151
|
John F, George J, Vartak SV, Srivastava M, Hassan PA, Aswal VK, Karki SS, Raghavan SC. Enhanced efficacy of pluronic copolymer micelle encapsulated SCR7 against cancer cell proliferation. Macromol Biosci 2014; 15:521-34. [PMID: 25515310 DOI: 10.1002/mabi.201400480] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/14/2014] [Indexed: 12/22/2022]
Abstract
5,6-Bis(benzylideneamino)-2-mercaptopyrimidin-4-ol (SCR7) is a new anti cancer molecule having capability to selectively inhibit non-homologous end joining (NHEJ), one of the DNA double strand break (DSB) repair pathways inside the cells. In spite of the promising potential as an anticancer agent, hydrophobicity of SCR7 decreases its bioavailability. Herein the entrapment of SCR7 in Pluronic copolymer is reported. The size of the aggregates was determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS) which yields an average diameter of 23 nm. SCR7 encapsulated micelles (ES) were also characterized by small-angle neutron scattering (SANS). Evaluation of its biological properties by using a variety of techniques, including Trypan blue, MTT and Live-dead cell assays, reveal that encapsulated SCR7 can induce cytotoxicity in cancer cell lines, being more effective in breast cancer cell line. Encapsulated SCR7 treatment resulted in accumulation of DNA breaks within the cells, resulting in cell cycle arrest at G1 phase and activation of apoptosis. More importantly, we found ≈ 5 fold increase in cell death, when encapsulated SCR7 was used in comparison with SCR7 alone.
Collapse
Affiliation(s)
- Franklin John
- Biotechnology Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682 013, India
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Dian L, Yu E, Chen X, Wen X, Zhang Z, Qin L, Wang Q, Li G, Wu C. Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles. NANOSCALE RESEARCH LETTERS 2014; 9:2406. [PMID: 26088982 PMCID: PMC4493852 DOI: 10.1186/1556-276x-9-684] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/09/2014] [Indexed: 05/04/2023]
Abstract
To improve its poor aqueous solubility and stability, the potential chemotherapeutic drug quercetin was encapsulated in soluplus polymeric micelles by a modified film dispersion method. With the encapsulation efficiency over 90%, the quercetin-loaded polymeric micelles (Qu-PMs) with drug loading of 6.7% had a narrow size distribution around mean size of 79.00 ± 2.24 nm, suggesting the complete dispersibility of quercetin in water. X-ray diffraction (XRD) patterns illustrated that quercetin was in amorphous or molecular form within PMs. Fourier transform infrared spectroscopy (FTIR) indicated that quercetin formed intermolecular hydrogen bonding with carriers. An in vitro dialysis test showed the Qu-PMs possessed significant sustained-release property, and the formulation was stable for at least 6 months under accelerated conditions. The pharmacokinetic study in beagle dogs showed that absorption of quercetin after oral administration of Qu-PMs was improved significantly, with a half-life 2.19-fold longer and a relative oral bioavailability of 286% as compared to free quercetin. Therefore, these novel soluplus polymeric micelles can be applied to encapsulate various poorly water-soluble drugs towards a development of more applicable therapeutic formulations.
Collapse
Affiliation(s)
- Linghui Dian
- />School of Pharmaceutical Sciences, Guangdong Medical College, Xincheng Road 1, Dongguan, 523808 Guangdong People’s Republic of China
- />School of Pharmaceutical Sciences, Sun Yat-Sen University, Waihuan Road 132, Guangzhou, Guangdong 510006 People’s Republic of China
| | - Enjiang Yu
- />School of Pharmaceutical Sciences, Guangdong Medical College, Xincheng Road 1, Dongguan, 523808 Guangdong People’s Republic of China
| | - Xiaona Chen
- />School of Pharmaceutical Sciences, Sun Yat-Sen University, Waihuan Road 132, Guangzhou, Guangdong 510006 People’s Republic of China
| | - Xinguo Wen
- />School of Pharmaceutical Sciences, Sun Yat-Sen University, Waihuan Road 132, Guangzhou, Guangdong 510006 People’s Republic of China
| | - Zhengzan Zhang
- />School of Pharmaceutical Sciences, Sun Yat-Sen University, Waihuan Road 132, Guangzhou, Guangdong 510006 People’s Republic of China
| | - Lingzhen Qin
- />School of Pharmaceutical Sciences, Sun Yat-Sen University, Waihuan Road 132, Guangzhou, Guangdong 510006 People’s Republic of China
| | - Qingqing Wang
- />School of Pharmaceutical Sciences, Sun Yat-Sen University, Waihuan Road 132, Guangzhou, Guangdong 510006 People’s Republic of China
| | - Ge Li
- />R&D Center of Pharmaceutical Engineering, Sun Yat-sen University, Waihuan Road 132, Guangzhou, 510006 Guangdong People’s Republic of China
| | - Chuanbin Wu
- />School of Pharmaceutical Sciences, Sun Yat-Sen University, Waihuan Road 132, Guangzhou, Guangdong 510006 People’s Republic of China
- />R&D Center of Pharmaceutical Engineering, Sun Yat-sen University, Waihuan Road 132, Guangzhou, 510006 Guangdong People’s Republic of China
| |
Collapse
|
153
|
Hong SM, Jeon SO, Seo JE, Chun KH, Oh DH, Choi YW, Lee DI, Jeong SH, Kang JS, Lee S. Fabrication of Compound K-loaded Polymeric Micelle System and its Characterization in vitro and Oral Absorption Enhancement in vivo. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.11.3188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
154
|
Badrzadeh F, Rahmati-Yamchi M, Badrzadeh K, Valizadeh A, Zarghami N, Farkhani SM, Akbarzadeh A. Drug delivery and nanodetection in lung cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:618-34. [DOI: 10.3109/21691401.2014.975237] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
155
|
Ke X, Ng VWL, Ono RJ, Chan JM, Krishnamurthy S, Wang Y, Hedrick JL, Yang YY. Role of non-covalent and covalent interactions in cargo loading capacity and stability of polymeric micelles. J Control Release 2014; 193:9-26. [DOI: 10.1016/j.jconrel.2014.06.061] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/10/2014] [Accepted: 06/24/2014] [Indexed: 10/25/2022]
|
156
|
Luo C, Sun J, Sun B, He Z. Prodrug-based nanoparticulate drug delivery strategies for cancer therapy. Trends Pharmacol Sci 2014; 35:556-66. [PMID: 25441774 DOI: 10.1016/j.tips.2014.09.008] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 08/25/2014] [Accepted: 09/19/2014] [Indexed: 01/17/2023]
Abstract
Despite the rapid developments in nanotechnology and biomaterials, the efficient delivery of chemotherapeutic agents is still challenging. Prodrug-based nanoassemblies have many advantages as a potent platform for anticancer drug delivery, such as improved drug availability, high drug loading efficiency, resistance to recrystallization upon encapsulation, and spatially and temporally controllable drug release. In this review, we discuss prodrug-based nanocarriers for cancer therapy, including nanosystems based on polymer-drug conjugates, self-assembling small molecular weight prodrugs and prodrug-encapsulated nanoparticles (NPs). In addition, we discuss new trends in the field of prodrug-based nanoassemblies that enhance the delivery efficiency of anticancer drugs, with special emphasis on smart stimuli-triggered drug release, hybrid nanoassemblies, and combination drug therapy.
