151
|
Neutrophils orchestrate their own recruitment in murine arthritis through C5aR and FcγR signaling. Proc Natl Acad Sci U S A 2012; 109:E3177-85. [PMID: 23112187 DOI: 10.1073/pnas.1213797109] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neutrophil recruitment into the joint is a hallmark of inflammatory arthritides, including rheumatoid arthritis (RA). In a mouse model of autoantibody-induced inflammatory arthritis, neutrophils infiltrate the joint via multiple chemoattractant receptors, including the leukotriene B(4) (LTB(4)) receptor BLT1 and the chemokine receptors CCR1 and CXCR2. Once in the joint, neutrophils perpetuate their own recruitment by releasing LTB(4) and IL-1β, presumably after activation by immune complexes deposited on joint structures. Two pathways by which immune complexes may activate neutrophils include complement fixation, resulting in the generation of C5a, and direct engagement of Fcγ receptors (FcγRs). Previous investigations showed that this model of autoantibody-induced arthritis requires the C5a receptor C5aR and FcγRs, but the simultaneous necessity for both pathways was not understood. Here we show that C5aR and FcγRs work in sequence to initiate and sustain neutrophil recruitment in vivo. Specifically, C5aR activation of neutrophils is required for LTB(4) release and early neutrophil recruitment into the joint, whereas FcγR engagement upon neutrophils induces IL-1β release and subsequent neutrophil-active chemokine production, ensuring continued inflammation. These findings support the concept that immune complex-mediated leukocyte activation is not composed of overlapping and redundant pathways, but that each element serves a distinct and critical function in vivo, culminating in tissue inflammation.
Collapse
|
152
|
Cooney JD, Hildick-Smith GJ, Shafizadeh E, McBride PF, Carroll KJ, Anderson H, Shaw GC, Tamplin OJ, Branco DS, Dalton AJ, Shah DI, Wong C, Gallagher PG, Zon LI, North TE, Paw BH. Teleost growth factor independence (gfi) genes differentially regulate successive waves of hematopoiesis. Dev Biol 2012; 373:431-41. [PMID: 22960038 DOI: 10.1016/j.ydbio.2012.08.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/08/2012] [Accepted: 08/22/2012] [Indexed: 12/26/2022]
Abstract
Growth Factor Independence (Gfi) transcription factors play essential roles in hematopoiesis, differentially activating and repressing transcriptional programs required for hematopoietic stem/progenitor cell (HSPC) development and lineage specification. In mammals, Gfi1a regulates hematopoietic stem cells (HSC), myeloid and lymphoid populations, while its paralog, Gfi1b, regulates HSC, megakaryocyte and erythroid development. In zebrafish, gfi1aa is essential for primitive hematopoiesis; however, little is known about the role of gfi1aa in definitive hematopoiesis or about additional gfi factors in zebrafish. Here, we report the isolation and characterization of an additional hematopoietic gfi factor, gfi1b. We show that gfi1aa and gfi1b are expressed in the primitive and definitive sites of hematopoiesis in zebrafish. Our functional analyses demonstrate that gfi1aa and gfi1b have distinct roles in regulating primitive and definitive hematopoietic progenitors, respectively. Loss of gfi1aa silences markers of early primitive progenitors, scl and gata1. Conversely, loss of gfi1b silences runx-1, c-myb, ikaros and cd41, indicating that gfi1b is required for definitive hematopoiesis. We determine the epistatic relationships between the gfi factors and key hematopoietic transcription factors, demonstrating that gfi1aa and gfi1b join lmo2, scl, runx-1 and c-myb as critical regulators of teleost HSPC. Our studies establish a comparative paradigm for the regulation of hematopoietic lineages by gfi transcription factors.
Collapse
Affiliation(s)
- Jeffrey D Cooney
- Department of Medicine, Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Lieu YK, Reddy EP. Impaired adult myeloid progenitor CMP and GMP cell function in conditional c-myb-knockout mice. Cell Cycle 2012; 11:3504-12. [PMID: 22918254 DOI: 10.4161/cc.21802] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The differentiation of myeloid progenitors to mature, terminally differentiated cells is a highly regulated process. Here, we showed that conditional disruption of the c-myb proto-oncogene in adult mice resulted in dramatic reductions in CMP, GMP and MEP myeloid progenitors, leading to a reduction of neutrophils, basophils, monocytes and platelets in peripheral blood. In addition, c-myb plays a critical role at multiple stages of myeloid development, from multipotent CMP and bipotent GMP to unipotent CFU-G and CFU-M progenitor cells. c-myb controls the differentiation of these cells and is required for the proper commitment, maturation and normal differentiation of CMPs and GMPs. Specifically, c-myb regulates the precise commitment to the megakaryocytic and granulo-monocytic pathways and governs the granulocytic-monocytic lineage choice. c-myb is also required for the commitment along the granulocytic pathway for early myeloid progenitor cells and for the maturation of committed precursor cells along this pathway. On the other hand, disruption of the c-myb gene favors the commitment to the monocytic lineage, although monocytic development was abnormal with cells appearing more mature with atypical CD41 surface markers. These results demonstrate that c-myb plays a pivotal role in the regulation of multiple stages in adult myelogenesis.
Collapse
Affiliation(s)
- Yen K Lieu
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA.
| | | |
Collapse
|
154
|
Ligons DL, Tuncer C, Linowes BA, Akcay IM, Kurtulus S, Deniz E, Atasever Arslan B, Cevik SI, Keller HR, Luckey MA, Feigenbaum L, Möröy T, Ersahin T, Atalay R, Erman B, Park JH. CD8 lineage-specific regulation of interleukin-7 receptor expression by the transcriptional repressor Gfi1. J Biol Chem 2012; 287:34386-99. [PMID: 22865857 DOI: 10.1074/jbc.m112.378687] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin-7 receptor α (IL-7Rα) is essential for T cell survival and differentiation. Glucocorticoids are potent enhancers of IL-7Rα expression with diverse roles in T cell biology. Here we identify the transcriptional repressor, growth factor independent-1 (Gfi1), as a novel intermediary in glucocorticoid-induced IL-7Rα up-regulation. We found Gfi1 to be a major inhibitory target of dexamethasone by microarray expression profiling of 3B4.15 T-hybridoma cells. Concordantly, retroviral transduction of Gfi1 significantly blunted IL-7Rα up-regulation by dexamethasone. To further assess the role of Gfi1 in vivo, we generated bacterial artificial chromosome (BAC) transgenic mice, in which a modified Il7r locus expresses GFP to report Il7r gene transcription. By introducing this BAC reporter transgene into either Gfi1-deficient or Gfi1-transgenic mice, we document in vivo that IL-7Rα transcription is up-regulated in the absence of Gfi1 and down-regulated when Gfi1 is overexpressed. Strikingly, the in vivo regulatory role of Gfi1 was specific for CD8(+), and not CD4(+) T cells or immature thymocytes. These results identify Gfi1 as a specific transcriptional repressor of the Il7r gene in CD8 T lymphocytes in vivo.
