia Newton-John Cancer Research Institute, La Trobe University, Melbourne, Australia
| | - Laura Orellana
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden; Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frank B Furnari
- Ludwig Institute for Cancer Research, La Jolla, San Diego 92093, USA.
| | - Donald M O'Rourke
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
181
|
Abstract
Most diseases and disorders of the brain require long-term therapy and a constant supply of drugs. Implantable drug-delivery systems provide long-term, sustained drug delivery in the brain. The present review discusses different type of implantable systems such as solid implants, in situ forming implants, in situ forming microparticles, depot formulations, polymeric-lipid implants, sucrose acetate isobutyrate and N-stearoyl L-alanine methyl ester systems for continuous drug delivery into brain for various brain diseases including glioblastomas, medulloblastoma, epilepsy, stroke, schizophrenia and Alzheimer's diseases. Implantable neural probes and microelectrode array systems for brain are also discussed in brief.
Collapse
|
182
|
Matsumura H, Ishikawa E, Matsuda M, Sakamoto N, Akutsu H, Takano S, Matsumura A. Symptomatic Remote Cyst after BCNU Wafer Implantation for Malignant Glioma. Neurol Med Chir (Tokyo) 2018; 58:270-276. [PMID: 29780071 PMCID: PMC6002679 DOI: 10.2176/nmc.cr.2017-0218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A 43-year-old man was operated on for right frontal oligoastrocytoma. 14 years after the surgery, magnetic resonance imaging and positron emission tomography revealed a new lesion near the surgical cavity. He underwent gross total resection of the lesion and implantation of bis-chloroethylnitrosourea (BCNU) wafers after intraoperative pathological diagnosis of recurrent high-grade glioma. A few days after the operation, the level of consciousness gradually worsened and left hemiparesis developed. A computed tomography scan revealed a cyst remote to the surgical cavity which did not exist 3 days prior. We performed anterior cyst wall fenestration and removed all wafers. The characteristic pathological finding at the wafer implantation site was severe inflammation within and around small vessels. This inflammatory reaction was not seen on the surface of the brain parenchyma. After surgery and rehabilitation, the patient’s Karnofsky Performance Status stabilized to a pre-incident score of 90 and he returned to work. The exact pathophysiological mechanism of the cyst was not clear, but check-valve and/or osmotic gradient mechanisms related to BCNU wafer implantation could have contributed to this phenomenon. As remote cyst development happened a week after surgery, surgeons should be aware of such a rare condition when implanting wafers as consciousness impairment and hemiparesis may occur. Close radiological follow-up is therefore necessary.
Collapse
|
183
|
da Silva D, Kaduri M, Poley M, Adir O, Krinsky N, Shainsky-Roitman J, Schroeder A. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2018; 340:9-14. [PMID: 31384170 PMCID: PMC6682490 DOI: 10.1016/j.cej.2018.01.010] [Citation(s) in RCA: 381] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Polylactic acid (PLA) is the most commonly used biodegradable polymer in clinical applications today. Examples range from drug delivery systems, tissue engineering, temporary and long-term implantable devices; constantly expanding to new fields. This is owed greatly to the polymer's favorable biocompatibility and to its safe degradation products. Once coming in contact with biological media, the polymer begins breaking down, usually by hydrolysis, into lactic acid (LA) or to carbon dioxide and water. These products are metabolized intracellularly or excreted in the urine and breath. Bacterial infection and foreign-body inflammation enhance the breakdown of PLA, through the secretion of enzymes that degrade the polymeric matrix. The biodegradation occurs both on the surface of the polymeric device and inside the polymer body, by diffusion of water between the polymer chains. The median half-life of the polymer is 30 weeks; however, this can be lengthened or shortened to address the clinical needs. Degradation kinetics can be tuned by determining the molecular composition and the physical architecture of the device. Using L- or D- chirality of the LA will greatly slow or lengthen the degradation rates, respectively. Despite the fact that this polymer is more than 150 years old, PLA remains a fertile platform for biomedical innovation and fundamental understanding of how artificial polymers can safely coexist with biological systems.
Collapse
Affiliation(s)
- Dana da Silva
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Maya Kaduri
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Maria Poley
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Omer Adir
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Nitzan Krinsky
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
- The Interdisciplinary Program for Biotechnology, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Janna Shainsky-Roitman
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
184
|
Fenton OS, Olafson KN, Pillai PS, Mitchell MJ, Langer R. Advances in Biomaterials for Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705328. [PMID: 29736981 PMCID: PMC6261797 DOI: 10.1002/adma.201705328] [Citation(s) in RCA: 505] [Impact Index Per Article: 72.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/12/2018] [Indexed: 04/14/2023]
Abstract
Advances in biomaterials for drug delivery are enabling significant progress in biology and medicine. Multidisciplinary collaborations between physical scientists, engineers, biologists, and clinicians generate innovative strategies and materials to treat a range of diseases. Specifically, recent advances include major breakthroughs in materials for cancer immunotherapy, autoimmune diseases, and genome editing. Here, strategies for the design and implementation of biomaterials for drug delivery are reviewed. A brief history of the biomaterials field is first established, and then commentary on RNA delivery, responsive materials development, and immunomodulation are provided. Current challenges associated with these areas as well as opportunities to address long-standing problems in biology and medicine are discussed throughout.