Collapse
Affiliation(s)
- Cong Luo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jin Sun
- Department of Biopharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, PR China.
| | - Bingjun Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Zhonggui He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
157
|
Polymeric nano-micelles: versatile platform for targeted delivery in cancer. Ther Deliv 2014; 5:1101-21. [DOI: 10.4155/tde.14.69] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Polymeric micelles are among the most promising delivery systems in nanomedicine. The growing interest in polymeric micelles as drug delivery vehicle is promoted by the advantages they offer for hydrophobic anticancer agents. The size of most polymeric micelles lies within the range 10–100 nm ensuring that they can selectively leave the circulation at tumor site via the enhanced permeability and retention effect. Their unique structure allows them to solubilize hydrophobic drugs, prolongs their circulatory half-life and eventually leads to enhanced therapeutic efficacy. In addition, they can undergo several structural modifications to further augment tumor cell uptake. In this review, we will discuss various micellar systems that have been studied in preclinical and clinical settings.
Collapse
|
158
|
Sawdon AJ, Peng CA. Polymeric micelles for acyclovir drug delivery. Colloids Surf B Biointerfaces 2014; 122:738-745. [PMID: 25193154 PMCID: PMC4201986 DOI: 10.1016/j.colsurfb.2014.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/31/2014] [Accepted: 08/12/2014] [Indexed: 10/24/2022]
Abstract
Polymeric prodrug micelles for delivery of acyclovir (ACV) were synthesized. First, ACV was used directly to initiate ring-opening polymerization of ɛ-caprolactone to form ACV-polycaprolactone (ACV-PCL). Through conjugation of hydrophobic ACV-PCL with hydrophilic methoxy poly(ethylene glycol) (MPEG) or chitosan, polymeric micelles for drug delivery were formed. (1)H NMR, FTIR, and gel permeation chromatography were employed to show successful conjugation of MPEG or chitosan to hydrophobic ACV-PCL. Through dynamic light scattering, zeta potential analysis, transmission electron microscopy, and critical micelle concentration (CMC), the synthesized ACV-tagged polymeric micelles were characterized. It was found that the average size of the polymeric micelles was under 200nm and the CMCs of ACV-PCL-MPEG and ACV-PCL-chitosan were 2.0mgL(-1) and 6.6mgL(-1), respectively. The drug release kinetics of ACV was investigated and cytotoxicity assay demonstrates that ACV-tagged polymeric micelles were non-toxic.
Collapse
Affiliation(s)
- Alicia J Sawdon
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI 49931, United States
| | - Ching-An Peng
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI 49931, United States.
| |
Collapse
|
159
|
Wu Z, Zou X, Yang L, Lin S, Fan J, Yang B, Sun X, Wan Q, Chen Y, Fu S. Thermosensitive hydrogel used in dual drug delivery system with paclitaxel-loaded micelles for in situ treatment of lung cancer. Colloids Surf B Biointerfaces 2014; 122:90-98. [DOI: 10.1016/j.colsurfb.2014.06.052] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 06/21/2014] [Accepted: 06/24/2014] [Indexed: 10/25/2022]
|
160
|
Kim JH, Ramasamy T, Tran TH, Choi JY, Cho HJ, Yong CS, Kim JO. Polyelectrolyte complex micelles by self-assembly of polypeptide-based triblock copolymer for doxorubicin delivery. Asian J Pharm Sci 2014. [DOI: 10.1016/j.ajps.2014.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
161
|
Kundu T, Mitra S, Patra P, Goswami A, Díaz Díaz D, Banerjee R. Mechanical Downsizing of a Gadolinium(III)-based Metal-Organic Framework for Anticancer Drug Delivery. Chemistry 2014; 20:10514-8. [DOI: 10.1002/chem.201402244] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/09/2014] [Indexed: 01/03/2023]
|
162
|
Anand R, Borghi F, Manoli F, Manet I, Agostoni V, Reschiglian P, Gref R, Monti S. Host-guest interactions in Fe(III)-trimesate MOF nanoparticles loaded with doxorubicin. J Phys Chem B 2014; 118:8532-9. [PMID: 24960194 DOI: 10.1021/jp503809w] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Doxorubicin (DOX) entrapment in porous Fe(III)-trimesate metal organic frameworks (MIL-100(Fe)) nanoparticles was investigated in neutral Tris buffer via UV-vis absorption, circular dichroism (CD), and fluorescence. The binding constants and the absolute spectra of the DOX-MIL-100(Fe) complexes were determined via absorption and fluorescence titrations. A binding model where DOX associates as monomer to the dehydrated Fe3O (OH)(H2O)2 [(C6H3)(CO2)3]2 structural unit in 1:1 stoichiometry, with apparent association constant of (1.1 to 1.8) × 10(4) M(-1), was found to reasonably fit the experimental data. Spectroscopic data indicate that DOX binding occurs via the formation of highly stable coordination bonds between one or both deprotonated hydroxyl groups of the aglycone moiety and coordinatively unsaturated Fe(III) centers. Complete quenching of the DOX fluorescence and remarkable thermal and photochemical stability were observed for DOX incorporated in the MIL-100(Fe) framework.
Collapse
Affiliation(s)
- Resmi Anand
- Istituto per la Sintesi Organica e la Fotoreattività, ISOF-CNR , Via Piero Gobetti 101, Bologna I-40129, Italy
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Cabral H, Miyata K, Kishimura A. Nanodevices for studying nano-pathophysiology. Adv Drug Deliv Rev 2014; 74:35-52. [PMID: 24993612 DOI: 10.1016/j.addr.2014.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 04/23/2014] [Accepted: 06/23/2014] [Indexed: 12/15/2022]
Abstract
Nano-scaled devices are a promising platform for specific detection of pathological targets, facilitating the analysis of biological tissues in real-time, while improving the diagnostic approaches and the efficacy of therapies. Herein, we review nanodevice approaches, including liposomes, nanoparticles and polymeric nanoassemblies, such as polymeric micelles and vesicles, which can precisely control their structure and functions for specifically interacting with cells and tissues. These systems have been successfully used for the selective delivery of reporter and therapeutic agents to specific tissues with controlled cellular and subcellular targeting of biomolecules and programmed operation inside the body, suggesting a high potential for developing the analysis for nano-pathophysiology.
