151
|
Elliott DJ, Bourgeois CF, Klink A, Stévenin J, Cooke HJ. A mammalian germ cell-specific RNA-binding protein interacts with ubiquitously expressed proteins involved in splice site selection. Proc Natl Acad Sci U S A 2000; 97:5717-22. [PMID: 10823932 PMCID: PMC18499 DOI: 10.1073/pnas.97.11.5717] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
RNA-binding motif (RBM) genes are found on all mammalian Y chromosomes and are implicated in spermatogenesis. Within human germ cells, RBM protein shows a similar nuclear distribution to components of the pre-mRNA splicing machinery. To address the function of RBM, we have used protein-protein interaction assays to test for possible physical interactions between these proteins. We find that RBM protein directly interacts with members of the SR family of splicing factors and, in addition, strongly interacts with itself. We have mapped the protein domains responsible for mediating these interactions and expressed the mouse RBM interaction region as a bacterial fusion protein. This fusion protein can pull-down several functionally active SR protein species from cell extracts. Depletion and add-back experiments indicate that these SR proteins are the only splicing factors bound by RBM which are required for the splicing of a panel of pre-mRNAs. Our results suggest that RBM protein is an evolutionarily conserved mammalian splicing regulator which operates as a germ cell-specific cofactor for more ubiquitously expressed pre-mRNA splicing activators.
Collapse
Affiliation(s)
- D J Elliott
- Medical Research Council Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, Scotland.
| | | | | | | | | |
Collapse
|
152
|
Longman D, Johnstone IL, Cáceres JF. Functional characterization of SR and SR-related genes in Caenorhabditis elegans. EMBO J 2000; 19:1625-37. [PMID: 10747030 PMCID: PMC310231 DOI: 10.1093/emboj/19.7.1625] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The SR proteins constitute a family of nuclear phosphoproteins, which are required for constitutive splicing and also influence alternative splicing regulation. Initially, it was suggested that SR proteins were functionally redundant in constitutive splicing. However, differences have been observed in alternative splicing regulation, suggesting unique functions for individual SR proteins. Homology searches of the Caenorhabditis elegans genome identified seven genes encoding putative orthologues of the human factors SF2/ASF, SRp20, SC35, SRp40, SRp75 and p54, and also several SR-related genes. To address the issue of functional redundancy, we used dsRNA interference (RNAi) to inhibit specific SR protein function during C.elegans development. RNAi with CeSF2/ASF caused late embryonic lethality, suggesting that this gene has an essential function during C.elegans development. RNAi with other SR genes resulted in no obvious phenotype, which is indicative of gene redundancy. Simultaneous interference of two or more SR proteins in certain combinations caused lethality or other developmental defects. RNAi with CeSRPK, an SR protein kinase, resulted in early embryonic lethality, suggesting an essential role for SR protein phosphorylation during development.
Collapse
Affiliation(s)
- D Longman
- MRC Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU
| | | | | |
Collapse
|
153
|
Golovkin M, Reddy AS. An SC35-like protein and a novel serine/arginine-rich protein interact with Arabidopsis U1-70K protein. J Biol Chem 1999; 274:36428-38. [PMID: 10593939 DOI: 10.1074/jbc.274.51.36428] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The U1 small nuclear ribonucleoprotein 70-kDa protein, a U1 small nuclear ribonucleoprotein-specific protein, has been shown to have multiple roles in nuclear precursor mRNA processing in animals. By using the C-terminal arginine-rich region of Arabidopsis U1-70K protein in the yeast two-hybrid system, we have identified an SC35-like (SR33) and a novel plant serine/arginine-rich (SR) protein (SR45) that interact with the plant U1-70K. The SR33 and SR45 proteins share several features with SR proteins including modular domains typical of splicing factors in the SR family of proteins. However, both plant SR proteins are rich in proline, and SR45, unlike most animal SR proteins, has two distinct arginine/serine-rich domains separated by an RNA recognition motif. By using coprecipitation assays we confirmed the interaction of plant U1-70K with SR33 and SR45 proteins. Furthermore, in vivo and in vitro protein-protein interaction experiments have shown that SR33 protein interacts with itself and with SR45 protein but not with two other members (SRZ21 and SRZ22) of the SR family that are known to interact with the Arabidopsis full-length U-70K only. A Clk/Sty protein kinase (AFC-2) from Arabidopsis phosphorylated four SR proteins (SR33, SR45, SRZ21, and SRZ22). Coprecipitation studies have confirmed the interaction of SR proteins with AFC2 kinase, and the interaction between AFC2 and SR33 is modulated by the phosphorylation status of these proteins. These and our previous results suggest that the plant U1-70K interacts with at least four distinct members of the SR family including SR45 with its two arginine/serine-rich domains, and the interaction between the SR proteins and AFC2 is modulated by phosphorylation. The interaction of plant U1-70K with a novel set of proteins suggests the early stages of spliceosome assembly, and intron recognition in plants is likely to be different from animals.