Collapse
Affiliation(s)
- Davinna L Ligons
- Experimental Immunology Branch, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Bae S, Jung JH, Kim K, An IS, Kim SY, Lee JH, Park IC, Jin YW, Lee SJ, An S. TRIAD1 inhibits MDM2-mediated p53 ubiquitination and degradation. FEBS Lett 2012; 586:3057-63. [DOI: 10.1016/j.febslet.2012.07.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/04/2012] [Accepted: 07/05/2012] [Indexed: 10/28/2022]
|
156
|
Liu Q, Dong F. Gfi-1 inhibits the expression of eosinophil major basic protein (MBP) during G-CSF-induced neutrophilic differentiation. Int J Hematol 2012; 95:640-7. [PMID: 22552881 DOI: 10.1007/s12185-012-1078-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/30/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
Abstract
The zinc finger transcriptional repressor Gfi-1 has been shown to play a critical role in early granulopoiesis; however, its role in late neutrophilic development is poorly understood. We report here that forced expression of a dominant negative Gfi-1 mutant, N382S, resulted in augmented mRNA levels of eosinophil major basic protein (MBP) in myeloid cells induced with G-CSF to undergo terminal neutrophilic differentiation. MBP is a cytotoxic protein that is abundantly expressed in eosinophils, but not in neutrophils. Ectopic expression of MBP inhibited the proliferation and survival of differentiating myeloid cells in response to G-CSF. Significantly, while GFI-1 is upregulated during neutrophilic differentiation, it is rapidly downregulated upon induction of eosinophilic differentiation, which was associated with increased MBP expression. Knockdown of GFI-1 in eosinophilic cells also led to increased level of MBP mRNA. These results indicate that Gfi-1 functions to inhibit the expression of MBP and aberrant expression of MBP as a result of loss of Gfi-1 function may cause premature apoptosis of differentiating neutrophils. In contrast, the rapid downregulation of Gfi-1 during eosinophilic development may allow for abundant expression of MBP, a hallmark of eosinophilic differentiation.
Collapse
Affiliation(s)
- Qingquan Liu
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | | |
Collapse
|
157
|
Schütte J, Moignard V, Göttgens B. Establishing the stem cell state: insights from regulatory network analysis of blood stem cell development. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012; 4:285-95. [PMID: 22334489 DOI: 10.1002/wsbm.1163] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Transcription factors (TFs) have long been recognized as powerful regulators of cell-type identity and differentiation. As TFs function as constituents of regulatory networks, identification and functional characterization of key interactions within these wider networks will be required to understand how TFs exert their powerful biological functions. The formation of blood cells (hematopoiesis) represents a widely used model system for the study of cellular differentiation. Moreover, specific TFs or groups of TFs have been identified to control the various cell fate choices that must be made when blood stem cells differentiate into more than a dozen distinct mature blood lineages. Because of the relative ease of accessibility, the hematopoietic system represents an attractive experimental system for the development of regulatory network models. Here, we review the modeling efforts carried out to date, which have already provided new insights into the molecular control of blood cell development. We also explore potential areas of future study such as the need for new high-throughput technologies and a focus on studying dynamic cellular systems. Many leukemias arise as the result of mutations that cause transcriptional dysregulation, thus suggesting that a better understanding of transcriptional control mechanisms in hematopoiesis is of substantial biomedical relevance. Moreover, lessons learned from regulatory network analysis in the hematopoietic system are likely to inform research on less experimentally tractable tissues.
Collapse
Affiliation(s)
- Judith Schütte
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
158
|
Németh T, Mócsai A. The role of neutrophils in autoimmune diseases. Immunol Lett 2012; 143:9-19. [PMID: 22342996 DOI: 10.1016/j.imlet.2012.01.013] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/27/2012] [Accepted: 01/29/2012] [Indexed: 12/29/2022]
Abstract
Though chronic autoimmune disorders such as rheumatoid arthritis or systemic lupus erythematosus affect a significant percentage of the human population and strongly diminish the quality of life and life expectancy in Western societies, the molecular pathomechanisms of those diseases are still poorly understood, hindering the development of novel treatment strategies. Autoimmune diseases are thought to be caused by disturbed recognition of foreign and self antigens, leading to the emergence of autoreactive T-cells (so-called immunization phase). Those autoreactive T-cells then trigger the second (so-called effector) phase of the disease which is characterized by immune-mediated damage to host tissues. For a long time, neutrophils have mainly been neglected as potential players of the development of autoimmune diseases. However, a significant amount of new experimental data now indicates that neutrophils likely play an important role in both the immunization and the effector phase of autoimmune diseases. Here we review the current literature on the role of neutrophils in autoimmune diseases with special emphasis on rheumatoid arthritis, systemic lupus erythematosus, autoimmune vasculitides and blistering skin diseases. We also discuss the role of neutrophil cell surface receptors (e.g. integrins, Fc-receptors or chemokine receptors) and intracellular signal transduction pathways (e.g. Syk and other tyrosine kinases) in the pathogenesis of autoimmune inflammation. Though many of the results discussed in this review were obtained using animal models, additional data indicate that those mechanisms likely also contribute to human pathology. Taken together, neutrophils should be considered as one of the important cell types in autoimmune disease pathogenesis and they may also prove to be suitable targets of the pharmacological control of those diseases in the future.
Collapse
Affiliation(s)
- Tamás Németh
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary.
| | | |
Collapse
|
159
|
Soliera AR, Mariani SA, Audia A, Lidonnici MR, Addya S, Ferrari-Amorotti G, Cattelani S, Manzotti G, Fragliasso V, Peterson L, Perini G, Holyoake TL, Calabretta B. Gfi-1 inhibits proliferation and colony formation of p210BCR/ABL-expressing cells via transcriptional repression of STAT 5 and Mcl-1. Leukemia 2012; 26:1555-63. [PMID: 22285998 DOI: 10.1038/leu.2012.19] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Expression of the transcription repressor Gfi-1 is required for the maintenance of murine hematopoietic stem cells. In human cells, ectopic expression of Gfi-1 inhibits and RNA interference-mediated Gfi-1 downregulation enhances proliferation and colony formation of p210BCR/ABL expressing cells. To investigate the molecular mechanisms that may explain the effects of perturbing Gfi-1 expression in human cells, Gfi-1-regulated genes were identified by microarray analysis in K562 cells expressing the tamoxifen-regulated Gfi-1-ER protein. STAT 5B and Mcl-1, two genes important for the proliferation and survival of hematopoietic stem cells, were identified as direct and functionally relevant Gfi-1 targets in p210BCR/ABL-transformed cells because: (i) their expression and promoter activity was repressed by Gfi-1 and (ii) when constitutively expressed blocked the proliferation and colony formation inhibitory effects of Gfi-1. Consistent with these findings, genetic or pharmacological inhibition of STAT 5 and/or Mcl-1 markedly suppressed proliferation and colony formation of K562 and CD34+ chronic myelogenous leukemia (CML) cells. Together, these studies suggest that the Gfi-1STAT 5B/Mcl-1 regulatory pathway identified here can be modulated to suppress the proliferation and survival of p210BCR/ABL-transformed cells including CD34+ CML cells.
Collapse
Affiliation(s)
- A R Soliera
- Department of Cancer Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Gfi1 expressed in bone marrow stromal cells is a novel osteoblast suppressor in patients with multiple myeloma bone disease. Blood 2011; 118:6871-80. [PMID: 22042697 DOI: 10.1182/blood-2011-04-346775] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protracted inhibition of osteoblast (OB) differentiation characterizes multiple myeloma (MM) bone disease and persists even when patients are in long-term remission. However, the underlying pathophysiology for this prolonged OB suppression is unknown. Therefore, we developed a mouse MM model in which the bone marrow stromal cells (BMSCs) remained unresponsive to OB differentiation signals after removal of MM cells. We found that BMSCs from both MM-bearing mice and MM patients had increased levels of the transcriptional repressor Gfi1 compared with controls and that Gfi1 was a novel transcriptional repressor of the critical OB transcription factor Runx2. Trichostatin-A blocked the effects of Gfi1, suggesting that it induces epigenetic changes in the Runx2 promoter. MM-BMSC cell-cell contact was not required for MM cells to increase Gfi1 and repress Runx2 levels in MC-4 before OBs or naive primary BMSCs, and Gfi1 induction was blocked by anti-TNF-α and anti-IL-7 antibodies. Importantly, BMSCs isolated from Gfi1(-/-) mice were significantly resistant to MM-induced OB suppression. Strikingly, siRNA knockdown of Gfi1 in BMSCs from MM patients significantly restored expression of Runx2 and OB differentiation markers. Thus, Gfi1 may have an important role in prolonged MM-induced OB suppression and provide a new therapeutic target for MM bone disease.