Collapse
|
164
|
Progress of drug-loaded polymeric micelles into clinical studies. J Control Release 2014; 190:465-76. [PMID: 24993430 DOI: 10.1016/j.jconrel.2014.06.042] [Citation(s) in RCA: 638] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/22/2014] [Accepted: 06/23/2014] [Indexed: 12/29/2022]
Abstract
Targeting tumors with long-circulating nano-scaled carriers is a promising strategy for systemic cancer treatment. Compared with free small therapeutic agents, nanocarriers can selectively accumulate in solid tumors through the enhanced permeability and retention (EPR) effect, which is characterized by leaky blood vessels and impaired lymphatic drainage in tumor tissues, and achieve superior therapeutic efficacy, while reducing side effects. In this way, drug-loaded polymeric micelles, i.e. self-assemblies of amphiphilic block copolymers consisting of a hydrophobic core as a drug reservoir and a poly(ethylene glycol) (PEG) hydrophilic shell, have demonstrated outstanding features as tumor-targeted nanocarriers with high translational potential, and several micelle formulations are currently under clinical evaluation. This review summarizes recent efforts in the development of these polymeric micelles and their performance in human studies, as well as our recent progress in polymeric micelles for the delivery of nucleic acids and imaging.
Collapse
|
165
|
Anand R, Malanga M, Manet I, Manoli F, Tuza K, Aykaç A, Ladavière C, Fenyvesi E, Vargas-Berenguel A, Gref R, Monti S. Citric acid-γ-cyclodextrin crosslinked oligomers as carriers for doxorubicin delivery. Photochem Photobiol Sci 2014; 12:1841-54. [PMID: 23900688 DOI: 10.1039/c3pp50169h] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Two citric acid crosslinked γ-cyclodextrin oligomers (pγ-CyD) with a MW of 21-33 kDa and 10-15 γ-CyD units per molecule were prepared by following green chemistry methods and were fully characterized. The non-covalent association of doxorubicin (DOX) with these macromolecules was investigated in neutral aqueous medium by means of circular dichroism (CD), UV-vis absorption and fluorescence. Global analysis of multiwavelength spectroscopic CD and fluorescence titration data, taking into account the DOX monomer-dimer equilibrium, evidenced the formation of 1 : 1 and 1 : 2 pγ-CyD unit-DOX complexes. The binding constants are 1-2 orders of magnitude higher than those obtained for γ-CyD and depend on the characteristics of the oligomer batch used. The concentration profiles of the species in solution evidence the progressive monomerization of DOX with increasing oligomer concentration. Confocal fluorescence imaging and spectral imaging showed a similar drug distribution within the MCF-7 cell line incubated with either DOX complexed to pγ-CyD or free DOX. In both cases DOX is taken up into the cell nucleus without any degradation.
Collapse
Affiliation(s)
- Resmi Anand
- Institute for Organic Synthesis and Photoreactivity, CNR, via P. Gobetti 101, 40129 Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Abstract
The remarkable diversity of the self-assembly behavior of PEG-peptides is reviewed, including self-assemblies formed by PEG-peptides with β-sheet and α-helical (coiled-coil) peptide sequences. The modes of self-assembly in solution and in the solid state are discussed. Additionally, applications in bionanotechnology and synthetic materials science are summarized.
Collapse
Affiliation(s)
- Ian W Hamley
- Department of Chemistry, University of Reading , Whiteknights, Reading RG6 6AD, United Kingdom
| |
Collapse
|
167
|
Hami Z, Amini M, Ghazi-Khansari M, Rezayat SM, Gilani K. Doxorubicin-conjugated PLA-PEG-Folate based polymeric micelle for tumor-targeted delivery: synthesis and in vitro evaluation. Daru 2014; 22:30. [PMID: 24602477 PMCID: PMC3996029 DOI: 10.1186/2008-2231-22-30] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/25/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Selective delivery of anticancer agents to target areas in the body is desirable to minimize the side effects while maximizing the therapeutic efficacy. Anthracycline antibiotics such as doxorubicin (DOX) are widely used for treatment of a wide variety of solid tumors.This study evaluated the potential of a polymeric micellar formulation of doxorubicin as a nanocarrier system for targeted therapy of a folate-receptor positive human ovarian cancer cell in line. RESULTS DOX-conjugated targeting and non-targeting micelles prepared by the dialysis method were about 188 and 182 nm in diameter, respectively and their critical micelle concentration was 9.55 μg/ml. The DOX-conjugated micelles exhibited a potent cytotoxicity against SKOV3 human ovarian cancer cells. Moreover, the targeting micelles showed higher cytotoxicity than that of non-targeting ones (IC₅₀= 4.65 μg/ml vs 13.51 μg/ml). CONCLUSION The prepared micelle is expected to increase the efficacy of DOX against cancer cells and reduce its side effects.
Collapse
Affiliation(s)
- Zahra Hami
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design & Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mehdi Rezayat
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Kambiz Gilani
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
168
|
Highly hemocompatible zwitterionic micelles stabilized by reversible cross-linkage for anti-cancer drug delivery. Colloids Surf B Biointerfaces 2014; 115:384-90. [DOI: 10.1016/j.colsurfb.2013.12.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 11/20/2022]
|
169
|
Takahashi A, Ozaki Y, Kuzuya A, Ohya Y. Impact of core-forming segment structure on drug loading in biodegradable polymeric micelles using PEG-b-poly(lactide-co-depsipeptide) block copolymers. BIOMED RESEARCH INTERNATIONAL 2014; 2014:579212. [PMID: 24696855 PMCID: PMC3950643 DOI: 10.1155/2014/579212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 12/30/2013] [Indexed: 11/18/2022]
Abstract
We synthesized series of amphiphilic AB-type block copolymers having systematic variation in the core-forming segments using poly(lactide-co-depsipeptide)s as a hydrophobic segment and prepared polymeric micelles using the block copolymers, PEG-b-poly(lactide-co-depsipeptide). We then discussed the relationship between the core-forming segment structure and drug loading efficiency for the polymeric micelles. PEG-b-poly(lactide-co-depsipeptide)s, PEG-b-PLGL containing L-leucine (Leu), and PEG-b-PLGF containing L-phenylalanine (Phe), with similar molecular weights and various mole fractions of depsipeptide units, were synthesized. Polymeric micelles entrapping model drug (fluorescein, FL) were prepared using these copolymers. As a result, PEG-b-poly(lactide-co-depsipeptide) micelles showed higher drug loading compared with PEG-b-PLLA and PEG-b-PDLLA as controls. The drug loading increased with increase in the mole fraction of depsipeptide unit in the hydrophobic segments. The introduction of aliphatic and aromatic depsipeptide units was effective to achieve higher FL loading into the micelles. PEG-b-PLGL micelle showed higher drug loading than PEG-b-PLGF micelle when the amount of FL in feed was high. These results obtained in this study should be useful for strategic design of polymeric micelle-type drug delivery carrier with high drug loading efficiency.