Collapse
Affiliation(s)
- Owen S Fenton
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Katy N Olafson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Padmini S Pillai
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, School of Engineering and Applied Science, Philadelphia, PA, 19104, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
185
|
Pellerino A, Franchino F, Soffietti R, Rudà R. Overview on current treatment standards in high-grade gliomas. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2018; 62:225-238. [PMID: 29696949 DOI: 10.23736/s1824-4785.18.03096-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
High-grade gliomas (HGGs) are the most common primary tumors of the central nervous system, which include anaplastic gliomas (grade III) and glioblastomas (GBM, grade IV). Surgery is the mainstay of treatment in HGGs in order to achieve a histological and molecular characterization, as well as relieve neurological symptoms and improve seizure control. Combinations of some molecular factors, such as IDH 1-2 mutations, 1p/19q codeletion and MGMT methylation status, allow to classify different subtypes of gliomas and identify patients with different outcome. The SOC in HGGs consists in a combination of radiotherapy and chemotherapy with alkylating agents. Despite this therapeutic approach, tumor recurrence occurs in HGGs, and new surgical debulking, reirradiation or second-line chemotherapy are needed. Considering the poor results in terms of survival, several clinical trials have explored the efficacy and tolerability of antiangiogenic agents, targeted therapies against epidermal growth factor receptor (EGFR) and different immunotherapeutic approaches in recurrent and newly-diagnosed GBM, including immune checkpoint inhibitors (ICIs), and cell- or peptide-based vaccination with unsatisfactory results in term of disease control. In this review we describe the major updates in molecular biology of HGGs according to 2016 WHO Classification, the current management in newly-diagnosed and recurrent GBM and grade III gliomas, and the results of the most relevant clinical trials on targeted agents and immunotherapy.
Collapse
Affiliation(s)
- Alessia Pellerino
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy -
| | - Federica Franchino
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Roberta Rudà
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| |
Collapse
|
186
|
How safe are carmustine wafers? Rev Neurol (Paris) 2018; 174:346-351. [PMID: 29703443 DOI: 10.1016/j.neurol.2017.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 08/22/2017] [Accepted: 09/13/2017] [Indexed: 11/23/2022]
|
187
|
Renfrow JJ, Strowd RE, Laxton AW, Tatter SB, Geer CP, Lesser GJ. Surgical Considerations in the Optimal Management of Patients with Malignant Brain Tumors. Curr Treat Options Oncol 2018; 18:46. [PMID: 28681208 DOI: 10.1007/s11864-017-0487-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OPINION STATEMENT Advances in technology are revolutionizing medicine and the limits of what we can offer to our patients. In neurosurgery, technology continues to reduce morbidity, increase surgical accuracy, facilitate tissue acquisition, and promote novel techniques for prolonging survival in patients with neuro-oncologic disease. Surgery has been the backbone of glioma diagnosis and treatment by providing adequate, high quality material for precise histologic diagnosis, and genomic characterization in the setting of significant intratumoral heterogeneity, thus allowing personalized treatment selection in the clinic. The ability to obtain and accurately measure the maximal extent of resection in glioma surgery also remains a central role of the neurosurgeon in managing this cancer. To meet these goals, today's operating room has transformed from the traditional operating table and anesthesia machine to include neuronavigation instrumentation, intraoperative computed tomography, and magnetic resonance imaging scanners, advanced surgical microscopes fitted with fluorescent light filters, and electrocorticography machines. While surgeons, oncologists, and radiation oncologists all play unique critical roles in the care of patients with malignant gliomas, familiarity with developing techniques in complimentary subspecialties can enhance coordination of patient care, research productivity, professional interactions, and patient confidence and comfort with the physician team. Herein, we provide a summary of the advances in the field of neurosurgical oncology which allow more precise and optimal surgical resection for patients with malignant gliomas.
Collapse
Affiliation(s)
- Jaclyn J Renfrow
- Department of Neurosurgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1082, USA.
| | - Roy E Strowd
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Internal Medicine - Section on Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Adrian W Laxton
- Department of Neurosurgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1082, USA
| | - Stephen B Tatter
- Department of Neurosurgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1082, USA
| | - Carol P Geer
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Glenn J Lesser
- Department of Internal Medicine - Section on Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
188
|
Abstract
OPINION STATEMENT Immune checkpoint inhibitors have changed the landscape of cancer immunotherapy and are being integrated into the standard of care for a variety of solid and hematologic malignancies. Glioblastoma (GBM) is the most common primary malignant brain tumor in adults and carries a grave prognosis despite advances in surgical resection, chemotherapy, and radiation therapy. Implementing immunotherapy for brain tumors mandates additional considerations due to the unique structural and immunologic milieu of the central nervous system (CNS). Nevertheless, strong data from preclinical studies have driven clinical trials of immune checkpoint blockade for newly diagnosed and recurrent GBM. The focus of this review is to discuss the ongoing clinical trials of checkpoint inhibitors in GBM and review the immunologic rationale for ongoing and future trial designs.
