151
|
Aunis D. Exocytosis in chromaffin cells of the adrenal medulla. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 181:213-320. [PMID: 9522458 DOI: 10.1016/s0074-7696(08)60419-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The chromaffin cell has been used as a model to characterize releasable components present in secretory granules and to understand the cellular mechanisms involved in catecholamine release. Recent physiological and biochemical developments have revealed that molecular mechanisms implicated in granule trafficking are conserved in all eukaryotic species: a rise in intracellular calcium triggers regulated exocytosis, and highly conserved proteins are essential elements which interact with each other to form a molecular scaffolding, ensuring the docking of granules at the plasma membrane, and perhaps membrane fusion. However, the mechanisms regulating secretion are multiple and cell specific. They operate at different steps along the life of a granule, from the time of granule biosynthesis up to the last step of exocytosis. With regard to cell specificity, noradrenaline and adrenaline chromaffin cells display different receptor and signaling characteristics that may be important to exocytosis. Characterization of regulated exocytosis in chromaffin cells provides not only fundamental knowledge of neurosecretion but is of additional importance as these cells are used for therapeutic purposes.
Collapse
Affiliation(s)
- D Aunis
- Biologie de la Communication Cellulaire, Unité INSERM U-338, Strasbourg, France
| |
Collapse
|
152
|
Luo JQ, Liu X, Frankel P, Rotunda T, Ramos M, Flom J, Jiang H, Feig LA, Morris AJ, Kahn RA, Foster DA. Functional association between Arf and RalA in active phospholipase D complex. Proc Natl Acad Sci U S A 1998; 95:3632-7. [PMID: 9520417 PMCID: PMC19887 DOI: 10.1073/pnas.95.7.3632] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/1997] [Indexed: 02/06/2023] Open
Abstract
Activation of phospholipase D1 (PLD1) by Arf has been implicated in vesicle transport and membrane trafficking. PLD1 has also been shown to be associated with the small GTPase RalA, which functions downstream from Ras in a Ras-RalA GTPase cascade that facilitates intracellular signal transduction. Although PLD1 associates directly with RalA, RalA has no effect upon the activity of PLD1. However, PLD1 precipitated from cell lysates with immobilized glutathione S-transferase-RalA fusion protein is active. This suggests the presence of an additional activating factor in the active RalA-PLD1 complexes. Because Arf stimulates PLD1, we looked for the presence of Arf in the active RalA-PLD1 complexes isolated from v-Src- and v-Ras-transformed cell lysates. Low levels of Arf protein were detected in RalA-PLD1 complexes; however, if guanosine 5'-[gamma-thio]triphosphate was added to activate Arf and stimulate translocation to the membrane, high levels of Arf were precipitated by RalA from cell lysates. Interestingly, deletion of 11 amino-terminal amino acids unique to Ral GTPases, which abolished the ability of RalA to precipitate PLD activity, prevented the association between RalA and Arf. Brefeldin A, which inhibits Arf GDP-GTP exchange, inhibited PLD activity in v-Src- and v-Ras-transformed cells but not in the nontransformed cells, suggesting that the association of Arf with RalA is required for the increased PLD activity induced by v-Src and v-Ras. These data implicate Arf in the transduction of intracellular signals activated by v-Src and mediated by the Ras-RalA GTPase cascade. Because both Arf and PLD1 stimulate vesicle formation in the Golgi, these data raise the possibility that vesicle formation and trafficking may play a role in the transduction of intracellular signals.
Collapse
Affiliation(s)
- J Q Luo
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Vasta V, Meacci E, Romiti E, Farnararo M, Bruni P. A role for phospholipase D activation in the lipid signalling cascade generated by bradykinin and thrombin in C2C12 myoblasts. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1391:280-6. [PMID: 9555059 DOI: 10.1016/s0005-2760(98)00013-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the present study evidence is provided for a rapid activation of lipid signalling pathways induced by thrombin and bradykinin (BK) in C2C12 myoblasts. Both agonists were able to increase [3H]inositol phosphates (InsP), 1,2-[3H]diacylglycerol (DAG) and [3H]phosphatidic acid (PtdOH) levels. In particular [3H]PtdOH values were rapidly increased and maintained at significantly high values at prolonged times of incubation. BK and thrombin were able to activate phospholipase D (PLD) in vivo as demonstrated by the accumulation of [3H]phosphatidylethanol (PtdEtOH) through the transphoshatidylation reaction catalyzed by the enzyme in the presence of ethanol. The observation that ethanol could significantly reduce [3H]PtdOH formation in myoblasts stimulated with BK and thrombin indicates that stimulation of PLD has a major role. The two agonists appear to stimulate PLD activity through a common molecular mechanism, involving the activation of protein kinase C (PKC). In addition, BK and thrombin appear able to activate DAG kinase at early times of incubation and also this pathway may contribute to determine the increase in [3H]PtdOH levels. This is the first report which describes activation of lipid signalling pathways by BK and thrombin in myoblast cells and it is possible that these early signals may have an important role in mediating the biological effects of the two agonists.