Collapse
Affiliation(s)
- M Golovkin
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | |
Collapse
|
154
|
Chew SL, Liu HX, Mayeda A, Krainer AR. Evidence for the function of an exonic splicing enhancer after the first catalytic step of pre-mRNA splicing. Proc Natl Acad Sci U S A 1999; 96:10655-60. [PMID: 10485881 PMCID: PMC17938 DOI: 10.1073/pnas.96.19.10655] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exonic splicing enhancers (ESEs) activate pre-mRNA splicing by promoting the use of the flanking splice sites. They are recognized by members of the serine/arginine-rich (SR) family of proteins, such as splicing factor 2/alternative splicing factor (SF2/ASF), which recruit basal splicing factors to form the initial complexes during spliceosome assembly. The in vitro splicing kinetics of an ESE-dependent IgM pre-mRNA suggested that an SF2/ASF-specific ESE has additional functions later in the splicing reaction, after the completion of the first catalytic step. A bimolecular exon ligation assay, which physically uncouples the first and second catalytic steps of splicing in a trans-splicing reaction, was adapted to test the function of the ESE after the first step. A 3' exon containing the SF2/ASF-specific ESE underwent bimolecular exon ligation, whereas 3' exons without the ESE or with control sequences did not. The ESE-dependent trans-splicing reaction occurred after inactivation of U1 or U2 small nuclear ribonucleoprotein particles, compatible with a functional assay for events after the first step of splicing. The ESE-dependent step appears to take place before the ATP-independent part of the second catalytic step. Bimolecular exon ligation also occurred in an S100 cytosolic extract, requiring both the SF2/ASF-dependent ESE and complementation with SF2/ASF. These data suggest that some ESEs can act late in the splicing reaction, together with appropriate SR proteins, to enhance the second catalytic step of splicing.
Collapse
Affiliation(s)
- S L Chew
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | |
Collapse
|
155
|
Zaphiropoulos PG. RNA molecules containing exons originating from different members of the cytochrome P450 2C gene subfamily (CYP2C) in human epidermis and liver. Nucleic Acids Res 1999; 27:2585-90. [PMID: 10373573 PMCID: PMC148465 DOI: 10.1093/nar/27.13.2585] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reverse transcription-PCR analysis in human epidermis, using primers from CYP2C18 and CYP2C19, revealed products containing combinations between canonically defined exons of these two genes. The major RNA species identified contained 2C18 exon 8 spliced with 2C19 exon 2. However, the terminal exons 1 and 9 were never detected in any of these composite molecules. When similar experiments were performed with liver RNA, exons 1 and 9 of both 2C18 and 2C19 were readily identified in composite 2C18/2C19 RNAs. Moreover, molecules containing 2C9 sequences spliced with 2C18 exons were also detected. These findings suggest that during the process of RNA splicing of the 2C transcripts, various exon juxtaposition events may occur, including combinations between exons of distinct genes. However, the frequency of these events is quite low and the levels of the composite RNA molecules are generally estimated at less than one molecule per cell. Since the order of these genes on chromosome 10q24 is CYP2C18 - CYP2C19 - CYP2C9, it is conceivable that the composite RNAs may result from multiple canonical and inverse splicing events of a long pre-mRNA that encompasses the three genes. However, these molecules could also be rationalized as being the products of trans splicing phenomena between distinct pre-mRNAs.
Collapse
Affiliation(s)
- P G Zaphiropoulos
- Department of Bioscience, Center for Nutrition and Toxicology, Karolinska Institute, Novum, 141 57 Huddinge, Sweden.
| |
Collapse
|
156
|
Abstract
Serine/arginine-rich splicing factors (SR proteins) are substrates for serine phosphorylation that can regulate SR protein function. We have observed gross changes in SR protein phosphorylation during early development coincident with major zygotic gene activation in the nematode Ascaris lumbricoides. These differences correlate with large-scale changes in SR protein activity in promoting both trans- and cis-splicing. Importantly, inactive early stage extracts can be made splicing competent on addition of later stage SR proteins. These data suggest that changes in SR protein phosphorylation have a role in the activation of pre-mRNA splicing during early development.