Collapse
|
189
|
Liu SJ, Yang TC, Yang ST, Chen YC, Tseng YY. Biodegradable hybrid-structured nanofibrous membrane supported chemoprotective gene therapy enhances chemotherapy tolerance and efficacy in malignant glioma rats. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:515-526. [PMID: 29658349 DOI: 10.1080/21691401.2018.1460374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemotherapy is ineffective for treating malignant glioma (MG) because of the low therapeutic levels of pharmaceuticals in tumour tissues and the well-known tumour resistance. The resistance to alkylators is modulated by the DNA repair protein O6-alkylguanine-DNA alkyltransferase (AGT). O6-benzylguanine (O6-BG) can irreversibly inactivate AGT by competing with O6-methylguanine and has been confirmed to increase the therapeutic activity of alkylators. We developed hybrid-structured poly[(d,l)-lactide-co-glycolide] nanofibrous membranes (HSNMs) that enable the sequential and sustained release of O6-BG and two alkylators (carmustine and temozolomide [TMZ]). HSNMs were surgically instilled into the cerebral cavity of pathogen-free rats and F98 glioma-bearing rats. The release behaviours of loaded drugs were quantified by using high-performance liquid chromatography. The treatment results were compared with the rats treated with intraperitoneal injection of O6-BG combined with surgical implantation of carmustine wafer and oral TMZ. The HSNMs revealed a sequential drug release behaviour with the elution of high drug concentrations of O6-BG in the early phase, followed by high levels of two alkylators. All drug concentrations remained high for over 14 weeks. Tumour growth was slower and the mean survival time was significantly prolonged in the HSNM-treated group. Biodegradable HSNMs can enhance therapeutic efficacy and prevent toxic systemic effects.
Collapse
Affiliation(s)
- Shih-Jung Liu
- a Department of Mechanical Engineering , Chang Gung University , Tao-Yuan , Taiwan, ROC.,b Department of Orthopedic Surgery , Chang Gung Memorial Hospital , Tao-Yuan , Taiwan, ROC
| | - Tao-Chieh Yang
- c Department of Neurosurgery , Asia University Hospital , Taichung , Taiwan, ROC
| | - Shun-Tai Yang
- d Division of Neurosurgery, Department of Surgery , Shuang Ho Hospital, Taipei Medical University , Taipei , Taiwan, ROC.,e Department of Surgery, School of Medicine, College of Medicine , Taipei Medical University , Taipei , Taiwan, ROC
| | - Ying-Chun Chen
- a Department of Mechanical Engineering , Chang Gung University , Tao-Yuan , Taiwan, ROC
| | - Yuan-Yun Tseng
- d Division of Neurosurgery, Department of Surgery , Shuang Ho Hospital, Taipei Medical University , Taipei , Taiwan, ROC.,e Department of Surgery, School of Medicine, College of Medicine , Taipei Medical University , Taipei , Taiwan, ROC
| |
Collapse
|
190
|
Zhu P, Du XL, Lu G, Zhu JJ. Survival benefit of glioblastoma patients after FDA approval of temozolomide concomitant with radiation and bevacizumab: A population-based study. Oncotarget 2018; 8:44015-44031. [PMID: 28467795 PMCID: PMC5546458 DOI: 10.18632/oncotarget.17054] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/20/2017] [Indexed: 11/25/2022] Open
Abstract
Few population-based analyses have investigated survival change in glioblastoma multiforme (GBM) patients treated with concomitant radiotherapy-temozolomide (RT-TMZ) and adjuvant temozolomide (TMZ) and then bevacizumab (BEV) after Food and Drug Administration (FDA) approval, respectively. We aimed to explore the effects on survival with RT-TMZ, adjuvant TMZ and BEV in general GBM population based on the Surveillance, Epidemiology, and End Results (SEER) and Texas Cancer Registry (TCR) databases. A total of 28933 GBM patients from SEER (N = 24578) and TCR (N = 4355) between January 2000 and December 2013 were included. Patients were grouped into three calendar periods based on date of diagnosis: pre-RT-TMZ and pre-BEV (1/2000-2/2005, P1), post-RT-TMZ and pre-BEV (3/2005-4/2009, P2), and post-RT-TMZ and post-BEV (5/2009-12/2013, P3). The association between calendar period of diagnosis and survival was analyzed in SEER and TCR, separately, by the Kaplan-Meier method and Cox proportional hazards model. We found a significant increase in median overall survival (OS) across the three periods in both populations. In multivariate models, the risk of death was significantly reduced during P2 and further decreased in P3, which remained unchanged after stratification. Comparison and validation analysis were performed in the combined dataset, and consistent results were observed. We conclude that the OS of GBM patients in a "real-world" setting has been steadily improved from January 2000 to December 2013, which likely resulted from the administrations of TMZ concomitant with RT and adjuvant TMZ for newly diagnosed GBM and then BEV for recurrent GBM after respective FDA approval.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston (UTHealth), School of Public Health, Houston, TX 77030, USA.,The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, and Memorial Hermann at Texas Medical Center, Houston, TX 77030, USA
| | - Xianglin L Du
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston (UTHealth), School of Public Health, Houston, TX 77030, USA
| | - Guangrong Lu
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, and Memorial Hermann at Texas Medical Center, Houston, TX 77030, USA
