151
|
Bojanović M, Stalević M, Arsić-Arsenijević V, Ignjatović A, Ranđelović M, Golubović M, Živković-Marinkov E, Koraćević G, Stamenković B, Otašević S. Etiology, Predisposing Factors, Clinical Features and Diagnostic Procedure of Otomycosis: A Literature Review. J Fungi (Basel) 2023; 9:662. [PMID: 37367598 DOI: 10.3390/jof9060662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Otomycosis (OM) is a superficial fungal infection of the external auditory canal (EAC) with a worldwide prevalence ranging from 9% to 30%. Commonly, otomycoses are caused by Aspergillus (A.) niger complex and Candida spp. Other causative agents are yeasts of the genera Cryptococcus spp., Rhodotorula spp., Geotrichum candidum, dermatophytes (Trichophyton mentagrophytes), and non-dermatophytes molds (Fusarium spp., Penicillium spp., Mucorales fungi). The widest range of different species causing OM are found in the territories of Iran, India, China, Egypt, Mexico, and Brazil. Fungal infection of the EAC varies from mild to severe forms. It can be acute, subacute, or chronic, and is often unilateral, while the bilateral form is more common in immunocompromised patients. From an epidemiological point of view, tropical and subtropical climates are the most significant risk factor for the development of otomycosis. Other predisposing conditions include clothing habits, EAC hygiene practices, long-term antibiotic therapy, diabetes, and immunodeficiency. Since it is often difficult to distinguish otomycosis from an infection of a different origin, laboratory-based evidence, including standard procedures (microscopy and cultivation), is essential for diagnosis. For the treatment of this superficial fungal infection, there are no official therapeutic guidelines and protocols. However, many antifungals for local application, such as polyene, imidazoles, and allylamines, can be applied, as well as systemic antimycotics (triazoles) in severe forms of infection.
Collapse
Affiliation(s)
- Mila Bojanović
- Medical Faculty, University of Niš, 18000 Niš, Serbia
- University Clinical Center Niš, 18000 Niš, Serbia
| | - Marko Stalević
- Medical Faculty, University of Priština in Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia
| | | | - Aleksandra Ignjatović
- Medical Faculty, University of Niš, 18000 Niš, Serbia
- Public Health Institute Niš, 18000 Niš, Serbia
| | - Marina Ranđelović
- Medical Faculty, University of Niš, 18000 Niš, Serbia
- Public Health Institute Niš, 18000 Niš, Serbia
| | | | - Emilija Živković-Marinkov
- Medical Faculty, University of Niš, 18000 Niš, Serbia
- University Clinical Center Niš, 18000 Niš, Serbia
| | - Goran Koraćević
- Medical Faculty, University of Niš, 18000 Niš, Serbia
- University Clinical Center Niš, 18000 Niš, Serbia
| | - Bojana Stamenković
- Medical Faculty, University of Niš, 18000 Niš, Serbia
- Institute For Treatment and Rehabilitation "Niška Banja", 18205 Niš, Serbia
| | - Suzana Otašević
- Medical Faculty, University of Niš, 18000 Niš, Serbia
- Public Health Institute Niš, 18000 Niš, Serbia
| |
Collapse
|
152
|
Stemler J, Mellinghoff SC, Khodamoradi Y, Sprute R, Classen AY, Zapke SE, Hoenigl M, Krause R, Schmidt-Hieber M, Heinz WJ, Klein M, Koehler P, Liss B, Koldehoff M, Buhl C, Penack O, Maschmeyer G, Schalk E, Lass-Flörl C, Karthaus M, Ruhnke M, Cornely OA, Teschner D. Primary prophylaxis of invasive fungal diseases in patients with haematological malignancies: 2022 update of the recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society for Haematology and Medical Oncology (DGHO). J Antimicrob Chemother 2023:dkad143. [PMID: 37311136 PMCID: PMC10393896 DOI: 10.1093/jac/dkad143] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
Patients with haematological malignancies (HM) are at high risk of developing invasive fungal disease (IFD) with high morbidity and attributable mortality. We reviewed data published until September 2021 to update the 2017 antifungal prophylaxis recommendations of the German Society of Haematology and Medical Oncology (DGHO). The strong recommendation to administer antifungal prophylaxis in patients with HM with long-lasting neutropenia, i.e. <500 cells/μL for >7 days remains unchanged. Posaconazole remains the drug of choice for mould-active prophylaxis in these patients. Novel treatment options in HM, such as CAR-T-cell treatment or novel targeted therapies for acute myeloid leukaemia (AML) were considered, however, data are insufficient to give general recommendations for routine antifungal prophylaxis in these patients. Major changes regarding specific recommendations compared to the 2017 edition are the now moderate instead of mild support for the recommendations of isavuconazole and voriconazole. Furthermore, published evidence on micafungin allows recommending it at moderate strength for its use in HM. For the first time we included recommendations for non-pharmaceutical measures regarding IFD, comprising the use of high-efficiency particulate air (HEPA) filters, smoking, measures during construction work and neutropenic diets. We reviewed the impact of antifungal prophylaxis with triazoles on drug-drug interactions with novel targeted therapies that are metabolized via cytochrome p450 where triazoles inhibit CYP3A4/5. The working group recommends reducing the dose of venetoclax when used concomitantly with strong CYP3A4 inhibiting antifungals. Furthermore, we reviewed data on the prophylactic use of novel antifungal agents. Currently there is no evidence to support their use in a prophylactic setting in clinical practice.