Collapse
Affiliation(s)
- V Vasta
- Dipartimento di Scienze Biochimiche, University of Florence, Viale G. B. Morgagni 50, 50134 Firenze, Italy
| | | | | | | | | |
Collapse
|
154
|
Hastie LE, Patton WF, Hechtman HB, Shepro D. Metabolites of the phospholipase D pathway regulate H2O2-induced filamin redistribution in endothelial cells. J Cell Biochem 1998. [DOI: 10.1002/(sici)1097-4644(19980315)68:4<511::aid-jcb10>3.0.co;2-c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
155
|
Affiliation(s)
- A Gómez-Muñoz
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad del País Vasco, Apartado 644, Bilbao 48080, Spain.
| |
Collapse
|
156
|
Ritchie S, Gilroy S. Abscisic acid signal transduction in the barley aleurone is mediated by phospholipase D activity. Proc Natl Acad Sci U S A 1998; 95:2697-702. [PMID: 9482950 PMCID: PMC19466 DOI: 10.1073/pnas.95.5.2697] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The plant hormones abscisic acid (ABA) and gibberellic acid (GA) are important regulators of the dormancy and germination of seeds. In cereals, GA enhances the synthesis and secretion of enzymes (principally alpha-amylases) in the aleurone cells of the endosperm, which then mobilize the storage reserves that fuel germination. ABA inhibits this enhanced secretory activity and delays germination. Despite the central role of ABA in regulating germination, the signal transduction events leading to altered gene expression and cellular activity are essentially unknown. We report that the application of ABA to aleurone protoplasts increased the activity of the enzyme phospholipase D (PLD) 10 min after treatment. The product of PLD activity, phosphatidic acid (PPA), also increased transiently at this time. The application of PPA to aleurone protoplasts led to an ABA-like inhibition of alpha-amylase production, and induction of the ABA up-regulated proteins ASI (amylase subtilisin inhibitor) and RAB (responsive to ABA). Inhibition of PLD activity by 0.1% 1-butanol during the initial 20 min of ABA treatment resulted in inhibition of ABA-regulated processes. This inhibition coincided with the timing of PLD activation by ABA and was overcome by simultaneous addition of PPA. These results suggest that ABA activates the enzyme PLD to produce PPA that is involved in triggering the subsequent ABA responses of the aleurone cell.
Collapse
Affiliation(s)
- S Ritchie
- Biology Department, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA
| | | |
Collapse
|
157
|
Munnik T, Irvine RF, Musgrave A. Phospholipid signalling in plants. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1389:222-72. [PMID: 9512651 DOI: 10.1016/s0005-2760(97)00158-6] [Citation(s) in RCA: 257] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- T Munnik
- Institute for Molecular Cell Biology, BioCentrum Amsterdam, University of Amsterdam, The Netherlands.
| | | | | |
Collapse
|
158
|
Abstract
The actin cytoskeleton mediates a variety of essential biological functions in all eukaryotic cells. In addition to providing a structural framework around which cell shape and polarity are defined, its dynamic properties provide the driving force for cells to move and to divide. Understanding the biochemical mechanisms that control the organization of actin is thus a major goal of contemporary cell biology, with implications for health and disease. Members of the Rho family of small guanosine triphosphatases have emerged as key regulators of the actin cytoskeleton, and furthermore, through their interaction with multiple target proteins, they ensure coordinated control of other cellular activities such as gene transcription and adhesion.