Collapse
|
161
|
Horikawa M, Minard-Colin V, Matsushita T, Tedder TF. Regulatory B cell production of IL-10 inhibits lymphoma depletion during CD20 immunotherapy in mice. J Clin Invest 2011; 121:4268-80. [PMID: 22019587 DOI: 10.1172/jci59266] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 09/21/2011] [Indexed: 12/14/2022] Open
Abstract
Current therapies for non-Hodgkin lymphoma commonly include CD20 mAb to deplete tumor cells. However, the response is not durable in a substantial proportion of patients. Herein, we report our studies in mice testing the hypothesis that heterogeneity in endogenous tissue CD20+ B cell depletion influences in vivo lymphoma therapy. Using highly effective CD20 mAbs that efficiently deplete endogenous mature B cells and homologous CD20+ primary lymphoma cells through monocyte- and antibody-dependent mechanisms, we found that lymphoma depletion and survival were reduced when endogenous host B cells were not depleted, particularly a rare IL-10-producing B cell subset (B10 cells) known to regulate inflammation and autoimmunity. Even small numbers of adoptively transferred B10 cells dramatically suppressed CD20 mAb-mediated lymphoma depletion by inhibiting mAb-mediated monocyte activation and effector function through IL-10-dependent mechanisms. However, the activation of innate effector cells using a TLR3 agonist that did not activate B10 cells overcame the negative regulatory effects of endogenous B10 cells and enhanced lymphoma depletion during CD20 immunotherapy in vivo. Thus, we conclude that endogenous B10 cells are potent negative regulators of innate immunity, with even small numbers of residual B10 cells able to inhibit lymphoma depletion by CD20 mAbs. Consequently, B10 cell removal could provide a way to optimize CD20 mAb-mediated clearance of malignant B cells in patients with non-Hodgkin lymphoma.
Collapse
Affiliation(s)
- Mayuka Horikawa
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | |
Collapse
|
162
|
Abstract
Bone marrow is thought to be a primary hematopoietic organ. However, accumulated evidences demonstrate that active function and trafficking of immune cells, including regulatory T cells, conventional T cells, B cells, dendritic cells, natural killer T (NKT) cells, neutrophils, myeloid-derived suppressor cells and mesenchymal stem cells, are observed in the bone marrow. Furthermore, bone marrow is a predetermined metastatic location for multiple human tumors. In this review, we discuss the immune network in the bone marrow. We suggest that bone marrow is an immune regulatory organ capable of fine tuning immunity and may be a potential therapeutic target for immunotherapy and immune vaccination.
Collapse
|
163
|
Role of transcription factors in differentiation and reprogramming of hematopoietic cells. Keio J Med 2011; 60:47-55. [PMID: 21720200 DOI: 10.2302/kjm.60.47] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Differentiation of hematopoietic cells is a sequential process of cell fate decision originating from hematopoietic stem cells (HSCs), allowing multi- or oligopotent progenitors to commit to certain lineages. HSCs are cells that are able to self-renew and repopulate the marrow for the long term. They first differentiate into multipotent progenitors (MPPs), which give rise to common lymphoid progenitors (CLPs) and common myeloid progenitors (CMPs). CMPs then differentiate into granulocyte monocyte progenitors (GMPs) and megakaryocyte erythroid progenitors (MEPs), which are the precursors of granulocytes/monocytes and erythrocytes/megakaryocytes, respectively. Lineage specification at differentiation branch points is dictated by the activation of lineage-specific transcription factors such as C/EBPα, PU.1, and GATA-1. The role of these transcription factors is generally instructive, and the expression of a single factor can often determine cell fate. Differentiation was long regarded as an irreversible process, and it was believed that somatic cells would not change their fate once they were differentiated. This paradigm was first challenged by the finding that ectopic cytokine signals could change the fate of differentiation, probably through modulating internal transcription networks. Subsequently, we and others showed that virtually all progenitors, including CLPs, CMPs, GMPs, and MEPs, still retain differentiation plasticity, and they can be converted into lineages other than their own by ectopic activation of only a single lineage-specific transcription factor. These findings established a novel paradigm for cellular differentiation and opened up an avenue for artificially manipulating cell fate for clinical use.
Collapse
|
164
|
Mercer EM, Lin YC, Murre C. Factors and networks that underpin early hematopoiesis. Semin Immunol 2011; 23:317-25. [PMID: 21930392 DOI: 10.1016/j.smim.2011.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 08/19/2011] [Indexed: 01/08/2023]
Abstract
Multiple trajectories have recently been described through which hematopoietic progenitor cells travel prior to becoming lineage-committed effectors. A wide spectrum of transcription factors has recently been identified that modulate developmental progression along such trajectories. Here we describe how distinct families of transcription factors act and are linked together to orchestrate early hematopoiesis.
Collapse
Affiliation(s)
- Elinore M Mercer
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, United States.
| | | | | |
Collapse
|
165
|
Möröy T, Khandanpour C. Growth factor independence 1 (Gfi1) as a regulator of lymphocyte development and activation. Semin Immunol 2011; 23:368-78. [PMID: 21920773 DOI: 10.1016/j.smim.2011.08.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 08/19/2011] [Indexed: 10/17/2022]
Abstract
T- and B-lymphocytes are important elements in the immune defense repertoire of higher organisms. The development and function of lymphoid cells is regulated at many levels one being the control of gene expression by transcription factors. The zinc finger transcriptional repressor Gfi1 has emerged as a factor that is critically implicated in the commitment of precursor cells for the lymphoid lineage. In addition, Gfi1 controls distinct stages of early T- or B-lymphoid development and is also critical for their maturation, activation and effector function. From many years of work, a picture emerges in which Gfi1 is part of a complicated, but well orchestrated network of interdependent regulators, most of which impinge on lymphoid development and activation by transcriptional regulation. Biochemical studies show that Gfi1 is part of a large DNA binding multi-protein complex that enables histone modifications, but may also control alternative pre mRNA splicing. Many insights into the biological role of Gfi1 have been gained through the study of gene deficient mice that have defects in B- and T-cell differentiation, in T-cell selection and polarization processes and in the response of mature B- and T-cells towards antigen. Most importantly, the defects seen in Gfi1 deficient mice also point to roles of Gfi1 in diseases of the immune system that involve auto-immune responses and acute lymphoid leukemia and lymphoma.
Collapse
Affiliation(s)
- Tarik Möröy
- Institut de recherches cliniques de Montréal - IRCM, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada.
| | | |
Collapse
|
166
|
El Gazzar M, McCall CE. MicroRNAs regulatory networks in myeloid lineage development and differentiation: regulators of the regulators. Immunol Cell Biol 2011; 90:587-93. [PMID: 21912420 DOI: 10.1038/icb.2011.74] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are abundant small molecules of ≈ 22 nucleotides that reprogram gene expression by targeting mRNA degradation and translation disruption. An emerging concept implicates miRNA coupling with transcription factors in myeloid-based development of dendritic cells, monocytes and granulocytes, as well as function as mature cells and contributors to host defense and inflammation. Here, we review this new and important interactive circuitry and how it contributes to reprogramming cell phenotypic responses associated with mature immune competency.
Collapse
Affiliation(s)
- Mohamed El Gazzar
- Department of Internal Medicine, East Tennessee University College of Medicine, Johnson City, TN 37614, USA.
| | | |
Collapse
|
167
|
Krumsiek J, Marr C, Schroeder T, Theis FJ. Hierarchical differentiation of myeloid progenitors is encoded in the transcription factor network. PLoS One 2011; 6:e22649. [PMID: 21853041 PMCID: PMC3154193 DOI: 10.1371/journal.pone.0022649] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/27/2011] [Indexed: 11/29/2022] Open
Abstract
Hematopoiesis is an ideal model system for stem cell biology with advanced experimental access. A systems view on the interactions of core transcription factors is important for understanding differentiation mechanisms and dynamics. In this manuscript, we construct a Boolean network to model myeloid differentiation, specifically from common myeloid progenitors to megakaryocytes, erythrocytes, granulocytes and monocytes. By interpreting the hematopoietic literature and translating experimental evidence into Boolean rules, we implement binary dynamics on the resulting 11-factor regulatory network. Our network contains interesting functional modules and a concatenation of mutual antagonistic pairs. The state space of our model is a hierarchical, acyclic graph, typifying the principles of myeloid differentiation. We observe excellent agreement between the steady states of our model and microarray expression profiles of two different studies. Moreover, perturbations of the network topology correctly reproduce reported knockout phenotypes in silico. We predict previously uncharacterized regulatory interactions and alterations of the differentiation process, and line out reprogramming strategies.