| | - Jay-Jiguang Zhu
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, and Memorial Hermann at Texas Medical Center, Houston, TX 77030, USA
| |
Collapse
|
191
|
Esquenazi Y, Friedman E, Liu Z, Zhu JJ, Hsu S, Tandon N. The Survival Advantage of "Supratotal" Resection of Glioblastoma Using Selective Cortical Mapping and the Subpial Technique. Neurosurgery 2018; 81:275-288. [PMID: 28368547 DOI: 10.1093/neuros/nyw174] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 08/12/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND A substantial body of evidence suggests that cytoreductive surgery is a prerequisite to prolonging survival in patients with glioblastoma (GBM). OBJECTIVE To evaluate the safety and impact of "supratotal" resections beyond the zone of enhancement seen on magnetic resonance imaging scans, using a subpial technique. METHODS We retrospectively evaluated 86 consecutive patients with primary GBM, managed by the senior author, using a subpial resection technique with or without carmustine (BCNU) wafer implantation. Multivariate Cox proportional hazards regression was used to analyze clinical, radiological, and outcome variables. Overall impacts of extent of resection (EOR) and BCNU wafer placement were compared using Kaplan-Meier survival analysis. RESULTS Mean patient age was 56 years. The median OS for the group was 18.1 months. Median OS for patients undergoing gross total, near-total, and subtotal resection were 54, 16.5, and 13.2 months, respectively. Patients undergoing near-total resection ( P = .05) or gross total resection ( P < .01) experienced statistically significant longer survival time than patients undergoing subtotal resection as well as patients undergoing ≥95% EOR ( P < .01) when compared to <95% EOR. The addition of BCNU wafers had no survival advantage. CONCLUSIONS The subpial technique extends the resection beyond the contrast enhancement and is associated with an overall survival beyond that seen in similar series where resection of the enhancement portion is performed. The effect of supratotal resection on survival exceeded the effects of age, Karnofsky performance score, and tumor volume. A prospective study would help to quantify the impact of the subpial technique on quality of life and survival as compared to a traditional resection limited to the enhancing tumor.
Collapse
Affiliation(s)
- Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery and Mischer Neuroscience Institute, Houston, Texas
| | - Elliott Friedman
- Department of Radiology, Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Zheyu Liu
- Department of Biostatistics, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Jay-Jiguang Zhu
- Vivian L. Smith Department of Neurosurgery and Mischer Neuroscience Institute, Houston, Texas
| | - Sigmund Hsu
- Vivian L. Smith Department of Neurosurgery and Mischer Neuroscience Institute, Houston, Texas
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery and Mischer Neuroscience Institute, Houston, Texas
| |
Collapse
|
192
|
Di Francesco M, Primavera R, Romanelli D, Palomba R, Pereira RC, Catelani T, Celia C, Di Marzio L, Fresta M, Di Mascolo D, Decuzzi P. Hierarchical Microplates as Drug Depots with Controlled Geometry, Rigidity, and Therapeutic Efficacy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9280-9289. [PMID: 29481038 DOI: 10.1021/acsami.7b19136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A variety of microparticles have been proposed for the sustained and localized delivery of drugs with the objective of increasing therapeutic indexes by circumventing filtering organs and biological barriers. Yet, the geometrical, mechanical, and therapeutic properties of such microparticles cannot be simultaneously and independently tailored during the fabrication process to optimize their performance. In this work, a top-down approach is employed to realize micron-sized polymeric particles, called microplates (μPLs), for the sustained release of therapeutic agents. μPLs are square hydrogel particles, with an edge length of 20 μm and a height of 5 μm, made out of poly(lactic- co-glycolic acid) (PLGA). During the synthesis process, the μPL Young's modulus can be varied from 0.6 to 5 MPa by changing the PLGA amounts from 1 to 7.5 mg, without affecting the μPL geometry while matching the properties of the surrounding tissue. Within the porous μPL matrix, different classes of therapeutic payloads can be incorporated including molecular agents, such as anti-inflammatory dexamethasone (DEX), and nanoparticles containing imaging and therapeutic molecules themselves, thus originating a truly hierarchical platform. As a proof of principle, μPLs are loaded with free DEX and 200 nm spherical polymeric nanoparticles, carrying DEX molecules (DEX-SPNs). Electron and fluorescent confocal microscopy analyses document the uniform distribution and stability of molecular and nanoagents within the μPL matrix. This multiscale, hierarchical microparticle releases DEX for at least 10 days. The inclusion of DEX-SPNs serves to minimize the initial burst release and modulate the diffusion of DEX molecules out of the μPL matrix. The biopharmacological and therapeutic properties together with the fine tuning of geometry and mechanical stiffness make μPLs a unique polymeric depot for the potential treatment of cancer, cardiovascular, and chronic, inflammatory diseases.
