151
|
Shechter D, Costanzo V, Gautier J. ATR and ATM regulate the timing of DNA replication origin firing. Nat Cell Biol 2004; 6:648-55. [PMID: 15220931 DOI: 10.1038/ncb1145] [Citation(s) in RCA: 346] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Accepted: 06/01/2004] [Indexed: 11/10/2022]
Abstract
Timing of DNA replication initiation is dependent on S-phase-promoting kinase (SPK) activity at discrete origins and the simultaneous function of many replicons. DNA damage prevents origin firing through the ATM- and ATR-dependent inhibition of Cdk2 and Cdc7 SPKs. Here, we establish that modulation of ATM- and ATR-signalling pathways controls origin firing in the absence of DNA damage. Inhibition of ATM and ATR with caffeine or specific neutralizing antibodies, or upregulation of Cdk2 or Cdc7, promoted rapid and synchronous origin firing; conversely, inhibition of Cdc25A slowed DNA replication. Cdk2 was in equilibrium between active and inactive states, and the concentration of replication protein A (RPA)-bound single-stranded DNA (ssDNA) correlated with Chk1 activation and inhibition of origin firing. Furthermore, ATM was transiently activated during ongoing replication. We propose that ATR and ATM regulate SPK activity through a feedback mechanism originating at active replicons. Our observations establish that ATM- and ATR-signalling pathways operate during an unperturbed cell cycle to regulate initiation and progression of DNA synthesis, and are therefore poised to halt replication in the presence of DNA damage.
Collapse
Affiliation(s)
- David Shechter
- Integrated Program in Cellular, Molecular, and Biophysical Studies, and Department of Genetics and Development, Hammer Health Sciences Center, Columbia University College of Physicians and Surgeons, 701 West 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
152
|
Li W, Kim SM, Lee J, Dunphy WG. Absence of BLM leads to accumulation of chromosomal DNA breaks during both unperturbed and disrupted S phases. ACTA ACUST UNITED AC 2004; 165:801-12. [PMID: 15197177 PMCID: PMC2172405 DOI: 10.1083/jcb.200402095] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bloom's syndrome (BS), a disorder associated with genomic instability and cancer predisposition, results from defects in the Bloom's helicase (BLM) protein. In BS cells, chromosomal abnormalities such as sister chromatid exchanges occur at highly elevated rates. Using Xenopus egg extracts, we have studied Xenopus BLM (Xblm) during both unperturbed and disrupted DNA replication cycles. Xblm binds to replicating chromatin and becomes highly phosphorylated in the presence of DNA replication blocks. This phosphorylation depends on Xenopus ATR (Xatr) and Xenopus Rad17 (Xrad17), but not Claspin. Xblm and Xenopus topoisomerase IIIα (Xtop3α) interact in a regulated manner and associate with replicating chromatin interdependently. Immunodepletion of Xblm from egg extracts results in accumulation of chromosomal DNA breaks during both normal and perturbed DNA replication cycles. Disruption of the interaction between Xblm and Xtop3α has similar effects. The occurrence of DNA damage in the absence of Xblm, even without any exogenous insult to the DNA, may help to explain the genesis of chromosomal defects in BS cells.
Collapse
Affiliation(s)
- Wenhui Li
- Division of Biology 216-76, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
153
|
Garg R, Callens S, Lim DS, Canman CE, Kastan MB, Xu B. Chromatin Association of Rad17 Is Required for an Ataxia Telangiectasia and Rad-Related Kinase-Mediated S-Phase Checkpoint in Response to Low-Dose Ultraviolet Radiation. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.362.2.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Activation of the S-phase checkpoint results in an inhibition of DNA synthesis in response to DNA damage. This is an active cellular response that may enhance cell survival and limit heritable genetic abnormalities. While much attention has been paid to elucidating signal transduction pathways regulating the ionizing radiation–induced S-phase checkpoint, less is known about whether UV radiation initiates the process and the mechanism controlling it. Here, we demonstrate that low-dose UV radiation activates an S-phase checkpoint that requires the ataxia telangiectasia and Rad-related kinase (ATR). ATR regulates the S-phase checkpoint through phosphorylation of the downstream target structural maintenance of chromosomal protein 1. Furthermore, the ATPase activity of Rad17 is crucial for its chromatin association and for the functional effects of ATR activation in response to low-dose UV radiation. These results suggest that low-dose UV radiation activates an S-phase checkpoint requiring ATR-mediated signal transduction pathway.
Collapse
Affiliation(s)
- Renu Garg
- 1Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana and
| | - Shannon Callens
- 1Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana and
| | - Dae-Sik Lim
- 2Department of Hematology and Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Christine E. Canman
- 2Department of Hematology and Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael B. Kastan
- 2Department of Hematology and Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Bo Xu
- 1Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana and
| |
Collapse
|
154
|
Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K, Linn S. Molecular Mechanisms of Mammalian DNA Repair and the DNA Damage Checkpoints. Annu Rev Biochem 2004; 73:39-85. [PMID: 15189136 DOI: 10.1146/annurev.biochem.73.011303.073723] [Citation(s) in RCA: 2348] [Impact Index Per Article: 117.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA damage is a relatively common event in the life of a cell and may lead to mutation, cancer, and cellular or organismic death. Damage to DNA induces several cellular responses that enable the cell either to eliminate or cope with the damage or to activate a programmed cell death process, presumably to eliminate cells with potentially catastrophic mutations. These DNA damage response reactions include: (a) removal of DNA damage and restoration of the continuity of the DNA duplex; (b) activation of a DNA damage checkpoint, which arrests cell cycle progression so as to allow for repair and prevention of the transmission of damaged or incompletely replicated chromosomes; (c) transcriptional response, which causes changes in the transcription profile that may be beneficial to the cell; and (d) apoptosis, which eliminates heavily damaged or seriously deregulated cells. DNA repair mechanisms include direct repair, base excision repair, nucleotide excision repair, double-strand break repair, and cross-link repair. The DNA damage checkpoints employ damage sensor proteins, such as ATM, ATR, the Rad17-RFC complex, and the 9-1-1 complex, to detect DNA damage and to initiate signal transduction cascades that employ Chk1 and Chk2 Ser/Thr kinases and Cdc25 phosphatases. The signal transducers activate p53 and inactivate cyclin-dependent kinases to inhibit cell cycle progression from G1 to S (the G1/S checkpoint), DNA replication (the intra-S checkpoint), or G2 to mitosis (the G2/M checkpoint). In this review the molecular mechanisms of DNA repair and the DNA damage checkpoints in mammalian cells are analyzed.
Collapse
Affiliation(s)
- Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260, USA.
| | | | | | | |
Collapse
|
155
|
Izumi M, Yatagai F, Hanaoka F. Localization of human Mcm10 is spatially and temporally regulated during the S phase. J Biol Chem 2004; 279:32569-77. [PMID: 15136575 DOI: 10.1074/jbc.m314017200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mcm10 (Dna43) is an essential protein for the initiation of DNA replication in Saccharomyces cerevisiae. Recently, we identified a human Mcm10 homolog and found that it is regulated by proteolysis and phosphorylation in a cell cycle-dependent manner and that it binds chromatin exclusively during the S phase of the cell cycle. However, the precise roles that Mcm10 plays are still unknown. To study the localization dynamics of human Mcm10, we established HeLa cell lines expressing green fluorescent protein (GFP)-tagged Mcm10. From early to mid-S phase, GFP-Mcm10 appeared in discrete nuclear foci. In early S phase, several hundred foci appeared throughout the nucleus. In mid-S phase, the foci appeared at the nuclear periphery and nucleolar regions. In the late S and G phases, GFP-Mcm10 was localized to nucleoli. Although (2)the distributions of GFP-Mcm10 during the S phase resembled those of replication foci, GFP-Mcm10 foci did not colocalize with sites of DNA synthesis in most cases. Furthermore, the transition of GFP-Mcm10 distribution patterns preceded changes in replication foci patterns or proliferating cell nuclear antigen foci patterns by 30-60 min. These results suggest that human Mcm10 is temporarily recruited to the replication sites 30-60 min before they replicate and that it dissociates from chromatin after the activation of the prereplication complex.