Collapse
Affiliation(s)
- Jan Krumsiek
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, München, Germany
| | - Carsten Marr
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, München, Germany
| | - Timm Schroeder
- Institute of Stem Cell Research, Helmholtz Zentrum München, München, Germany
| | - Fabian J. Theis
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, München, Germany
- Department of Mathematics, Technische Universität München, München, Germany
- * E-mail:
| |
Collapse
|
168
|
|
169
|
SHP2 tyrosine phosphatase stimulates CEBPA gene expression to mediate cytokine-dependent granulopoiesis. Blood 2011; 118:2266-74. [PMID: 21725048 DOI: 10.1182/blood-2011-01-331157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
G-CSF signals contribute to granulocyte lineage specification. We previously found that G-CSF induces SHP2 tyrosine phosphorylation and that chemical inhibition of SHP1/SHP2 reduces CFU-G and prevents G-CSF but not M-CSF activation of ERK. We now find that SHP2 shRNA knockdown in the 32Dcl3 granulocytic line reduces ERK activation, diminishes CEBPA protein and RNA expression and promoter histone acetylation, and inhibits granulopoiesis. Exogenous, shRNA-resistant SHP2 rescues these effects of SHP2 knockdown, exogenous C/EBPα rescues granulocytic markers, and exogenous RUNX1 rescues C/EBPα. 32Dcl3 lines with knockdown of ERK1 and ERK2 retain normal levels of C/EBPα and differentiate normally in G-CSF despite also having reduced proliferation. SHP2 knockdown reduces CEBPA levels in lineage-negative murine marrow cells cultured in TPO, Flt3 ligand, and SCF, without affecting the rate of cell expansion. On transfer to IL-3, IL-6, and SCF to induce myelopoiesis, levels of granulocytic RNAs are reduced and monocyte-specific RNAs are increased by SHP2 knockdown, and there is a reduction in the percentage of CFU-G that form in methylcellulose and of granulocytes that develop in liquid culture. In summary, SHP2 is required for induction of C/EBPα expression and granulopoiesis in response to G-CSF or other cytokines independent of SHP2-mediated ERK activation.
Collapse
|
170
|
GABP transcription factor is required for myeloid differentiation, in part, through its control of Gfi-1 expression. Blood 2011; 118:2243-53. [PMID: 21705494 DOI: 10.1182/blood-2010-07-298802] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
GABP is an ets transcription factor that regulates genes that are required for myeloid differentiation. The tetrameric GABP complex includes GABPα, which binds DNA via its ets domain, and GABPβ, which contains the transcription activation domain. To examine the role of GABP in myeloid differentiation, we generated mice in which Gabpa can be conditionally deleted in hematopoietic tissues. Gabpa knockout mice rapidly lost myeloid cells, and residual myeloid cells were dysplastic and immunophenotypically abnormal. Bone marrow transplantation demonstrated that Gabpα null cells could not contribute to the myeloid compartment because of cell intrinsic defects. Disruption of Gabpa was associated with a marked reduction in myeloid progenitor cells, and Gabpα null myeloid cells express reduced levels of the transcriptional repressor, Gfi-1. Gabp bound and activated the Gfi1 promoter, and transduction of Gabpa knockout bone marrow with Gfi1 partially rescued defects in myeloid colony formation and myeloid differentiation. We conclude that Gabp is required for myeloid differentiation due, in part, to its regulation of the tran-scriptional repressor Gfi-1.
Collapse
|
171
|
Klein C. Genetic defects in severe congenital neutropenia: emerging insights into life and death of human neutrophil granulocytes. Annu Rev Immunol 2011; 29:399-413. [PMID: 21219176 DOI: 10.1146/annurev-immunol-030409-101259] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery of genetic defects causing congenital neutropenia has illuminated mechanisms controlling differentiation, circulation, and decay of neutrophil granulocytes. Deficiency of the mitochondrial proteins HAX1 and AK2 cause premature apoptosis of myeloid progenitor cells associated with dissipation of the mitochondrial membrane potential, whereas mutations in ELA2/ELANE and G6PC3 are associated with signs of increased endoplasmic reticulum stress. Mutations in the transcriptional repressor GFI1 and the cytoskeletal regulator WASP also lead to defective neutrophil production. This unexpected diversity of factors suggests that multiple pathways are involved in the pathogenesis of congenital neutropenia.
Collapse
Affiliation(s)
- Christoph Klein
- Department of Pediatric Hematology/Oncology, Hannover Medical School, Germany.
| |
Collapse
|
172
|
Stoffers SL, Meyer SE, Grimes HL. MicroRNAs in the midst of myeloid signal transduction. J Cell Physiol 2011; 227:525-33. [PMID: 21567394 DOI: 10.1002/jcp.22823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNA (miRNA) play important roles in the development and physiological function of hematopoietic stem/progenitor and mature cell lineages. In addition, deregulated miRNA expression and subsequent gene expression changes are associated with hematologic diseases including myelodysplastic syndromes and acute myeloid leukemia. This review focuses on myelopoiesis as a model to highlight the involvement of miRNA in the regulation of normal and malignant cellular signaling pathways. By incorporating miRNA regulation into well-established myeloid signal transduction pathways, we hope to shed light on targetable factors both upstream and downstream of miRNA signaling. These pathway-specific miRNA functions suggest scenarios wherein miRNA-based therapeutics may be beneficial either alone or in combination with current therapies.
Collapse
Affiliation(s)
- Sara L Stoffers
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA
| | | | | |
Collapse
|
173
|
Heyd F, Chen R, Afshar K, Saba I, Lazure C, Fiolka K, Möröy T. The p150 subunit of the histone chaperone Caf-1 interacts with the transcriptional repressor Gfi1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:255-61. [PMID: 21570500 DOI: 10.1016/j.bbagrm.2011.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 04/07/2011] [Accepted: 04/26/2011] [Indexed: 11/29/2022]
Abstract
Modification of histones is critically involved in regulating chromatin structure and gene expression. The zinc finger protein Gfi1 silences transcription by recruiting a complex of histone modifying enzymes such as LSD-1/CoRest and HDAC-1 to target gene promoters. Here we present evidence that Gfi1 forms a complex with the p150 subunit of the histone chaperone chromatin assembly factor-1 (Caf-1). Gfi1 and p150 interact at endogenous expression levels and co-localize in distinct sub-nuclear structures. We show that p150 enhances Gfi1-mediated transcriptional repression and that it occupies Gfi1 target gene promoters in transfected cells and primary murine T cells only in the presence of Gfi1. Finally, size exclusion chromatography shows a fraction of p150 to coelute with Gfi1, LSD-1 and HDAC-1 and thus provides evidence that p150 is part of the Gfi1 repression complex. Since p150 binds directly to histones H3 and H4, our findings suggest that p150 may link the DNA-bound Gfi1 repressor complex to histones enabling modifications required for transcriptional silencing.
Collapse
Affiliation(s)
- Florian Heyd
- Institut de recherches cliniques de Montréal (IRCM), H2W 1R7, Montréal, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
174
|
Abstract
Stem cells make more of themselves by self-renewing cell divisions. In the February 1, 2011, issue of Genes & Development, Taoudi and colleagues (pp. 251-262) show an essential role for the ETS transcription factor ERG in the self-renewal of embryonic hematopoietic stem cells. A model is presented in which the redundant functions of GATA2 and RUNX1 in self-renewal are under direct control of ERG.