Collapse
Affiliation(s)
- Martina Di Francesco
- Laboratory of Nanotechnology for Precision Medicine , Fondazione Istituto Italiano di Tecnologia , Via Morego 30 , Genoa 16163 , Italy
| | - Rosita Primavera
- Laboratory of Nanotechnology for Precision Medicine , Fondazione Istituto Italiano di Tecnologia , Via Morego 30 , Genoa 16163 , Italy
| | - Davide Romanelli
- Laboratory of Nanotechnology for Precision Medicine , Fondazione Istituto Italiano di Tecnologia , Via Morego 30 , Genoa 16163 , Italy
| | - Roberto Palomba
- Laboratory of Nanotechnology for Precision Medicine , Fondazione Istituto Italiano di Tecnologia , Via Morego 30 , Genoa 16163 , Italy
| | - Rui C Pereira
- Laboratory of Nanotechnology for Precision Medicine , Fondazione Istituto Italiano di Tecnologia , Via Morego 30 , Genoa 16163 , Italy
| | - Tiziano Catelani
- Laboratory of Nanotechnology for Precision Medicine , Fondazione Istituto Italiano di Tecnologia , Via Morego 30 , Genoa 16163 , Italy
| | - Christian Celia
- Department of Pharmacy , University of Chieti-Pescara "G. D'Annunzio" , Via dei Vestini , Campus Universitario , 66100 Chieti , Italy
| | - Luisa Di Marzio
- Department of Pharmacy , University of Chieti-Pescara "G. D'Annunzio" , Via dei Vestini , Campus Universitario , 66100 Chieti , Italy
| | - Massimo Fresta
- Department of Health Sciences , University of Catanzaro "Magna Graecia" , Viale Europa , 88100 Catanzaro , Italy
| | - Daniele Di Mascolo
- Laboratory of Nanotechnology for Precision Medicine , Fondazione Istituto Italiano di Tecnologia , Via Morego 30 , Genoa 16163 , Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine , Fondazione Istituto Italiano di Tecnologia , Via Morego 30 , Genoa 16163 , Italy
| |
Collapse
|
193
|
Daeschlein G, Hillmann A, Gumbel D, Sicher C, von Podewils S, Stope MB, Junger M. Enhanced Anticancer Efficacy by Drug Chemotherapy and Cold Atmospheric Plasma Against Melanoma and Glioblastoma Cell Lines In Vitro. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2018. [DOI: 10.1109/trpms.2018.2789659] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
194
|
Ius T, Cesselli D, Isola M, Toniato G, Pauletto G, Sciacca G, Fabbro S, Pegolo E, Rizzato S, Beltrami AP, di Loreto C, Skrap M. Combining Clinical and Molecular Data to Predict the Benefits of Carmustine Wafers in Newly Diagnosed High-Grade Gliomas. Curr Treat Options Neurol 2018; 20:3. [PMID: 29476361 DOI: 10.1007/s11940-018-0489-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The purpose of this study was to retrospectively evaluate the use of carmustine wafers (CWs) in the management of high-grade gliomas (HGGs). The data from our monoinstitutional series was compared with studies reported in the literature. Special emphasis was placed on the evaluation of side effects and the analysis of extent of resection and molecular profile as risk factors. RECENT FINDINGS The implantation of CWs into the resection cavity during HGG treatment to deliver localized chemotherapy, followed by the Stupp protocol, remains debated in a clinical setting, largely due to the lack of appropriate phase III studies. Given the high expense and poorly characterized side effects associated with CW treatment, identification of patients most likely to benefit from this therapy could be clinically relevant. CWs may represent an effective and safe first-line treatment for patients with HGG that exhibit complete tumor resection and harboring a methylated MGMT promoter. Our investigation showed a much larger group of patients exhibiting long-term survival (> = 36 months), strongly supporting a potential survival benefit conferred via CW treatment. The pre-surgical definition of the MGMT promoter status could be of clinical use in identifying "good responders" to CW implantation.
Collapse
Affiliation(s)
- Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy.