Collapse
Affiliation(s)
- Masako Izumi
- Radioisotope Technology Division, Cyclotron Center, RIKEN, Wako, Saitama, Japan
| | | | | |
Collapse
|
156
|
Rogoff HA, Pickering MT, Frame FM, Debatis ME, Sanchez Y, Jones S, Kowalik TF. Apoptosis associated with deregulated E2F activity is dependent on E2F1 and Atm/Nbs1/Chk2. Mol Cell Biol 2004; 24:2968-77. [PMID: 15024084 PMCID: PMC371110 DOI: 10.1128/mcb.24.7.2968-2977.2004] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The retinoblastoma protein (Rb)/E2F pathway links cellular proliferation control to apoptosis and is critical for normal development and cancer prevention. Here we define a transcription-mediated pathway in which deregulation of E2F1 by ectopic E2F expression or Rb inactivation by E7 of human papillomavirus type 16 signals apoptosis by inducing the expression of Chk2, a component of the DNA damage response. E2F1- and E7-mediated apoptosis are compromised in cells from patients with the related disorders ataxia telangiectasia and Nijmegen breakage syndrome lacking functional Atm and Nbs1 gene products, respectively. Both Atm and Nbs1 contribute to Chk2 activation and p53 phosphorylation following deregulation of normal Rb growth control. E2F2, a related E2F family member that does not induce apoptosis, also activates Atm, resulting in phosphorylation of p53. However, we found that the key commitment step in apoptosis induction is the ability of E2F1, and not E2F2, to upregulate Chk2 expression. Our results suggest that E2F1 plays a central role in signaling disturbances in the Rb growth control pathway and, by upregulation of Chk2, may sensitize cells to undergo apoptosis.
Collapse
Affiliation(s)
- Harry A Rogoff
- Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | |
Collapse
|
157
|
Marheineke K, Hyrien O. Control of replication origin density and firing time in Xenopus egg extracts: role of a caffeine-sensitive, ATR-dependent checkpoint. J Biol Chem 2004; 279:28071-81. [PMID: 15123715 DOI: 10.1074/jbc.m401574200] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A strict control of replication origin density and firing time is essential to chromosomal stability. Replication origins in early frog embryos are located at apparently random sequences, are spaced at close ( approximately 10-kb) intervals, and are activated in clusters that fire at different times throughout a very brief S phase. Using molecular combing of DNA from sperm nuclei replicating in Xenopus egg extracts, we show that the temporal order of origin firing can be modulated by the nucleocytoplasmic ratio and the checkpoint-abrogating agent caffeine in the absence of external challenge. Increasing the concentration of nuclei in the extract increases S phase length. Contrary to a previous interpretation, this does not result from a change in local origin spacing but from a spreading of the time over which distinct origin clusters fire and from a decrease in replication fork velocity. Caffeine addition or ATR inhibition with a specific neutralizing antibody increases origin firing early in S phase, suggesting that a checkpoint controls the time of origin firing during unperturbed S phase. Furthermore, fork progression is impaired when excess forks are assembled after caffeine treatment. We also show that caffeine allows more early origin firing with low levels of aphidicolin treatment but not higher levels. We propose that a caffeine-sensitive, ATR-dependent checkpoint adjusts the frequency of initiation to the supply of replication factors and optimizes fork density for safe and efficient chromosomal replication during normal S phase.
Collapse
Affiliation(s)
- Kathrin Marheineke
- Laboratoire de Génétique Moléculaire, UMR 8541, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | | |
Collapse
|
158
|
Murakami C, Miuzno T, Hanaoka F, Yoshida H, Sakaguchi K, Mizushina Y. Mechanism of cell cycle arrest by sulfoquinovosyl monoacylglycerol with a C18-saturated fatty acid (C18-SQMG). Biochem Pharmacol 2004; 67:1373-80. [PMID: 15013853 DOI: 10.1016/j.bcp.2003.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Accepted: 12/05/2003] [Indexed: 11/28/2022]
Abstract
We have screened the inhibitors of mammalian DNA polymerases from natural products, and in the process found that either sulfoglycolipids or sulfoquinovosyl monoacylglycerol with a C18-saturated fatty acid (C18-SQMG), potently and selectively inhibited the activity of mammalian DNA polymerase (pol) and moderately the pol alpha. C18-SQMG was a cancer cell growth suppressor and a promissive anti-tumor agent. The purpose of this study was to elucidate the cell growth inhibition mechanism of C18-SQMG using HeLa cells. Analyses of the cell cycle and cyclin expression suggested that C18-SQMG arrested the cell cycle at intra-S phase, and the inhibition manner of DNA replication by C18-SQMG was similar to that by hydroxyurea. However, the DNA replication block by C18-SQMG did not induce degradation of Cdc25A protein, which was required for the replication block by hydroxyurea. C18-SQMG somewhat delayed mitosis because it induced phosphorylation of protein kinases, such as checkpoint kinases 1 and 2. These results suggest that C18-SQMG at first blocked DNA replication at the S phase by inhibiting replicative DNA polymerases, such as alpha, and then as the result of the inhibition, the other checkpoint signals associated with the pol might have responded.
Collapse
Affiliation(s)
- Chikako Murakami
- Laboratory of Food and Nutritional Science, Department of Nutritional Science, Kobe-Gakuin University, Nishi-ku, Kobe, Hyogo 651-2180, Japan
| | | | | | | | | | | |
Collapse
|
159
|
Dart DA, Adams KE, Akerman I, Lakin ND. Recruitment of the Cell Cycle Checkpoint Kinase ATR to Chromatin during S-phase. J Biol Chem 2004; 279:16433-40. [PMID: 14871897 DOI: 10.1074/jbc.m314212200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ataxia telangiectasia-mutated (ATM) and Rad3-related kinase (ATR) is a central component of the cell cycle checkpoint machinery required to induce cell cycle arrest in response to DNA damage. Accumulating evidence suggests a role for ATR in signaling DNA damage during S-phase. Here we show that ATR is recruited to nuclear foci induced by replication fork stalling in a manner that is dependent on the single stranded binding protein replication protein A (RPA). ATR associates with chromatin in asynchronous cell cultures, and we use a variety of approaches to examine the association of ATR with chromatin in the absence of agents that cause genotoxic stress. Under our experimental conditions, ATR exhibits a decreased affinity for chromatin in quiescent cells and cells synchronized at mitosis but an increased affinity for chromatin as cells re-enter the cell cycle. Using centrifugal elutriation to obtain cells enriched at various stages of the cell cycle, we show that ATR associates with chromatin in a cell cycle-dependent manner, specifically during S-phase. Cell cycle association of ATR with chromatin mirrors that of RPA in addition to claspin, a cell cycle checkpoint protein previously shown to be a component of the replication machinery. Furthermore, association of ATR with chromatin occurs in the absence of detectable DNA damage and cell cycle checkpoint activation. These data are consistent with a model whereby ATR is recruited to chromatin during the unperturbed cell cycle and points to a role of ATR in monitoring genome integrity during normal S-phase progression.
Collapse
Affiliation(s)
- D Alwyn Dart
- Department of Biochemistry, University of Oxford, South Parks Rd., Oxford OX1 3QU, United Kingdom
| | | | | | | |
Collapse
|
160
|
Pichierri P, Rosselli F. The DNA crosslink-induced S-phase checkpoint depends on ATR-CHK1 and ATR-NBS1-FANCD2 pathways. EMBO J 2004; 23:1178-87. [PMID: 14988723 PMCID: PMC380971 DOI: 10.1038/sj.emboj.7600113] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Accepted: 01/12/2004] [Indexed: 02/07/2023] Open
Abstract
The genetic syndrome Fanconi anemia (FA) is characterized by aplastic anemia, cancer predisposition and hypersensitivity to DNA interstrand crosslinks (ICLs). FA proteins (FANCs) are thought to work in pathway(s) essential for dealing with crosslinked DNA. FANCs interact with other proteins involved in both DNA repair and S-phase checkpoint such as BRCA1, ATM and the RAD50/MRE11/NBS1 (RMN) complex. We deciphered the previously undefined pathway(s) leading to the ICLs-induced S-phase checkpoint and the role of FANCs in this process. We found that ICLs activate a branched pathway downstream of the ATR kinase: one branch depending on CHK1 activity and the other on the FANCs-RMN complex. The transient slow-down of DNA synthesis was abolished in cells lacking ATR, whereas CHK1-siRNA-treated cells, NBS1 or FA cells showed partial S-phase arrest. CHK1 RNAi in NBS1 or FA cells abolished the S-phase checkpoint, suggesting that CHK1 and FANCs/NBS1 proteins work on parallel pathways. Furthermore, we found that ICLs trigger ATR-dependent FANCD2 phosphorylation and FANCD2/ATR colocalization. This study demonstrates a novel relationship between the FA pathway(s) and the ATR kinase.