Collapse
Affiliation(s)
- Jannik Stemler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Sibylle C Mellinghoff
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Yascha Khodamoradi
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Rosanne Sprute
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Annika Y Classen
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Sonja E Zapke
- Department Hematology, Oncology, Infectious disease and Palliatve Care, Helios University Hospital Wuppertal, Wuppertal, Germany
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Medical University of Graz, Graz, Austria and BioTechMed, Graz, Austria
| | - Robert Krause
- Division of Infectious Diseases, Department of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Medical University of Graz, Graz, Austria and BioTechMed, Graz, Austria
| | - Martin Schmidt-Hieber
- 2nd Medical Clinic (Hematology, Oncology, Pneumology, Nephrology), Carl-Thiem Clinic Cottbus, Cottbus, Germany
| | - Werner J Heinz
- Medical Clinic II, Caritas Hospital, Bad Mergentheim, Germany
| | - Michael Klein
- Department of Hematology and Medical Oncology, Klinikum Vest, Knappschaftskrankenhaus, Recklinghausen, Germany
| | - Philipp Koehler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Blasius Liss
- Department Hematology, Oncology, Infectious disease and Palliatve Care, Helios University Hospital Wuppertal, Wuppertal, Germany
- School of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Michael Koldehoff
- Department of Bone Marrow Transplantation, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Hygiene and Environmental Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Olaf Penack
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin, Germany
- Humboldt-Universität zu Berlin, Department of Hematology, Oncology and Tumorimmunology, Berlin, Germany
| | - Georg Maschmeyer
- Formerly Department of Hematology, Oncology and Palliative Care, Klinikum Ernst von Bergmann, Potsdam, Germany
| | - Enrico Schalk
- Department of Haematology and Oncology, Medical Centre, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, ECMM Excellence Centre, Medical University of Innsbruck, Innsbruck, Austria
| | - Meinolf Karthaus
- Department of Hematology, Oncology and Palliative Care, Klinikum Neuperlach, Munich, Germany
| | - Markus Ruhnke
- Helios Klinikum Aue, Klinik für Hämatologie/Onkologie & Palliativmedizin, Aue, Germany
| | - Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, NRW, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), Cologne, Germany
| | - Daniel Teschner
- Department of Hematology, and Medical Oncology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
153
|
Marinovic DA, Bhaimia E, Forrest GN, LaRue R, Nathan S, Ustun C, Ward A. Scedosporium infection disseminated "from toe to head" in allogeneic stem cell transplant recipient: a case report. BMC Infect Dis 2023; 23:353. [PMID: 37231339 DOI: 10.1186/s12879-023-08345-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Scedosporium is a lesser-known non-Aspergillus genus of mold that can present in unsuspecting ways. If overlooked, it may disseminate and cause high mortality in high-risk allogeneic stem cell transplant recipients. CASE PRESENTATION This case report describes a 65-year-old patient with Acute Myeloid Leukemia who underwent an allogeneic hematopoietic stem cell transplant after a period of prolonged neutropenia with fluconazole prophylaxis. She suffered severe debility with altered mentation from a S. apiospermum infection which likely disseminated from a toe wound to the lung and central nervous system. She was successfully treated with liposomal amphotericin B and voriconazole, but faced a prolonged recovery from physical and neurologic sequela. CONCLUSIONS The case highlights the importance of adequate anti-mold prophylaxis in high-risk patients, and the value of a thorough physical examination in this patient population, with particular attention to skin and soft tissue findings.
Collapse
Affiliation(s)
- Debra A Marinovic
- Division of Hematology, Oncology and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, 1725 W Harrison St Suite 809, IL, 1725 W Harrison St Suite 809, Chicago, USA.
| | - Eric Bhaimia
- Division of Hematology, Oncology and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, 1725 W Harrison St Suite 809, IL, 1725 W Harrison St Suite 809, Chicago, USA
| | - Graeme N Forrest
- Division of Infectious Disease, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Rebecca LaRue
- Department of Pharmacy, Rush University Medical Center, Chicago, IL, USA
| | - Sunita Nathan
- Division of Hematology, Oncology and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, 1725 W Harrison St Suite 809, IL, 1725 W Harrison St Suite 809, Chicago, USA
| | - Celalettin Ustun
- Division of Hematology, Oncology and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, 1725 W Harrison St Suite 809, IL, 1725 W Harrison St Suite 809, Chicago, USA
| | - Anna Ward
- Division of Hematology, Oncology and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, 1725 W Harrison St Suite 809, IL, 1725 W Harrison St Suite 809, Chicago, USA
| |
Collapse
|
154
|
Arrieta AC, Lee A, Tran MT. Invasive Mold Infections in Children: Navigating Troubled Waters with a Broken Compass. Infect Dis Ther 2023:10.1007/s40121-023-00819-9. [PMID: 37209297 DOI: 10.1007/s40121-023-00819-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/03/2023] [Indexed: 05/22/2023] Open
Abstract
Incidence of invasive mold infections in children, while rare, is increasing as the population of high-risk patients expands, including premature infants, pediatric patients undergoing treatment for hematological malignancies, or recipients of allogeneic hematologic stem cell transplants. The infectious agents, including Aspergillus spp., Mucorales, and other molds, are especially difficult to treat and have serious morbidity and high mortality. Clinicians must maintain a high index of suspicion for invasive mold infections in at-risk patients. Diagnosis of invasive mold infections is complicated by difficulties isolating pathogens on culture, but progress is being made in immunological and molecular diagnostic technologies. Treatment in children is challenging; no randomized controlled trials exist. There is a growing body of data on treatment, specifically on safer antifungal agents, including indications for treatment, spectrum of coverage, pharmacokinetics for different ages, and pharmacodynamic targets associated with therapeutic success. However, pediatricians must often extrapolate from adult data. In this review, we aim to harmonize the existing body of literature on invasive mold infections in children, covering epidemiology, clinical presentations, diagnostic methods, and principles of management.
Collapse
Affiliation(s)
- Antonio C Arrieta
- Department of Infectious Diseases, Children's Hospital of Orange County, Orange, CA, USA
- Department of Pediatrics, University of California, Irvine, School of Medicine, Irvine, CA, USA
| | - Adam Lee
- Department of Infectious Diseases, Children's Hospital of Orange County, Orange, CA, USA.
| | - M Tuan Tran
- Department of Pharmacy, Children's Hospital of Orange County, Orange, CA, USA
| |
Collapse
|
155
|
Knoll MA, Steixner S, Lass-Flörl C. How to use direct microscopy for diagnosing fungal infections. Clin Microbiol Infect 2023:S1198-743X(23)00236-7. [PMID: 37187349 DOI: 10.1016/j.cmi.2023.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Invasive fungal infections are an important cause of morbidity and mortality in a broad range of patients. Adequate and early diagnosis is a challenge, and of importance for improved survival. New molecular-based diagnostic methods are trend-setting yet with the drawback that conventional tests receive less attention, in the lab as well as in the clinical setting. OBJECTIVE We aimed to provide a useful recommendation for direct microscopy for effectively managing numerous specimens related to fungal infections, mainly covering opportunistic pathogens. SOURCES A PubMed literature search covering fungal direct microscopy was performed with no restriction on publication date. CONTENT Best practice recommendations targeting the role of direct microscopy in diagnosing fungal infections are given. This review highlights when to perform direct microscopy, displays main fungal morphologies, discusses the pitfalls related to microscopy and recommends how to best report the results to the clinicians. IMPLICATION In many samples, the performance of direct microscopy provides an important diagnostic benefit that is greater than culture alone. Fluorescent dyes improve the sensitivity and allow a fast and rapid read. Reporting includes the presence or absence of yeast forms, septate or non-septate hyphae, pigmentation, cellular location or any other specific structures being present. Visualization of fungal elements from a sterile body site is the proof of an infection, independent of other test reports.