Collapse
Affiliation(s)
- Scott A Lacadie
- Division of Hematology/Oncology, Children's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
175
|
Hegde VL, Nagarkatti M, Nagarkatti PS. Cannabinoid receptor activation leads to massive mobilization of myeloid-derived suppressor cells with potent immunosuppressive properties. Eur J Immunol 2011; 40:3358-71. [PMID: 21110319 DOI: 10.1002/eji.201040667] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cannabinoid receptor activation by agents such as Δ(9)-tetrahydrocannabinol (THC) is known to trigger immune suppression. Here, we show that administration of THC in mice leads to rapid and massive expansion of CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSC) expressing functional arginase and exhibiting potent immunosuppressive properties both in vitro and in vivo. The induction of MDSC by THC was associated with a significant increase in granulocyte CSF. Moreover, administration of anti-granulocyte CSF Ab inhibited the induction of MDSC by THC. THC was able to induce MDSC in TLR4 mutant C3H and C57BL10/ScN mice and hence acted independently of TLR4. Accumulation of MDSC in the periphery with a corresponding decrease in the proportion of CD11b(+)Gr-1(+) cells in the bone marrow, as well as in vivo BrdU labeling and cell-cycle analysis, showed that THC induced mobilization of these cells from bone marrow and their expansion in the periphery. Use of selective antagonists SR141716A and SR144528 against cannabinoid receptors 1 and 2, respectively, as well as receptor-deficient mice showed that induction of MDSC was mediated through activation of both cannabinoid receptors 1 and 2. These studies demonstrate that cannabinoid receptor signaling may play a crucial role in immune regulation via the induction of MDSC.
Collapse
Affiliation(s)
- Venkatesh L Hegde
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC, USA
| | | | | |
Collapse
|
176
|
Wilson NK, Calero-Nieto FJ, Ferreira R, Göttgens B. Transcriptional regulation of haematopoietic transcription factors. Stem Cell Res Ther 2011; 2:6. [PMID: 21345252 PMCID: PMC3092146 DOI: 10.1186/scrt47] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The control of differential gene expression is central to all metazoan biology. Haematopoiesis represents one of the best understood developmental systems where multipotent blood stem cells give rise to a range of phenotypically distinct mature cell types, all characterised by their own distinctive gene expression profiles. Small combinations of lineage-determining transcription factors drive the development of specific mature lineages from multipotent precursors. Given their powerful regulatory nature, it is imperative that the expression of these lineage-determining transcription factors is under tight control, a fact underlined by the observation that their misexpression commonly leads to the development of leukaemia. Here we review recent studies on the transcriptional control of key haematopoietic transcription factors, which demonstrate that gene loci contain multiple modular regulatory regions within which specific regulatory codes can be identified, that some modular elements cooperate to mediate appropriate tissue-specific expression, and that long-range approaches will be necessary to capture all relevant regulatory elements. We also explore how changes in technology will impact on this area of research in the future.
Collapse
Affiliation(s)
- Nicola K Wilson
- University of Cambridge Department of Haematology, Cambridge Institute for Medical Research, Hills Road, Cambridge, CB2 0XY, UK.
| | | | | | | |
Collapse
|
177
|
Abstract
PURPOSE OF REVIEW To review recent advances in severe congenital neutropenia (SCN) syndromes. RECENT FINDINGS The majority of patients with SCN bear monoallelic mutations in the neutrophil elastase (ELANE) gene. Biallelic mutations in the antiapoptotic gene HAX1 were identified in patients with autosomal recessive SCN. G6PC3 deficiency is a syndromic variant of SCN associating congenital neutropenia with various developmental defects including cardiac or urogenital malformations. The pathophysiology of these distinct genetic variants of SCN is complex. Increased apoptosis of neutrophil granulocytes may be caused by various molecular mechanisms including destabilization of the mitochondrial membrane potential and/or activation of the so-called 'unfolded protein response'. SUMMARY SCN represents a heterogenous group of disorders that may be caused by genetic defects in ELANE, GFI1, HAX1, G6PC3 or activating mutations in the Wiskott-Aldrich syndrome (WAS) gene. Ongoing research will uncover additional genetic defects in SCN patients.
Collapse
|
178
|
Abstract
Cancer is a complex disease in which cells have circumvented normal restraints on tissue growth and have acquired complex abnormalities in their genomes, posing a considerable challenge to identifying the pathways and mechanisms that drive fundamental aspects of the malignant phenotype. Genetic analyses of the normal development of the nematode Caenorhabditis elegans have revealed evolutionarily conserved mechanisms through which individual cells establish their fates, and how they make and execute the decision to survive or undergo programmed cell death. The pathways identified through these studies have mammalian counterparts that are co-opted by malignant cells. Effective cancer drugs now target some of these pathways, and more are likely to be discovered.
Collapse
Affiliation(s)
- Malia B Potts
- Departments of Pediatrics and Molecular Biology, University of Texas Southwestern Medical Center at Dallas, 75390-9148, USA
| | | |
Collapse
|
179
|
Abstract
Neutrophils are produced in the bone marrow from stem cells that proliferate and differentiate to mature neutrophils fully equipped with an armory of granules. These contain proteins that enable the neutrophil to deliver lethal hits against microorganisms, but also to cause great tissue damage. Neutrophils circulate in the blood as dormant cells. At sites of infection, endothelial cells capture bypassing neutrophils and guide them through the endothelial cell lining whereby the neutrophils are activated and tuned for the subsequent interaction with microbes. Once in tissues, neutrophils kill microorganisms by microbicidal agents liberated from granules or generated by metabolic activation. As a final act, neutrophils can extrude stands of DNA with bactericidal proteins attached that act as extracellular traps for microorganisms.
Collapse
Affiliation(s)
- Niels Borregaard
- The Granulocyte Research Laboratory, Department of Hematology, National University Hospital (Rigshospitalet), University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
180
|
Lidonnici MR, Audia A, Soliera AR, Prisco M, Ferrari-Amorotti G, Waldron T, Donato N, Zhang Y, Martinez RV, Holyoake TL, Calabretta B. Expression of the transcriptional repressor Gfi-1 is regulated by C/EBP{alpha} and is involved in its proliferation and colony formation-inhibitory effects in p210BCR/ABL-expressing cells. Cancer Res 2010; 70:7949-59. [PMID: 20924107 DOI: 10.1158/0008-5472.can-10-1667] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ectopic expression of CAAT/enhancer binding protein α (C/EBPα) in p210BCR/ABL-expressing cells induces granulocytic differentiation, inhibits proliferation, and suppresses leukemogenesis. To dissect the molecular mechanisms underlying these biological effects, C/EBPα-regulated genes were identified by microarray analysis in 32D-p210BCR/ABL cells. One of the genes whose expression was activated by C/EBPα in a DNA binding-dependent manner in BCR/ABL-expressing cells is the transcriptional repressor Gfi-1. We show here that C/EBPα interacts with a functional C/EBP binding site in the Gfi-1 5'-flanking region and enhances the promoter activity of Gfi-1. Moreover, in K562 cells, RNA interference-mediated downregulation of Gfi-1 expression partially rescued the proliferation-inhibitory but not the differentiation-inducing effect of C/EBPα. Ectopic expression of wild-type Gfi-1, but not of a transcriptional repressor mutant (Gfi-1P2A), inhibited proliferation and markedly suppressed colony formation but did not induce granulocytic differentiation of BCR/ABL-expressing cells. By contrast, Gfi-1 short hairpin RNA-tranduced CD34(+) chronic myeloid leukemia cells were markedly more clonogenic than the scramble-transduced counterpart. Together, these studies indicate that Gfi-1 is a direct target of C/EBPα required for its proliferation and survival-inhibitory effects in BCR/ABL-expressing cells.