Collapse
Affiliation(s)
- Pietro Pichierri
- UPR 2169 du CNRS, Institut Gustave Roussy PR2, Villejuif Cedex, France
| | - Filippo Rosselli
- UPR 2169 du CNRS, Institut Gustave Roussy PR2, Villejuif Cedex, France
| |
Collapse
|
161
|
Pichierri P, Franchitto A. Werner syndrome protein, the MRE11 complex and ATR: menage-à-trois in guarding genome stability during DNA replication? Bioessays 2004; 26:306-13. [PMID: 14988932 DOI: 10.1002/bies.10411] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The correct execution of the DNA replication process is crucially import for the maintenance of genome integrity of the cell. Several types of sources, both endogenous and exogenous, can give rise to DNA damage leading to the DNA replication fork arrest. The processes by which replication blockage is sensed by checkpoint sensors and how the pathway leading to resolution of stalled forks is activated are still not completely understood. However, recent emerging evidence suggests that one candidate for a sensor of replication stress is ATR and that, together with a member of RecQ family helicases, Werner syndrome protein (WRN) and MRE11 complex, can collaborate to promote the restarting of DNA synthesis through the resolution of stalled replication forks. Here, we discuss how WRN, the MRE11 complex and the ATR kinase could work together in response to replication blockage to avoid DNA replication fork collapse and genome instability.
Collapse
|
162
|
Abstract
Cellular response to genotoxic stress is a very complex process, and it usually starts with the “sensing” or “detection” of the DNA damage, followed by a series of events that include signal transduction and activation of transcription factors. The activated transcription factors induce expressions of many genes which are involved in cellular functions such as DNA repair, cell cycle arrest, and cell death. There have been extensive studies from multiple disciplines exploring the mechanisms of cellular genotoxic responses, which have resulted in the identification of many cellular components involved in this process, including the mitogen-activated protein kinases (MAPKs) cascade. Although the initial activation of protein kinase cascade is not fully understood, human protein kinases ATM (ataxia-telangiectasia, mutated) and ATR (ATM and Rad3-related) are emerging as potential sensors of DNA damage. Current progresses in ATM/ATR research and related signaling pathways are discussed in this review, in an effort to facilitate a better understanding of genotoxic stress response.
Collapse
Affiliation(s)
- Jun Yang
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, 353 Yanan Road, Hangzhou, 310031, Zhejiang Province, China
| | | | | | | | | | | |
Collapse
|
163
|
Bomgarden RD, Yean D, Yee MC, Cimprich KA. A novel protein activity mediates DNA binding of an ATR-ATRIP complex. J Biol Chem 2004; 279:13346-53. [PMID: 14724280 DOI: 10.1074/jbc.m311098200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The function of the ATR (ataxia-telangiectasia mutated and Rad3-related)-ATRIP (ATR-interacting protein) protein kinase complex is central to the cellular response to replication stress and DNA damage. In order to better understand the function of this complex, we have studied its interaction with DNA. We find that both ATR and ATRIP associate with chromatin in vivo, and they exist as a large molecular weight complex that can bind single-stranded (ss)DNA cellulose in vitro. Although replication protein A (RPA) is sufficient for the recruitment of ATRIP to ssDNA, we show that a distinct ATR-ATRIP complex is able to bind to DNA with lower affinity in the absence of RPA. In this latter complex, we show that neither ATR nor ATRIP are able to bind DNA individually, nor do they bind DNA in a cooperative manner. However, the addition of HeLa nuclear extract is able to reconstitute the DNA binding of both ATR and ATRIP, suggesting the requirement for an additional protein activity. We also show that ATR is necessary for ATRIP to bind DNA in this low affinity mode and to form a large DNA binding complex. These observations suggest that there are at least two in vitro ATR-ATRIP DNA binding complexes, one which binds DNA with high affinity in an RPA-dependent manner and a second, which binds DNA with lower affinity in an RPA-independent manner but which requires an as of yet unidentified protein.
Collapse
Affiliation(s)
- Ryan D Bomgarden
- Department of Molecular Pharmacology, Stanford University, Stanford, California 94305-5441, USA
| | | | | | | |
Collapse
|
164
|
Florensa R, Bachs O, Agell N. ATM/ATR-independent inhibition of cyclin B accumulation in response to hydroxyurea in nontransformed cell lines is altered in tumour cell lines. Oncogene 2004; 22:8283-92. [PMID: 14614452 DOI: 10.1038/sj.onc.1207159] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The DNA replication checkpoint is an inhibitory pathway ensuring that mitosis occurs only after completion of DNA synthesis. Its function may be relevant to the stability of the genome. The essential elements of this checkpoint are ATM/ATR kinases that indirectly lead to the phosphorylation and inhibition of the mitosis-promoting factor (Cdc2/cyclin B1). The function of this checkpoint was analysed in diverse nontransformed and tumour-derived cell lines. All cell lines tested arrested mitosis entry when DNA synthesis was inhibited by hydroxyurea (HU) treatment. But, unlike what has been described in yeast and Xenopus, in normal rat kidney (NRK) cells and NIH 3T3 fibroblasts, the arrest induced by HU treatment was not abrogated by caffeine, an ATM and ATR inhibitor. This indicated the presence of an ATM/ATR-independent response to DNA synthesis inhibition in these nontransformed mammalian cell lines. Interestingly, the behaviour of different tumour cell lines after caffeine treatment varied. While SW480, NP29, NP18 and HeLa cells did not enter mitosis in the presence of caffeine after HU treatment, in CaCo2, DLD1, HCT116 and HT29 caffeine abrogated the checkpoint response. In nontransformed cell lines, lack of cyclin B1 accumulation was observed when DNA synthesis was inhibited. This response was not abrogated by caffeine. In the tumour cell lines, a good correlation between the ability to arrest cell cycle when DNA synthesis was inhibited in the presence of caffeine and the lack of cyclin B1 accumulation was observed. Thus, there is an ATM/ATR-independent checkpoint response that leads to a decrease in cyclin B1 accumulation. However, this response is not functional in some tumour cell lines. Using inhibitors of p38alpha and beta, Mek1, 2 and p53-/- knocked-out fibroblasts, we showed that these proteins were also not involved in this particular checkpoint response. Lack of cyclin B1 accumulation after DNA synthesis inhibition in NRK cells was not due to increased degradation of the protein, but correlated with a decrease in mRNA accumulation.
Collapse
Affiliation(s)
- Roger Florensa
- Departament de Biologia Cel.lular i Anatomia Patològica, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | | | | |
Collapse
|
165
|
Jeong SY, Kumagai A, Lee J, Dunphy WG. Phosphorylated claspin interacts with a phosphate-binding site in the kinase domain of Chk1 during ATR-mediated activation. J Biol Chem 2003; 278:46782-8. [PMID: 12963733 DOI: 10.1074/jbc.m304551200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Claspin is essential for the ATR-dependent activation of Chk1 in Xenopus egg extracts containing incompletely replicated or UV-damaged DNA. The activated form of Claspin contains two repeated phosphopeptide motifs that mediate its binding to Chk1. We show that these phosphopeptide motifs bind to Chk1 by means of its N-terminal kinase domain. The binding site on Chk1 involves a positively charged cluster of amino acids that contains lysine 54, arginine 129, threonine 153, and arginine 162. Mutagenesis of these residues strongly compromises the ability of Chk1 to interact with Claspin. These amino acids lie within regions of Chk1 that are involved in various aspects of its catalytic function. The predicted position on Chk1 of the phosphate group from Claspin corresponds to the location of activation-loop phosphorylation in various kinases. In addition, we have obtained evidence that the C-terminal regulatory domain of Chk1, which does not form a stable complex with Claspin under our assay conditions, nonetheless has some role in Claspin-dependent activation. Overall, these results indicate that Claspin docks with a phosphate-binding site in the catalytic domain of Chk1 during activation by ATR. Phosphorylated Claspin may mimic an activating phosphorylation of Chk1 during this process.
Collapse
Affiliation(s)
- Seong-Yun Jeong
- Division of Biology 216-76, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
166
|
Parrilla-Castellar ER, Karnitz LM. Cut5 Is Required for the Binding of Atr and DNA Polymerase α to Genotoxin-damaged Chromatin. J Biol Chem 2003; 278:45507-11. [PMID: 14525986 DOI: 10.1074/jbc.c300418200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA damage triggers the assembly of checkpoint signaling proteins on chromatin that activate the Chk1 signaling pathway and block S-phase progression. Here we show that genotoxin-induced Chk1 activation requires Cut5 (Mus101/TopBP1) in a process that is independent of the role of Cut5 in DNA replication. Analysis of the role of Cut5 in checkpoint activation revealed that it associated with chromatin following DNA damage in a process that required RPA. Additionally, Cut5 was required for the recruitment of Atr, DNA polymerase alpha, and Rad1 but not RPA to chromatin following DNA damage. Taken together, these results demonstrate that Cut5 plays an integral role in the recruitment and assembly of the Chk1 signaling cascade components following DNA damage.