Collapse
Affiliation(s)
- Miriam Alisa Knoll
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stephan Steixner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
156
|
Mohorea-Neata AL, Ghita MC, Moroti R, Ghiaur A, Ionescu B, Tatic A, Stancioaica MC, Bardas A, Al-Hatmi A, Coriu D. Invasive fusariosis in acute leukaemia patients-An outbreak in the haematology ward. Mycoses 2023. [PMID: 37128958 DOI: 10.1111/myc.13596] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/09/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Fusarium, a common fungus, emerges as a pathogen in severely immunocompromised patients. We present a series of patients who developed invasive fusariosis (IF) during admission to an acute leukaemia ward: an outbreak of 12 cases in June and July 2018, followed by four sporadic cases until 2021. No case was reported earlier. All patients were clustered in the same location with indoor air and water installations found to be contaminated with Fusarium spp. thus a nosocomial outbreak was assumed. Following the water installation replacement, the number of Fusarium cases dramatically dropped to one or two isolated instances per year in the same location. All 16 patients had acute leukaemia and developed IF during severe neutropenia following induction therapy. IF diagnosis was based on positive blood cultures (14 patients) and/or on tissue biopsies (3 patients). The median time from admission to the IF onset was 20 days, and from the first day of severe neutropenia (≤500/mm3) was 11.5 days. All patients were febrile, eight had moderate-to-severe myalgias, eight had respiratory involvements: lung lesions and/or sinusitis and seven had characteristic skin lesions. Follow-up: 12 out of 16 (75%) were alive on Day 90; nine out of 15 (60%) were alive on Month 6. All with intractable neutropenia died. In severely neutropenic febrile patients, the triad of respiratory involvement/skin lesions/severe myalgia may suggest Fusarium aetiology. The ability to recover from neutropenia is critical to surmount IF. The indoor environment in immunocompromised dedicated settings must be constantly controlled.
Collapse
Affiliation(s)
| | | | - Ruxandra Moroti
- 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania
- National Institute for Infectious Diseases 'Matei Bals', Bucharest, Romania
| | | | | | - Aurelia Tatic
- Fundeni Clinical Institute, Bucharest, Romania
- 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Alexandru Bardas
- Fundeni Clinical Institute, Bucharest, Romania
- 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania
| | - Abdullah Al-Hatmi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- Centre of Expertise in Mycology Radboud University Medical Centre/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Daniel Coriu
- Fundeni Clinical Institute, Bucharest, Romania
- 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
157
|
Otto WR, Arendrup MC, Fisher BT. A Practical Guide to Antifungal Susceptibility Testing. J Pediatric Infect Dis Soc 2023; 12:214-221. [PMID: 36882026 PMCID: PMC10305799 DOI: 10.1093/jpids/piad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
We review antifungal susceptibility testing and the development of clinical breakpoints, and detail an approach to using antifungal susceptibility results when breakpoints have not been defined. This information may prove helpful when selecting therapy for invasive fungal infections in children.
Collapse
Affiliation(s)
- William R Otto
- Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Center for Pediatric Clinical Effectiveness, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Infectious Diseases, Cincinnati Children’s Hospital and Medical Center, Cincinnati, Ohio, USA
| | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Brian T Fisher
- Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Center for Pediatric Clinical Effectiveness, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
158
|
Weiss ZF, Little J, Hammond S. Evolution of antifungals for invasive mold infections in immunocompromised hosts, then and now. Expert Rev Anti Infect Ther 2023; 21:535-549. [PMID: 37104686 DOI: 10.1080/14787210.2023.2207821] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
INTRODUCTION The current armamentarium of antifungal agents for invasive mold infections (IMI) has dramatically improved over the last 50 years. Existing therapies are, however, associated with toxicities, drug interactions, and in some cases, therapeutic failures. Novel antifungals are needed to address the increasing prevalence of IMI and the growing threat of antifungal resistance. AREAS COVERED We review the history and development of the most commonly used antifungals. We discuss the current consensus guidelines and supporting data for treatment of invasive mold infection (IMI), the role of susceptibility testing, and the niche that novel antifungals could fill. We review the current data for aspergillosis, mucormycosis, and hyalohyphomycosis. EXPERT OPINION Robust clinical trial data demonstrating the relative effectiveness of our current antifungal agents for treating IMI outside of A. fumigatus remains limited. Clinical trials are urgently needed to delineate the relationship between MICs and clinical outcomes for existing agents and to better evaluate the invitro and in-vivo aspects of antifungal synergy. Continued international multicenter collaboration and standardized clinical endpoints for trials evaluating both existing and new agents is necessary to advance the field.
Collapse
Affiliation(s)
- Zoe Freeman Weiss
- Tufts Medical Center, Division of Infectious Diseases and Geographic Medicine, Boston MA, USA
- Tufts Medical Center, Division of Pathology, Boston MA, USA
| | - Jessica Little
- Brigham and Women's Hospital, Division of Infectious Diseases, Boston MA, USA
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA, USA
| | - Sarah Hammond
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, MA, USA
- Massachusetts General Hospital, Divisions of Infectious Diseases and Hematology Oncology, Boston MA, USA
| |
Collapse
|
159
|
Ehrlich S, Spiekermann K, Grothe JH, Stemler J. Infektionen bei Patient*innen mit Akuter Myeloischer Leukämie. Dtsch Med Wochenschr 2023; 148:467-473. [PMID: 36990119 DOI: 10.1055/a-1873-4858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Infections represent one of the most frequent complications during therapy of acute myeloid leukemia (AML). In addition to associated prolonged phases of neutropenia, damage to the mucosal barrier by cytotoxic agents favors infections caused by endogenous pathogens. The source often remains unknown with bacteremia being the most common evidence of infection. Infections with gram-positive bacteria predominate, however, infections with gram-negative bacteria more often lead to sepsis and death. Due to prolonged neutropenia, patients with AML are furthermore at risk for invasive fungal infections. Viruses, on the other hand, are rarely the cause of neutropenic fever. Because of the limited inflammatory response in neutropenic patients, fever is often the only sign of infection and therefore always represents a hematologic emergency. Prompt diagnosis and initiation of an adequate anti-infective therapy are critical to avoid progression to sepsis and possibly death.
Collapse
|
160
|
Rothe K, Dibos M, Haschka SJ, Schmid RM, Busch D, Rasch S, Lahmer T. Galactomannan-Antigen Testing from Non-Directed Bronchial Lavage for Rapid Detection of Invasive Pulmonary Aspergillosis in Critically Ill Patients: A Proof-of-Concept Study. Diagnostics (Basel) 2023; 13:diagnostics13061190. [PMID: 36980499 PMCID: PMC10047239 DOI: 10.3390/diagnostics13061190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/09/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Invasive pulmonary aspergillosis is associated with high mortality. For diagnosis, galactomannan-antigen in serum and bronchoalveolar lavage fluid is recommended, with higher sensitivity in bronchoalveolar lavage fluid. Because of invasiveness, bronchoalveolar lavage might be withheld due to patients' or technical limitations, leading to a delay in diagnosis while early diagnosis is crucial for patient outcome. To address this problem, we performed an analysis of patient characteristics of intubated patients with invasive pulmonary aspergillosis with comparison of galactomannan-antigen testing between non-directed bronchial lavage (NBL) and bronchoalveolar lavage fluid. A total of 32 intubated ICU patients with suspected invasive pulmonary aspergillosis could be identified. Mycological cultures were positive in 37.5% for A. fumigatus. Galactomannan-antigen in NBL (ODI 4.3 ± 2.4) and bronchoalveolar lavage fluid (ODI 3.6 ± 2.2) showed consistent results (p-value 0.697). Galactomannan-antigen testing for detection of invasive pulmonary aspergillosis using deep tracheal secretion showed comparable results to bronchoalveolar lavage fluid. Because of widespread availability in intubated patients, galactomannan-antigen from NBL can be used as a screening parameter in critical risk groups with high pretest probability for invasive aspergillosis to accelerate diagnosis and initiation of treatment. Bronchoalveolar lavage remains the gold standard for diagnosis of invasive aspergillosis to be completed to confirm diagnosis, but results from NBL remove time sensitivity.