Collapse
Affiliation(s)
- Akihiro Takahashi
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan
| | - Yuta Ozaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan
| | - Akinori Kuzuya
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan
| | - Yuichi Ohya
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan
| |
Collapse
|
170
|
Sakai-Kato K, Un K, Nanjo K, Nishiyama N, Kusuhara H, Kataoka K, Kawanishi T, Goda Y, Okuda H. Elucidating the molecular mechanism for the intracellular trafficking and fate of block copolymer micelles and their components. Biomaterials 2014; 35:1347-58. [DOI: 10.1016/j.biomaterials.2013.11.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/08/2013] [Indexed: 01/14/2023]
|
171
|
Srivastava A, O’Connor IB, Pandit A, Gerard Wall J. Polymer-antibody fragment conjugates for biomedical applications. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2013.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
172
|
Physicochemical characterization of amphiphilic nanoparticles based on the novel starch–deoxycholic acid conjugates and self-aggregates. Carbohydr Polym 2014; 102:838-45. [DOI: 10.1016/j.carbpol.2013.10.081] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 11/23/2022]
|
173
|
Frank D, Tyagi C, Tomar L, Choonara YE, du Toit LC, Kumar P, Penny C, Pillay V. Overview of the role of nanotechnological innovations in the detection and treatment of solid tumors. Int J Nanomedicine 2014; 9:589-613. [PMID: 24489467 PMCID: PMC3904834 DOI: 10.2147/ijn.s50941] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nanotechnology, although still in its infantile stages, has the potential to revolutionize the diagnosis, treatment, and monitoring of disease progression and success of therapy for numerous diseases and conditions, not least of which is cancer. As it is a leading cause of mortality worldwide, early cancer detection, as well as safe and efficacious therapeutic intervention, will be indispensable in improving the prognosis related to cancers and overall survival rate, as well as health-related quality of life of patients diagnosed with cancer. The development of a relatively new field of nanomedicine, which combines various domains and technologies including nanotechnology, medicine, biology, pharmacology, mathematics, physics, and chemistry, has yielded different approaches to addressing these challenges. Of particular relevance in cancer, nanosystems have shown appreciable success in the realm of diagnosis and treatment. Characteristics attributable to these systems on account of the nanoscale size range allow for individualization of therapy, passive targeting, the attachment of targeting moieties for more specific targeting, minimally invasive procedures, and real-time imaging and monitoring of in vivo processes. Furthermore, incorporation into nanosystems may have the potential to reintroduce into clinical practice drugs that are no longer used because of various shortfalls, as well as aid in the registration of new, potent drugs with suboptimal pharmacokinetic profiles. Research into the development of nanosystems for cancer diagnosis and therapy is thus a rapidly emerging and viable field of study.
Collapse
Affiliation(s)
- Derusha Frank
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Charu Tyagi
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lomas Tomar
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yahya E Choonara
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lisa C du Toit
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clement Penny
- Department of Medical Oncology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Viness Pillay
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
174
|
|
175
|
Yamada S, Sudo A, Goto M, Endo T. Phosgene-free synthesis of polypeptides using activated urethane derivatives of α-amino acids: an efficient synthetic approach to hydrophilic polypeptides. RSC Adv 2014. [DOI: 10.1039/c4ra03315a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polypeptide synthesis has been successfully achieved through polycondensation of activated urethane derivatives with amines, accompanied by the elimination of phenol and CO2.
Collapse
Affiliation(s)
- Shuhei Yamada
- Molecular Engineering Institute
- Kinki University
- Iizuka, Japan
| | - Atsushi Sudo
- Department of Applied Chemistry
- Faculty of Science and Engineering
- Kinki University
- Higashiosaka, Japan
| | - Mitsuaki Goto
- Molecular Engineering Institute
- Kinki University
- Iizuka, Japan
| | - Takeshi Endo
- Molecular Engineering Institute
- Kinki University
- Iizuka, Japan
| |
Collapse
|
176
|
Chen Y, Qi Y, Yan X, Ma H, Chen J, Liu B, Xue Q. Green fabrication of porous chitosan/graphene oxide composite xerogels for drug delivery. J Appl Polym Sci 2013. [DOI: 10.1002/app.40006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yunping Chen
- Laboratory of Clean Energy Chemistry and Materials; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
- School of Stomatology; Lanzhou University; Lanzhou 730000 People's Republic of China
| | - Yuanyuan Qi
- Laboratory of Clean Energy Chemistry and Materials; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
- State Key Laboratory of Solid Lubrication; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
| | - Xingbin Yan
- Laboratory of Clean Energy Chemistry and Materials; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
- State Key Laboratory of Solid Lubrication; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
| | - Haibing Ma
- Laboratory of Clean Energy Chemistry and Materials; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
- Gansu Province Hospital of Traditional Chinese Medicine; Lanzhou 730000 People's Republic of China
| | - Jiangtao Chen
- Laboratory of Clean Energy Chemistry and Materials; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
- State Key Laboratory of Solid Lubrication; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
| | - Bin Liu
- School of Stomatology; Lanzhou University; Lanzhou 730000 People's Republic of China
| | - Qunji Xue
- State Key Laboratory of Solid Lubrication; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
| |
Collapse
|
177
|
McLaughlin CK, Logie J, Shoichet MS. Core and Corona Modifications for the Design of Polymeric Micelle Drug-Delivery Systems. Isr J Chem 2013. [DOI: 10.1002/ijch.201300085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
178
|
Golla K, Bhaskar C, Ahmed F, Kondapi AK. A target-specific oral formulation of Doxorubicin-protein nanoparticles: efficacy and safety in hepatocellular cancer. J Cancer 2013; 4:644-52. [PMID: 24155776 PMCID: PMC3805992 DOI: 10.7150/jca.7093] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/03/2013] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND/AIMS Hepatocellular carcinoma (HCC) also known as malignant hepatoma is a most common liver cancer. Doxorubicin (Doxo) is an anti-cancer drug having activity against a wide spectrum of cancer types. Clinical Utility of doxo has been limited due to its poor bioavailability and toxicity to heart and spleen. Furthermore, cancer chemotherapeutics have limited oral absorption. Transferrin family proteins are highly abundant and plays important role in transport and storage of iron in cells and tissues. Since apotransferrin and lactoferrin receptors are highly expressed on the surface of metabolically active cancer cells, the principal objective of present study is to evaluate efficacy of doxorubicin loaded apotransferrin and lactoferrin nanoparticles (apodoxonano or lactodoxonano) in oral treatment of HCC in rats. STUDY DESIGN HCC was induced in rats by supplementing 100 mg/L of diethylnitrosamine (DENA) in drinking water for 8 weeks. A week after the last day of DENA administration, rats were divided into four groups, each group comprising of five animals. Each group was administered with one of the drug viz., saline, doxorubicin (doxo), apodoxonano and lactodoxonano (4 mg/ kg equivalent of drug). In each case, they received 8 doses of the drug orally with six day interval. One week after the last dose, anticancer activity was evaluated by counting the liver nodules, H & E analysis of tissue sections and expression levels of angiogenic and antitumor markers. RESULTS In rats treated with apodoxonano and lactodoxonano, the number of neoplastic nodules was significantly lower than that of rats administered with saline or with doxo. Apodoxonano and lactodoxonano did not exhibit decrease in mean body weight, which was markedly reduced by 22% in the case of doxo administered rats. In rats treated with nanoformulations, the number of liver nodules was found reduced by >93%. Both nanoformulations showed significantly high localization in liver compared to doxo. CONCLUSIONS Apodoxonano and lactodoxonano showed improved efficacy, bioavailability and safety compared to doxo for treatment of HCC in rats when administered orally.