Collapse
|
167
|
Joerges C, Kuntze I, Herzinger T, Herzinge T. Induction of a caffeine-sensitive S-phase cell cycle checkpoint by psoralen plus ultraviolet A radiation. Oncogene 2003; 22:6119-28. [PMID: 13679850 DOI: 10.1038/sj.onc.1206613] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Induction of interstrand crosslinks (ICLs) in chromosomal DNA is considered a major reason for the antiproliferative effect of psoralen plus ultraviolet A (PUVA). It is unclear as to whether PUVA-induced cell cycle arrest is caused by ICLs mechanically stalling replication forks or by triggering cell cycle checkpoints. Cell cycle checkpoints serve to maintain genomic stability by halting cell cycle progression to prevent replication of damaged DNA templates or segregation of broken chromosomes. Here, we show that HaCaT keratinocytes treated with PUVA arrest with S-phase DNA content. Cells that had completed DNA replication were not perturbed by PUVA and passed through mitosis. Cells treated with PUVA during G1-phase continued traversing G1 until arresting in early S-phase. PUVA induced rapid phosphorylation of the Chk1 checkpoint kinase at Ser345 and a concomitant decrease in Cdc25A levels. Chk1 phosphorylation, decrease of Cdc25 A levels and S-phase arrest were abolished by caffeine, demonstrating that active checkpoint signaling rather than passive mechanical blockage by ICLs causes the PUVA-induced replication arrest. Overexpression of Cdc25A only partially overrode the S-phase arrest, suggesting that additional signaling events implement PUVA-induced S-phase arrest.
Collapse
Affiliation(s)
- Christoph Joerges
- Klinik und Poliklinik für Dermatologie und Allergologie, Ludwig-Maximilians-University, Frauenlobstr. 9-11, D-80337 Munich, Germany
| | | | | | | |
Collapse
|
168
|
Post SM, Tomkinson AE, Lee EYHP. The human checkpoint Rad protein Rad17 is chromatin-associated throughout the cell cycle, localizes to DNA replication sites, and interacts with DNA polymerase epsilon. Nucleic Acids Res 2003; 31:5568-75. [PMID: 14500819 PMCID: PMC206465 DOI: 10.1093/nar/gkg765] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The checkpoint Rad proteins Rad17, Rad9, Rad1, Hus1, ATR, and ATRIP become associated with chromatin in response to DNA damage caused by genotoxic agents and replication inhibitors, as well as during unperturbed DNA replication in S phase. Here we show that murine Rad17 is phosphorylated at two sites that were previously shown to be modified in response to DNA damage, independent of DNA damage and ATM, in proliferating tissue. In contrast to studies with Xenopus laevis extracts but similar to observations in Schizosaccharomyces pombe, the level of chromatin-bound hRad17 remains relatively constant during the cell cycle and does not change significantly in response to DNA damage or replication block. However, phosphorylated hRad17 preferentially associates with the sites of ongoing DNA replication and interacts with the DNA replication protein, DNA polymerase epsilon. These results provide a link between the DNA damage checkpoint machinery and the replication apparatus and suggest that hRad17 may play a role in monitoring the progress of DNA replication via its interaction with DNA polymerase epsilon.
Collapse
Affiliation(s)
- Sean M Post
- Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA
| | | | | |
Collapse
|
169
|
Yanow SK, Gold DA, Yoo HY, Dunphy WG. Xenopus Drf1, a regulator of Cdc7, displays checkpoint-dependent accumulation on chromatin during an S-phase arrest. J Biol Chem 2003; 278:41083-92. [PMID: 12897072 DOI: 10.1074/jbc.m307144200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have cloned a Xenopus Dbf4-related factor named Drf1 and characterized this protein by using Xenopus egg extracts. Drf1 forms an active complex with the kinase Cdc7. However, most of the Cdc7 in egg extracts is not associated with Drf1, which raises the possibility that some or all of the remaining Cdc7 is bound to another Dbf4-related protein. Immunodepletion of Drf1 does not prevent DNA replication in egg extracts. Consistent with this observation, Cdc45 can still associate with chromatin in Drf1-depleted extracts, albeit at significantly reduced levels. Nonetheless, Drf1 displays highly regulated binding to replicating chromatin. Treatment of egg extracts with aphidicolin results in a substantial accumulation of Drf1 on chromatin. This accumulation is blocked by addition of caffeine and by immunodepletion of either ATR or Claspin. These observations suggest that the increased binding of Drf1 to aphidicolin-treated chromatin is an active process that is mediated by a caffeine-sensitive checkpoint pathway containing ATR and Claspin. Abrogation of this pathway also leads to a large increase in the binding of Cdc45 to chromatin. This increase is substantially reduced in the absence of Drf1, which suggests that regulation of Drf1 might be involved in the suppression of Cdc45 loading during replication arrest. We also provide evidence that elimination of this checkpoint causes resumed initiation of DNA replication in both Xenopus tissue culture cells and egg extracts. Taken together, these observations argue that Drf1 is regulated by an intra-S-phase checkpoint mechanism that down-regulates the loading of Cdc45 onto chromatin containing DNA replication blocks.
Collapse
Affiliation(s)
- Stephanie K Yanow
- Division of Biology, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
170
|
Krause DR, Jonnalagadda JC, Gatei MH, Sillje HHW, Zhou BB, Nigg EA, Khanna K. Suppression of Tousled-like kinase activity after DNA damage or replication block requires ATM, NBS1 and Chk1. Oncogene 2003; 22:5927-37. [PMID: 12955071 DOI: 10.1038/sj.onc.1206691] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The human Tousled-like kinases 1 and 2 (TLK) have been shown to be active during S phase of the cell cycle. TLK activity is rapidly suppressed by DNA damage and by inhibitors of replication. Here we report that the signal transduction pathway, which leads to transient suppression of TLK activity after the induction of double-strand breaks (DSBs) in the DNA, is dependent on the presence of a functional ataxia-telangiectasia-mutated kinase (ATM). Interestingly, we have discovered that rapid suppression of TLK activity after low doses of ultraviolet (UV) irradiation or aphidicolin-induced replication block is also ATM-dependent. The nature of the signal that triggers ATM-dependent downregulation of TLK activity after UVC and replication block remains unknown, but it is not due exclusively to DSBs in the DNA. We also demonstrate that TLK suppression is dependent on the presence of a functional Nijmegan Breakage Syndrome protein (NBS1). ATM-dependent phosphorylation of NBS1 is required for the suppression of TLK activity, indicating a role for NBS1 as an adaptor or scaffold in the ATM/TLK pathway. ATM does not phosphorylate TLK directly to regulate its activity, but Chk1 does phosphorylate TLK1 GST-fusion proteins in vitro. Using Chk1 siRNAs, we show that Chk1 is essential for the suppression of TLK activity after replication block, but that ATR, Chk2 and BRCA1 are dispensable for TLK suppression. Overall, we propose that ATM activation is not linked solely to DSBs and that ATM participates in initiating signaling pathways in response to replication block and UV-induced DNA damage.
Collapse
Affiliation(s)
- Darren R Krause
- Signal Transduction Lab, Cancer and Cell Biology Division, Queensland Institute of Medical Research, 300 Herston Rd, Qld 4029, Australia.
| | | | | | | | | | | | | |
Collapse
|
171
|
Jones RE, Chapman JR, Puligilla C, Murray JM, Car AM, Ford CC, Lindsay HD. XRad17 is required for the activation of XChk1 but not XCds1 during checkpoint signaling in Xenopus. Mol Biol Cell 2003; 14:3898-910. [PMID: 12972573 PMCID: PMC196587 DOI: 10.1091/mbc.e03-03-0138] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2003] [Revised: 04/30/2003] [Accepted: 04/30/2003] [Indexed: 12/31/2022] Open
Abstract
The DNA damage/replication checkpoints act by sensing the presence of damaged DNA or stalled replication forks and initiate signaling pathways that arrest cell cycle progression. Here we report the cloning and characterization of Xenopus orthologues of the RFCand PCNA-related checkpoint proteins. XRad17 shares regions of homology with the five subunits of Replication factor C. XRad9, XRad1, and XHus1 (components of the 9-1-1 complex) all show homology to the DNA polymerase processivity factor PCNA. We demonstrate that these proteins associate with chromatin and are phosphorylated when replication is inhibited by aphidicolin. Phosphorylation of X9-1-1 is caffeine sensitive, but the chromatin association of XRad17 and the X9-1-1 complex after replication block is unaffected by caffeine. This suggests that the X9-1-1 complex can associate with chromatin independently of XAtm/XAtr activity. We further demonstrate that XRad17 is essential for the chromatin binding and checkpoint-dependent phosphorylation of X9-1-1 and for the activation of XChk1 when the replication checkpoint is induced by aphidicolin. XRad17 is not, however, required for the activation of XCds1 in response to dsDNA ends.