| | | | - Miriam Isola
- Department of Medicine, University of Udine, Udine, Italy
| | - Giovanni Toniato
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Giada Pauletto
- Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Giovanni Sciacca
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Sara Fabbro
- Department of Medicine, University of Udine, Udine, Italy
| | - Enrico Pegolo
- Department of Medicine, University of Udine, Udine, Italy
| | - Simona Rizzato
- Department of Oncology, Santa Maria della Misericordia University Hospital, Udine, Italy
| | | | - Carla di Loreto
- Department of Medicine, University of Udine, Udine, Italy.,Institute of Pathology, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| |
Collapse
|
195
|
Akiyama Y, Kimura Y, Enatsu R, Mikami T, Wanibuchi M, Mikuni N. Advantages and Disadvantages of Combined Chemotherapy with Carmustine Wafer and Bevacizumab in Patients with Newly Diagnosed Glioblastoma: A Single-Institutional Experience. World Neurosurg 2018; 113:e508-e514. [PMID: 29476996 DOI: 10.1016/j.wneu.2018.02.070] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To retrospectively determine the safety and efficacy of combined chemotherapy with carmustine (BCNU) wafer, bevacizumab, and temozolomide plus radiotherapy in patients with newly diagnosed glioblastoma (GBM). METHODS A total of 54 consecutive newly diagnosed GBMs were resected at our institution between 2010 and 2016. Twenty-nine patients underwent BCNU wafer implantation into the resection cavity followed by standard radiochemotherapy with temozolomide (TMZ, Stupp regimen) plus additional bevacizumab treatment between 2013 and 2016. Twenty-five patients who underwent resection without BCNU implantation between 2010 and 2012 were enrolled as a control group; these patients were treated with the Stupp regimen and did not receive bevacizumab. This retrospective study included evaluation of progression-free survival and overall survival, plus comparisons between the combined therapy group and the control group. RESULTS There were no significant differences in age, sex, Karnofsky Performance Status on admission, isocitrate dehydrogenase 1/2 mutation ratio, or resection rate between the combined and standard therapy groups. The median overall survival in the combined therapy group and control group was 24.2 months and 15.30, respectively (P = 0.027). The median progression-free survival was 16.8 months and 7.30 months, respectively (P = 0.009). Overall, the incidence of adverse events leading to discontinuation of the study drug was similar between the treatment groups, except for infection, which was more common in the combined treatment group and required repeat surgery. CONCLUSIONS The combined therapy showed higher efficacy compared with standard therapy in patients with GBM. Therefore, combined therapy seems to be effective with an acceptable toxicity profile.
Collapse
Affiliation(s)
- Yukinori Akiyama
- Department of Neurosurgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuusuke Kimura
- Department of Neurosurgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Rei Enatsu
- Department of Neurosurgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takeshi Mikami
- Department of Neurosurgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahiko Wanibuchi
- Department of Neurosurgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Nobuhiro Mikuni
- Department of Neurosurgery, Sapporo Medical University School of Medicine, Sapporo, Japan.
| |
Collapse
|
196
|
Tseng YY, Su CH, Yang ST, Huang YC, Lee WH, Wang YC, Liu SC, Liu SJ. Advanced interstitial chemotherapy combined with targeted treatment of malignant glioma in rats by using drug-loaded nanofibrous membranes. Oncotarget 2018; 7:59902-59916. [PMID: 27494894 PMCID: PMC5312357 DOI: 10.18632/oncotarget.10989] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 06/27/2016] [Indexed: 01/08/2023] Open
Abstract
Glioblastoma multiforme (GBM), the most prevalent and malignant form of a primary brain tumour, is resistant to chemotherapy. In this study, we concurrently loaded three chemotherapeutic agents [bis-chloroethylnitrosourea, irinotecan, and cisplatin; BIC] into 50:50 poly[(d,l)-lactide-co-glycolide] (PLGA) nanofibres and an antiangiogenic agent (combretastatin) into 75:25 PLGA nanofibres [BIC and combretastatin (BICC)/PLGA]. The BICC/PLGA nanofibrous membranes were surgically implanted onto the brain surfaces of healthy rats for conducting pharmacodynamic studies and onto C6 glioma-bearing rats for estimating the therapeutic efficacy. The chemotherapeutic agents were rapidly released from the 50:50 PLGA nanofibres after implantation, followed by the release of combretastatin (approximately 2 weeks later) from the 75:25 PLGA nanofibres. All drug concentrations remained higher in brain tissues than in the blood for more than 8 weeks. The experimental results, including attenuated malignancy, retarded tumour growth, and prolonged survival in tumour-bearing rats, demonstrated the efficacy of the BICC/PLGA nanofibrous membranes. Furthermore, the efficacy of BIC/PLGA and BICC/PLGA nanofibrous membranes was compared. The BICC/PLGA nanofibrous membranes more efficiently retarded the tumour growth and attenuated the malignancy of C6 glioma-bearing rats. Moreover, the addition of combretastatin did not significantly change the drug release behaviour of the BIC/PLGA nanofibrous membranes. The present advanced and novel interstitial chemotherapy and targeted treatment provide a potential strategy and regimen for treating GBM.