Collapse
Affiliation(s)
- A Hall
- Medical Research Council Laboratory for Molecular Cell Biology, Cancer Research Campaign Oncogene and Signal Transduction Group, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
159
|
Rudge SA, Morris AJ, Engebrecht J. Relocalization of phospholipase D activity mediates membrane formation during meiosis. J Cell Biol 1998; 140:81-90. [PMID: 9425156 PMCID: PMC2132601 DOI: 10.1083/jcb.140.1.81] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/1997] [Revised: 11/04/1997] [Indexed: 02/05/2023] Open
Abstract
Phospholipase D (PLD) enzymes catalyze the hydrolysis of phosphatidylcholine and are involved in membrane trafficking and cytoskeletal reorganization. The Saccharomyces cerevisiae SPO14 gene encodes a PLD that is essential for meiosis. We have analyzed the role of PLD in meiosis by examining two mutant proteins, one with a point mutation in a conserved residue (Spo14pK--> H) and one with an amino-terminal deletion (Spo14pDeltaN), neither of which can restore meiosis in a spo14 deletion strain. Spo14pK--> H is enzymatically inactive, indicating that PLD activity is required, whereas Spo14pDeltaN retains PLD catalytic activity in vitro, indicating that PLD activity is not sufficient for meiosis. To explore other aspects of Spo14 function, we followed the localization of the enzyme during meiosis. Spo14p is initially distributed throughout the cell, becomes concentrated at the spindle pole bodies after the meiosis I division, and at meiosis II localizes to the new spore membrane as it surrounds the nuclei and then expands to encapsulate the associated cytoplasm during the formation of spores. The catalytically inactive protein also undergoes relocalization during meiosis; however, in the absence of PLD activity, no membrane is formed. In contrast, Spo14pDeltaN does not relocalize properly, indicating that the failure of this protein to complement a spo14 mutant is due to its inability to localize its PLD activity. Furthermore, we find that Spo14p movement is correlated with phosphorylation of the protein. These experiments indicate that PLD participates in regulated membrane formation during meiosis, and that both its catalytic activity and subcellular redistribution are essential for this function.
Collapse
Affiliation(s)
- S A Rudge
- Department of Pharmacological Sciences, State University of New York, Stony Brook, Stony Brook, New York 11794-8651, USA
| | | | | |
Collapse
|
160
|
Nofer JR, Tepel M, Walter M, Seedorf U, Assmann G, Zidek W. Phosphatidylcholine-specific phospholipase C regulates thapsigargin-induced calcium influx in human lymphocytes. J Biol Chem 1997; 272:32861-8. [PMID: 9407064 DOI: 10.1074/jbc.272.52.32861] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The involvement of phosphatidylcholine-specific phospholipase C (PC-PLC) and D (PC-PLD) in the regulation of the thapsigargin-induced Ca2+ increase was investigated. Pretreatment of human lymphocytes with the PC-PLC inhibitors D609 or U73122 enhanced the thapsigargin-induced Ca2+ influx. By contrast, no effect was observed in the presence of phospholipase D inhibitor butanol. Addition of exogenous PC-PLC but not PC-PLD to lymphocytes prestimulated with thapsigargin led to a decrease of intracellular Ca2+. In addition, thapsigargin was shown to release diacylglycerol (DAG) from cellular phosphatidylcholine pools. The thapsigargin-induced DAG formation was inhibited by U73122 and D609 but not by butanol. Moreover, no formation of the PC-PLD activity marker phosphatidylbutanol was detected. Thapsigargin-induced DAG formation was dependent on the Ca2+ entry, as it was abolished in the absence of extracellular Ca2+ or in the presence of Ni2+. Further investigations demonstrated that the inhibition of the cellular DAG target, protein kinase C (PKC), enhanced thapsigargin-induced Ca2+ increase, whereas direct PKC activation had an inhibitory effect. Taken together, our results reveal the involvement of PC-PLC in the regulation of the thapsigargin-induced Ca2+ increase and point to the existence of a physiologic feedback mechanism activated by Ca2+ influx and acting via consecutive activation of PC-PLC and PKC to limit the rise of intracellular Ca2+.
