151
|
Kim HJ, Lee SR, Moon KD. Ether fraction of methanol extracts ofGastrodia elata, medicinal herb protects against neuronal cell damage after transient global ischemia in gerbils. Phytother Res 2003; 17:909-12. [PMID: 13680822 DOI: 10.1002/ptr.1246] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Gastrodia elata (GE), a medicinal herb, has been used traditionally for the treatment of convulsive diseases such as epilepsy in oriental countries including South Korea and still occupies an important place in traditional medicine in Asia. We designed this study to examine whether the ether fraction of methanol extracts (EFME) of GE protects the hippocampal neuronal damage induced by transient global ischemia in a gerbil model. Gerbils were treated with the EFME of GE (200 or 500 mg/kg per day, p.o.) for 14 days before brain ischemia. The lower dose of EFME of GE failed to attenuate the hippocampal neuronal damage in the CA1 region. However, the higher dose of EFME of GE attenuated the hippocampal neuronal damage in the CA1 region. The present results show that the EFME of GE has a protective effect against neuronal damage following global ischemia in gerbils.
Collapse
Affiliation(s)
- Hyeon-Ju Kim
- Department of Food Science and Technology, Kyungpook National University, Taegu, South Korea
| | | | | |
Collapse
|
152
|
Mandel S, Reznichenko L, Amit T, Youdim MBH. Green tea polyphenol (-)-epigallocatechin-3-gallate protects rat PC12 cells from apoptosis induced by serum withdrawal independent of P13-Akt pathway. Neurotox Res 2003; 5:419-24. [PMID: 14715445 DOI: 10.1007/bf03033171] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Our recent studies have demonstrated that green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) exerts neuroprotective/neurorescue effects against B-amyloid toxicity and protects neuronal cells from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinium ion (MPP+) and 6-hydroxydopamine in vitro, or from N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- (MPTP-) induced nigral dopaminergic neuronal loss in mice. In the present study, we report that EGCG (0.1 and 1 microM) significantly protects rat pheochromocytoma PC12 cells from apoptosis induced by serum support withdrawal, suggesting that EGCG may play a role in the growth of PC12 cells, where it stimulates survival-promoting pathways.
Collapse
Affiliation(s)
- Silvia Mandel
- Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research, Technion-Faculty of Medicine, Haifa 31096, Israel
| | | | | | | |
Collapse
|
153
|
Abd El Mohsen MM, Kuhnle G, Rechner AR, Schroeter H, Rose S, Jenner P, Rice-Evans CA. Uptake and metabolism of epicatechin and its access to the brain after oral ingestion. Free Radic Biol Med 2002; 33:1693-702. [PMID: 12488137 DOI: 10.1016/s0891-5849(02)01137-1] [Citation(s) in RCA: 260] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Epicatechin is a flavan-3-ol that is commonly present in green teas, red wine, cocoa products, and many fruits, such as apples. There is considerable interest in the bioavailability of epicatechin after oral ingestion. In vivo studies have shown that low levels of epicatechin are absorbed and found in the circulation as glucuronides, methylated and sulfated forms. Recent research has demonstrated protective effects of epicatechin and one of its in vivo metabolites, 3'-O-methyl epicatechin, against neuronal cell death induced by oxidative stress. Thus, we are interested in the ability of ingested epicatechin to cross the blood brain barrier and target the brain. Rats were administered 100 mg/kg body weight/d epicatechin orally for 1, 5, and 10 d. Plasma and brain extracts were analyzed by HPLC with photodiode array detection and LC-MS/MS. This study reports the presence of the epicatechin glucuronide and 3'-O-methyl epicatechin glucuronide formed after oral ingestion in the rat brain tissue.