Collapse
Affiliation(s)
- Kishore Golla
- 2. Department of Biochemistry, University of Hyderabad, and Hyderabad 500046 India; ; 3. Centre for Nanotechnology, University of Hyderabad, and Hyderabad 500046 India
| | | | | | | |
Collapse
|
179
|
Abstract
Poorly soluble drugs often encounter low bioavailability and erratic absorption patterns in the clinical setting. Due to the rising number of compounds having solubility issues, finding ways to enhance the solubility of drugs is one of the major challenges in the pharmaceutical industry today. Polymeric micelles, which form upon self-assembly of amphiphilic macromolecules, can act as solubilizing agents for delivery of poorly soluble drugs. This manuscript examines the fundamentals of polymeric micelles through reviews of representative literature and demonstrates possible applications through recent examples of clinical trial developments. In particular, the potential of polymeric micelles for delivery of poorly water-soluble drugs, especially in the areas of oral delivery and in cancer therapy, is discussed. Key considerations in utilizing polymeric micelles' advantages and overcoming potential disadvantages have been highlighted. Lastly, other possible strategies related to particle size reduction for enhancing solubilization of poorly water-soluble drugs are introduced.
Collapse
Affiliation(s)
- Ying Lu
- Purdue University, Departments of Pharmaceutics and Biomedical Engineering, West Lafayette, IN 47906, U.S.A
| | - Kinam Park
- Purdue University, Departments of Pharmaceutics and Biomedical Engineering, West Lafayette, IN 47906, U.S.A
- Kyung Hee University, School of Dentistry, Department of Maxillofacial Biomedical Engineering, Seoul, Korea
| |
Collapse
|
180
|
Magee MS, Snook AE, Marszalowicz GP, Waldman SA. Immunotherapeutic strategies to target prognostic and predictive markers of cancer. Biomark Med 2013; 7:23-35. [PMID: 23387482 DOI: 10.2217/bmm.12.110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Throughout the last century medical advances in cancer treatment in the fields of surgery, radiation therapy and chemotherapy have greatly impacted patients' survival rates. Nevertheless, cancer remains a significant cause of mortality, with an estimated 7.6 million deaths worldwide in 2008, reflecting the inability of existing therapies to effectively cure disease. The emergence of vaccines and their successes in preventing the spread of infectious diseases has demonstrated the unique specificity and therapeutic potential of the immune system. This potential has driven the development of novel cancer immunotherapeutics. This review focuses on the current status of the use of immunologic effectors to target known biomarkers in cancer.
Collapse
Affiliation(s)
- Michael S Magee
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, 132 South 10th Street, 1170 Main, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
181
|
Yamada S, Atsushi S, Goto M, Endo T. Facile synthesis of poly(l
-tryptophan) through polycondensation of activated urethane derivatives. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26873] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuhei Yamada
- Molecular Engineering Institute, Kinki University; 11-6 Kayanomori Iizuka Fukuoka 820-8555 Japan
| | - Sudo Atsushi
- Molecular Engineering Institute, Kinki University; 11-6 Kayanomori Iizuka Fukuoka 820-8555 Japan
| | - Mitsuaki Goto
- Molecular Engineering Institute, Kinki University; 11-6 Kayanomori Iizuka Fukuoka 820-8555 Japan
| | - Takeshi Endo
- Molecular Engineering Institute, Kinki University; 11-6 Kayanomori Iizuka Fukuoka 820-8555 Japan
| |
Collapse
|
182
|
Wang H, Rempel GL. pH-responsive polymer core-shell nanospheres for drug delivery. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26860] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Hui Wang
- Department of Chemical Engineering; University of Waterloo; 200 University Ave. West; Waterloo Ontario N2L 3G1 Canada
| | - Garry L. Rempel
- Department of Chemical Engineering; University of Waterloo; 200 University Ave. West; Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
183
|
Okada T, Uto K, Sasai M, Lee CM, Ebara M, Aoyagi T. Nano-decoration of the Hemagglutinating Virus of Japan envelope (HVJ-E) using a layer-by-layer assembly technique. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:7384-7392. [PMID: 23441859 DOI: 10.1021/la304572s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this study, we created a nanoscale layer of hyaluronic acid (HA) on the inactivated Hemagglutinating Virus of Japan envelope (HVJ-E) via a layer-by-layer (LbL) assembly technique for CD-44 targeted delivery. HVJ-E was selected as the template virus because it has shown a tumor-suppressing ability by eliciting inflammatory cytokine production in dendritic cells. Although it has been required to increase the tumor-targeting ability and reduce nonspecific binding because HVJ-E fuses with virtually all cells and induces hemagglutination in the bloodstream, complete modifications of single-envelope-type viruses with HA have been difficult. Therefore, we studied the surface ζ potential of HVJ-E at different pH values and carefully examined the deposition conditions for the first layer using three cationic polymers: poly-L-lysine (PLL), chitosan (CH), and glycol chitosan (GC). GC-coated HVJ-E particles showed the highest disperse ability under physiological pH and salt conditions without aggregation. An HA layer was then prepared via alternating deposition of HA and GC. The successive decoration of multilayers on HVJ-E has been confirmed by dynamic light scattering (DLS), ζ potentials, and transmission electron microscopy (TEM). An enzymatic degradation assay revealed that only the outermost HA layer was selectively degraded by hyaluronidase. However, entire layers were destabilized at lower pH. Therefore, the HA/GC-coated HVJ-E describe here can be thought of as a potential bomb for cancer immunotherapy because of the ability of targeting CD44 as well as the explosion of nanodecorated HA/GC layers at endosomal pH while preventing nonspecific binding at physiological pH and salt conditions such as in the bloodstream or normal tissues.