Collapse
Affiliation(s)
- J R Nofer
- Institut für Klinische Chemie und Laboratoriumsmedizin, Zentrallaboratorium, Westfälische Wilhelms-Universität, Münster,, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
161
|
Wakelam MJ, Martin A, Hodgkin MN, Brown F, Pettitt TR, Cross MJ, De Takats PG, Reynolds JL. Role and regulation of phospholipase D activity in normal and cancer cells. ADVANCES IN ENZYME REGULATION 1997; 37:29-34. [PMID: 9381975 DOI: 10.1016/s0065-2571(96)00023-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PLD is regulated by the small GTP binding proteins Rho and Arf, though predominantly by the latter. The PA product of PLD activation is an activator of Rho-regulated actin stress fibre formation and in invasive cells of MMP-9 synthesis and activation. Together this may explain the increased invasion of cells in response to PA.
Collapse
Affiliation(s)
- M J Wakelam
- Institute for Cancer Studies, University of Birmingham, U.K
| | | | | | | | | | | | | | | |
Collapse
|
162
|
Liu B, Nakashima S, Adachi T, Ito Y, Takano T, Shimizu T, Nozawa Y. Prolonged activation of phospholipase D in Chinese hamster ovary cells expressing platelet-activating-factor receptor lacking cytoplasmic C-terminal tail. Biochem J 1997; 327 ( Pt 1):239-44. [PMID: 9355758 PMCID: PMC1218786 DOI: 10.1042/bj3270239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mechanism and role of phospholipase D (PLD) activation by platelet-activating factor (PAF) were examined with Chinese hamster ovary cells stably expressing wild-type PAF receptor (WT-H cells) and truncated PAF receptor lacking the C-terminal cytoplasmic tail (D-H cells). Treatment of D-H cells with PAF resulted in the rapid formation of Ins(1,4,5)P3, which was followed by a sustained phase for more than 10 min. In these cells, PAF-induced PLD activation lasted for more than 20 min. In contrast, PLD activation in WT-H cells was transient. PAF stimulation caused the biphasic formation of 1,2-diacylglycerol (DG) in both types of cell. The first phase was rapid and transient, coinciding with the Ins(1,4,5)P3 peak. The second sustained phase of DG formation was attenuated by butanol, which produces phosphatidylbutanol at the expense of phosphatidic acid (PA) by transphosphatidylation activity of PLD, and by propranolol, a selective inhibitor for PA phosphohydrolase catalysing the conversion of PA into DG. The DG level returned nearly to basal at 20 min after PAF stimulation in WT-H cells, whereas in D-H cells the elevated DG level was sustained for more than 20 min. The profile of translocation of protein kinase Calpha (PKCalpha) to membrane was similar to that of DG formation. In WT-H cells, PKCalpha was transiently associated with membranes and then returned to the cytosol. However, in D-H cells PKCalpha was rapidly translocated to and remained in membranes for more than 20 min. Butanol suppressed this sustained translocation of PKCalpha. Furthermore the mRNA levels of c-fos and c-jun by PAF in WT-H cells were much lower than those in D-H cells. Propranolol and butanol at concentrations that inhibited the formation of DG suppressed the PAF-induced mRNA expression of c-fos and c-jun. Taken together, the prolonged PLD activation in D-H cells confirmed a primary role for phospholipase C/PKC in PLD activation by PAF. Furthermore the results obtained here suggest that sustained PLD activation in turn leads to chronic activation and membrane translocation of PKCalpha, which might play an important role in the expression of c-fos and c-jun.
Collapse
Affiliation(s)
- B Liu
- Department of Biochemistry, Gifu University School of Medicine, Tsukasamachi-40, Gifu 500, Japan
| | | | | | | | | | | | | |
Collapse
|
163
|
Colley WC, Altshuller YM, Sue-Ling CK, Copeland NG, Gilbert DJ, Jenkins NA, Branch KD, Tsirka SE, Bollag RJ, Bollag WB, Frohman MA. Cloning and expression analysis of murine phospholipase D1. Biochem J 1997; 326 ( Pt 3):745-53. [PMID: 9307024 PMCID: PMC1218729 DOI: 10.1042/bj3260745] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Activation of phosphatidylcholine-specific phospholipase D(PLD) occurs as part of the complex signal-transduction cascade initiated by agonist stimulation of tyrosine kinase and G-protein-coupled receptors. A variety of mammalian PLD activities have been described, and cDNAs for two PLDs recently reported (human PLD1 and murine PLD2). We describe here the cloning and chromosomal localization of murine PLD1. Northern-blot hybridization and RNase protection analyses were used to examine the expression of murine PLD1 and PLD2 ina variety of cell lines and tissues. PLD1 and PLD2 were expressed in all RNA samples examined, although the absolute expression of each isoform varied, as well as the ratio of PLD1 to PLD2. Moreover, in situ hybridization of adult brain and murine embryo sections revealed high levels of expression of individual PLDs in some cell types and no detectable expression in others. Thus the two PLDs probably carry out distinct roles in restricted subsets of cells rather than ubiquitous roles in all cells.