Collapse
Affiliation(s)
- Maria Rosa Lidonnici
- Department of Cancer Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
van der Meer LT, Jansen JH, van der Reijden BA. Gfi1 and Gfi1b: key regulators of hematopoiesis. Leukemia 2010; 24:1834-43. [DOI: 10.1038/leu.2010.195] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
182
|
Bouma G, Ancliff PJ, Thrasher AJ, Burns SO. Recent advances in the understanding of genetic defects of neutrophil number and function. Br J Haematol 2010; 151:312-26. [DOI: 10.1111/j.1365-2141.2010.08361.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
183
|
Li H, Ji M, Klarmann KD, Keller JR. Repression of Id2 expression by Gfi-1 is required for B-cell and myeloid development. Blood 2010; 116:1060-9. [PMID: 20453161 PMCID: PMC2938128 DOI: 10.1182/blood-2009-11-255075] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 05/01/2010] [Indexed: 02/06/2023] Open
Abstract
The development of mature blood cells from hematopoietic stem cells requires coordinated activities of transcriptional networks. Transcriptional repressor growth factor independence 1 (Gfi-1) is required for the development of B cells, T cells, neutrophils, and for the maintenance of hematopoietic stem cell function. However, the mechanisms by which Gfi-1 regulates hematopoiesis and how Gfi-1 integrates into transcriptional networks remain unclear. Here, we provide evidence that Id2 is a transcriptional target of Gfi-1, and repression of Id2 by Gfi-1 is required for B-cell and myeloid development. Gfi-1 binds to 3 conserved regions in the Id2 promoter and represses Id2 promoter activity in transient reporter assays. Increased Id2 expression was observed in multipotent progenitors, myeloid progenitors, T-cell progenitors, and B-cell progenitors in Gfi-1(-/-) mice. Knockdown of Id2 expression or heterozygosity at the Id2 locus partially rescues the B-cell and myeloid development but not the T-cell development in Gfi-1(-/-) mice. These studies demonstrate a role of Id2 in mediating Gfi-1 functions in B-cell and myeloid development and provide a direct link between Gfi-1 and the B-cell transcriptional network by its ability to repress Id2 expression.
Collapse
Affiliation(s)
- Huajie Li
- Basic Research Program, SAIC-Frederick Inc, Center for Cancer Research, National Cancer Institute at Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
184
|
Abstract
Neutrophil granules store proteins that are critically important for the neutrophil to move from the vascular bed to tissues and to kill microorganisms. This is illustrated in nature when individual proteins are deleted due to inherited mutations of their cognate genes, and such deficiencies result in the conditions leucocyte adhesion deficiency and chronic granulomatous disease. The granules of the neutrophil have traditionally been divided into two or three major types but are instead a continuum where several subtypes can be identified with differences in protein content and propensity for mobilization. This is explained by the 'targeting by timing hypothesis' which states that granules are filled with granule proteins that are synthesized at the time the granule is formed. The heterogeneity of granules arises because the synthesis of granule proteins is individually controlled and major differences exist in the timings of biosynthesis during granulocytopoiesis. This is largely controlled by gene transcription.
Collapse
Affiliation(s)
- M Häger
- Granulocyte Research Laboratory, Department of Haematology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
185
|
Qin J, Van Buren D, Huang HS, Zhong L, Mostoslavsky R, Akbarian S, Hock H. Chromatin protein L3MBTL1 is dispensable for development and tumor suppression in mice. J Biol Chem 2010; 285:27767-75. [PMID: 20592034 DOI: 10.1074/jbc.m110.115410] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
L3MBTL1, a paralogue of Drosophila tumor suppressor lethal(3)malignant brain tumor (l(3)mbt), binds histones in a methylation state-dependent manner and contributes to higher order chromatin structure and transcriptional repression. It is the founding member of a family of MBT domain-containing proteins that has three members in Drosophila and nine in mice and humans. Knockdown experiments in cell lines suggested that L3MBTL1 has non-redundant roles in the suppression of oncogene expression. We generated a mutant mouse strain that lacks exons 13-20 of L3mbtl1. Markedly reduced levels of a mutant mRNA with an out-of-frame fusion of exons 12 and 21 were expressed, but a mutant protein was undetectable by Western blot analysis. L3MBTL1(-/-) mice developed and reproduced normally. The highest expression of L3MBTL1 was detected in the brain, but its disruption did not affect brain development, spontaneous movement, and motor coordination. Despite previous implications of L3mbtl1 in the biology of hematopoietic transcriptional regulators, lack of L3MBTL1 did not result in deficiencies in lymphopoiesis or hematopoiesis. In contrast with its demonstrated biochemical activities, embryonic stem (ES) cells lacking L3MBTL1 displayed no abnormalities in H4 lysine 20 (H4K20) mono-, di-, or trimethylation; had normal global chromatin density as assessed by micrococcal nuclease digests; and expressed normal levels of c-myc. Embryonic fibroblasts lacking L3MBTL1 displayed unaltered cell cycle arrest and down-regulation of cyclin E expression after irradiation. In cohorts of mice followed for more than 2 years, lack of L3MBTL1 did not alter normal lifespan or survival with or without sublethal irradiation.
Collapse
Affiliation(s)
- Jinzhong Qin
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
186
|
Bjerknes M, Cheng H. Cell Lineage metastability in Gfi1-deficient mouse intestinal epithelium. Dev Biol 2010; 345:49-63. [PMID: 20599897 DOI: 10.1016/j.ydbio.2010.06.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 06/07/2010] [Accepted: 06/15/2010] [Indexed: 01/28/2023]
Abstract
Elucidating the mechanisms determining multipotent progenitor cell fate remains a fundamental project of contemporary biology. Various tissues of mice and men with defects in the zinc-finger transcriptional repressor Gfi1 have dramatic perturbations in the proportions of their differentiated cell types. In Gfi1-deficient intestinal epithelium there is a shift from mucous and Paneth towards enteroendocrine cells, leading to the proposal that Gfi1 functions in the allocation of the progeny derived from a hypothetical common granulocytic progenitor. However, studies of clones have yielded no evidence of such a common progenitor prompting us to investigate alternate mechanisms explaining the Gfi1-deficient phenotype. We report that mucous and Paneth but not enteroendocrine lineage cells normally express Gfi1. Sporadic mucous and Paneth lineage cells in the crypts of Gfi1-deficient mice aberrantly express the pro-enteroendocrine transcription factor Neurog3, indicating that stable repression of Neurog3 in these lineages requires Gfi1. Importantly, we also find mucous and Paneth lineage cells in various stages of cellular reprogramming into the enteroendocrine lineage in Gfi1-deficient mice. We propose that mucous and Paneth cell lineage metastability, rather than reallocation at the level of a hypothetical common granulocytic progenitor, is responsible for the shifts in cell type proportions observed in Gfi1-deficient intestinal epithelium.
Collapse
Affiliation(s)
- Matthew Bjerknes
- Department of Medicine, Clinical Science Division, Medical Sciences Building, Room 6334, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8.
| | | |
Collapse
|
187
|
Zinc finger protein Gfi1 controls the endotoxin-mediated Toll-like receptor inflammatory response by antagonizing NF-kappaB p65. Mol Cell Biol 2010; 30:3929-42. [PMID: 20547752 DOI: 10.1128/mcb.00087-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Endotoxin (bacterial lipopolysaccharide [LPS]) causes fatal septic shock via the Toll-like receptor 4 (TLR-4) protein present on innate immunity effector cells, which activates nuclear factor kappa B (NF-kappaB), inducing proinflammatory cytokines, including tumor necrosis factor alpha (TNF-alpha). An early step in this process involves nuclear sequestration of the p65-RelA NF-kappaB subunit, enabling transcriptional activation of target inflammatory cytokine genes. Here, we analyzed the role of the nuclear zinc finger protein Gfi1 in the TLR response using primary bone marrow-derived macrophages. We show that upon LPS stimulation, expression of Gfi1 is induced with kinetics similar to those of nuclear translocation of p65 and that Gfi1 interacts with p65 and inhibits p65-mediated transcriptional transactivation by interfering with p65 binding to target gene promoter DNA. Gfi1-deficient macrophages show abnormally high mRNA levels of the TNF-alpha gene and many other p65 target genes and a higher rate of TNF promoter occupancy by p65 than wild-type cells after LPS stimulation, suggesting that Gfi1 functions as an antagonist of NF-kappaB activity at the level of promoter binding. Our findings identify a new function of Gfi1 as a general negative regulator of the endotoxin-initiated innate immune responses, including septic shock and possibly other severe inflammatory diseases.