Collapse
Affiliation(s)
- Manal M Abd El Mohsen
- Antioxidant Research Group, Wolfson Centre for Age-Related Diseases, GKT School of Biomedical Sciences, King's College, London, England, UK
| | | | | | | | | | | | | |
Collapse
|
154
|
Abstract
The neuroprotective effects of theanine and catechins contained in green tea are discussed. Although the death of cultured rat cortical neurons was induced by the application of glutamic acid, this neuronal death was suppressed with exposure to theanine. The death of hippocampal CA1 pyramidal neurons caused by transient forebrain ischemia in the gerbil was inhibited with the ventricular preadministration of theanine. The neuronal death of the hippocampal CA3 region by kainate was also prevented by the administration of theanine. Theanine has a higher binding capacity for the AMPA/kainate receptors than for NMDA receptors, although the binding capacity in all cases is markedly less than that of glutamic acid. The results of the present study suggest that the mechanism of the neuroprotective effect of theanine is related not only to the glutamate receptor but also to other mechanisms such as the glutamate transporter, although further studies are needed. One of the onset mechanisms for arteriosclerosis, a major factor in ischemic cerebrovascular disease, is probably the oxidative alteration of low-density lipoprotein (LDL) by active oxygen species. The oxidative alterations of LDL were shown to be prevented by tea catechins. Scavenging of *O(2)(-) was also exhibited by tea catechins. The neuroprotective effects of theanine and catechins contained in green tea are a focus of considerable attention, and further studies are warranted.
Collapse
Affiliation(s)
- Takami Kakuda
- Central Research Institute, Itoen, Ltd, Shuzuoka, Japan
| |
Collapse
|
155
|
Nagai K, Jiang MH, Hada J, Nagata T, Yajima Y, Yamamoto S, Nishizaki T. (-)-Epigallocatechin gallate protects against NO stress-induced neuronal damage after ischemia by acting as an anti-oxidant. Brain Res 2002; 956:319-22. [PMID: 12445701 DOI: 10.1016/s0006-8993(02)03564-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study investigated the effects of (-)-epigallocatechin gallate (EGCG), which is the major component of polyphenol in green tea, on nitric oxide (NO) stress-induced neuronal damage, by monitoring NO mobilizations in the intact rat hippocampus and assaying the viability of cultured rat hippocampal neurons. A 10-min ischemia increased NO (NO(3)(-)/NO(2)(-)) concentrations in the intact rat hippocampus, while EGCG (50 mg/kg i.p.) inhibited the increase by 77% without affecting hippocampal blood flow. The NO donor, sodium nitroprusside (SNP; 50 microM), produced NO (NO(3)(-)/NO(2)(-)), while EGCG inhibited it in a dose-dependent manner at concentrations ranging from 50 to 200 microM. Treatment with SNP (100 microM) reduced the viability of cultured rat hippocampal neurons to 22% of control levels, while EGCG caused it to recover to 51% for 10 microM, 73% for 20 microM, and 70% for 50 microM. Taken together, it appears that EGCG could protect against ischemic neuronal damage by deoxidizing peroxynitrate/peroxynitrite, which is converted to NO radical or hydroxy radical.
Collapse
Affiliation(s)
- Kaoru Nagai
- Department of Physiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
156
|
Cameron A, Rosenfeld J. Nutritional issues and supplements in amyotrophic lateral sclerosis and other neurodegenerative disorders. Curr Opin Clin Nutr Metab Care 2002; 5:631-43. [PMID: 12394638 DOI: 10.1097/00075197-200211000-00005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Aggressive nutritional intervention has become a cornerstone of treatment for many patients with neuromuscular diseases, in particular, motor neuron disease. Malnutrition is a common problem among patients with amyotrophic lateral sclerosis. Over the past decade, the recognition of nutrition as an independent, prognostic factor for survival and disease complications in amyotrophic lateral sclerosis has illustrated the importance of individualized nutritional management in symptomatic treatment. Paramount issues for nutritional management in amyotrophic lateral sclerosis include caloric supplementation, the diagnosis/treatment of dysphagia, and the timing/safety/efficacy of percutaneous endoscopic gastrostomy placement. RECENT FINDINGS In addition, many amyotrophic lateral sclerosis patients self-medicate with a variety of vitamins, herbs, and other dietary supplements. Outcome-based research for the use of nutraceuticals and functional foods in the treatment and prevention of amyotrophic lateral sclerosis and other neuromuscular diseases is in its early stages. In the past year, however, several interesting papers have been published that lend support to the use of dietary supplements as primary treatments for amyotrophic lateral sclerosis and other motor neuron disorders. SUMMARY Common or overlapping etiologies in disparate neurodegenerative diseases have led to the promise that optimal nutritional care and the appropriate use of dietary supplements in amyotrophic lateral sclerosis will have implications for the nutritional management of other degenerative conditions such as Parkinson's, Alzheimer's, and Huntington's disease. Furthermore, evidence supporting the efficacy of dietary supplements in amyotrophic lateral sclerosis may lend clues to the treatment of other neuromuscular disorders such as the muscular dystrophies.