Collapse
Affiliation(s)
- Takaharu Okada
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
184
|
Yamada S, Koga K, Sudo A, Goto M, Endo T. Phosgene-free synthesis of polypeptides: Useful synthesis for hydrophobic polypeptides through polycondensation of activated urethane derivatives of α-amino acids. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26775] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shuhei Yamada
- Molecular Engineering Institute, Kinki University; 11-6 Kayanomori Iizuka Fukuoka 820-8555 Japan
| | - Koichi Koga
- Molecular Engineering Institute, Kinki University; 11-6 Kayanomori Iizuka Fukuoka 820-8555 Japan
| | - Atsushi Sudo
- Molecular Engineering Institute, Kinki University; 11-6 Kayanomori Iizuka Fukuoka 820-8555 Japan
| | - Mitsuaki Goto
- Molecular Engineering Institute, Kinki University; 11-6 Kayanomori Iizuka Fukuoka 820-8555 Japan
| | - Takeshi Endo
- Molecular Engineering Institute, Kinki University; 11-6 Kayanomori Iizuka Fukuoka 820-8555 Japan
| |
Collapse
|
185
|
McRae Page S, Martorella M, Parelkar S, Kosif I, Emrick T. Disulfide cross-linked phosphorylcholine micelles for triggered release of camptothecin. Mol Pharm 2013; 10:2684-92. [PMID: 23742055 DOI: 10.1021/mp400114n] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A series of block copolymers based on 2-methacryloyloxyethyl phosphorylcholine (MPC) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Incorporation of dihydrolipoic acid (DHLA) into the hydrophobic block led to formation of block copolymer micelles in water. The micelles were between 15 and 30 nm in diameter, as characterized by dynamic light scattering (DLS), with some size control achieved by adjusting the hydrophobic/hydrophilic balance. Cross-linked micelles were prepared by disulfide formation, and observed to be stable in solution for weeks. The micelles proved amenable to disassembly when treated with a reducing agent, such as dithiothreitol (DTT), and represent a potential delivery platform for chemotherapeutic agents. As a proof-of-concept, camptothecin (CPT) was conjugated to the polymer scaffold through a disulfide linkage, and release of the drug from the micelle was monitored by fluorescence spectroscopy. These CPT-loaded prodrug micelles showed a reduction in release rate compared to physically encapsulated CPT. The use of disulfide conjugation facilitated drug release under reducing conditions, with a half-life (t1/2) of 5.5 h in the presence of 3 mM DTT, compared to 28 h in PBS. The toxicity of the micellar prodrugs was evaluated in cell culture against human breast (MCF7) and colorectal (COLO205) cancer cell lines.
Collapse
Affiliation(s)
- Samantha McRae Page
- Polymer Science & Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | | | | | | | | |
Collapse
|
186
|
Ma P, Mumper RJ. Anthracycline Nano-Delivery Systems to Overcome Multiple Drug Resistance: A Comprehensive Review. NANO TODAY 2013; 8:313-331. [PMID: 23888183 PMCID: PMC3718073 DOI: 10.1016/j.nantod.2013.04.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Anthracyclines (doxorubicin, daunorubicin, and idarubicin) are very effective chemotherapeutic drugs to treat many cancers; however, the development of multiple drug resistance (MDR) is one of the major limitations for their clinical applications. Nano-delivery systems have emerged as the novel cancer therapeutics to overcome MDR. Up until now, many anthracycline nano-delivery systems have been developed and reported to effectively circumvent MDR both in-vitro and in-vivo, and some of these systems have even advanced to clinical trials, such as the HPMA-doxorubicin (HPMA-DOX) conjugate. Doxil, a DOX PEGylated liposome formulation, was developed and approved by FDA in 1995. Unfortunately, this formulation does not address the MDR problem. In this comprehensive review, more than ten types of developed anthracycline nano-delivery systems to overcome MDR and their proposed mechanisms are covered and discussed, including liposomes; polymeric micelles, conjugate and nanoparticles; peptide/protein conjugates; solid-lipid, magnetic, gold, silica, and cyclodextrin nanoparticles; and carbon nanotubes.
Collapse
Affiliation(s)
- Ping Ma
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Russell J. Mumper
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599, USA
| |
Collapse
|
187
|
Fine D, Grattoni A, Goodall R, Bansal SS, Chiappini C, Hosali S, van de Ven AL, Srinivasan S, Liu X, Godin B, Brousseau L, Yazdi IK, Fernandez-Moure J, Tasciotti E, Wu HJ, Hu Y, Klemm S, Ferrari M. Silicon micro- and nanofabrication for medicine. Adv Healthc Mater 2013; 2:632-66. [PMID: 23584841 PMCID: PMC3777663 DOI: 10.1002/adhm.201200214] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/31/2012] [Indexed: 12/13/2022]
Abstract
This manuscript constitutes a review of several innovative biomedical technologies fabricated using the precision and accuracy of silicon micro- and nanofabrication. The technologies to be reviewed are subcutaneous nanochannel drug delivery implants for the continuous tunable zero-order release of therapeutics, multi-stage logic embedded vectors for the targeted systemic distribution of both therapeutic and imaging contrast agents, silicon and porous silicon nanowires for investigating cellular interactions and processes as well as for molecular and drug delivery applications, porous silicon (pSi) as inclusions into biocomposites for tissue engineering, especially as it applies to bone repair and regrowth, and porous silica chips for proteomic profiling. In the case of the biocomposites, the specifically designed pSi inclusions not only add to the structural robustness, but can also promote tissue and bone regrowth, fight infection, and reduce pain by releasing stimulating factors and other therapeutic agents stored within their porous network. The common material thread throughout all of these constructs, silicon and its associated dielectrics (silicon dioxide, silicon nitride, etc.), can be precisely and accurately machined using the same scalable micro- and nanofabrication protocols that are ubiquitous within the semiconductor industry. These techniques lend themselves to the high throughput production of exquisitely defined and monodispersed nanoscale features that should eliminate architectural randomness as a source of experimental variation thereby potentially leading to more rapid clinical translation.
Collapse
Affiliation(s)
- Daniel Fine
- Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Pitt WG, Husseini GA, Kherbeck LN. Ultrasound-triggered Release from Micelles. SMART MATERIALS FOR DRUG DELIVERY 2013. [DOI: 10.1039/9781849736800-00148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ultrasound is an ideal trigger for site-actuated drug delivery because it can be focused through the skin to internal targets without surgery. Thermal or mechanical energy can be delivered via tissue heating or bubble cavitation, respectively. Bubble cavitation, which concentrates energy that can trigger drug release from carriers, occurs more readily at low frequencies and at bubble resonant frequencies. Other mechanical and physical consequences of cavitation are reviewed. Micelles are nanosized molecular assemblies of amphiphilic molecules that spontaneously form in aqueous solution and possess a hydrophobic core capable of sequestering hydrophobic drugs. Micelles have traditionally been used to increase the solubility of hydrophobic therapeutics for oral and intravenous administration. For ultrasonic drug delivery, polymeric micelles containing polyethylene oxide blocks are preferred because they have longer circulation time in vivo. Passive delivery occurs when micelles accumulate in tumor tissues that have malformed capillaries with porous walls. In active delivery targeting ligands are attached to the micelles, which directs their binding to specific cells. Actuated delivery occurs when ultrasound causes drug release from micelles and is attributed to bubble cavitation since the amount released correlates with acoustic signatures of cavitation. The mechanisms of ultrasonic drug release are discussed, including the prevalent theory that gas bubble cavitation events create high shear stress and shock waves that transiently perturb the structure of the micelles and allow drug to escape from the hydrophobic core. Ultrasound also perturbs cell membranes, rendering them more permeable to drug uptake. Tumors in rats and mice have been successfully treated using low-frequency ultrasound and chemotherapeutics in polymeric micelles. Ultrasonically activated drug delivery has great clinical potential.
