151
|
Swiercz JM, Kuner R, Behrens J, Offermanns S. Plexin-B1 directly interacts with PDZ-RhoGEF/LARG to regulate RhoA and growth cone morphology. Neuron 2002; 35:51-63. [PMID: 12123608 DOI: 10.1016/s0896-6273(02)00750-x] [Citation(s) in RCA: 290] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Plexins are widely expressed transmembrane proteins that, in the nervous system, mediate repulsive signals of semaphorins. However, the molecular nature of plexin-mediated signal transduction remains poorly understood. Here, we demonstrate that plexin-B family members associate through their C termini with the Rho guanine nucleotide exchange factors PDZ-RhoGEF and LARG. Activation of plexin-B1 by semaphorin 4D regulates PDZ-RhoGEF/LARG activity leading to RhoA activation. In addition, a dominant-negative form of PDZ-RhoGEF blocks semaphorin 4D-induced growth cone collapse in primary hippocampal neurons. Our study indicates that the interaction of mammalian plexin-B family members with the multidomain proteins PDZ-RhoGEF and LARG represents an essential molecular link between plexin-B and localized, Rho-mediated downstream signaling events which underly various plexin-mediated cellular phenomena including axonal growth cone collapse.
Collapse
Affiliation(s)
- Jakub M Swiercz
- Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, Germany
| | | | | | | |
Collapse
|
152
|
Abstract
Neurones are highly specialised cells that can extend over great distances, enabling the complex networking of the nervous system. We are beginning to understand in detail the molecular mechanisms that control the shape of neurones during development. One family of proteins that are clearly essential are the Rho GTPases which have a pivotal role in regulating the actin cytoskeleton in all cell types. The Rho GTPases are responsible for the activation and downregulation of many downstream kinases. This review discusses individual kinases that are regulated by three members of the Rho GTPases, Rac, Rho and Cdc42 and their function during neurite outgrowth and remodelling.
Collapse
Affiliation(s)
- Margareta Nikolic
- Molecular and Developmental Neurobiology MRC Centre, New Hunt's House, King's College London, London SE1 1UL, UK.
| |
Collapse
|
153
|
Ginzburg VE, Roy PJ, Culotti JG. Semaphorin 1a and semaphorin 1b are required for correct epidermal cell positioning and adhesion during morphogenesis in C. elegans. Development 2002; 129:2065-78. [PMID: 11959817 DOI: 10.1242/dev.129.9.2065] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The semaphorin family comprises secreted and transmembrane proteins involved in axon guidance and cell migration. We have isolated and characterized deletion mutants of C. elegans semaphorin 1a (Ce-sema-1a or smp-1) and semaphorin 1b (Ce-sema-1b or smp-2) genes. Both mutants exhibit defects in epidermal functions. For example, the R1.a-derived ray precursor cells frequently fail to change anterior/posterior positions completely relative to their sister tail lateral epidermal precursor cell R1.p, causing ray 1 to be formed anterior to its normal position next to ray 2. The ray cells, which normally separate from the lateral tail seam cell (SET) at the end of L4 stage, remains connected to the SET cell even in adult mutant males. The ray 1 defects are partially penetrant in each single Ce-sema-1 mutant at 20°C, but are greatly enhanced in Ce-sema-1 double mutants, suggesting that Ce-Sema-1a and Ce-Sema-1b function in parallel to regulate ray 1 position. Both mutants also have defects in other aspects of epidermal functions, including head and tail epidermal morphogenesis and touch cell axon migration, whereas, smp-1 mutants alone have defects in defecation and brood size. A feature of smp-1 mutants that is shared with mutants of mab-20 (which encodes Sema-2a) is the abnormal perdurance of contacts between epidermal cells.
Collapse
Affiliation(s)
- Val E Ginzburg
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | | | | |
Collapse
|
154
|
Trusolino L, Comoglio PM. Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nat Rev Cancer 2002; 2:289-300. [PMID: 12001990 DOI: 10.1038/nrc779] [Citation(s) in RCA: 574] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Malignant disease occurs when neoplastic cells abandon their primary site of accretion, cross tissue boundaries and penetrate the vasculature to colonize distant sites. This process --metastasis--is the aberrant counterpart of a physiological programme for organ regeneration and maintenance. Scatter factors and semaphorins, together with their receptors, help to orchestrate this programme. What are the differences between physiological and pathological activation of these signalling molecules, and can we exploit them therapeutically to prevent metastasis?