Collapse
|
188
|
Gfi1 expression is controlled by five distinct regulatory regions spread over 100 kilobases, with Scl/Tal1, Gata2, PU.1, Erg, Meis1, and Runx1 acting as upstream regulators in early hematopoietic cells. Mol Cell Biol 2010; 30:3853-63. [PMID: 20516218 DOI: 10.1128/mcb.00032-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The growth factor independence 1 (Gfi1) gene was originally discovered in the hematopoietic system, where it functions as a key regulator of stem cell homeostasis, as well as neutrophil and T-cell development. Outside the blood system, Gfi1 is essential for inner-ear hair and intestinal secretory cell differentiation. To understand the regulatory hierarchies within which Gfi1 operates to control these diverse biological functions, we used a combination of comparative genomics, locus-wide chromatin immunoprecipitation assays, functional validation in cell lines, and extensive transgenic mouse assays to identify and characterize the complete ensemble of Gfi1 regulatory elements. This concerted effort identified five distinct regulatory elements spread over 100kb each driving expression in transgenic mice to a subdomain of endogenous Gfi1. Detailed characterization of an enhancer 35 kb upstream of Gfi1 demonstrated activity in the dorsal aorta region and fetal liver in transgenic mice, which was bound by key stem cell transcription factors Scl/Tal1, PU.1/Sfpi1, Runx1, Erg, Meis1, and Gata2. Taken together, our results reveal the regulatory regions responsible for Gfi1 expression and importantly establish that Gfi1 expression at the sites of hematopoietic stem cell (HSC) emergence is controlled by key HSC regulators, thus integrating Gfi1 into the wider HSC regulatory networks.
Collapse
|
189
|
Abstract
The inherited marrow failure syndromes are a diverse set of genetic disorders characterized by hematopoietic aplasia and cancer predisposition. The clinical phenotypes are highly variable and much broader than previously recognized. The medical management of the inherited marrow failure syndromes differs from that of acquired aplastic anemia or malignancies arising in the general population. Diagnostic workup, molecular pathogenesis, and clinical treatment are reviewed.
Collapse
|
190
|
Abstract
Congenital neutropenia syndromes comprise a heterogeneous group of disorders leading to increased susceptibility to bacterial infections. Recent work has elucidated the molecular basis of several congenital neutropenia syndromes such as mutations in ELA2, HAX1, GF11, and WAS. In addition, a number of complex clinical syndromes associating congenital neutropenia have been recognized and elucidated on a genetic level, e.g. p14-deficiency or G6PC3-deficiency. The clinical and genetic findings of various neutropenia syndromes are being discussed.
Collapse
|
191
|
Monach PA, Nigrovic PA, Chen M, Hock H, Lee DM, Benoist C, Mathis D. Neutrophils in a mouse model of autoantibody-mediated arthritis: critical producers of Fc receptor gamma, the receptor for C5a, and lymphocyte function-associated antigen 1. ACTA ACUST UNITED AC 2010; 62:753-64. [PMID: 20191628 DOI: 10.1002/art.27238] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Neutrophils represent a prominent component of inflammatory joint effusions and are required for synovial inflammation in mouse models, but the mechanisms are poorly understood. In this study, we developed a system with which to test the importance of the production of specific factors by neutrophils in a mouse model of arthritis. METHODS Neutrophil-deficient Gfi-1(-/-) mice were administered sublethal doses of radiation and were then engrafted with donor bone marrow cells (BMCs), which resulted in the production of mature neutrophils within 2 weeks. By reconstituting with BMCs from mice lacking selected proinflammatory factors, we generated mice that specifically lacked these factors on their neutrophils. Arthritis was initiated by transfer of K/BxN serum to identify the role of defined neutrophil factors on the incidence and severity of arthritis. RESULTS Neutrophils lacking the signaling chain of stimulatory Fc receptors (FcRgamma(-/-)) were unable to elicit arthritis, but neutrophils lacking FcgammaRIII still did so. Neutrophils lacking the chemotactic or adhesion receptor C5a receptor (C5aR) or CD11a/lymphocyte function-associated antigen 1 (LFA-1) also failed to initiate arthritis but could enter joints in which inflammation had been initiated by wild-type neutrophils. Neutrophils unable to produce interleukin-1alpha (IL-1alpha) and IL-1beta (IL-1alpha/beta(-/-)) or leukotrienes (5-lipoxygenase [5-LOX(-/-)]) produced arthritis of intermediate severity. The inability of neutrophils to make tumor necrosis factor or to express receptors for tumor necrosis factor or IL-1 had no effect on arthritis. CONCLUSION A novel transfer system was developed to identify neutrophil production of FcRgamma, C5aR, and CD11a/LFA-1 as critical components of autoantibody-mediated arthritis. Neutrophil production of IL-1 and leukotriene B(4) likely contributes to inflammation but is not essential. Molecular requirements for neutrophil influx into joints become more permissive after inflammation is initiated.
Collapse
Affiliation(s)
- Paul A Monach
- Joslin Diabetes Center, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
192
|
Lee S, Doddapaneni K, Hogue A, McGhee L, Meyers S, Wu Z. Solution Structure of Gfi-1 Zinc Domain Bound to Consensus DNA. J Mol Biol 2010; 397:1055-66. [DOI: 10.1016/j.jmb.2010.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 02/02/2010] [Accepted: 02/04/2010] [Indexed: 01/29/2023]
|
193
|
Abstract
Mammalian microRNAs (miRNAs) have recently been identified as important regulators of gene expression, and they function by repressing specific target genes at the post-transcriptional level. Now, studies of miRNAs are resolving some unsolved issues in immunology. Recent studies have shown that miRNAs have unique expression profiles in cells of the innate and adaptive immune systems and have pivotal roles in the regulation of both cell development and function. Furthermore, when miRNAs are aberrantly expressed they can contribute to pathological conditions involving the immune system, such as cancer and autoimmunity; they have also been shown to be useful as diagnostic and prognostic indicators of disease type and severity. This Review discusses recent advances in our understanding of both the intended functions of miRNAs in managing immune cell biology and their pathological roles when their expression is dysregulated.
Collapse
|
194
|
Ramírez J, Lukin K, Hagman J. From hematopoietic progenitors to B cells: mechanisms of lineage restriction and commitment. Curr Opin Immunol 2010; 22:177-84. [PMID: 20207529 DOI: 10.1016/j.coi.2010.02.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 02/10/2010] [Indexed: 01/23/2023]
Abstract
The generation of B lymphocytes from hematopoietic progenitors requires lineage-specific transcription factors that progressively direct cell fate choices. Differentiation of hematopoietic stem cells to lymphoid progenitors requires Ikaros-dependent lineage priming and graded levels of PU.1, which are controlled by Ikaros and Gfi1. E2A drives expression of EBF1, which initiates B lineage specification. EBF1, in addition to Pax5, is necessary for commitment to the B cell lineage. As a model of gene activation in early B lymphopoiesis, mb-1 genes are activated sequentially by factors (e.g. EBF1) that initiate chromatin modifications before transcription. This review highlights the requisite interplay between transcription factors and epigenetic mechanisms in the context of B cell development.