Collapse
Affiliation(s)
- Kathrin Rothe
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institut Für Laboratoriumsmedizin, Medizinische Mikrobiologie und Technische Hygiene München Klinik, Sektion Mikrobiologie, 81377 Munich, Germany
| | - Miriam Dibos
- Department of Internal Medicine II, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Stefanie J Haschka
- Department of Internal Medicine II, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Roland M Schmid
- Department of Internal Medicine II, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Dirk Busch
- Department of Internal Medicine II, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Sebastian Rasch
- Department of Internal Medicine II, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Tobias Lahmer
- Department of Internal Medicine II, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
161
|
Zhang J, Xu G, Shen J, Ye G. Pulmonary infection of Schizophyllum commune diagnosed by metagenomic next- generation sequencing: A case report. Medicine (Baltimore) 2023; 102:e31465. [PMID: 36930078 PMCID: PMC10019164 DOI: 10.1097/md.0000000000031465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/27/2022] [Indexed: 03/18/2023] Open
Abstract
RATIONALE Fungal infection is common and difficult to be diagnosed timely in clinical, for its various kinds and similar manifestations. The rare pulmonary fungal infection such as Schizophyllum commune was one of the harder ones and misdiagnosed in usual. PATIENT CONCERNS We report a 32-year-old female which was diagnosed with Metagenomic Next-Generation Sequencing (mNGS). She was hospitalized with the complaint of 4 months and more of repeated cough and expectorating. The chest computer tomography revealed left lower lobe pathological changes, but antibiotics were ineffective. No positive results were found in laboratory tests, including sputum culture and the pathology of lung puncture biopsy. DIAGNOSES mNGS of lung biopsy was performed and detected the sequence number of Schizophyllum for 11. INTERVENTIONS The patient was treated with voriconazole and itraconazole successively. OUTCOMES She recovered to health. There was no recurrence during follow-up. LESSONS mNGS as a diagnostic method could quickly detect pathogens through the processing of fragment, synthesis, comparison, and analysis of sample genes. It is suitable for detecting especially rare and polymicrobial infections. To our best knowledge, infection of Schizophyllum commune have not been reported in English literature with diagnostic method of mNGS.
Collapse
Affiliation(s)
- Jing Zhang
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Respiratory and Critical Care Medicine, Xiamen Hospital of Chinese Medicine, Xiamen, China
| | - Guoliang Xu
- Department of Respiratory and Critical Care Medicine, Xiamen Hospital of Chinese Medicine, Xiamen, China
| | - Jiumei Shen
- Department of Pathology, Xiamen Hospital of Chinese Medicine, Xiamen, China
| | - Gangfu Ye
- Department of Respiratory and Critical Care Medicine, Xiamen Hospital of Chinese Medicine, Xiamen, China
| |
Collapse
|
162
|
Blez D, Bronnimann D, Rammaert B, Zeller V, Delhaes L, Hustache L, Grenouillet F, Traversier N, Bonhomme J, Chouaki T, Perpoint T, Persat F, Bougnoux ME, Bayle S, Quaesaet L, Nevez G, Boutoille D, Morio F, Pougnet L, Queyrel-Moranne V, Heym BE, Guillemain R, Dannaoui É, Roux A, Garcia-Hermoso D, Lanternier F. Invasive bone and joint infections from the French Scedosporiosis/lomentosporiosis Observational Study (SOS) cohort: no mortality with long-term antifungal treatment and surgery. Med Mycol 2023; 61:myad023. [PMID: 36813259 DOI: 10.1093/mmy/myad023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Little is known about localized osteoarticular Scedosporiosis (LOS). Most data come from case reports and small case series. Here we present an ancillary study of the nationwide French Scedosporiosis Observational Study (SOS), describing 15 consecutive cases of LOS diagnosed between January 2005 and March 2017. Adult patients diagnosed with LOS defined by osteoarticular involvement without distant foci reported in SOS were included. Fifteen LOS were analyzed. Seven patients had underlying disease. Fourteen patients had prior trauma as potential inoculation. Clinical presentation was arthritis (n = 8), osteitis (n = 5), and thoracic wall infection (n = 2). The most common clinical manifestation was pain (n = 9), followed by localized swelling (n = 7), cutaneous fistulization (n = 7), and fever (n = 5). The species involved were Scedosporium apiospermum (n = 8), S. boydii (n = 3), S. dehoogii (n = 1), and Lomentospora prolificans (n = 3). The species distribution was unremarkable except for S. boydii, which was associated with healthcare-related inoculations. Management was based on medical and surgical treatment for 13 patients. Fourteen patients received antifungal treatment for a median duration of 7 months. No patients died during follow-up. LOS exclusively occurred in the context of inoculation or systemic predisposing factors. It has a non-specific clinical presentation and is associated with an overall good clinical outcome, provided there is a prolonged course of antifungal therapy and adequate surgical management.