Collapse
Affiliation(s)
- Amy Cameron
- Carolinas Neuromuscular/ALS Center, Carolinas Medical Center, Charlotte, North Carolina 28203, USA
| | | |
Collapse
|
157
|
Candelario-Jalil E, Alvarez D, González-Falcón A, García-Cabrera M, Martínez-Sánchez G, Merino N, Giuliani A, León OS. Neuroprotective efficacy of nimesulide against hippocampal neuronal damage following transient forebrain ischemia. Eur J Pharmacol 2002; 453:189-95. [PMID: 12398903 DOI: 10.1016/s0014-2999(02)02422-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cyclooxygenase-2 is involved in the inflammatory component of the ischemic cascade, playing an important role in the delayed progression of the brain damage. The present study evaluated the pharmacological effects of the selective cyclooxygenase-2 inhibitor nimesulide on delayed neuronal death of hippocampal CA1 neurons following transient global cerebral ischemia in gerbils. Administration of therapeutically relevant doses of nimesulide (3, 6 and 12 mg/kg; i.p.) 30 min before ischemia and at 6, 12, 24, 48 and 72 h after ischemia significantly (P<0.01) reduced hippocampal neuronal damage. Treatment with a single dose of nimesulide given 30 min before ischemia also resulted in a significant increase in the number of healthy neurons in the hippocampal CA1 sector 7 days after ischemia. Of interest is the finding that nimesulide rescued CA1 pyramidal neurons from ischemic death even when treatment was delayed until 24 h after ischemia (34+/-9% protection). Neuroprotective effect of nimesulide is still evident 30 days after the ischemic episode, providing the first experimental evidence that cyclooxygenase-2 inhibitors confer a long-lasting neuroprotection. Oral administration of nimesulide was also able to significantly reduce brain damage, suggesting that protective effects are independent of the route of administration. The present study confirms the ability of cyclooxygenase-2 inhibitors to reduce brain damage induced by cerebral ischemia and indicates that nimesulide can provide protection when administered for up to 24 h post-ischemia.
Collapse
Affiliation(s)
- Eduardo Candelario-Jalil
- Department of Pharmacology, University of Havana (CIEB-IFAL), Apartado Postal 6079, 10600, Havana City, Cuba.
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Lin JK. Cancer chemoprevention by tea polyphenols through modulating signal transduction pathways. Arch Pharm Res 2002; 25:561-71. [PMID: 12433185 DOI: 10.1007/bf02976924] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The action mechanisms of several chemopreventive agents derived from herbal medicine and edible plants have become attractive issues in cancer research. Tea is the most widely consumed beverage worldwide. Recently, the cancer chemopreventive actions of tea have been intensively investigated. It have been demonstrated that the active principles of tea were attributed to their tea polyphenols. Recently, tremendous progress has been made in elucidating the molecular mechanisms of cancer chemoprevention by tea and tea polyphenols. The suppression of various tumor biomarkers including growth factor receptor tyrosine kinases, cytokine receptor kinases, PI3K, phosphatases, ras, raf, MAPK cascades, N x FB, I x B kinase, PKA, PKB, PKC, c-jun, c-fos, c-myc, cdks, cyclins, and related transducing proteins by tea polyphenols has been studied in our laboratory and others. The I x B kinase (IKK) activity in LPS-activated murine macrophages (RAW 264.7 cells) was found to be inhibited by various tea polyphenols including (-) epigallocatechin-3-gallate (EGCG), theaflavin (TF-1), theaflavin-3-gallate (TF-2) and theaflavin-3,3'-digallate (TF-3). TF-3 inhibited IKK activity in activated macrophages more strongly than did the other tea polyphenols. TF-3 inhibited both IKK1 and IKK2 activity and prevented the degradation of I x B x and I x B x in activated macrophage cells. The results suggested that the inhibition of IKK activity by TF-3 and other tea polyphenols could occur by a direct effect on IKKs or on upstream events in the signal transduction pathway. TF-3 and other tea polyphenols blocked phosphorylation of IB from the cytosolic fraction, inhibited NFB activity and inhibited increases in inducible nitric oxide synthase levels in activated macrophage. TF-3 and other tea polyphenols also inhibited strongly the activities of xanthine oxidase, cyclooxygenase, EGF-receptor tyrosine kinase and protein kinase C. These results suggest that TF-3 and other tea polyphenols may exert their cancer chemoprevention through suppressing tumor promotion and inflammation by blocking signal transduction. The mechanisms of this inhibition may be due to the blockade of the mitogenic and differentiating signals through modulating EGFR function, MAPK cascades, NFkappaB activation as well as c-myc, c-jun and c-fos expression.