Collapse
Affiliation(s)
- Livio Trusolino
- Institute for Cancer Research and Treatment, University of Torino School of Medicine, Candiolo, Italy.
| | | |
Collapse
|
155
|
Vikis HG, Li W, Guan KL. The plexin-B1/Rac interaction inhibits PAK activation and enhances Sema4D ligand binding. Genes Dev 2002; 16:836-45. [PMID: 11937491 PMCID: PMC186329 DOI: 10.1101/gad.966402] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The small GTPase Rac has been implicated in growth cone guidance mediated by semaphorins and their receptors. Here we demonstrate that plexin-B1, a receptor for Semaphorin4D (Sema4D), and p21-activated kinase (PAK) can compete for the interaction with active Rac and plexin-B1 can inhibit Rac-induced PAK activation. We have also demonstrated that expression of active Rac enhances the ability of plexin-B1 to interact with Sema4D. Active Rac stimulates the localization of plexin-B1 to the cell surface. The enhancement in Sema4D binding depends on the ability of Rac to bind plexin-B1. These observations support a model where signaling between Rac and plexin-B1 is bidirectional; Rac modulates plexin-B1 activity and plexin-B1 modulates Rac function.
Collapse
Affiliation(s)
- Haris G Vikis
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
156
|
Abstract
Recent advances in the study of axon guidance have begun to clarify the intricate signalling mechanisms utilised by receptors that mediate path-finding. Many of these axon guidance receptors, including Plexin B, EphA, ephrin B and Robo, regulate the Rho family of GTPases, to effect changes in motility. Recent studies demonstrate a critical role for the cytoplasmic tails of guidance receptors in signalling and also reveal the potential for a great deal of crosstalk between the various receptor-signalling pathways.
Collapse
Affiliation(s)
- Bharatkumar N Patel
- Program in Neuroscience, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
157
|
Abstract
Although evidence exists that activation of the Rho family GTPase Cdc42 affects axonal development, its specific roles within a growth cone are not well delineated. To evaluate the model that Cdc42 activation regulates growth cone navigation by promoting filopodial activity, we adopted a live analysis strategy that uses transgenic Drosophila lines in which neurons coexpressed constitutively active Cdc42 (Cdc42(V12)) and membrane-targeted green fluorescent protein. We found that growth cones that displayed pathfinding defects exhibited little change in their filopodial activity, whereas others without pathfinding defects exhibited an similar50% increase in their filopodial activity. Moreover, effector loop mutations that were added to the constitutively active Cdc42 (Cdc42(V12C40) and Cdc42(V12A37)) exerted little influence over filopodial activity caused by Cdc42 activation but suppressed the pathfinding defects of the growth cones. Together, these data suggest that Cdc42 controls filopodial activity in axonal growth cones independently of its effects on their pathfinding.
Collapse
|
158
|
He Z, Wang KC, Koprivica V, Ming G, Song HJ. Knowing how to navigate: mechanisms of semaphorin signaling in the nervous system. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2002; 2002:re1. [PMID: 11842242 DOI: 10.1126/stke.2002.119.re1] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Neuronal connections are made during embryonic development with astonishing precision to ultimately form the physical basis for the central nervous system's main capacity: information processing. Over the past few decades, much has been learned about the general principles of axon guidance. A key finding to emerge is that extracellular cues play decisive roles in establishing the connections. One family of such cues, the semaphorin proteins, was first identified as repellents for navigating axons during brain wiring. Recent studies have implicated these molecules in many other processes of neuronal development, including axonal fasciculation, target selection, neuronal migration, and dendritic guidance, as well as in the remodeling and repair of the adult nervous system. It appears that responding neuronal processes sense these semaphorin signals by a family of transmembrane molecules, namely the plexins, even though neuropilins were also found to be required for mediating the interaction between plexins and class 3 semaphorins. Our understanding of the intracellular signaling machinery linking the receptors to the cytoskeleton machinery is still incomplete, but several molecules have been implicated in mediating or modulating semaphorin-induced responses. Adding to the complexity of semaphorin biology, new findings implicate semaphorins in functioning not only as signaling ligands, but also as signal-transducing receptors. Thus, semaphorins may serve as important probes for exploring the mechanisms of intercellular communication during the development and function of the nervous system.