Collapse
Affiliation(s)
- Yuan-Yun Tseng
- Division of Neurosurgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chen-Hsing Su
- Department of Neurosurgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Tai Yang
- Division of Neurosurgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yin-Chen Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital-Chiayi, Chang Gung University College of Medicine, Tao-Yuan, Taiwan
| | - Wei-Hwa Lee
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chuan Wang
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan
| | - Shou-Cheng Liu
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan.,Department of Orthopedics, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| |
Collapse
|
197
|
Graham-Gurysh E, Moore KM, Satterlee AB, Sheets KT, Lin FC, Bachelder EM, Miller CR, Hingtgen SD, Ainslie KM. Sustained Delivery of Doxorubicin via Acetalated Dextran Scaffold Prevents Glioblastoma Recurrence after Surgical Resection. Mol Pharm 2018; 15:1309-1318. [PMID: 29342360 DOI: 10.1021/acs.molpharmaceut.7b01114] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The primary cause of mortality for glioblastoma (GBM) is local tumor recurrence following standard-of-care therapies, including surgical resection. With most tumors recurring near the site of surgical resection, local delivery of chemotherapy at the time of surgery is a promising strategy. Herein drug-loaded polymer scaffolds with two distinct degradation profiles were fabricated to investigate the effect of local drug delivery rate on GBM recurrence following surgical resection. The novel biopolymer, acetalated dextran (Ace-DEX), was compared with commercially available polyester, poly(l-lactide) (PLA). Steady-state doxorubicin (DXR) release from Ace-DEX scaffolds was found to be faster when compared with scaffolds composed of PLA, in vitro. This increased drug release rate translated to improved therapeutic outcomes in a novel surgical model of orthotopic glioblastoma resection and recurrence. Mice treated with DXR-loaded Ace-DEX scaffolds (Ace-DEX/10DXR) resulted in 57% long-term survival out to study completion at 120 days compared with 20% survival following treatment with DXR-loaded PLA scaffolds (PLA/10DXR). Additionally, all mice treated with PLA/10DXR scaffolds exhibited disease progression by day 38, as defined by a 5-fold growth in tumor bioluminescent signal. In contrast, 57% of mice treated with Ace-DEX/10DXR scaffolds displayed a reduction in tumor burden, with 43% exhibiting complete remission. These results underscore the importance of polymer choice and drug release rate when evaluating local drug delivery strategies to improve prognosis for GBM patients undergoing tumor resection.
Collapse
Affiliation(s)
- Elizabeth Graham-Gurysh
- Division of Pharmacoengineering and Molecular Pharmaceutics , Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Kathryn M Moore
- Joint Department of Biomedical Engineering , University of North Carolina at Chapel Hill and North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Andrew B Satterlee
- Division of Pharmacoengineering and Molecular Pharmaceutics , Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Kevin T Sheets
- Division of Pharmacoengineering and Molecular Pharmaceutics , Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Feng-Chang Lin
- Department of Biostatistics and North Carolina Translational and Clinical Sciences Institute , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics , Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - C Ryan Miller
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, Departments of Neurology and Pharmacology, Lineberger Comprehensive Cancer Center, and Neuroscience Center, School of Medicine , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Shawn D Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics , Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics , Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
198
|
Gobitti C, Borsatti E, Arcicasa M, Roncadin M, Franchin G, Minatel E, Skrap M, Zanotti B, Tuniz F, Cimitan M, Capra E, Drigo A, Trovò MG. Treatment of recurrent high-grade gliomas with GliaSite brachytherapy: A prospective mono-institutional Italian experience. TUMORI JOURNAL 2018; 97:614-9. [DOI: 10.1177/030089161109700513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aims and background The present study evaluated toxicity, local control, and survival in patients with relapsed high-grade glioma after surgery and external beam radiation therapy and treated with re-operation and GliaSite brachytherapy. Methods Between 2006 and 2008, 15 patients with recurrent high-grade glioma underwent re-operation and GliaSite brachytherapy. Ten patients were males and 5 females. Median age was 40 years (range, 20–71). Karnofsky performance status was ≥70. All patients but one received GliaSite irradiation of the surgical cavity wall at the dose of 4500 cGy at a depth of 1 cm. Results No severe acute side effects were observed during GliaSite brachytherapy. Pathologically documented, symptomatic late radiation necrosis was observed in 3 patients (20%); 2 subsequently died of further complications. Two patients were alive at a median follow-up 13 months (range, 1–30). Median overall survival after GliaSite brachytherapy was 13 months. Conclusions Patients with recurrent high-grade glioma can be treated with additional surgery and GliaSite brachytherapy, delivering 4500 cGy at 1 cm depth without significant acute side effects but with a significant rate (20%) of late radiation necrosis, resulting in 13% of treatment-related deaths. Compared with the literature, survival results in our study appear to be satisfactory, but they may be related to patient selection criteria. Re-intervention followed by GliaSite brachytherapy should not be offered as a standard treatment for recurrent high-grade glioma, because of the high rate of late complications, treatment-related deaths, and high treatment costs.