Collapse
Affiliation(s)
- Jen-Kun Lin
- Institute of Biochemistry, College of Medicine, National Taiwan University, Taipei.
| |
Collapse
|
159
|
Levites Y, Amit T, Youdim MBH, Mandel S. Involvement of protein kinase C activation and cell survival/ cell cycle genes in green tea polyphenol (-)-epigallocatechin 3-gallate neuroprotective action. J Biol Chem 2002; 277:30574-80. [PMID: 12058035 DOI: 10.1074/jbc.m202832200] [Citation(s) in RCA: 287] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Studies from our laboratory have demonstrated that the major green tea polyphenol, (-)-epigallocatechin 3-gallate (EGCG), exerts potent neuroprotective actions in the mice model of Parkinson's disease. These studies were extended to neuronal cell culture employing the parkinsonism-inducing neurotoxin, 6-hydroxydopamine (6-OHDA). Pretreatment with EGCG (0.1-10 microm) attenuated human neuroblastoma (NB) SH-SY5Y cell death, induced by a 24-h exposure to 6-OHDA (50 microm). Potential cell signaling candidates involved in this neuroprotective effect were further examined. EGCG restored the reduced protein kinase C (PKC) and extracellular signal-regulated kinases (ERK1/2) activities caused by 6-OHDA toxicity. However, the neuroprotective effect of EGCG on cell survival was abolished by pretreatment with PKC inhibitor GF 109203X (1 microm). Because EGCG increased phosphorylated PKC, we suggest that PKC isoenzymes are involved in the neuroprotective action of EGCG against 6-OHDA. In addition, gene expression analysis revealed that EGCG prevented both the 6-OHDA-induced expression of several mRNAs, such as Bax, Bad, and Mdm2, and the decrease in Bcl-2, Bcl-w, and Bcl-x(L). These results suggest that the neuroprotective mechanism of EGCG against oxidative stress-induced cell death includes stimulation of PKC and modulation of cell survival/cell cycle genes.
Collapse
Affiliation(s)
- Yona Levites
- Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research, Dept. of Pharmacology, Technion-Faculty of Medicine, 31096 Haifa, Israel
| | | | | | | |
Collapse
|
160
|
Butterfield D, Castegna A, Pocernich C, Drake J, Scapagnini G, Calabrese V. Nutritional approaches to combat oxidative stress in Alzheimer's disease. J Nutr Biochem 2002; 13:444. [PMID: 12165357 DOI: 10.1016/s0955-2863(02)00205-x] [Citation(s) in RCA: 266] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) brains are characterized by extensive oxidative stress. Additionally, large depositions of amyloid beta-peptide (Abeta) are observed, and many researchers opine that Abeta is central to the pathogenesis of AD. Our laboratory combined these two observations in a comprehensive model for neurodegeneration in AD brains centered around Abeta-induced oxidative stress. Given the oxidative stress in AD and its potentially important role in neurodegeneration, considerable research has been conducted on the use of antioxidants to slow or reverse the pathology and course of AD. One source of antioxidants is the diet. This review examines the literature of the effects of endogenous and exogenous, nutritionally-derived antioxidants in relation to AD. In particular, studies of glutathione and other SH-containing antioxidants, vitamins, and polyphenolic compounds and their use in AD and modulation of Abeta-induced oxidative stress and neurotoxicity are reviewed.