Collapse
Affiliation(s)
- W C Colley
- Department of Pharmacological Sciences, Program in Genetics, State University of New York, Stony Brook, NY 11794-8651, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Pettitt TR, Martin A, Horton T, Liossis C, Lord JM, Wakelam MJ. Diacylglycerol and phosphatidate generated by phospholipases C and D, respectively, have distinct fatty acid compositions and functions. Phospholipase D-derived diacylglycerol does not activate protein kinase C in porcine aortic endothelial cells. J Biol Chem 1997; 272:17354-9. [PMID: 9211874 DOI: 10.1074/jbc.272.28.17354] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Stimulation of cells with certain agonists often activates both phospholipases C and D. These generate diacylglycerol and phosphatidate, respectively, although the two lipids are also apparently interconvertable through the actions of phosphatidate phosphohydrolase and diacylglycerol kinase. Diacylglycerol activates protein kinase C while one role for phosphatidate is the activation of actin stress fiber formation. Therefore, if the two lipids are interconvertable, it is theoretically possible that an uncontrolled signaling loop could arise. To address this issue structural analysis of diacylglycerol, phosphatidate, and phosphatidylbutanol (formed in the presence of butan-1-ol) from both Swiss 3T3 and porcine aortic endothelial cells was performed. This demonstrated that phospholipase C activation generates primarily polyunsaturated species while phospholipase D activation generates saturated/monounsaturated species. In the endothelial cells, where phospholipase D was activated by lysophosphatidic acid independently of phospholipase C, there was no activation of protein kinase C. Thus we propose that only polyunsaturated diacylglycerols and saturated/monounsaturated phosphatidates function as intracellular messengers and that their interconversion products are inactive.
Collapse
Affiliation(s)
- T R Pettitt
- Institute for Cancer Studies, The University of Birmingham, Birmingham B15 2TH, United Kingdom
| | | | | | | | | | | |
Collapse
|
165
|
Luo JQ, Liu X, Hammond SM, Colley WC, Feig LA, Frohman MA, Morris AJ, Foster DA. RalA interacts directly with the Arf-responsive, PIP2-dependent phospholipase D1. Biochem Biophys Res Commun 1997; 235:854-9. [PMID: 9207251 DOI: 10.1006/bbrc.1997.6793] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
RalA GTPase associates with a phospholipase D (PLD) that is activated in v-Src- and v-Ras-transformed cells. Two mammalian PLDs were recently cloned: PLD1, which is activated by Arf family GTPases and dependent upon phosphatidylinositol-4,5-bisphosphate (PIP2), and PLD2, which is also dependent upon PIP2, but not stimulated by Arf. Another PLD has been described that is stimulated by oleate. Evidence is provided that the RalA-assiciated PLD is PLD1. First, the PLD precipitated by RalA from murine fibroblasts was stimulated by Arf, dependent upon PIP2, and inhibited by oleate. Second, immobilized RalA precipitated PLD1 from sf9 insect cells overexpressing PLD1. Third, a series of RalA mutants precipitated PLD activity from both PLD1-expressing insect cells and murine fibroblasts with the same efficiency. And finally, immobilized RalA precipitated PLD1 from a purified PLD1 preparation. These data argue that RalA associates directly with the Arf-responsive, PIP2-dependent PLD1.