Collapse
Affiliation(s)
- William G. Pitt
- Chemical Engineering Department Brigham Young University, Provo, UT84602 USA
| | | | | |
Collapse
|
189
|
Stabilization and sustained release of zeylenone, a soft cytotoxic drug, within polymeric micelles for local antitumor drug delivery. Int J Pharm 2013; 450:331-7. [PMID: 23587966 DOI: 10.1016/j.ijpharm.2013.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 03/11/2013] [Accepted: 04/08/2013] [Indexed: 11/20/2022]
Abstract
Use of soft drugs has resulted in mixed success with the applicability to chemotherapeutics yet being confirmed. We hypothesize that incorporation of a soft cytotoxic agent into polymeric micelles, which confer to stabilizing and sustained release effect, will improve and prolong the local antitumor efficacy, thus achieving the therapeutic potential of soft cytotoxic agents. We incorporated a model soft cytotoxic agent, zeylenone, into mPEG-PLGA micelles by solvent evaporation method. The drug loaded micelles were characterized in terms of drug encapsulation, dynamic size, zeta potential, drug stability and in vitro and in vivo release. The in vivo antitumor efficacy was evaluated in A549 tumor-bearing mice. Zeylenone-loaded micelles exhibited core-shell morphology with dynamic size of about 36 nm and offered efficient solubilizing and stabilizing effects. In vitro release and in vivo pharmacokinetic results indicated sustained release of zeylenone in micelles. In addition, local delivered zeylenone-loaded micelles showed improved and sustained antitumor effect in vivo, compared with intravenous administration or local delivery of free drug solution. This study demonstrates the feasibility of soft cytotoxic agent to achieve local antitumor efficacy after the drug was stabilized and sustained the release within polymeric micelles.
Collapse
|
190
|
Mathews AS, Ahmed S, Shahin M, Lavasanifar A, Kaur K. Peptide modified polymeric micelles specific for breast cancer cells. Bioconjug Chem 2013; 24:560-70. [PMID: 23514428 DOI: 10.1021/bc3004364] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The specific targeting ability of novel breast cancer targeting peptides as ligands coupled to polymeric micelles was evaluated in the present study. In this context, engineered breast cancer cell targeting peptides, denoted as peptide 11 (RGDPAYQGRFL) and peptide 18 (WXEAAYQRFL), were compared with the lead 12-mer p160 peptide and cyclic RGDfK peptide. All four peptides were conjugated individually to poly(ethylene oxide)-b-poly(caprolactone) (PEO-b-PCL) diblock polymeric micelles to obtain targeted carrier systems PM11, PM18, PM 160, and PM c-RGD. Physical blending of the peptides 11 and 18 with PEO-b-PCL was also done to yield combination micelles, comPM11 and comPM18. The structural confirmation of polymer was carried out using (1)H NMR and MALDI-TOF, and the size distribution and zeta potential of the micelles were determined using dynamic light scattering. Lipophilic cyanine fluorescent probe DiI was physically incorporated in the polymeric micelles to imitate the hydrophobic drug loaded in the micellar core. The cellular uptake of DiI-loaded peptide-containing polymeric micelles by MDA-MB-435, MDA-MB-231, and MCF7 breast cancer cell lines, as well as HUVEC and MCF10A noncancerous cells, were analyzed using flow cytometry and confocal microscopy techniques. Modification of polymeric micelles with peptide 11 or 18 led to an increase in micellar uptake specifically in breast cancer cells compared to p160, c-RGD modified, or naked micelles. The peptide-micelle combinations (comPM11 and comPM18) displayed better uptake by the cells compared to the covalently conjugated PM11 and PM18 micelles; however, the combinations were less selective toward cancer cells. The results point to a potential for peptides 11- and 18-micelle conjugates as attractive platforms for improved performance of a wide range of chemotherapeutic drugs and/or imaging agents in cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Anu Stella Mathews
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1
| | | | | | | | | |
Collapse
|
191
|
Bamrungsap S, Zhao Z, Chen T, Wang L, Li C, Fu T, Tan W. Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine (Lond) 2013; 7:1253-71. [PMID: 22931450 DOI: 10.2217/nnm.12.87] [Citation(s) in RCA: 328] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Continuing improvement in the pharmacological and therapeutic properties of drugs is driving the revolution in novel drug delivery systems. In fact, a wide spectrum of therapeutic nanocarriers has been extensively investigated to address this emerging need. Accordingly, this article will review recent developments in the use of nanoparticles as drug delivery systems to treat a wide variety of diseases. Finally, we will introduce challenges and future nanotechnology strategies to overcome limitations in this field.
Collapse
Affiliation(s)
- Suwussa Bamrungsap
- National Nanotechnology Center (NANOTEC), Thailand Science Park, Pathumthani 12120, Thailand
| | | | | | | | | | | | | |
Collapse
|
192
|
Gombotz WR, Hoffman AS. Polymeric Micelles. Biomater Sci 2013. [DOI: 10.1016/b978-0-08-087780-8.00094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
193
|
Wang R, Hu X, Xiao H, Xie Z, Huang Y, Jing X. Polymeric dinulcear platinum(ii) complex micelles for enhanced antitumor activity. J Mater Chem B 2013; 1:744-748. [DOI: 10.1039/c2tb00240j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
194
|
Makharza S, Cirillo G, Bachmatiuk A, Vittorio O, Mendes RG, Oswald S, Hampel S, Rümmeli MH. Size-dependent nanographene oxide as a platform for efficient carboplatin release. J Mater Chem B 2013; 1:6107-6114. [DOI: 10.1039/c3tb21090a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
195
|
Duncan R, Vicent MJ. Polymer therapeutics-prospects for 21st century: the end of the beginning. Adv Drug Deliv Rev 2013; 65:60-70. [PMID: 22981753 DOI: 10.1016/j.addr.2012.08.012] [Citation(s) in RCA: 305] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/16/2012] [Accepted: 08/22/2012] [Indexed: 02/07/2023]
Abstract
The term "polymer therapeutics" was coined to describe polymeric drugs, polymer conjugates of proteins, drugs and aptamers, together with those block copolymer micelles and multicomponent non-viral vectors which contain covalent linkages. These often complex, multicomponent constructs are actually "drugs" and "macromolecular prodrugs" in contrast to drug delivery systems that simply entrap (non-covalently) therapeutic agents. They have also been described as nanomedicines. First polymer-protein conjugates entered routine clinical use in 1990 and a growing number of polymeric drugs/sequestrants and PEGylated proteins/aptamers have since come into the market. Valuable lessons have been learnt over >3 decades of clinical development, especially in relation to critical product attributes governing safety and efficacy, the validated methods needed for product characterisation. Not least there has been improved understanding of polymer therapeutic-specific biomarkers that will in future enable improved selection of patients for therapy. Advances in synthetic polymer chemistry (including control of 3D architecture), the move towards greater use of biodegradable polymers, polymers delivering combination therapy, increased understanding of polymer therapeutic critical product attributes to guide pharmaceutical development, and advances in understanding of endocytosis and intracellular trafficking pathways in health and disease are opening new opportunities for design and clinical use of polymer-based therapeutics in the decades to come.