Collapse
Affiliation(s)
- Rhiannon E Jones
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, BN19RQ, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
172
|
Wang X, Khadpe J, Hu B, Iliakis G, Wang Y. An overactivated ATR/CHK1 pathway is responsible for the prolonged G2 accumulation in irradiated AT cells. J Biol Chem 2003; 278:30869-74. [PMID: 12791699 DOI: 10.1074/jbc.m301876200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Induction of checkpoint responses in G1, S, and G2 phases of the cell cycle after exposure of cells to ionizing radiation (IR) is essential for maintaining genomic integrity. Ataxia telangiectasia mutated (ATM) plays a key role in initiating this response in all three phases of the cell cycle. However, cells lacking functional ATM exhibit a prolonged G2 arrest after IR, suggesting regulation by an ATM-independent checkpoint response. The mechanism for this ataxia telangiectasia (AT)-independent G2-checkpoint response remains unknown. We report here that the G2 checkpoint in irradiated human AT cells derives from an overactivation of the ATR/CHK1 pathway. Chk1 small interfering RNA abolishes the IR-induced prolonged G2 checkpoint and radiosensitizes AT cells to killing. These results link the activation of ATR/CHK1 with the prolonged G2 arrest in AT cells and show that activation of this G2 checkpoint contributes to the survival of AT cells.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Radiation Oncology, Kimmel Cancer Center of Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
173
|
Abstract
Claspin is a newly identified protein that regulates Chk1 activation in Xenopus. In the present study we investigated the role of human Claspin in the DNA damage/replication checkpoint in mammalian cells. We observed that human Claspin is a cell cycle regulated protein that peaks at S/G2 phase. Claspin localizes in the nuclei, but it only associates with Chk1 following replication stress or other types of DNA damage. In addition, Claspin is phosphorylated in response to replication stress, and this phosphorylation appears to be required for its association with Chk1. Moreover, Claspin interacts with the checkpoint proteins ATR and Rad9. Given that both the ATR and Rad9-Rad1-Hus1 complexes are involved in Chk1 activation, it is possible that Claspin works as an adaptor molecule bringing these molecules together. Using small interfering RNA technology, we have shown that down-regulation of Claspin expression inhibits Chk1 activation in response to replication stress. More importantly, down-regulation of Claspin augments the premature chromatin condensation induced by hydroxyurea, inhibits the UV-induced reduction of DNA synthesis, and decreases cell survival. Taken together, these data imply a potentially critical role for Claspin in replication checkpoint control in mammalian cells.
Collapse
|
174
|
Nyberg KA, Michelson RJ, Putnam CW, Weinert TA. Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 2003; 36:617-56. [PMID: 12429704 DOI: 10.1146/annurev.genet.36.060402.113540] [Citation(s) in RCA: 627] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA checkpoints play a significant role in cancer pathology, perhaps most notably in maintaining genome stability. This review summarizes the genetic and molecular mechanisms of checkpoint activation in response to DNA damage. The major checkpoint proteins common to all eukaryotes are identified and discussed, together with how the checkpoint proteins interact to induce arrest within each cell cycle phase. Also discussed are the molecular signals that activate checkpoint responses, including single-strand DNA, double-strand breaks, and aberrant replication forks. We address the connection between checkpoint proteins and damage repair mechanisms, how cells recover from an arrest response, and additional roles that checkpoint proteins play in DNA metabolism. Finally, the connection between checkpoint gene mutation and genomic instability is considered.
Collapse
Affiliation(s)
- Kara A Nyberg
- Molecular and Cellular Biology Department, University of Arizona, Tucson, Arizona, 85721, USA.
| | | | | | | |
Collapse
|
175
|
Roshal M, Kim B, Zhu Y, Nghiem P, Planelles V. Activation of the ATR-mediated DNA damage response by the HIV-1 viral protein R. J Biol Chem 2003; 278:25879-86. [PMID: 12738771 DOI: 10.1074/jbc.m303948200] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA damage is a universal inducer of cell cycle arrest at the G2 phase. Infection by the human immunodeficiency virus type 1 (HIV-1) also blocks cellular proliferation at the G2 phase. The HIV-1 accessory gene vpr encodes a conserved 96-amino acid protein (Vpr) that is necessary and sufficient for the HIV-1-induced block of cellular proliferation. In the present study, we examined a recently identified DNA damage-signaling protein, the ATM- and Rad3-related protein, ATR, for its potential role in the induction of G2 arrest by Vpr. We show that inhibition of ATR by pharmacological inhibitors, by expression of the dominant-negative form of ATR, or by RNA interference inhibits Vpr-induced cell cycle arrest. As with DNA damage, activation of ATR by Vpr results in phosphorylation of Chk1. This study provides conclusive evidence of activation of the ATR-initiated DNA damage-signaling pathway by a viral gene product. These observations are important toward understanding how HIV infection promotes cell cycle disruption, cell death, and ultimately, CD4+ lymphocyte depletion.
Collapse
Affiliation(s)
- Mikhail Roshal
- Department of Microbiology and Immunology, University of Rochester Cancer Center, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
176
|
Roos-Mattjus P, Hopkins KM, Oestreich AJ, Vroman BT, Johnson KL, Naylor S, Lieberman HB, Karnitz LM. Phosphorylation of human Rad9 is required for genotoxin-activated checkpoint signaling. J Biol Chem 2003; 278:24428-37. [PMID: 12709442 DOI: 10.1074/jbc.m301544200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rad9, a key component of genotoxin-activated checkpoint signaling pathways, associates with Hus1 and Rad1 in a heterotrimeric complex (the 9-1-1 complex). Rad9 is inducibly and constitutively phosphorylated. However, the role of Rad9 phosphorylation is unknown. Here we identified nine phosphorylation sites, all of which lie in the carboxyl-terminal 119-amino acid Rad9 tail and examined the role of phosphorylation in genotoxin-triggered checkpoint activation. Rad9 mutants lacking a Ser-272 phosphorylation site, which is phosphorylated in response to genotoxins, had no effect on survival or checkpoint activation in Mrad9-/- mouse ES cells treated with hydroxyurea (HU), ionizing radiation (IR), or ultraviolet radiation (UV). In contrast, additional Rad9 tail phosphorylation sites were essential for Chk1 activation following HU, IR, and UV treatment. Consistent with a role for Chk1 in S-phase arrest, HU- and UV-induced S-phase arrest was abrogated in the Rad9 phosphorylation mutants. In contrast, however, Rad9 did not play a role in IR-induced S-phase arrest. Clonogenic assays revealed that cells expressing a Rad9 mutant lacking phosphorylation sites were as sensitive as Rad9-/- cells to UV and HU. Although Rad9 contributed to survival of IR-treated cells, the identified phosphorylation sites only minimally contributed to survival following IR treatment. Collectively, these results demonstrate that the Rad9 phospho-tail is a key participant in the Chk1 activation pathway and point to additional roles for Rad9 in cellular responses to IR.
Collapse
Affiliation(s)
- Pia Roos-Mattjus
- Department of Biochemistry and Molecular Biology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Frouin I, Montecucco A, Spadari S, Maga G. DNA replication: a complex matter. EMBO Rep 2003; 4:666-70. [PMID: 12835753 PMCID: PMC1326325 DOI: 10.1038/sj.embor.embor886] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2003] [Accepted: 05/21/2003] [Indexed: 02/01/2023] Open
Abstract
In eukaryotic cells, the essential function of DNA replication is carried out by a network of enzymes and proteins, which work together to rapidly and accurately duplicate the genetic information of the cell. Many of the components of this DNA replication apparatus associate with other cellular factors as components of multiprotein complexes, which act cooperatively in networks to regulate cell cycle progression and checkpoint control, but are distinct from the pre-replication complexes that associate with the origins and regulate their firing. In this review, we summarize current knowledge about the composition and dynamics of these large multiprotein complexes in mammalian cells and their relationships to the replication factories.