Collapse
Affiliation(s)
- J Q Luo
- Department of Biological Sciences, Hunter College of The City University of New York, New York 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Ohguchi K, Kasai T, Nozawa Y. Tyrosine phosphorylation of 100-115 kDa proteins by phosphatidic acid generated via phospholipase D activation in HL60 granulocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1346:301-4. [PMID: 9219914 DOI: 10.1016/s0005-2760(97)00043-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In HL60 granulocytes, 4beta-phorbol 12-myristate 13-acetate (PMA) induced tyrosine phosphorylation of several proteins with molecular weight of 100-115 kDa and 45 kDa. Furthermore, PMA-mediated phosphatidic acid (PA) production via phospholipase D (PLD) activation. In the presence of either butanol or ethanol, PMA-induced PA production was markedly reduced and instead a metabolically stable phosphatidylbutanol (PBut) or phosphatidylethanol (PEt) was produced by transphosphatidylation by PLD. Under the same incubation condition, these primary alcohols inhibited PMA-induced tyrosine phosphorylation of the 100-115 kDa proteins. Propranolol, which is often used as a selective inhibitor of PA phosphohydrolase (PAP) involving diacylglycerol (DG) formation from PA, did not affect tyrosine phosphorylation of the 100-115 kDa proteins. Moreover, incubation of HL60 granulocytes with Streptomyces chromofuscus PLD caused both PA production and tyrosine phosphorylation of the above proteins. Exogenous PA treatment also induced tyrosine phosphorylation of the same proteins. Thus, the results presented here suggest that PA produced via PLD activation is involved in tyrosine phosphorylation of the 100-115 kDa proteins in HL60 granulocytes.
Collapse
Affiliation(s)
- K Ohguchi
- Department of Biochemistry, Gifu University School of Medicine, Japan
| | | | | |
Collapse
|
167
|
Affiliation(s)
- J H Exton
- Howard Hughes Medical Institute and Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| |
Collapse
|
168
|
Abstract
Inositol phospholipids are a focus of renewed interest with the discovery of their unanticipated pivotal roles in membrane trafficking events. Reversible phosphorylation of phosphatidylinositol generates spatially localized signals on membranes that recruit or activate proteins essential for cell membrane budding, fission and fusion. Recent advances have taken place in the characterization of lipid kinases and phosphoinositide-regulated effector proteins, and in the elucidation of phospholipase D mediated mechanisms involving ADP ribosylation factor and Rho family proteins. The roles played by phosphoinositides in aspects of secretory granule formation, fusion and endocytosis indicate the importance of phosphorylated lipids for neurotransmitter release.
Collapse
Affiliation(s)
- T F Martin
- Department of Biochemistry, University of Wisconsin, 420 Henry Mall, Madison, Wisconsin 53706, USA.
| |
Collapse
|
169
|
Bi K, Roth MG, Ktistakis NT. Phosphatidic acid formation by phospholipase D is required for transport from the endoplasmic reticulum to the Golgi complex. Curr Biol 1997; 7:301-7. [PMID: 9133344 DOI: 10.1016/s0960-9822(06)00153-9] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Lipid molecules may play a regulatory role in the secretory pathway of mammals and yeast. The lipid hydrolase phospholipase D (PLD) is one candidate for mediating regulation of secretion, based on the location of this enzyme and its requirements for activation. RESULTS We found that primary alcohols, which block formation of phosphatidic acid (PA) by PLD, inhibited the transport of two different viral glycoproteins from the endoplasmic reticulum to the Golgi complex in Chinese hamster ovary cells. Corresponding secondary alcohols, which are much less potent in blocking PA formation, were also less effective in blocking transport of the glycoproteins. The block in glycoprotein transport imposed by primary alcohols was reversed when PA, in the form of liposomes, was exogenously supplied to the culture medium. CONCLUSIONS We suggest that the earliest site of regulation of membrane transport by PLD is within the intermediate compartment between the endoplasmic reticulum and the Golgi complex.