Collapse
Affiliation(s)
- Damien Blez
- Service de Maladies Infectieuses et Tropicales, Hôpital universitaire Necker-Enfants malades, Paris, France
| | - Didier Bronnimann
- Service des pathologies infectieuses et tropicales, Université de Paris, Paris, Île-de-France, France
- Médecine interne et maladies infectieuses, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, Aquitaine, France
| | - Blandine Rammaert
- Service de médecine interne et maladies infectieuses et tropicales, CHU Poitiers, Poitiers, France
- Université de Poitiers, INSERM U1070, Poitiers, Nouvelle-Aquitaine, France
| | - Valérie Zeller
- Osteoarticular Reference Center, GH Diaconesses Croix St Simon, Paris, Île-de-France, France
| | - Laurence Delhaes
- INSERM U1045, Bordeaux, Aquitaine, France
- Service de parasitologie-mycologie, Université de Bordeaux, Talence, France
| | - Laurent Hustache
- Service de Maladies Infectieuses et Tropicales, Hôpital Jean Minjoz, Besancon, France
| | - Frédéric Grenouillet
- Chrono-Environment, UFR Santé-Pharmacie et UMR 6249 UBFC-CNRS, Besancon, Bourgogne-Franche-Comté, France
- Mycology Parasitology, University Hospital Centre Besancon, Besancon, France
| | - Nicolas Traversier
- Microbiology Saint-Denis, Felix Guyon University Hospital Center, La Réunion, France
| | - Julie Bonhomme
- Microbiology Laboratory, University Hospital Centre Caen, ToxEMAC-ABTE, Unicaen, Caen, Basse-Normandie, France
| | - Taieb Chouaki
- Mycology, University Hospital Centre Amiens-Picardie, Amiens, Hauts-de-France, France
| | - Thomas Perpoint
- Maladies Infectieuses et Tropicales, Hospices Civils de Lyon, Lyon, Auvergne-Rhône-Alpes, France
| | - Florence Persat
- Service de Parasitologie et Mycologie Médicale, Hospices Civils de Lyon, Lyon, France
- EA7426 PI3-Inflammation and Immunity of the Respiratory Epithelium, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Marie Elisabeth Bougnoux
- Mycology, Hopital universitaire Necker-Enfants malades, Paris, Île-de-France, France
- National Reference Center for Invasive Mycoses and Antifungals, Translational Mycology research group, Mycology Department, Institut Pasteur, Université Paris Cité, Paris, France
| | - Sophie Bayle
- Medecine interne et infectiologie aiguë polyvalente, Hospital Centre Avignon, Avignon, Provence-Alpes-Côte d'Azu, France
| | - Luc Quaesaet
- Service de Maladies Infectieuses et Tropicales, Cavale Blanche Hospital, Brest, Bretagne, France
| | - Gilles Nevez
- Parasitologie et Mycologie, Centre Hospitalier Universitaire de Brest, Brest, Bretagne, France
- Infections Respiratoires Fongiques (IRF), UFR Médecine science de la santé, Brest, France
| | - David Boutoille
- Service de Maladies Infectieuses et Tropicales, Centre Hospitalier Universitaire de Nantes, Nantes, Pays de la Loire, France
- Centre d'Investigation Clinique-Unité d'Investigation Clinique 1413 INSERM, CHU Nantes, France
| | - Florent Morio
- Centre d'Investigation Clinique-Unité d'Investigation Clinique 1413 INSERM, CHU Nantes, France
- Laboratory of Parasitology and Medical Mycology, Cibles et médicaments des infections et de l'immunité, University Hospital Centre Nantes, IICiMed, UR1155, F-44000, Nantes, Pays de la Loire, France
| | - Laurence Pougnet
- Laboratoire de biologie médicale, HIA Clermont-Tonnerre, CC41, Brest, Bretagne, France
| | - Viviane Queyrel-Moranne
- Service de rhumatologie, Hôpital Pasteur 2, CHU Nice, Nice, Provence-Alpes-Côte d'Azur, France
| | - B Eate Heym
- Osteoarticular Reference Center, GH Diaconesses Croix St Simon, Paris, Île-de-France, France
| | | | - Éric Dannaoui
- Service de parasitologie-mycologie, Hopital Européen Georges Pompidou, Paris,Île-de-France, France
- CRCM-Centre de Transplantation Pulmonaire, Service de pneumologie, Hôpital Foch, Suresnes, France
| | - Antoine Roux
- Service de parasitologie-mycologie, Hopital Européen Georges Pompidou, Paris,Île-de-France, France
| | - Dea Garcia-Hermoso
- National Reference Center for Invasive Mycoses and Antifungals, Translational Mycology research group, Mycology Department, Institut Pasteur, Université Paris Cité, Paris, France
| | - Fanny Lanternier
- Service de Maladies Infectieuses et Tropicales, Hôpital universitaire Necker-Enfants malades, Paris, France
- National Reference Center for Invasive Mycoses and Antifungals, Translational Mycology research group, Mycology Department, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
163
|
Navarro ML, Nieto M, Perez-Martínez A. The need for evolution in the management of febrile neutropenia in pediatric cancer: TRIIO KIDS update. Clin Transl Oncol 2023; 25:633-642. [PMID: 36244052 DOI: 10.1007/s12094-022-02971-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/28/2022] [Indexed: 10/17/2022]
Abstract
New treatments have increased the life expectancy of pediatric patients diagnosed with malignant hematological diseases, often at the cost of protracting their immunocompromised state in the form of prolonged neutropenia. This neutropenic state favors the development of bacterial and fungal infections. Moreover, recent years have seen a series of changes in the epidemiology of fungal and Clostridium infections. These changes necessitate adaptations to the management of pediatric patients with febrile neutropenia, who are at risk of further increases in already high rates of morbidity and mortality. This article discusses the current bases for the management of febrile neutropenia and associated emerging fungal infections, as well as the epidemiology, diagnosis, and treatment of Clostridioides difficile in pediatric patients diagnosed with malignant hematological diseases.
Collapse
Affiliation(s)
- Maria Luisa Navarro
- Department of Paediatric Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Montserrat Nieto
- Paediatric Intensive Care Unit, Hospital Infantil Niño Jesús, Madrid, Spain
| | | |
Collapse
|
164
|
Salmanton-García J, Au WY, Hoenigl M, Chai LYA, Badali H, Basher A, Brockhoff RA, Chen SCA, Chindamporn A, Chowdhary A, Heath CH, Jabeen K, Lee J, Matar M, Taj-Aldeen SJ, Tan BH, Uno K, Wahyuningsih R, Zhu L, Chakrabarti A, Cornely OA. The current state of laboratory mycology in Asia/Pacific: A survey from the European Confederation of Medical Mycology (ECMM) and International Society for Human and Animal Mycology (ISHAM). Int J Antimicrob Agents 2023; 61:106718. [PMID: 36640851 DOI: 10.1016/j.ijantimicag.2023.106718] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/08/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Invasive fungal infections (IFIs) in Asia/Pacific are a particular threat to patients with malignancies, uncontrolled diabetes mellitus or undiagnosed/untreated human immunodeficiency virus infection and acquired immunodeficiency syndrome (HIV/AIDS). Adequate and early access to diagnostic tools and antifungals is essential for IFI clinical management and patient survival. METHODS Details on institution profile, self-perception on IFI, and access to microscopy, culture, serology, antigen detection, molecular testing, and therapeutic drug monitoring for IFI were collected in a survey. RESULTS As of June 2022, 235 centres from 40 countries/territories in Asia/Pacific answered the questionnaire. More than half the centres were from six countries: India (25%), China (17%), Thailand (5%), Indonesia, Iran, and Japan (4% each). Candida spp. (93%) and Aspergillus spp. (75%) were considered the most relevant pathogens. Most institutions had access to microscopy (98%) or culture-based approaches (97%). Furthermore, 79% of centres had access to antigen detection, 66% to molecular assays, and 63% to antibody tests. Access to antifungals varied between countries/territories. At least one triazole was available in 93% of the reporting sites (voriconazole [89%] was the most common mould-active azole), whereas 80% had at least one amphotericin B formulation, and 72% had at least one echinocandin. CONCLUSION According to the replies provided, the resources available for IFI diagnosis and management vary among Asia/Pacific countries/territories. Economical or geographical factors may play a key role in the incidence and clinical handling of this disease burden. Regional cooperation may be a good strategy to overcome shortcomings.