Collapse
Affiliation(s)
- Zhigang He
- 1Division of Neuroscience, Children's Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
159
|
Bashaw GJ, Hu H, Nobes CD, Goodman CS. A novel Dbl family RhoGEF promotes Rho-dependent axon attraction to the central nervous system midline in Drosophila and overcomes Robo repulsion. J Cell Biol 2001; 155:1117-22. [PMID: 11756465 PMCID: PMC2199320 DOI: 10.1083/jcb.200110077] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The key role of the Rho family GTPases Rac, Rho, and CDC42 in regulating the actin cytoskeleton is well established (Hall, A. 1998. Science. 279:509-514). Increasing evidence suggests that the Rho GTPases and their upstream positive regulators, guanine nucleotide exchange factors (GEFs), also play important roles in the control of growth cone guidance in the developing nervous system (Luo, L. 2000. Nat. Rev. Neurosci. 1:173-180; Dickson, B.J. 2001. Curr. Opin. Neurobiol. 11:103-110). Here, we present the identification and molecular characterization of a novel Dbl family Rho GEF, GEF64C, that promotes axon attraction to the central nervous system midline in the embryonic Drosophila nervous system. In sensitized genetic backgrounds, loss of GEF64C function causes a phenotype where too few axons cross the midline. In contrast, ectopic expression of GEF64C throughout the nervous system results in a phenotype in which far too many axons cross the midline, a phenotype reminiscent of loss of function mutations in the Roundabout (Robo) repulsive guidance receptor. Genetic analysis indicates that GEF64C expression can in fact overcome Robo repulsion. Surprisingly, evidence from genetic, biochemical, and cell culture experiments suggests that the promotion of axon attraction by GEF64C is dependent on the activation of Rho, but not Rac or Cdc42.
Collapse
Affiliation(s)
- G J Bashaw
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
160
|
Billuart P, Winter CG, Maresh A, Zhao X, Luo L. Regulating axon branch stability: the role of p190 RhoGAP in repressing a retraction signaling pathway. Cell 2001; 107:195-207. [PMID: 11672527 DOI: 10.1016/s0092-8674(01)00522-0] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mechanisms that regulate axon branch stability are largely unknown. Genome-wide analyses of Rho GTPase activating protein (RhoGAP) function in Drosophila using RNA interference identified p190 RhoGAP as essential for axon stability in mushroom body neurons, the olfactory learning and memory center. p190 inactivation leads to axon branch retraction, a phenotype mimicked by activation of GTPase RhoA and its effector kinase Drok and modulated by the level and phosphorylation of myosin regulatory light chain. Thus, there exists a retraction pathway from RhoA to myosin in maturing neurons, which is normally repressed by p190. Local regulation of p190 could control the structural plasticity of neurons. Indeed, genetic evidence supports negative regulation of p190 by integrin and Src, both implicated in neural plasticity.
Collapse
Affiliation(s)
- P Billuart
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
161
|
Abstract
Two papers in this issue of Neuron examine new aspects of Semaphorin signaling via Plexin receptors. Winberg et al. present evidence that the transmembrane protein Off-track (OTK) interacts biochemically and genetically with Plexin A and is important for Sema 1a repulsive signaling. Hu et al. examine the coupling of Plexin B to Rac and RhoA and propose that Plexin B signaling involves inhibition of Rac function by direct sequestration and simultaneous activation of RhoA.
Collapse
Affiliation(s)
- K L Whitford
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
162
|
Winberg ML, Tamagnone L, Bai J, Comoglio PM, Montell D, Goodman CS. The transmembrane protein Off-track associates with Plexins and functions downstream of Semaphorin signaling during axon guidance. Neuron 2001; 32:53-62. [PMID: 11604138 DOI: 10.1016/s0896-6273(01)00446-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Plexin family of transmembrane proteins appears to function as repulsive receptors for most if not all Semaphorins. Here, we use genetic and biochemical analysis in Drosophila to show that the transmembrane protein Off-track (OTK) associates with Plexin A, the receptor for Sema 1a, and that OTK is a component of the repulsive signaling response to Semaphorin ligands. In vitro, OTK associates with Plexins. In vivo, mutations in the otk gene lead to phenotypes resembling those of loss-of-function mutations of either Sema1a or PlexA. The otk gene displays strong genetic interactions with Sema1a and PlexA, suggesting that OTK and Plexin A function downstream of Sema 1a.
Collapse
Affiliation(s)
- M L Winberg
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, 519 LSA, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|