Collapse
Affiliation(s)
- K Bi
- Department of Biochemistry, University of Texas, Southwestern Medical Center, Dallas, Texas 75235-9038, USA
| | | | | |
Collapse
|
170
|
Colley WC, Sung TC, Roll R, Jenco J, Hammond SM, Altshuller Y, Bar-Sagi D, Morris AJ, Frohman MA. Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization. Curr Biol 1997; 7:191-201. [PMID: 9395408 DOI: 10.1016/s0960-9822(97)70090-3] [Citation(s) in RCA: 553] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Activation of phospholipase D (PLD) is an important but poorly understood component of receptor-mediated signal transduction responses and regulated secretion. We recently reported the cloning of the human gene encoding PLD1; this enzyme has low basal activity and is activated by protein kinase C and the small GTP-binding proteins, ADP-ribosylation factor (ARF), Rho, Rac and Cdc42. Biochemical and cell biological studies suggest, however, that additional and distinct PLD activities exist in cells, so a search was carried out for novel mammalian genes related to PLD1. RESULTS We have cloned the gene for a second PLD family member and characterized the protein product, which appears to be regulated differently from PLD1: PLD2 is constitutively active and may be modulated in vivo by inhibition. Unexpectedly, PLD2 localizes primarily to the plasma membrane, in contrast to PLD1 which localizes solely to peri-nuclear regions (the endoplasmic reticulum, Golgi apparatus and late endosomes), where PLD activity has been shown to promote ARF-mediated coated-vesicle formation. PLD2 provokes cortical reorganization and undergoes redistribution in serum-stimulated cells, suggesting that it may have a role in signal-induced cytoskeletal regulation and/or endocytosis. CONCLUSIONS PLD2 is a newly identified mammalian PLD isoform with novel regulatory properties. Our findings suggest that regulated secretion and morphological reorganization, the two most frequently proposed biological roles for PLD, are likely to be effected separately by PLD1 and PLD2.
Collapse
Affiliation(s)
- W C Colley
- Program in Genetics, State University of New York, Stony Brook, New York 11794-8651, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Ohguchi K, Nakashima S, Tan Z, Banno Y, Dohi S, Nozawa Y. Increased activity of small GTP-binding protein-dependent phospholipase D during differentiation in human promyelocytic leukemic HL60 cells. J Biol Chem 1997; 272:1990-6. [PMID: 8999891 DOI: 10.1074/jbc.272.3.1990] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In response to dibutyryl cyclic AMP (dbcAMP) and all-trans retinoic acid, human promyelocytic leukemic HL60 cells differentiate into granulocyte-like cells. In cell lysate and in vitro reconstitution system, phospholipase D (PLD) activity in response to guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) was up-regulated by dbcAMP or all-trans retinoic acid treatment. In the present study, the mechanism(s) for increased PLD activity during differentiation was examined. Western blot analysis revealed that the contents of ADP-ribosylation factor, Rac2, and Cdc42Hs but not RhoA and Rac1 in the cytosolic fraction were elevated during differentiation. However, the cytosolic fraction from undifferentiated cells was almost equally potent as the cytosolic fraction from differentiated cells in the ability to stimulate membrane PLD activity. It was shown that the GTPgammaS-dependent PLD activity in membranes from differentiated cells was much higher than that in membranes from undifferentiated cells, suggesting that the increased PLD activity during differentiation was due to alterations in some membrane component(s). Clostridium botulinum ADP-ribosyltransferase C3 and C. difficile toxin B, which are known as inhibitors of RhoA and Rho family proteins, respectively, effectively suppressed PLD activity in membranes from differentiated cells. In fact, the amount of membrane-associated RhoA was increased during differentiation. Furthermore, the extent of GTPgammaS-dependent PLD activity partially purified from membranes from differentiated cells was greater than that from membranes from undifferentiated cells in the presence of recombinant ADP-ribosylation factor 1. The PLD (hPLD1) mRNA level was observed to be up-regulated during differentiation, as inferred by reverse transcription-polymerase chain reaction. Our results suggest the possibility that the increased Rho proteins in membranes and the changed level of PLD itself may be, at least in part, responsible for the increase in GTPgammaS-dependent PLD activity during granulocytic differentiation of HL60 cells.
Collapse
Affiliation(s)
- K Ohguchi
- Department of Biochemistry, Gifu University School of Medicine, Tsukasamachi-40, Gifu 500, Japan
| | | | | | | | | | | |
Collapse
|
172
|
|
173
|
Abstract
The GTP-binding proteins ARF and Rho control a number of important cellular processes, such as protein traffic and cell morphology; there is increasing evidence that phospholipase D is a key mediator of these ARF/Rho-regulated events.
Collapse
Affiliation(s)
- M A Frohman
- Department of Pharmacological Science, State University of New York, Stony Brook, 11794-8651, USA
| | | |
Collapse
|