Collapse
Affiliation(s)
- Jon Salmanton-García
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany
| | - Wing-Yan Au
- Blood-Med Clinic, Central, Hong Kong, Hong Kong SAR
| | - Martin Hoenigl
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA, United States; Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA, United States; Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Louis Yi Ann Chai
- Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hamid Badali
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States; Invasive Fungi Research Center (IFRC), Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ariful Basher
- Department of Medicine, Dhaka Infectious Disease Hospital, Dhaka, Bangladesh
| | - Ronja A Brockhoff
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead, Sydney, Australia; Centre for Infectious Diseases and Microbiology, Westmead Hospital, The University of Sydney, Sydney, Australia
| | - Ariya Chindamporn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Antimicrobial Resistance and Stewardship Research Unit, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand; Mycology Unit, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Christopher H Heath
- Department of Microbiology, PathWest Laboratory Medicine, Fiona Stanley Hospital, Murdoch, WA, Australia; Department of Infectious Diseases, Fiona Stanley Hospital, Murdoch, WA, Australia; Department of Microbiology and Infectious Diseases, Royal Perth Hospital, Perth, WA, Australia; The University of Western Australia, Perth, WA, Australia
| | - Kausar Jabeen
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Jaehyeon Lee
- Jeonbuk National University Medical School, Jeonju, South Korea
| | - Madonna Matar
- Division of Infectious Diseases, Notre Dame des Secours University Hospital, Byblos, Lebanon; School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, Byblos, Lebanon
| | - Saad Jaber Taj-Aldeen
- Mycology Unit, Microbiology Division, Department of Laboratory, Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar; Clinical Pathology and Laboratory Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Ban Hock Tan
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - Kenji Uno
- Department of Infectious Diseases, Minami-Nara General Medical Center, Nara, Japan
| | - Retno Wahyuningsih
- Department of Parasitology, Universitas Kristen Indonesia, Jakarta, Indonesia
| | - Liping Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| |
Collapse
|
165
|
Wiederhold NP, Patterson HP, Sanders CJ, Cañete-Gibas C. Dihydroorotate dehydrogenase inhibitor olorofim has potent in vitro activity against Microascus/Scopulariopsis, Rasamsonia, Penicillium and Talaromyces species. Mycoses 2023; 66:242-248. [PMID: 36435987 DOI: 10.1111/myc.13548] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Treatment options against infections caused by rare but emerging moulds may be limited by their reduced susceptibility or resistance to clinically available antifungals. The investigational antifungal olorofim, which targets the biosynthesis of pyrimidines within fungi, has activity against different species of filamentous fungi, including Aspergillus and Scedosporium/Lomentospora prolificans isolates that are resistant to available antifungals. OBJECTIVE We evaluated the in vitro activity of olorofim against 160 isolates within the genera Microascus/Scopulariopsis, Penicillium, Talaromyces and the Rasamsonia argillacea species complex. METHODS One hundred sixty clinical isolates that had previously been identified to the species level by DNA sequence analysis were included. Antifungal susceptibility testing was performed by CLSI M38 broth microdilution for olorofim, amphotericin B, caspofungin, posaconazole and voriconazole. RESULTS Olorofim demonstrated in vitro activity against each of the genera tested. Overall, olorofim MICs ranged from ≤0.008 to 0.5 mg/L against all isolates tested, with MIC90 and modal MIC values ranging from ≤0.008 to 0.25 mg/L and ≤0.008 to 0.03 mg/L, respectively. This activity was also maintained against individual isolates that had reduced susceptibility to or in vitro resistance against amphotericin B, posaconazole and/or voriconazole. CONCLUSIONS The investigational agent olorofim demonstrated good in vitro activity against clinical isolates of emerging mould pathogens, including those with reduced susceptibility or resistance to clinically available antifungals. Further studies are warranted to determine how well this in vitro activity translates into in vivo efficacy against infections caused by these fungi.
Collapse
Affiliation(s)
- Nathan P Wiederhold
- Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Hoja P Patterson
- Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Carmita J Sanders
- Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Connie Cañete-Gibas
- Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
166
|
Non- Aspergillus Hyaline Molds: A Host-Based Perspective of Emerging Pathogenic Fungi Causing Sinopulmonary Diseases. J Fungi (Basel) 2023; 9:jof9020212. [PMID: 36836326 PMCID: PMC9964096 DOI: 10.3390/jof9020212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The incidence of invasive sino-pulmonary diseases due to non-Aspergillus hyaline molds is increasing due to an enlarging and evolving population of immunosuppressed hosts as well as improvements in the capabilities of molecular-based diagnostics. Herein, we review the following opportunistic pathogens known to cause sinopulmonary disease, the most common manifestation of hyalohyphomycosis: Fusarium spp., Scedosporium spp., Lomentospora prolificans, Scopulariopsis spp., Trichoderma spp., Acremonium spp., Paecilomyces variotii, Purpureocillium lilacinum, Rasamsonia argillacea species complex, Arthrographis kalrae, and Penicillium species. To facilitate an understanding of the epidemiology and clinical features of sino-pulmonary hyalohyphomycoses in the context of host immune impairment, we utilized a host-based approach encompassing the following underlying conditions: neutropenia, hematologic malignancy, hematopoietic and solid organ transplantation, chronic granulomatous disease, acquired immunodeficiency syndrome, cystic fibrosis, and healthy individuals who sustain burns, trauma, or iatrogenic exposures. We further summarize the pre-clinical and clinical data informing antifungal management for each pathogen and consider the role of adjunctive surgery and/or immunomodulatory treatments to optimize patient outcome.