Collapse
Affiliation(s)
- Carlo Gobitti
- Radiation Oncology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano
| | - Eugenio Borsatti
- Nuclear Medicine, Centro di Riferimento Oncologico, National Cancer Institute, Aviano
| | - Mauro Arcicasa
- Radiation Oncology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano
| | - Mario Roncadin
- Radiation Oncology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano
| | - Giovanni Franchin
- Radiation Oncology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano
| | - Emilio Minatel
- Radiation Oncology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano
| | - Miran Skrap
- Neurosurgery Department, University Hospital, Udine, Italy
| | - Bruno Zanotti
- Neurosurgery Department, University Hospital, Udine, Italy
| | | | - Marino Cimitan
- Nuclear Medicine, Centro di Riferimento Oncologico, National Cancer Institute, Aviano
| | - Elvira Capra
- Medical Physics Divisions, Centro di Riferimento Oncologico, National Cancer Institute, Aviano
| | - Annalisa Drigo
- Medical Physics Divisions, Centro di Riferimento Oncologico, National Cancer Institute, Aviano
| | - Mauro G Trovò
- Radiation Oncology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano
| |
Collapse
|
199
|
Donato V, Papaleo A, Castrichino A, Banelli E, Giangaspero F, Salvati M, Delfini R. Prognostic Implication of Clinical and Pathologic Features in Patients with Glioblastoma Multiforme Treated with Concomitant Radiation plus Temozolomide. TUMORI JOURNAL 2018; 93:248-56. [PMID: 17679459 DOI: 10.1177/030089160709300304] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aims and background Glioblastoma multiforme is the most common and most malignant primary brain tumor in adults. The current standard of care for glioblastoma is surgical resection to the extent feasible, followed by adjuvant radiotherapy plus temozolomide, given concomitantly with and after radiotherapy. This report is a prospective observational study of 43 cases treated in the Department of Radiotherapy, University of Rome La Sapienza, Italy. We examine the relationship between pathologic features and objective response rate in adult patients treated with concomitant radiation plus temozolomide to identify clinical, neuroradiologic, pathologic, and molecular factors with prognostic significance. Methods Forty-three consecutive patients (24 males and 19 females), ages 15-77 years (median, 57) with newly diagnosed glioblastoma multiforme, were included in this trial between 2002 and 2004 at our department. All patients were treated with surgery (complete resection in 81%, incomplete in 19%) followed by concurrent temozolomide (75 mg/m2/day) and radiotherapy (median tumor dose, 60 Gy), followed by temozolomide, 200 mg/m2/day for 5 consecutive days every 28 days. Neurologic evaluations were performed monthly and cranial magnetic resonance bimonthly. We analyzed age, clinical manifestations at diagnosis, seizures, Karnofsky performance score, tumor location, extent of resection, proliferation index (Ki-67 expression), p53, platelet-derived growth factor and epidermal growth factor receptor immunohistochemical expression as prognostic factors in the patients. The Kaplan-Meier statistical method and logrank test were used to assess correlation with survival. Results Fourteen patients (32%) manifested clinical and neuroradiographic evidence of tumor progression within 6 months of surgery. In contrast, 5 patients (12%) showed no disease progression for 18 months from the beginning of treatment. Median overall survival was 19 months. Multivariate analysis revealed that an age of 60 years or older (P <0.03), a postoperative performance score ≤70 (P = 0.04), the nontotal tumor resection (P = 0.03), tumor size >4 cm (P = 0.01) and proliferation index overexpression (P = 0.001) were associated with the worst prognosis. p53, PDGF and EGFR overexpression were not significant prognostic factors associated with survival. Conclusions The results suggest that analysis of prognostic markers in glioblastoma multiforme is complex. In addition to previously recognized prognostic variables such as age and Karnofsky performance score, tumor size, total resection and proliferation index overexpression were identified as predictors of survival in a series of patients with glioblastoma multiforme.
Collapse
Affiliation(s)
- Vittorio Donato
- Department of Radiotherapy, University of Rome La Sapienza, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
200
|
Zygogianni A, Protopapa M, Kougioumtzopoulou A, Simopoulou F, Nikoloudi S, Kouloulias V. From imaging to biology of glioblastoma: new clinical oncology perspectives to the problem of local recurrence. Clin Transl Oncol 2018; 20:989-1003. [PMID: 29335830 DOI: 10.1007/s12094-018-1831-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022]
Abstract
GBM is one of the most common and aggressive brain tumors. Surgery and adjuvant chemoradiation have succeeded in providing a survival benefit. Although most patients will eventually experience local recurrence, the means to fight recurrence are limited and prognosis remains poor. In a disease where local control remains the major challenge, few trials have addressed the efficacy of local treatments, either surgery or radiation therapy. The present article reviews recent advances in the biology, imaging and biomarker science of GBM as well as the current treatment status of GBM, providing new perspectives to the problem of local recurrence.
Collapse
Affiliation(s)
- A Zygogianni
- Radiotherapy Unit, 1st Department of Radiology, Medical School, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - M Protopapa
- Radiotherapy Unit, 1st Department of Radiology, Medical School, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - A Kougioumtzopoulou
- Radiotherapy Unit, 2nd Department of Radiology, Medical School, ATTIKON University Hospital, National and Kapodistrian University of Athens, Rimini 1, 12462, Chaidari, Greece
| | - F Simopoulou
- Radiotherapy Unit, 1st Department of Radiology, Medical School, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - S Nikoloudi
- Radiotherapy Unit, 1st Department of Radiology, Medical School, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - V Kouloulias
- Radiotherapy Unit, 2nd Department of Radiology, Medical School, ATTIKON University Hospital, National and Kapodistrian University of Athens, Rimini 1, 12462, Chaidari, Greece.
| |
Collapse
|