Collapse
Affiliation(s)
- D Butterfield
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, 40506-0055, Lexington, KY, USA
| | | | | | | | | | | |
Collapse
|
161
|
Matsuoka K, Isowa N, Yoshimura T, Liu M, Wada H. Green tea polyphenol blocks h(2)o(2)-induced interleukin-8 production from human alveolar epithelial cells. Cytokine 2002; 18:266-73. [PMID: 12161102 DOI: 10.1006/cyto.2002.1038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species (ROS) play crucial roles in ischemia-reperfusion (IR) injury of lung transplants. Reactive oxygen species may stimulate the production of neutrophil chemotactic factors such as interleukin-8 (IL-8), from alveolar epithelial cells, causing recruitment and activation of neutrophils in the reperfused tissue. Green tea polyphenol has potent anti-oxidative activities and anti-inflammatory effects by decreasing cytokine production. In the present study, we found that green tea polyphenol significantly inhibited IL-8 production induced by hydrogen peroxide (H(2)O(2)) in human lung alveolar epithelial cells (A549 line). It has been shown that mitogen activated protein kinases, such as Jun N-terminal kinase (JNK), p38 and p44/42, could mediate IL-8 production from a variety of cell types. We further investigated the effect of green tea polyphenol on these protein kinases, and demonstrated that H(2)O(2)-induced phosphorylation of JNK and p38 but not p44/42 was inhibited by green tea polyphenol in A549 cells. We speculate that green tea polyphenol may inhibit H(2)O(2)-induced IL-8 production from A549 cells through inactivation of JNK and p38.
Collapse
|
162
|
Candelario-Jalil E, Alvarez D, Castañeda JM, Al-Dalain SM, Martínez-Sánchez G, Merino N, León OS. The highly selective cyclooxygenase-2 inhibitor DFU is neuroprotective when given several hours after transient cerebral ischemia in gerbils. Brain Res 2002; 927:212-5. [PMID: 11821016 DOI: 10.1016/s0006-8993(01)03358-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several studies suggest that cyclooxygenase-2 contributes to the delayed progression of ischemic brain damage. In this study we examined whether the highly selective cyclooxygenase-2 inhibitor DFU reduces neuronal damage when administered several hours after 5 min of transient forebrain ischemia in gerbils. The extent of ischemic injury was assessed behaviorally by measuring the increases in locomotor activity and by histopathological evaluation of the extent of CA1 hippocampal pyramidal cell injury 7 days after ischemia. DFU treatment (10 mg/kg, p.o.) significantly reduced hippocampal neuronal damage even if the treatment is delayed until 12 h after ischemia. These results suggest that selective cyclooxygenase-2 inhibitors may be a valuable therapeutic strategy for ischemic brain injury.
Collapse
Affiliation(s)
- Eduardo Candelario-Jalil
- Department of Pharmacology, University of Havana (CIEB-IFAL), Apartado Postal 6079, Havana City 10600, Cuba.
| | | | | | | | | | | | | |
Collapse
|
163
|
Katayama Y, Homma T, Hara Y, Hirai K. Tea catechin, (-)-epigallocatechin gallate, facilitates cholinergic ganglion transmission in the myenteric plexus of the guinea-pig small intestine. Neurosci Lett 2002; 319:63-6. [PMID: 11825671 DOI: 10.1016/s0304-3940(01)02545-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Intracellular recordings were made from myenteric S neurons of the guinea-pig ileum. One of the major tea catechins, (-)-epigallocatechin gallate (EGCG at concentrations from 1 to 20 microM), was applied by superfusion to examine its effect on cholinergic ganglion transmission in the myenteric plexus. Fast excitatory postsynaptic potentials (EPSPs) evoked by electrical stimulation to ganglia and/or internodal fiber tracts were augmented in amplitude by EGCG in about 60% of tested neurons without changing the postsynaptic sensitivity to acetylcholine (ACh) applied by ionophoresis. Furthermore, the amplitude-ratio of paired fast EPSPs was increased by EGCG. These results indicated that the site at which EGCG augmented the fast EPSPs was presynaptic. It is concluded that EGCG can facilitate the cholinergic ganglion transmission possibly by increasing the amount of ACh released and, together with its previously described depolarizing action on myenteric neurons, may modulate the activity of the myenteric plexus of the guinea-pig ileum.