Collapse
|
167
|
Rollin-Pinheiro R, Xisto MIDDS, de Castro-Almeida Y, Rochetti VP, Borba-Santos LP, Fontes YDS, Ferreira-Pereira A, Rozental S, Barreto-Bergter E. Pandemic Response Box® library as a source of antifungal drugs against Scedosporium and Lomentospora species. PLoS One 2023; 18:e0280964. [PMID: 36735743 PMCID: PMC9897528 DOI: 10.1371/journal.pone.0280964] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Scedosporium and Lomentospora species are opportunistic filamentous fungi that cause localized and disseminated infections in immunocompetent and immunocompromised patients. These species are considered resistant fungi due to their low susceptibility to most current antifungal agents used in healthcare settings. The search for new compounds that could work as promising candidate antifungal drugs is an increasing field of interest. In this context, in the present study we screened the Pandemic Response Box® library (Medicines for Malaria Venture [MMV], Switzerland) to identify compounds with antifungal activity against Scedosporium and Lomentospora species. An initial screening of the drugs from this collection at 5 μM was performed using a clinical Scedosporium aurantiacum isolate according to the EUCAST protocol. Compounds with activity against this fungus were also tested against four other species (S. boydii¸ S. dehoogii, S. apiospermum and L. prolificans) at concentrations ranging from 0.078 to 10 μM. Seven compounds inhibited more than 80% of S. aurantiacum growth, three of them (alexidine, amorolfine and olorofim) were selected due to their differences in mechanism of action, especially when compared to drugs from the azole class. These compounds were more active against biofilm formation than against preformed biofilm in Scedosporium and Lomentospora species, except alexidine, which was able to decrease preformed biofilm about 50%. Analysis of the potential synergism of these compounds with voriconazole and caspofungin was performed by the checkerboard method for S. aurantiacum. The analysis by Bliss methodology revealed synergistic effects among selected drugs with caspofungin. When these drugs were combined with voriconazole, only alexidine and amorolfine showed a synergistic effect, whereas olorofim showed an antagonistic effect. Scanning electron microscopy revealed that alexidine induces morphology alterations in S. aurantiacum biofilm grown on a catheter surface. Reactive oxygen species production, mitochondrial activity and surface components were analyzed by fluorescent probes when S. aurantiacum was treated with selected drugs and revealed that some cell parameters are altered by these compounds. In conclusion, alexidine, amorolfine and olorofim were identified as promising compounds to be studied against scedosporiosis and lomentosporiosis.
Collapse
Affiliation(s)
- Rodrigo Rollin-Pinheiro
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (RRP); (EBB)
| | - Mariana Ingrid Dutra da Silva Xisto
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yuri de Castro-Almeida
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor Pereira Rochetti
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luana Pereira Borba-Santos
- Programa de Biologia Celular e Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yasmin da Silva Fontes
- Laboratório de Bioquímica Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Ferreira-Pereira
- Laboratório de Bioquímica Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sonia Rozental
- Programa de Biologia Celular e Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliana Barreto-Bergter
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (RRP); (EBB)
| |
Collapse
|
168
|
Dot Immunobinding Assay for the Rapid Serodetection of Scedosporium/ Lomentospora in Cystic Fibrosis Patients. J Fungi (Basel) 2023; 9:jof9020158. [PMID: 36836272 PMCID: PMC9959861 DOI: 10.3390/jof9020158] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The detection of Scedosporium/Lomentospora is still based on non-standardized low-sensitivity culture procedures. This fact is particularly worrying in patients with cystic fibrosis (CF), where these fungi are the second most common filamentous fungi isolated, because a poor and delayed diagnosis can worsen the prognosis of the disease. To contribute to the discovery of new diagnostic strategies, a rapid serological dot immunobinding assay (DIA) that allows the detection of serum IgG against Scedosporium/Lomentospora in less than 15 min was developed. A crude protein extract from the conidia and hyphae of Scedosporium boydii was employed as a fungal antigen. The DIA was evaluated using 303 CF serum samples (162 patients) grouped according to the detection of Scedosporium/Lomentospora in the respiratory sample by culture, obtaining a sensitivity and specificity of 90.48% and 79.30%, respectively; positive and negative predictive values of 54.81% and 96.77%, and an efficiency of 81.72%. The clinical factors associated with the results were also studied using a univariate and a multivariate analysis, which showed that Scedosporium/Lomentospora positive sputum, elevated anti-Aspergillus serum IgG and chronic Pseudomonas aeruginosa infection were significantly associated with a positive result in DIA, while Staphylococcus aureus positive sputum showed a negative association. In conclusion, the test developed can offer a complementary, rapid, simple and sensitive method to contribute to the diagnosis of Scedosporium/Lomentospora in patients with CF.
Collapse
|
169
|
Rawson TM, Antcliffe DB, Wilson RC, Abdolrasouli A, Moore LSP. Management of Bacterial and Fungal Infections in the ICU: Diagnosis, Treatment, and Prevention Recommendations. Infect Drug Resist 2023; 16:2709-2726. [PMID: 37168515 PMCID: PMC10166098 DOI: 10.2147/idr.s390946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/22/2023] [Indexed: 05/13/2023] Open
Abstract
Bacterial and fungal infections are common issues for patients in the intensive care unit (ICU). Large, multinational point prevalence surveys have identified that up to 50% of ICU patients have a diagnosis of bacterial or fungal infection at any one time. Infection in the ICU is associated with its own challenges. Causative organisms often harbour intrinsic and acquired mechanisms of drug-resistance, making empiric and targeted antimicrobial selection challenging. Infection in the ICU is associated with worse clinical outcomes for patients. We review the epidemiology of bacterial and fungal infection in the ICU. We discuss risk factors for acquisition, approaches to diagnosis and management, and common strategies for the prevention of infection.
Collapse
Affiliation(s)
- Timothy M Rawson
- Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Hammersmith Hospital, London, UK
- Centre for Antimicrobial Optimisation, Imperial College London, Imperial College London, London, UK
- David Price Evan’s Group in Infectious Diseases and Global Health, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
- Correspondence: Timothy M Rawson, Health Protection Research Unit in Healthcare Associated Infections & Antimicrobial Resistance, Hammersmith Hospital, Du Cane Road, London, W12 0NN, United Kingdom, Email
| | - David B Antcliffe
- Centre for Antimicrobial Optimisation, Imperial College London, Imperial College London, London, UK
- Division Anaesthesia, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Richard C Wilson
- Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Hammersmith Hospital, London, UK
- Centre for Antimicrobial Optimisation, Imperial College London, Imperial College London, London, UK
- David Price Evan’s Group in Infectious Diseases and Global Health, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | | | - Luke S P Moore
- Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Hammersmith Hospital, London, UK
- Chelsea & Westminster NHS Foundation Trust, London, UK
- North West London Pathology, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
170
|
Kovács R, Majoros L, Stemler J, Cornely OA, Salmanton-García J. Unveiling the Hungarian landscape of laboratory and clinical management capacities for invasive fungal infections: navigating the frontlines against fungal menaces. Ther Adv Infect Dis 2023; 10:20499361231219315. [PMID: 38116297 PMCID: PMC10729621 DOI: 10.1177/20499361231219315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Background Antifungal diagnostic capacity has been documented in various countries, there is a lack of comprehensive research on clinical mycology diagnostics and treatment in Hungary. Methods We conducted an online survey encompassing questions that explored various aspects of the mycology diagnostic and antifungal therapy-related information. The survey aimed to gather details about institutional profiles, perceptions of invasive fungal infections (IFIs), and access to microscopy, culture, serology, antigen detection, molecular testing, and therapeutic drug monitoring. Results As of May 2023, a total of 17 institutions responded to the questionnaire. Seven participants categorized the institutional incidence of IFI as 'very low', four as 'low', and six as 'mild'. The majority of centers identified Candida spp. (94%) and Aspergillus spp. (82%) as the most prevalent fungal pathogens. Nearly half of the laboratories (47%) reported using matrix-assisted laser desorption/ionization-time of flight mass spectrometry for identification. All institutions had access to microscopy and culture-based diagnostic approaches. A significant number of centers had access to antigen detection (71%) and various molecular assays (59%). Regarding antifungal agents, all reporting sites used at least one triazole, with voriconazole (77%) being the most common mold-active azole. Furthermore, 71% of the centers applied at least one formulation of amphotericin B, and 65% to one echinocandin. However, only 18% of the centers used 5-flucytosine. Conclusion Resource availability for diagnosing and treating IFI in Hungary varies across hospitals based on location. Surveys help identify gaps and limitations in this area. To address these challenges, interregional cooperation within Hungary could be a facilitating strategy.