Collapse
Affiliation(s)
- Isabelle Frouin
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, I-27100
Pavia, Italy
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich-Irchel, Winterthurerstrasse 190, CH-8050
Zürich, Switzerland
| | - Alessandra Montecucco
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, I-27100
Pavia, Italy
| | - Silvio Spadari
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, I-27100
Pavia, Italy
| | - Giovanni Maga
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, I-27100
Pavia, Italy
- Tel: +39 0382 546355; Fax: +39 0382 422286;
| |
Collapse
|
178
|
Brauchle M, Baumer K, Gönczy P. Differential activation of the DNA replication checkpoint contributes to asynchrony of cell division in C. elegans embryos. Curr Biol 2003; 13:819-27. [PMID: 12747829 DOI: 10.1016/s0960-9822(03)00295-1] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Acquisition of lineage-specific cell cycle duration is a central feature of metazoan development. The mechanisms by which this is achieved during early embryogenesis are poorly understood. In the nematode Caenorhabditis elegans, differential cell cycle duration is apparent starting at the two-cell stage, when the larger anterior blastomere AB divides before the smaller posterior blastomere P(1). How anterior-posterior (A-P) polarity cues control this asynchrony remains to be elucidated. RESULTS We establish that early C. elegans embryos possess a hitherto unrecognized DNA replication checkpoint that relies on the PI-3-like kinase atl-1 and the kinase chk-1. We demonstrate that preferential activation of this checkpoint in the P(1) blastomere contributes to asynchrony of cell division in two-cell-stage wild-type embryos. Furthermore, we show that preferential checkpoint activation is largely abrogated in embryos that undergo equal first cleavage following inactivation of Galpha signaling. CONCLUSION Our findings establish that differential checkpoint activation contributes to acquisition of distinct cell cycle duration in two-cell-stage C. elegans embryos and suggest a novel mechanism coupling asymmetric division to acquisition of distinct cell cycle duration during development.
Collapse
Affiliation(s)
- Michael Brauchle
- ISREC (Swiss Institute for Experimental Cancer Research), 155, ch. des Boveresses, CH-1066 Epalinges/Lausanne, Switzerland
| | | | | |
Collapse
|
179
|
Abstract
Common fragile sites are specific regions in the human genome that are particularly prone to genomic instability under conditions of replicative stress. Recent data suggest that these sites depend on the checkpoint kinase ATR to maintain their stability.
Collapse
Affiliation(s)
- Karlene A Cimprich
- Stanford University, Department of Molecular Pharmacology, Stanford, CA 94305-5174, USA.
| |
Collapse
|
180
|
Abstract
A Cre/lox-conditional mouse line was generated to evaluate the role of ATR in checkpoint responses to ionizing radiation (IR) and stalled DNA replication. We demonstrate that after IR treatment, ATR and ATM each contribute to early delay in M-phase entry but that ATR regulates a majority of the late phase (2-9 h post-IR). Double deletion of ATR and ATM eliminates nearly all IR-induced delay, indicating that ATR and ATM cooperate in the IR-induced G2/M-phase checkpoint. In contrast to the IR-induced checkpoint, checkpoint delay in response to stalled DNA replication is intact in ATR knockout cells and ATR/ATM and ATR/p53 double-knockout cells. The DNA replication checkpoint remains intact in ATR knockout cells even though the checkpoint-stimulated inhibitory phosphorylation of Cdc2 on T14/Y15 and activating phosphorylation of the Chk1 kinase no longer occur. Thus, incomplete DNA replication in mammalian cells can prevent M-phase entry independently of ATR and inhibitory phosphorylation of Cdc2. When DNA replication inhibitors are removed, ATR knockout cells proceed to mitosis but do so with chromosome breaks, indicating that ATR provides a key genome maintenance function in S phase.
Collapse
Affiliation(s)
- Eric J Brown
- California Institute of Technology, Pasadena, California 91125, USA.
| | | |
Collapse
|
181
|
Abstract
Maintenance of genome stability is essential for avoiding the passage to neoplasia. The DNA-damage response--a cornerstone of genome stability--occurs by a swift transduction of the DNA-damage signal to many cellular pathways. A prime example is the cellular response to DNA double-strand breaks, which activate the ATM protein kinase that, in turn, modulates numerous signalling pathways. ATM mutations lead to the cancer-predisposing genetic disorder ataxia-telangiectasia (A-T). Understanding ATM's mode of action provides new insights into the association between defective responses to DNA damage and cancer, and brings us closer to resolving the issue of cancer predisposition in some A-T carriers.
Collapse
Affiliation(s)
- Yosef Shiloh
- The David and Inez Myers Laboratory for Genetic Research, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
182
|
Carter AD, Sible JC. Loss of XChk1 function triggers apoptosis after the midblastula transition in Xenopus laevis embryos. Mech Dev 2003; 120:315-23. [PMID: 12591601 DOI: 10.1016/s0925-4773(02)00443-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Prior to the midblastula transition (MBT), Xenopus laevis embryos do not engage cell cycle checkpoints, although overexpression of the kinase XChk1 arrests cell divisions. At the MBT, XChk1 transiently activates and promotes cell cycle lengthening. In this study, endogenous XChk1 was inhibited by the expression of dominant-negative XChk1 (DN-XChk1). Development appeared normal until the early gastrula stage, when cells lost attachments and chromatin condensed. TUNEL and caspase assays indicated these embryos died by apoptosis during gastrulation. Embryos with unreplicated DNA likewise died by apoptosis. Embryos expressing DN-XChk1 proceeded through additional rapid rounds of DNA replication but initiated zygotic transcription on schedule. Therefore, XChk1 is essential in the early Xenopus embryo for cell cycle remodeling and for survival after the MBT.
Collapse
Affiliation(s)
- Ayesha D Carter
- Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0406, USA
| | | |
Collapse
|
183
|
Miao H, Seiler JA, Burhans WC. Regulation of cellular and SV40 virus origins of replication by Chk1-dependent intrinsic and UVC radiation-induced checkpoints. J Biol Chem 2003; 278:4295-304. [PMID: 12424256 DOI: 10.1074/jbc.m204264200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
DNA replication is inhibited by DNA damage through cis effects on replication fork progression and trans effects associated with checkpoints. In this study, we employed a combined pulse labeling and neutral-neutral two-dimensional gel-based approach to compare the effects of a DNA damaging agent frequently employed to invoke checkpoints, UVC radiation, on the replication of cellular and simian virus 40 (SV40) chromosomes in intact cells. UVC radiation induced similar inhibitory effects on the initiation and elongation phases of cellular and SV40 DNA replication. The initiation-inhibitory effects occurred independently of p53 and were abrogated by the ATM and ATR kinase inhibitor caffeine, or the Chk1 kinase inhibitor UCN-01. Inhibition of cellular origins was also abrogated by the expression of a dominant-negative Chk1 mutant. These results indicate that UVC induces a Chk1- and ATR or ATM-dependent checkpoint that targets both cellular and SV40 viral replication origins. Loss of Chk1 and ATR or ATM function also stimulated initiation of cellular and viral DNA replication in the absence of UVC radiation, revealing the existence of a novel intrinsic checkpoint that targets both cellular and SV40 viral origins of replication in the absence of DNA damage or stalled DNA replication forks. This checkpoint inhibits the replication in early S phase cells of a region of the repetitive rDNA locus that replicates in late S phase. The ability to detect these checkpoints using the well characterized SV40 model system should facilitate analysis of the molecular basis for these effects.
Collapse
Affiliation(s)
- Huiyi Miao
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | |
Collapse
|
184
|
Abstract
Cell cycle checkpoints are signal transduction pathways that enforce the orderly execution of the cell division cycle and arrest the cell cycle upon the occurrence of undesirable events, such as DNA damage, replication stress, and spindle disruption. The primary function of the cell cycle checkpoint is to ensure that the integrity of chromosomal DNA is maintained. DNA lesions and disrupted replication forks are thought to be recognized by the DNA damage checkpoint and replication checkpoint, respectively. Both checkpoints initiate protein kinase-based signal transduction cascade to activate downstream effectors that elicit cell cycle arrest, DNA repair, or apoptosis that is often dependent on dose and cell type. These actions prevent the conversion of aberrant DNA structures into inheritable mutations and minimize the survival of cells with unrepairable damage. Genetic components of the damage and replication checkpoints have been identified in yeast and humans, and a working model is beginning to emerge. We summarize recent advances in the DNA damage and replication checkpoints and discuss the essential functions of the proteins involved in the checkpoint responses.