Collapse
Affiliation(s)
- J R Sanford
- Center for RNA Molecular Biology, Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
157
|
You LR, Chen CM, Yeh TS, Tsai TY, Mai RT, Lin CH, Lee YH. Hepatitis C virus core protein interacts with cellular putative RNA helicase. J Virol 1999; 73:2841-53. [PMID: 10074132 PMCID: PMC104042 DOI: 10.1128/jvi.73.4.2841-2853.1999] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The nucleocapsid core protein of hepatitis C virus (HCV) has been shown to trans-act on several viral or cellular promoters. To get insight into the trans-action mechanism of HCV core protein, a yeast two-hybrid cloning system was used for identification of core protein-interacting cellular protein. One such cDNA clone encoding the DEAD box family of putative RNA helicase was obtained. This cellular putative RNA helicase, designated CAP-Rf, exhibits more than 95% amino acid sequence identity to other known RNA helicases including human DBX and DBY, mouse mDEAD3, and PL10, a family of proteins generally involved in translation, splicing, development, or cell growth. In vitro binding or in vivo coimmunoprecipitation studies demonstrated the direct interaction of the full-length/matured form and C-terminally truncated variants of HCV core protein with this targeted protein. Additionally, the protein's interaction domains were delineated at the N-terminal 40-amino-acid segment of the HCV core protein and the C-terminal tail of CAP-Rf, which encompassed its RNA-binding and ATP hydrolysis domains. Immunoblotting or indirect immunofluorescence analysis revealed that the endogenous CAP-Rf was mainly localized in the nucleus and to a lesser extent in the cytoplasm, and when fused with FLAG tag, it colocalized with the HCV core protein either in the cytoplasm or in the nucleus. Similar to other RNA helicases, this cellular RNA helicase has nucleoside triphosphatase-deoxynucleoside triphosphatase activity, but this activity is inhibited by various forms of homopolynucleotides and enhanced by the HCV core protein. Moreover, transient expression of HCV core protein in human hepatoma HuH-7 cells significantly potentiated the trans-activation effect of FLAG-tagged CAP-Rf or untagged CAP-Rf on the luciferase reporter plasmid activity. All together, our results indicate that CAP-Rf is involved in regulation of gene expression and that HCV core protein promotes the trans-activation ability of CAP-Rf, likely via the complex formation and the modulation of the ATPase-dATPase activity of CAP-Rf. These findings provide evidence that HCV may have evolved a distinct mechanism in alteration of host cellular gene expression regulation via the interaction of its nucleocapsid core protein and cellular putative RNA helicase known to participate in all aspects of cellular processes involving RNA metabolism. This feature of core protein may impart pleiotropic effects on host cells, which may partially account for its role in HCV pathogenesis.
Collapse
Affiliation(s)
- L R You
- Institute of Biochemistry, National Yang-Ming University, Taipei, Taiwan 112, Republic of China
| | | | | | | | | | | | | |
Collapse
|
158
|
Hertel KJ, Maniatis T. Serine-arginine (SR)-rich splicing factors have an exon-independent function in pre-mRNA splicing. Proc Natl Acad Sci U S A 1999; 96:2651-5. [PMID: 10077565 PMCID: PMC15823 DOI: 10.1073/pnas.96.6.2651] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Two distinct functions have been proposed for the serine-arginine (SR)-rich family of splicing factors. First, SR proteins are essential splicing factors and are thought to function by mediating protein-protein interactions within the intron during spliceosome assembly. Second, SR proteins bind to exonic enhancer sequences and recruit spliceosome components to adjacent introns. The latter activity is required for splice-site recognition and alternative splicing. Until now it has not been possible to determine whether the requirement for SR proteins in the basic splicing reaction is a secondary consequence of their exon-dependent recruitment function. Here we show that RNA substrates containing only 1 nt of exon sequence can undergo the first step of the splicing reaction in vitro and that this activity requires SR proteins. Thus, we provide direct evidence that SR proteins have both exon-independent and exon-dependent functions in pre-mRNA splicing.