Collapse
|
196
|
Tsuda N, Ohtsubo T, Fuji M. Preparation of self-bursting microcapsules by interfacial polymerization. ADV POWDER TECHNOL 2012. [DOI: 10.1016/j.apt.2011.09.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
197
|
Josefsen LB, Boyle RW. Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics 2012; 2:916-66. [PMID: 23082103 PMCID: PMC3475217 DOI: 10.7150/thno.4571] [Citation(s) in RCA: 393] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/10/2012] [Indexed: 02/07/2023] Open
Abstract
Porphyrinic molecules have a unique theranostic role in disease therapy; they have been used to image, detect and treat different forms of diseased tissue including age-related macular degeneration and a number of different cancer types. Current focus is on the clinical imaging of tumour tissue; targeted delivery of photosensitisers and the potential of photosensitisers in multimodal biomedical theranostic nanoplatforms. The roles of porphyrinic molecules in imaging and pdt, along with research into improving their selective uptake in diseased tissue and their utility in theranostic applications are highlighted in this Review.
Collapse
|
198
|
Zhu XM, Yuan J, Leung KCF, Lee SF, Sham KWY, Cheng CHK, Au DWT, Teng GJ, Ahuja AT, Wang YXJ. Hollow superparamagnetic iron oxide nanoshells as a hydrophobic anticancer drug carrier: intracelluar pH-dependent drug release and enhanced cytotoxicity. NANOSCALE 2012; 4:5744-54. [PMID: 22895638 DOI: 10.1039/c2nr30960b] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
With curcumin and doxorubicin (DOX) base as model drugs, intracellular delivery of hydrophobic anticancer drugs by hollow structured superparamagnetic iron oxide (SPIO) nanoshells (hydrodynamic diameter: 191.9 ± 2.6 nm) was studied in glioblastoma U-87 MG cells. SPIO nanoshell-based encapsulation provided a stable aqueous dispersion of the curcumin. After the SPIO nanoshells were internalized by U-87 MG cells, they localized at the acidic compartments of endosomes and lysosomes. In endosome/lysosome-mimicking buffers with a pH of 4.5-5.5, pH-dependent drug release was observed from curcumin or DOX loaded SPIO nanoshells (curcumin/SPIO or DOX/SPIO). Compared with the free drug, the intracellular curcumin content delivered via curcumin/SPIO was 30 fold higher. Increased intracellular drug content for DOX base delivered via DOX/SPIO was also confirmed, along with a fast intracellular DOX release that was attributed to its protonation in the acidic environment. DOX/SPIO enhanced caspase-3 activity by twofold compared with free DOX base. The concentration that induced 50% cytotoxic effect (CC(50)) was 0.05 ± 0.03 μg ml(-1) for DOX/SPIO, while it was 0.13 ± 0.02 μg ml(-1) for free DOX base. These results suggested SPIO nanoshells might be a promising intracellular carrier for hydrophobic anticancer drugs.
Collapse
Affiliation(s)
- Xiao-Ming Zhu
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Li L, Wu J, Zhao M, Wang Y, Zhang H, Zhang X, Gui L, Liu J, Mair N, Peng S. Poly-α,β-DL-aspartyl-L-cysteine: a novel nanomaterial having a porous structure, special complexation capability for Pb(II), and selectivity of removing Pb(II). Chem Res Toxicol 2012; 25:1948-54. [PMID: 22917181 DOI: 10.1021/tx300265c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Poly-α,β-DL-aspartic acid is known as a green chelant of various metal ions. To provide a novel nanochelant for treating Pb(II) poisoning, poly-α,β-DL-aspartic acid was modified with L-Cys to form poly-α,β-DL-aspartyl-L-cysteine (PDC; MW, 27273). DL-Asp was converted into polysuccinimide through a thermal polycondensation, and the amidation of polysuccinimide with L-Cys provided PDC. In water, PDC formed various porous nanospecies. In the mouse lead intoxication model, both intraperitoneal and oral administration of PDC (0.1, 1.0, and 10.0 nmol/kg) dose dependently removed Pb(II) accumulated in the organ, bone, and blood. PDC did not remove the essential metals including Cu(2+), Fe(2+), Mn(2+), Zn(2+), and Ca(2+) of the treated mice. The porous feature and size of the pH- and concentration-dependent nanospecies of PDC benefited the removal of Pb(II).
Collapse
Affiliation(s)
- Li Li
- College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Hinton TM, Monaghan P, Green D, Kooijmans SA, Shi S, Breheney K, Tizard M, Nicolazzo JA, Zelikin AN, Wark K. Biodistribution of polymer hydrogel capsules for the delivery of therapeutics. Acta Biomater 2012; 8:3251-60. [PMID: 22659177 DOI: 10.1016/j.actbio.2012.05.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 05/18/2012] [Accepted: 05/23/2012] [Indexed: 10/28/2022]
Abstract
A key phase in the development of intelligently designed nanoparticle delivery vehicles for new therapeutic agents is to gain an understanding of their interaction with tissues and cells. We report a series of in vitro and in vivo experiments aimed at tracking a potential delivery vehicle for therapeutic agents, including vaccine peptides and drugs derived from poly(methacrylic acid) hydrogel capsules in certain organs and cell types. For the in vitro studies, two immortal liver-derived cell lines (Huh7 and Hepa1-6) and primary cultures of mouse hepatocytes were incubated with Alexa 647 labelled fluorescent capsules to track their internalization and intracellular distribution by confocal microscopy. Capsules, 500nm in diameter, were taken up into the cells in a time-dependent manner in all three cell lines. Capsules were observed in plasma membrane-derived vesicles within the cells. After 24h a significant proportion of the capsules was observed in lysosomes. To understand the behaviour of the capsules in vivo, Alexa 488 labelled fluorescent capsules were intravenously injected into Sprague-Dawley rats and after 24h the fate of the capsules in a number of organs was determined by flow cytometry and confocal microscopy. By flow cytometry, the majority of the capsules were detected in the spleen whilst similar numbers were found in the lung and liver. By confocal microscopy, the majority of the capsules were found in the liver and spleen with significantly less capsules in the lung, heart and kidney. Colocalization of capsules with cell-type specific markers indicated that in lung, heart and kidney, the majority of the capsules were located in endothelial cells. In the spleen ~50% of the capsules were found in CD163-positive cells, whereas in the liver, almost all capsules were located in CD163-positive cells, indicating uptake by Kupffer cells. Electron microscopy confirmed the presence of capsules within Kupffer cells.
Collapse
|