Collapse
Affiliation(s)
- Yoshifumi Katayama
- Department of Autonomic Physiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyodaku, Tokyo, Japan.
| | | | | | | |
Collapse
|
164
|
Bae JH, Mun KC, Park WK, Lee SR, Suh SI, Baek WK, Yim MB, Kwon TK, Song DK. EGCG attenuates AMPA-induced intracellular calcium increase in hippocampal neurons. Biochem Biophys Res Commun 2002; 290:1506-12. [PMID: 11820792 DOI: 10.1006/bbrc.2002.6372] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated the protective effect of (-)-epigallocatechin gallate (EGCG) on alpha-amino-3-hydroxy-5-methyl-4-isoxazolo propionate (AMPA)-induced toxicity in cultured rat hippocampal neurons. Treatment of 24 h AMPA (10 microM) reduced the neuronal viability in both survival neuron counting and MTT reduction assay compared with control, with increase in cellular concentrations of hydrogen peroxide and malondialdehyde. These responses to AMPA were significantly blocked by co-treatments with EGCG (10 microM), which effect was very similar to the protective ability of a known antioxidant catalase (2000 U/ml). AMPA (50 microM) elicited the increase in intracellular calcium concentration ([Ca(2+)]i) on which EGCG significantly attenuated both peak amplitude and sustained nature of that [Ca(2+)]i increase in a dose-dependent manner. These data suggest that EGCG has a neuroprotective effect against AMPA through inhibition of AMPA-induced [Ca(2+)]i increase and consequent attenuation of reactive oxygen species production and lipid peroxidation as an antioxidant and a radical scavenger.
Collapse
Affiliation(s)
- Jae Hoon Bae
- Department of Physiology, Keimyung University School of Medicine, 194 Dongsan-Dong, Choong-Gu, Daegu, 700-712, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S. Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem 2001; 78:1073-82. [PMID: 11553681 DOI: 10.1046/j.1471-4159.2001.00490.x] [Citation(s) in RCA: 391] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present study we demonstrate neuroprotective property of green tea extract and (-)-epigallocatechin-3-gallate in N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice model of Parkinson's disease. N-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxin caused dopamine neuron loss in substantia nigra concomitant with a depletion in striatal dopamine and tyrosine hydroxylase protein levels. Pretreatment of mice with either green tea extract (0.5 and 1 mg/kg) or (-)-epigallocatechin-3-gallate (2 and 10 mg/kg) prevented these effects. In addition, the neurotoxin caused an elevation in striatal antioxidant enzymes superoxide dismutase (240%) and catalase (165%) activities, both effects being prevented by (-)-epigallocatechin-3-gallate. (-)-Epigallocatechin-3-gallate itself also increased the activities of both enzymes in the brain. The neuroprotective effects are not likely to be caused by inhibition of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine conversion to its active metabolite 1-methyl-4-phenylpyridinium by monoamine oxidase-B, as both green tea and (-)-epigallocatechin-3-gallate are very poor inhibitors of this enzyme in vitro (770 microg/mL and 660 microM, respectively). Brain penetrating property of polyphenols, as well as their antioxidant and iron-chelating properties may make such compounds an important class of drugs to be developed for treatment of neurodegenerative diseases where oxidative stress has been implicated.
Collapse
Affiliation(s)
- Y Levites
- Eve Topf, Technion-Faculty of Medicine, Haifa, Israel
| | | | | | | | | |
Collapse
|
166
|
Homma T, Hirai K, Hara Y, Katayama Y. Tea catechin, (-)-epigallocatechin gallate, causes membrane depolarizations of myenteric neurons in the guinea-pig small intestine. Neurosci Lett 2001; 309:93-6. [PMID: 11502353 DOI: 10.1016/s0304-3940(01)02035-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Intracellular recordings were made from enteric neurons in the myenteric plexus of the guinea-pig small intestine to examine actions of one of tea catechins, (-)-epigallocatechin gallate (EGCG), on neuronal activity. EGCG at concentrations from 1 to 20 microM depolarized about 60% of both of S and AH neurons in a concentration-dependent manner, although EGCG-induced depolarizations were largely varied in amplitude from neuron to neuron. The depolarizations started passing off during the presence of EGCG at higher concentrations, and became smaller or almost abolished with repeated applications, indicating the EGCG-induced response shows desensitization-like characteristics. The EGCG-depolarization was associated with a decrease in input membrane resistance, and their reversal potential was estimated about -30 mV. Since the EGCG-depolarization was recorded in the absence of external Ca(2+), it is concluded that one of tea catechins has direct depolarizing effects on a population of myenteric neurons.
Collapse
Affiliation(s)
- T Homma
- Department of Autonomic Physiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | | | | | | |
Collapse
|