Collapse
Affiliation(s)
- K J Hertel
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | | |
Collapse
|
159
|
Labourier E, Bourbon HM, Gallouzi IE, Fostier M, Allemand E, Tazi J. Antagonism between RSF1 and SR proteins for both splice-site recognition in vitro and Drosophila development. Genes Dev 1999; 13:740-53. [PMID: 10090730 PMCID: PMC316549 DOI: 10.1101/gad.13.6.740] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Specific recognition of splice sites within metazoan mRNA precursors (pre-mRNAs) is a potential stage for gene regulation by alternative splicing. Splicing factors of the SR protein family play a major role in this regulation, as they are required for early recognition of splice sites during spliceosome assembly. Here, we describe the characterization of RSF1, a splicing repressor isolated from Drosophila, that functionally antagonizes SR proteins. Like the latter, RSF1 comprises an amino-terminal RRM-type RNA-binding domain, whereas its carboxy-terminal part is enriched in glycine (G), arginine (R), and serine (S) residues (GRS domain). RSF1 induces a dose-sensitive inhibition of splicing for several reporter pre-mRNAs, an inhibition that occurs at the level of early splicing complexes formation. RSF1 interacts, through its GRS domain, with the RS domain of the SR protein SF2/ASF and prevents the latter from cooperating with the U1 small nuclear ribonucleoprotein particle (U1 snRNP) in binding pre-mRNA. Furthermore, overproduction of RSF 1 in the fly rescues several developmental defects caused by overexpression of the splicing activator SR protein B52/ SRp55. Therefore, RSF1 may correspond to the prototypical member of a novel family of general splicing repressors that selectively antagonize the effect of SR proteins on 5' splice-site recognition.
Collapse
Affiliation(s)
- E Labourier
- Institut de Génétique Moléculaire, Centre National de la Recherche Scientifique (CNRS), F34293 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
160
|
Hu CA, Lin WW, Obie C, Valle D. Molecular enzymology of mammalian Delta1-pyrroline-5-carboxylate synthase. Alternative splice donor utilization generates isoforms with different sensitivity to ornithine inhibition. J Biol Chem 1999; 274:6754-62. [PMID: 10037775 DOI: 10.1074/jbc.274.10.6754] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Delta1-Pyrroline-5-carboxylate synthase (P5CS; EC not assigned), a mitochondrial inner membrane, ATP- and NADPH-dependent, bifunctional enzyme, catalyzes the reduction of glutamate to Delta1-pyrroline-5-carboxylate, a critical step in the de novo biosynthesis of proline and ornithine. We utilized published plant P5CS sequence to search the expressed sequence tag data base and cloned two full-length human P5CS cDNAs differing in length by 6 base pairs (bp) in the open reading frame. The short cDNA has a 2379-bp open reading frame encoding a protein of 793 residues; the long cDNA, generated by "exon sliding," a form of alternative splicing, contains an additional 6-bp insert following bp +711 of the short form resulting in inclusion of two additional amino acids in the region predicted to be the gamma-glutamyl kinase active site of P5CS. The long form predominates in all tissues examined except gut. We also isolated the corresponding long and short murine P5CS transcripts. To confirm the identity of the putative P5CS cDNAs, we expressed both human forms in gamma-glutamyl kinase- and gamma-glutamyl phosphate reductase-deficient strains of Saccharomyces cerevisiae and showed that they conferred the proline prototrophy. Additionally, we found expression of the murine putative P5CS cDNAs conferred proline prototrophy to P5CS-deficient Chinese hamster ovary cells (CHO-K1). We utilized stable CHO-K1 cell transformants to compare the biochemical characteristics of the long and short murine P5CS isoforms. We found that both confer P5CS activity and that the short isoform is inhibited by L-ornithine with a Ki of approximately 0.25 mM. Surprisingly, the long isoform is insensitive to ornithine inhibition. Thus, the two amino acid insert in the long isoform abolishes feedback inhibition of P5CS activity by L-ornithine.