Collapse
Affiliation(s)
- Jun Qin
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, 77030, USA.
| | | |
Collapse
|
185
|
Kumagai A, Dunphy WG. Repeated phosphopeptide motifs in Claspin mediate the regulated binding of Chk1. Nat Cell Biol 2003; 5:161-5. [PMID: 12545175 DOI: 10.1038/ncb921] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2002] [Revised: 10/15/2002] [Accepted: 11/21/2002] [Indexed: 01/14/2023]
Abstract
In vertebrates, the checkpoint-regulatory kinase Chk1 mediates cell-cycle arrest in response to a block in DNA replication or to DNA damaged by ultraviolet radiation. The activation of Chk1 depends on both Claspin and the upstream regulatory kinase ATR. Claspin is a large acidic protein that becomes phosphorylated and binds to Chk1 in the presence of checkpoint-inducing DNA templates in Xenopus egg extracts. Here we identify, by means of deletion analysis, a region of Claspin of 57 amino acids that is both necessary and sufficient for binding to Xenopus Chk1. This Chk1-binding domain contains two highly conserved repeats of approximately ten amino acids. A serine residue in each repeat (serine 864 and serine 895) undergoes phosphorylation during a checkpoint response. A mutant of Claspin containing non-phosphorylatable amino acids at positions 864 and 895 cannot bind to Chk1 and is unable to mediate its activation. Our results indicate that two phosphopeptide motifs in Claspin are essential for checkpoint signalling.
Collapse
Affiliation(s)
- Akiko Kumagai
- Division of Biology 216-76, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
186
|
Lee J, Kumagai A, Dunphy WG. Claspin, a Chk1-regulatory protein, monitors DNA replication on chromatin independently of RPA, ATR, and Rad17. Mol Cell 2003; 11:329-40. [PMID: 12620222 DOI: 10.1016/s1097-2765(03)00045-5] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Claspin is required for the ATR-dependent activation of Chk1 in Xenopus egg extracts containing incompletely replicated DNA. We show here that Claspin associates with chromatin in a regulated manner during S phase. Binding of Claspin to chromatin depends on the pre-replication complex (pre-RC) and Cdc45 but not on replication protein A (RPA). These dependencies suggest that binding of Claspin occurs around the time of initial DNA unwinding at replication origins. By contrast, both ATR and Rad17 require RPA for association with DNA. Claspin, ATR, and Rad17 all bind to chromatin independently. These findings suggest that Claspin plays a role in monitoring DNA replication during S phase. Claspin, ATR, and Rad17 may collaborate in checkpoint regulation by detecting different aspects of a DNA replication fork.
Collapse
Affiliation(s)
- Joon Lee
- Division of Biology 216-76, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
187
|
Weiss RS, Leder P, Vaziri C. Critical role for mouse Hus1 in an S-phase DNA damage cell cycle checkpoint. Mol Cell Biol 2003; 23:791-803. [PMID: 12529385 PMCID: PMC140711 DOI: 10.1128/mcb.23.3.791-803.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2002] [Revised: 09/30/2002] [Accepted: 11/01/2002] [Indexed: 01/31/2023] Open
Abstract
Mouse Hus1 encodes an evolutionarily conserved DNA damage response protein. In this study we examined how targeted deletion of Hus1 affects cell cycle checkpoint responses to genotoxic stress. Unlike hus1(-) fission yeast (Schizosaccharomyces pombe) cells, which are defective for the G(2)/M DNA damage checkpoint, Hus1-null mouse cells did not inappropriately enter mitosis following genotoxin treatment. However, Hus1-deficient cells displayed a striking S-phase DNA damage checkpoint defect. Whereas wild-type cells transiently repressed DNA replication in response to benzo(a)pyrene dihydrodiol epoxide (BPDE), a genotoxin that causes bulky DNA adducts, Hus1-null cells maintained relatively high levels of DNA synthesis following treatment with this agent. However, when treated with DNA strand break-inducing agents such as ionizing radiation (IR), Hus1-deficient cells showed intact S-phase checkpoint responses. Conversely, checkpoint-mediated inhibition of DNA synthesis in response to BPDE did not require NBS1, a component of the IR-responsive S-phase checkpoint pathway. Taken together, these results demonstrate that Hus1 is required specifically for one of two separable mammalian checkpoint pathways that respond to distinct forms of genome damage during S phase.
Collapse
Affiliation(s)
- Robert S Weiss
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
188
|
Yang J, Yu Y, Duerksen-Hughes PJ. Protein kinases and their involvement in the cellular responses to genotoxic stress. Mutat Res 2003; 543:31-58. [PMID: 12510016 DOI: 10.1016/s1383-5742(02)00069-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cells are constantly subjected to genotoxic stress, and much has been learned regarding their response to this type of stress during the past year. In general, the cellular genotoxic response can be thought to occur in three stages: (1) damage sensing; (2) activation of signal transduction pathways; (3) biological consequences and attenuation of the response. The biological consequences, in particular, include cell cycle arrest and cell death. Although our understanding of the molecular mechanisms underlying cellular genotoxic stress responses remains incomplete, many cellular components have been identified over the years, including a group of protein kinases that appears to play a major role. Various DNA-damaging agents can activate these protein kinases, triggering a protein phosphorylation cascade that leads to the activation of transcription factors, and altering gene expression. In this review, the involvement of protein kinases, particularly the mitogen-activated protein kinases (MAPKs), at different stages of the genotoxic response is discussed.
Collapse
Affiliation(s)
- Jun Yang
- Department of Pathophysiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310031, China
| | | | | |
Collapse
|
189
|
Costanzo V, Shechter D, Lupardus PJ, Cimprich KA, Gottesman M, Gautier J. An ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication. Mol Cell 2003; 11:203-13. [PMID: 12535533 DOI: 10.1016/s1097-2765(02)00799-2] [Citation(s) in RCA: 334] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have analyzed how single-strand DNA gaps affect DNA replication in Xenopus egg extracts. DNA lesions generated by etoposide, a DNA topoisomerase II inhibitor, or by exonuclease treatment activate a DNA damage checkpoint that blocks initiation of plasmid and chromosomal DNA replication. The checkpoint is abrogated by caffeine and requires ATR, but not ATM, protein kinase. The block to DNA synthesis is due to inhibition of Cdc7/Dbf4 protein kinase activity and the subsequent failure of Cdc45 to bind to chromatin. The checkpoint does not require pre-RC assembly but requires loading of the single-strand binding protein, RPA, on chromatin. This is the biochemical demonstration of a DNA damage checkpoint that targets Cdc7/Dbf4 protein kinase.
Collapse
Affiliation(s)
- Vincenzo Costanzo
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
190
|
Shimada K, Pasero P, Gasser SM. ORC and the intra-S-phase checkpoint: a threshold regulates Rad53p activation in S phase. Genes Dev 2002; 16:3236-52. [PMID: 12502744 PMCID: PMC187497 DOI: 10.1101/gad.239802] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The intra-S-phase checkpoint in yeast responds to stalled replication forks by activating the ATM-like kinase Mec1 and the CHK2-related kinase Rad53, which in turn inhibit spindle elongation and late origin firing and lead to a stabilization of DNA polymerases at arrested forks. A mutation that destabilizes the second subunit of the Origin Recognition Complex, orc2-1, reduces the number of functional replication forks by 30% and severely compromises the activation of Rad53 by replication stress or DNA damage in S phase. We show that the restoration of the checkpoint response correlates in a dose-dependent manner with the restoration of pre-replication complex formation in G1. Other forms of DNA damage can compensate for the reduced level of fork-dependent signal in the orc2-1 mutant, yet even in wild-type cells, the amount of damage required for Rad53 activation is higher in S phase than in G2. Our data suggest the existence of an S-phase-specific threshold that may be necessary to allow cells to tolerate damage-like DNA structures present at normal replication forks.
Collapse
Affiliation(s)
- Kenji Shimada
- University of Geneva, Department of Molecular Biology, Switzerland
| | | | | |
Collapse
|
191
|
Affiliation(s)
- Noriyuki Sagata
- Department of Biology, Kyushu University, Fukuoka 812-8581, Japan.
| |
Collapse
|
192
|
Heffernan TP, Simpson DA, Frank AR, Heinloth AN, Paules RS, Cordeiro-Stone M, Kaufmann WK. An ATR- and Chk1-dependent S checkpoint inhibits replicon initiation following UVC-induced DNA damage. Mol Cell Biol 2002; 22:8552-61. [PMID: 12446774 PMCID: PMC139882 DOI: 10.1128/mcb.22.24.8552-8561.2002] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inhibition of replicon initiation is a stereotypic DNA damage response mediated through S checkpoint mechanisms not yet fully understood. Studies were undertaken to elucidate the function of checkpoint proteins in the inhibition of replicon initiation following irradiation with 254 nm UV light (UVC) of diploid human fibroblasts immortalized by the ectopic expression of telomerase. Velocity sedimentation analysis of nascent DNA molecules revealed a 50% inhibition of replicon initiation when normal human fibroblasts were treated with a low dose of UVC (1 J/m(2)). Ataxia telangiectasia (AT), Nijmegen breakage syndrome (NBS), and AT-like disorder fibroblasts, which lack an S checkpoint response when exposed to ionizing radiation, responded normally when exposed to UVC and inhibited replicon initiation. Pretreatment of normal and AT fibroblasts with caffeine or UCN-01, inhibitors of ATR (AT mutated and Rad3 related) and Chk1, respectively, abolished the S checkpoint response to UVC. Moreover, overexpression of kinase-inactive ATR in U2OS cells severely attenuated UVC-induced Chk1 phosphorylation and reversed the UVC-induced inhibition of replicon initiation, as did overexpression of kinase-inactive Chk1. Taken together, these data suggest that the UVC-induced S checkpoint response of inhibition of replicon initiation is mediated by ATR signaling through Chk-1 and is independent of ATM, Nbs1, and Mre11.