Collapse
Affiliation(s)
- Julita Ramírez
- Integrated Department of Immunology, National Jewish Health, Denver, CO 80206, USA
| | | | | |
Collapse
|
195
|
The transcription factor Gfi1 regulates G-CSF signaling and neutrophil development through the Ras activator RasGRP1. Blood 2010; 115:3970-9. [PMID: 20203268 DOI: 10.1182/blood-2009-10-246967] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The transcription factor growth factor independence 1 (Gfi1) and the growth factor granulocyte colony-stimulating factor (G-CSF) are individually essential for neutrophil differentiation from myeloid progenitors. Here, we provide evidence that the functions of Gfi1 and G-CSF are linked in the regulation of granulopoiesis. We report that Gfi1 promotes the expression of Ras guanine nucleotide releasing protein 1 (RasGRP1), an exchange factor that activates Ras, and that RasGRP1 is required for G-CSF signaling through the Ras/mitogen-activated protein/extracellular signal-regulated kinase (MEK/Erk) pathway. Gfi1-null mice have reduced levels of RasGRP1 mRNA and protein in thymus, spleen, and bone marrow, and Gfi1 transduction in myeloid cells promotes RasGRP1 expression. When stimulated with G-CSF, Gfi1-null myeloid cells are selectively defective at activating Erk1/2, but not signal transducer and activator of transcription 1 (STAT1) or STAT3, and fail to differentiate into neutrophils. Expression of RasGRP1 in Gfi1-deficient cells rescues Erk1/2 activation by G-CSF and allows neutrophil maturation by G-CSF. These results uncover a previously unknown function of Gfi1 as a regulator of RasGRP1 and link Gfi1 transcriptional control to G-CSF signaling and regulation of granulopoiesis.
Collapse
|
196
|
Barjaktarevic I, Maletkovic-Barjaktarevic J, Kamani NR, Vukmanovic S. Altered functional balance of Gfi-1 and Gfi-1b as an alternative cause of reticular dysgenesis? Med Hypotheses 2010; 74:445-8. [DOI: 10.1016/j.mehy.2009.09.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 09/27/2009] [Indexed: 12/20/2022]
|
197
|
Liu Q, Basu S, Qiu Y, Tang F, Dong F. A role of Miz-1 in Gfi-1-mediated transcriptional repression of CDKN1A. Oncogene 2010; 29:2843-52. [PMID: 20190815 PMCID: PMC2869400 DOI: 10.1038/onc.2010.48] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Zinc-finger (ZF) transcriptional repressor Gfi-1 plays an important role in hematopoiesis and inner ear development, and also functions as an oncoprotein that cooperates with c-Myc in lymphomagenesis. Gfi-1 represses transcription by directly binding to conserved sequences in the promoters of its target genes. CDKN1A encoding p21Cip1 has been identified as a Gfi-1 target gene and shown to contain Gfi-1 binding sites in the upstream promoter region. We show here that Gfi-1 represses CDKN1A in a manner that is independent of its DNA binding activity. Gfi-1 interacts with POZ-ZF transcription factor Miz-1, originally shown to be a c-Myc interacting partner, and via Miz-1 binds to CDKN1A core promoter. Interestingly, Gfi-1 and c-Myc, through Miz-1, form a ternary complex on the CDKN1A promoter, and act in collaboration to repress CDKN1A. Gfi-1 knockdown results in enhanced levels of p21Cip1 and attenuated cell proliferation. Notably, similar to c-Myc, the expression of Gfi-1 is downregulated by TGFβ and the level of Gfi-1 influences the response of cell to the cytostatic effect of TGFβ. Our data reveal an important mechanism by which Gfi-1 regulates cell proliferation and may also have implications for understanding the role of Gfi-1 in lymphomagenesis.
Collapse
Affiliation(s)
- Q Liu
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | | | | | | | | |
Collapse
|
198
|
A variant allele of Growth Factor Independence 1 (GFI1) is associated with acute myeloid leukemia. Blood 2010; 115:2462-72. [PMID: 20075157 DOI: 10.1182/blood-2009-08-239822] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The GFI1 gene encodes a transcriptional repressor, which regulates myeloid differentiation. In the mouse, Gfi1 deficiency causes neutropenia and an accumulation of granulomonocytic precursor cells that is reminiscent of a myelodysplastic syndrome. We report here that a variant allele of GFI1 (GFI1(36N)) is associated with acute myeloid leukemia (AML) in white subjects with an odds ratio of 1.6 (P < 8 x 10(-5)). The GFI1(36N) variant occurred in 1806 AML patients with an allele frequency of 0.055 compared with 0.035 in 1691 healthy control patients in 2 independent cohorts. We observed that both GFI1 variants maintain the same activity as transcriptional repressors but differ in their regulation by the AML1/ETO (RUNX1/RUNX1T1) fusion protein produced in AML patients with a t(8;21) translocation. AML1/ETO interacts and colocalizes with the more common GFI1(36S) form in the nucleus and inhibits its repressor activity. However, the variant GFI1(36N) protein has a different subnuclear localization than GFI1(36S). As a consequence, AML1/ETO does not colocalize with GFI1(36N) and is unable to inhibit its repressor activity. We conclude that both variants of GFI1 differ in their ability to be regulated by interacting proteins and that the GFI1(36N) variant form exhibits distinct biochemical features that may confer a predisposition to AML.
Collapse
|
199
|
Laurent B, Randrianarison-Huetz V, Kadri Z, Roméo PH, Porteu F, Duménil D. Gfi-1B promoter remains associated with active chromatin marks throughout erythroid differentiation of human primary progenitor cells. Stem Cells 2009; 27:2153-62. [PMID: 19522008 PMCID: PMC2962905 DOI: 10.1002/stem.151] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Growth Factor Independent-1B (Gfi-1B) is a transcriptional repressor that plays critical roles in the control of erythropoiesis and megakaryopoiesis. Gfi-1B expression was described to be repressed by an autoregulatory feedback control loop. Here, we show that Gfi-1 transcription is positively regulated early after induction of erythroid differentiation and remains highly active to late erythroblasts. Using chromatin immunoprecipitation assays in CD34+ cells from human cord blood, we found that Gfi-1 and GATA-2 in immature progenitors and then Gfi-1B and GATA-1 in erythroblasts are bound to the Gfi-1B promoter as well as to the promoter of c-myc, a known Gfi-1B target gene. Surprisingly, this Gfi-1/GATA-2–Gfi-1B/GATA-1 switch observed at erythroblast stages is associated to an increase in the Gfi-1B transcription whereas it triggers repression of c-myc transcription. Accordingly, analysis of chromatin modification patterns shows that HDAC, CoREST, and LSD1 are recruited to the c-myc promoter leading to appearance of repressive chromatin marks. In contrast, the Gfi-1B promoter remains associated with a transcriptionally active chromatin configuration as highlighted by an increase in histone H3 acetylation and concomitant release of the LSD1 and CoREST corepressors. The repressive function of Gfi-1B therefore depends on the nature of the proteins recruited to the target gene promoters and on chromatin modifications. We conclude that Gfi-1B behaves as a lineage-affiliated gene with an open chromatin configuration in multipotent progenitors and sustained activation as cells progress throughout erythroid differentiation.
Collapse
Affiliation(s)
- Benoît Laurent
- Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (UMR 8104), Paris, France
| | | | | | | | | | | |
Collapse
|
200
|
High-mobility group protein HMGB2 regulates human erythroid differentiation through trans-activation of GFI1B transcription. Blood 2009; 115:687-95. [PMID: 19965638 DOI: 10.1182/blood-2009-06-230094] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Gfi-1B is a transcriptional repressor that is crucial for erythroid differentiation: inactivation of the GFI1B gene in mice leads to embryonic death due to failure to produce differentiated red cells. Accordingly, GFI1B expression is tightly regulated during erythropoiesis, but the mechanisms involved in such regulation remain partially understood. We here identify HMGB2, a high-mobility group HMG protein, as a key regulator of GFI1B transcription. HMGB2 binds to the GFI1B promoter in vivo and up-regulates its trans-activation most likely by enhancing the binding of Oct-1 and, to a lesser extent, of GATA-1 and NF-Y to the GFI1B promoter. HMGB2 expression increases during erythroid differentiation concomitantly to the increase of GfI1B transcription. Importantly, knockdown of HMGB2 in immature hematopoietic progenitor cells leads to decreased Gfi-1B expression and impairs their erythroid differentiation. We propose that HMGB2 potentiates GATA-1-dependent transcription of GFI1B by Oct-1 and thereby controls erythroid differentiation.
Collapse
|