Collapse
Affiliation(s)
- C A Hu
- Howard Hughes Medical Institute, Department of Pediatrics and Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
161
|
Schaal TD, Maniatis T. Selection and characterization of pre-mRNA splicing enhancers: identification of novel SR protein-specific enhancer sequences. Mol Cell Biol 1999; 19:1705-19. [PMID: 10022858 PMCID: PMC83964 DOI: 10.1128/mcb.19.3.1705] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Splicing enhancers are RNA sequences required for accurate splice site recognition and the control of alternative splicing. In this study, we used an in vitro selection procedure to identify and characterize novel RNA sequences capable of functioning as pre-mRNA splicing enhancers. Randomized 18-nucleotide RNA sequences were inserted downstream from a Drosophila doublesex pre-mRNA enhancer-dependent splicing substrate. Functional splicing enhancers were then selected by multiple rounds of in vitro splicing in nuclear extracts, reverse transcription, and selective PCR amplification of the spliced products. Characterization of the selected splicing enhancers revealed a highly heterogeneous population of sequences, but we identified six classes of recurring degenerate sequence motifs five to seven nucleotides in length including novel splicing enhancer sequence motifs. Analysis of selected splicing enhancer elements and other enhancers in S100 complementation assays led to the identification of individual enhancers capable of being activated by specific serine/arginine (SR)-rich splicing factors (SC35, 9G8, and SF2/ASF). In addition, a potent splicing enhancer sequence isolated in the selection specifically binds a 20-kDa SR protein. This enhancer sequence has a high level of sequence homology with a recently identified RNA-protein adduct that can be immunoprecipitated with an SRp20-specific antibody. We conclude that distinct classes of selected enhancers are activated by specific SR proteins, but there is considerable sequence degeneracy within each class. The results presented here, in conjunction with previous studies, reveal a remarkably broad spectrum of RNA sequences capable of binding specific SR proteins and/or functioning as SR-specific splicing enhancers.
Collapse
Affiliation(s)
- T D Schaal
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
162
|
|
163
|
Schaal TD, Maniatis T. Multiple distinct splicing enhancers in the protein-coding sequences of a constitutively spliced pre-mRNA. Mol Cell Biol 1999; 19:261-73. [PMID: 9858550 PMCID: PMC83884 DOI: 10.1128/mcb.19.1.261] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/1998] [Accepted: 09/28/1998] [Indexed: 11/20/2022] Open
Abstract
We have identified multiple distinct splicing enhancer elements within protein-coding sequences of the constitutively spliced human beta-globin pre-mRNA. Each of these highly conserved sequences is sufficient to activate the splicing of a heterologous enhancer-dependent pre-mRNA. One of these enhancers is activated by and binds to the SR protein SC35, whereas at least two others are activated by the SR protein SF2/ASF. A single base mutation within another enhancer element inactivates the enhancer but does not change the encoded amino acid. Thus, overlapping protein coding and RNA recognition elements may be coselected during evolution. These studies provide the first direct evidence that SR protein-specific splicing enhancers are located within the coding regions of constitutively spliced pre-mRNAs. We propose that these enhancers function as multisite splicing enhancers to specify 3' splice-site selection.
Collapse
Affiliation(s)
- T D Schaal
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
164
|
Graveley BR, Hertel KJ, Maniatis T. A systematic analysis of the factors that determine the strength of pre-mRNA splicing enhancers. EMBO J 1998; 17:6747-56. [PMID: 9822617 PMCID: PMC1171020 DOI: 10.1093/emboj/17.22.6747] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We find that the strength of splicing enhancers is determined by the relative activities of the bound serine-arginine (SR)-rich splicing factors, the number of SR proteins within the enhancer complex and the distance between the enhancer and the intron. Remarkably, the splicing activity of the bound SR proteins is directly proportional to the number of RS tetrapeptide sequences within the RS domain. Quantitative analysis of the effects of varying the distance between the enhancer and the intron revealed that the splicing efficiency is directly proportional to the calculated probability of a direct interaction between the enhancer complex and the 3' splice site. These data are consistent with a model in which splicing enhancers function by increasing the local concentration of SR proteins in the vicinity of the nearby intron through RNA looping.
Collapse
Affiliation(s)
- B R Graveley
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
165
|
Xiao SH, Manley JL. Phosphorylation-dephosphorylation differentially affects activities of splicing factor ASF/SF2. EMBO J 1998; 17:6359-67. [PMID: 9799243 PMCID: PMC1170960 DOI: 10.1093/emboj/17.21.6359] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
SR proteins are a conserved family of splicing factors that function in both constitutive and activated splicing. We reported previously that phosphorylation of the SR protein ASF/SF2 enhances its interaction with the U1 snRNP-specific 70K protein and is required for the protein to function in splicing, while other studies have provided evidence that subsequent dephosphorylation can also be required for SR protein function, at least in constitutive splicing. We now show that the phosphorylation status of ASF/SF2 can differentially affect several properties of the protein. In keeping with a dynamic cycle of phosphorylation-dephosphorylation during splicing, ASF/SF2 phosphorylation was found to affect interaction with several putative protein targets in different ways: positively, negatively or not at all. Extending these results, we also show that, in contrast to constitutive splicing, dephosphorylation is not required for ASF/SF2 to function as a splicing activator. We discuss these results with respect to the differential protein-protein interactions that must occur during constitutive and activated splicing.
Collapse
Affiliation(s)
- S H Xiao
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|