Collapse
Affiliation(s)
- Timothy P Heffernan
- Department of Pathology and Laboratory Medicine, Center for Environmental Health and Susceptibility, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
193
|
Abstract
To ensure the fidelity of DNA replication, cells activate a stress-response pathway when DNA replication is perturbed. This pathway regulates not only progress through the cell cycle but also transcription, apoptosis, DNA repair/recombination and DNA replication itself. Mounting evidence has suggested that this pathway is important for the maintenance of genomic integrity. Here, we discuss recent findings about how this pathway is activated by replication stress and how it regulates the DNA-replication machinery to alleviate the stress.
Collapse
Affiliation(s)
- Alexander J Osborn
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, Baylor College of Medicine, One Baylor Plaza, TX 77030, USA
| | | | | |
Collapse
|
194
|
Chou DM, Petersen P, Walter JC, Walter G. Protein phosphatase 2A regulates binding of Cdc45 to the prereplication complex. J Biol Chem 2002; 277:40520-7. [PMID: 12185086 DOI: 10.1074/jbc.m207226200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In eukaryotic cells, an ordered sequence of events leads to the initiation of DNA replication. During the G(1) phase of the cell cycle, a prereplication complex (pre-RC) consisting of ORC, Cdc6, Cdt1, and MCM2-7 is established at replication origins on the chromatin. At the G(1)/S transition, MCM10 and the protein kinases Cdc7-Dbf4 and Cdk2-cyclin E cooperate to recruit Cdc45 to the pre-RC, followed by origin unwinding, RPA binding, and recruitment of DNA polymerases. Using the soluble DNA replication system derived from Xenopus eggs, we demonstrate that immunodepletion of protein phosphatase 2A (PP2A) from egg extracts and inhibition of PP2A activity by okadaic acid abolish loading of Cdc45 to the pre-RC. Consistent with a defect in Cdc45 loading, origin unwinding and the loading of RPA and DNA polymerase alpha are also inhibited. Inhibition of PP2A has no effect on MCM10 loading and on Cdc7-Dbf4 or Cdk2 activity. The substrate of PP2A is neither a component of the pre-RC nor Cdc45. Instead, our data suggest that PP2A functions by dephosphorylating and activating a soluble factor that is required to recruit Cdc45 to the pre-RC. Furthermore, PP2A appears to counteract an unknown inhibitory kinase that phosphorylates and inactivates the same factor. Thus, the initiation of eukaryotic DNA replication is regulated at the level of Cdc45 loading by a combination of stimulatory and inhibitory phosphorylation events.
Collapse
Affiliation(s)
- Danny M Chou
- Department of Pathology 0612, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
195
|
Lupardus PJ, Byun T, Yee MC, Hekmat-Nejad M, Cimprich KA. A requirement for replication in activation of the ATR-dependent DNA damage checkpoint. Genes Dev 2002; 16:2327-32. [PMID: 12231621 PMCID: PMC187437 DOI: 10.1101/gad.1013502] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Using the Xenopus egg extract system, we investigated the involvement of DNA replication in activation of the DNA damage checkpoint. We show here that DNA damage slows replication in a checkpoint-independent manner and is accompanied by replication-dependent recruitment of ATR and Rad1 to chromatin. We also find that the replication proteins RPA and Polalpha accumulate on chromatin following DNA damage. Finally, damage-induced Chk1 phosphorylation and checkpoint arrest are abrogated when replication is inhibited. These data indicate that replication is required for activation of the DNA damage checkpoint and suggest a unifying model for ATR activation by diverse lesions during S phase.
Collapse
Affiliation(s)
- Patrick J Lupardus
- Department of Molecular Pharmacology, Stanford University, Stanford, California 94305-5174, USA
| | | | | | | | | |
Collapse
|
196
|
Burhans WC, Blanchard F, Baumann H. Origin licensing and programmed cell death: a hypothesis. Cell Death Differ 2002; 9:870-2. [PMID: 12181737 DOI: 10.1038/sj.cdd.4401086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
197
|
You Z, Kong L, Newport J. The role of single-stranded DNA and polymerase alpha in establishing the ATR, Hus1 DNA replication checkpoint. J Biol Chem 2002; 277:27088-93. [PMID: 12015327 DOI: 10.1074/jbc.m204120200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using a nucleus-free DNA replication system we have investigated the roles of Xenopus ATR (XATR) and Hus1 (Xhus1) as the DNA replication checkpoint sensors. Like XATR, Xhus1 is required for the checkpoint-dependent phosphorylation of Xchk1 and associates with chromatin in an initiation-dependent manner. While removal of replication protein A inhibits chromatin association of both XATR and Xhus1, removal of polymerase alpha only disrupts chromatin association of Xhus1. In addition, chromatin association of XATR and Xhus1 are independent of each other. Finally, like XATR, Xhus1 associates with chromatin in unperturbed S phase and dissociates from chromatin following completion of DNA replication.
Collapse
Affiliation(s)
- Zhongsheng You
- Division of Biology, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0349, USA
| | | | | |
Collapse
|
198
|
Unsal-Kaçmaz K, Makhov AM, Griffith JD, Sancar A. Preferential binding of ATR protein to UV-damaged DNA. Proc Natl Acad Sci U S A 2002; 99:6673-8. [PMID: 12011431 PMCID: PMC124461 DOI: 10.1073/pnas.102167799] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The ATR protein is a member of the phosphoinositide 3-kinase-related kinase family and plays an important role in UV-induced DNA damage checkpoint response. Its role as a signal transducer in cell cycle checkpoint is well established, but it is currently unclear whether ATR functions as a damage sensor as well. Here we have purified the ATR protein and investigated its interaction with DNA by using biochemical analysis and electron microscopy. We find that ATR is a DNA-binding protein with higher affinity to UV-damaged than undamaged DNA. In addition, damaged DNA stimulates the kinase activity of ATR to a significantly higher level than undamaged DNA. Our data suggest that ATR may function as an initial sensor in the DNA damage checkpoint response.
Collapse
Affiliation(s)
- Keziban Unsal-Kaçmaz
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
199
|
Blanchard F, Rusiniak ME, Sharma K, Sun X, Todorov I, Castellano MM, Gutierrez C, Baumann H, Burhans WC. Targeted destruction of DNA replication protein Cdc6 by cell death pathways in mammals and yeast. Mol Biol Cell 2002; 13:1536-49. [PMID: 12006651 PMCID: PMC111125 DOI: 10.1091/mbc.02-02-0010] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The highly conserved Cdc6 protein is required for initiation of eukaryotic DNA replication and, in yeast and Xenopus, for the coupling of DNA replication to mitosis. Herein, we show that human Cdc6 is rapidly destroyed by a p53-independent, proteasome-, and ubiquitin-dependent pathway during early stages of programmed cell death induced by the DNA-damaging drug adozelesin, or by a separate caspase-dependent pathway in cells undergoing apoptosis through an extrinsic pathway induced by tumor necrosis factor-alpha and cycloheximide. The proteasome-dependent pathway induced by adozelesin is conserved in the budding yeast Saccharomyces cerevisiae. The destruction of Cdc6 may be a primordial programmed death response that uncouples DNA replication from the cell division cycle, which is reinforced in metazoans by the evolution of caspases and p53.
Collapse
Affiliation(s)
- Frederic Blanchard
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Abstract
Recent investigation of the DNA-damage checkpoint in several organisms has highlighted the conservation of this pathway. The checkpoint's signal transduction pathway consists of four conserved classes of molecules: two large protein kinases having homology to phosphatidylinositol 3-kinases, three "sensor" proteins with homology to proliferating cell nuclear antigen, two serine/threonine (S/T) kinases, and two adaptors for the S/T kinases. This review compares the role of these four classes of checkpoint proteins in humans and model organisms.
Collapse
Affiliation(s)
- Justine Melo
- Department of Biochemistry and Biophysics, Mount Zion Cancer Research Center, University of California, San Francisco, CA 94115, USA.
| | | |
Collapse
|