Collapse
Affiliation(s)
- Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, Clinical Center, University of Debrecen, Nagyerdei krt. 98., Debrecen HU-4032, Hungary
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Medical Microbiology, Clinical Center, University of Debrecen, Debrecen, Hungary
| | - Jannik Stemler
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn-Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Oliver Andreas Cornely
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn-Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
| | - Jon Salmanton-García
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn-Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| |
Collapse
|
171
|
Salmanton-García J, Hoenigl M, Gangneux JP, Segal E, Alastruey-Izquierdo A, Arikan Akdagli S, Lagrou K, Özenci V, Vena A, Cornely OA. The current state of laboratory mycology and access to antifungal treatment in Europe: a European Confederation of Medical Mycology survey. THE LANCET. MICROBE 2023; 4:e47-e56. [PMID: 36463916 DOI: 10.1016/s2666-5247(22)00261-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/16/2022] [Accepted: 09/02/2022] [Indexed: 12/04/2022]
Abstract
Access to the appropriate tools is crucial for early diagnosis and clinical management of invasive fungal infections. This Review aims to describe the invasive fungal infection diagnostic capacity of Europe to better understand the status and the most pressing aspects that need improvement. To our knowledge, this is the first time that the mycological diagnostic capability and access to antifungal treatments of institutions has been evaluated at a pan-European level. Between Nov 1, 2021, and Jan 31, 2022, 388 institutions in Europe self-assessed their invasive fungal infection management capability. Of the 388 participating institutions from 45 countries, 383 (99%) had access to cultures, 375 (97%) to microscopy, 363 (94%) to antigen-detection assays, 329 (85%) to molecular tests (mostly PCR), and 324 (84%) to antibody tests for diagnosis and management. With the exception of microscopy, there were considerable differences in access to techniques among countries according to their gross domestic product. At least one triazole was available in 363 (94%) of the institutions, one echinocandin in 346 (89%), and liposomal amphotericin B in 301 (78%), with country gross domestic product-based differences. Differences were also observed in the access to therapeutic drug monitoring. Although Europe is well prepared to manage invasive fungal infections, some institutions do not have access to certain diagnostic tools and antifungal drugs, despite most being considered essential by WHO. These limitations need to be overcome to ensure that all patients receive the best diagnostic and therapeutic management.
Collapse
Affiliation(s)
- Jon Salmanton-García
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany; Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Martin Hoenigl
- Division of Infectious Diseases, ECMM Center of Excellence for Medical Mycology, Medical University of Graz, Graz, Austria; Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jean-Pierre Gangneux
- CHU de Rennes, INSERM, Institut de Recherche en Santé, Environnement et Travail, (UMR_S 1085), University of Rennes, Rennes, France
| | - Esther Segal
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, Spanish National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Sevtap Arikan Akdagli
- Hacettepe University Faculty of Medicine, Department of Medical Microbiology, Ankara, Türkiye
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Laboratory Medicine, Center of Excellence for Medical Mycology, and National Reference Center for Mycosis, UZ Leuven, Leuven, Belgium
| | - Volkan Özenci
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden; Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Antonio Vena
- Department of Health Sciences, University of Genoa, Genoa, Italy; Infectious Diseases Unit, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Oliver A Cornely
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Clinical Trials Centre Cologne, University of Cologne, Cologne, Germany; Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
172
|
Konsoula A, Agouridis AP, Markaki L, Tsioutis C, Spernovasilis N. Lomentospora prolificans Disseminated Infections: A Systematic Review of Reported Cases. Pathogens 2022; 12:67. [PMID: 36678415 PMCID: PMC9861501 DOI: 10.3390/pathogens12010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Lomentospora prolificans, a rare, highly virulent filamentous fungus with high rates of intrinsic resistance to antifungals, has been associated with different types of infections in immunocompromised as well as immunocompetent individuals. OBJECTIVE To systematically address all relevant evidence regarding L. prolificans disseminated infections in the literature. METHODS We searched Medline via PubMed and Scopus databases through July 2022. We performed a qualitative synthesis of published articles reporting disseminated infections from L. prolificans in humans. RESULTS A total of 87 studies describing 142 cases were included in our systematic review. The pathogen was most frequently reported in disseminated infections in Spain (n = 47), Australia (n = 33), the USA (n = 21), and Germany (n = 10). Among 142 reported cases, 48.5% were males. Underlying conditions identified for the majority of patients included malignancy (72.5%), hemopoietic stem cell transplantation (23.2%), solid organ transplantation (16%), and AIDS (2%). Lungs, central nervous system, skin, eyes, heart and bones/joints were the most commonly affected organs. Neutropenia was recorded in 52% of patients. The mortality rate was as high as 87.3%. CONCLUSIONS To the best of our knowledge, this is the first systematic review conducted on disseminated infections due to this rare microorganism. Physicians should be aware that L. prolificans can cause a diversity of infections with high mortality and primarily affects immunocompromised and neutropenic patients.
Collapse
Affiliation(s)
- Afroditi Konsoula
- Department of Pediatrics, General Hospital of Sitia, 72300 Sitia, Greece
| | - Aris P. Agouridis
- School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus
- Department of Internal Medicine, German Oncology Center, 4108 Limassol, Cyprus
| | - Lamprini Markaki
- “Iliaktida” Pediatric & Adolescents Medical Center, 4001 Limassol, Cyprus
| | | | - Nikolaos Spernovasilis
- Department of Infectious Diseases, German Oncology Center, 4108 Limassol, Cyprus
- School of Medicine, University of Crete, 71303 Heraklion, Greece
| |
Collapse
|
173
|
Puerta-Alcalde P, Garcia-Vidal C. Non- Aspergillus mould lung infections. Eur Respir Rev 2022; 31:31/166/220104. [PMID: 36261156 DOI: 10.1183/16000617.0104-2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/24/2022] [Indexed: 12/20/2022] Open
Abstract
Non-Aspergillus filamentous fungi causing invasive mould infections have increased over the last years due to the widespread use of anti-Aspergillus prophylaxis and increased complexity and survival of immunosuppressed patients. In the few studies that have reported on invasive mould infection epidemiology, Mucorales are the most frequently isolated group, followed by either Fusarium spp. or Scedosporium spp. The overall incidence is low, but related mortality is exceedingly high. Patients with haematological malignancies and haematopoietic stem cell transplant recipients comprise the classical groups at risk of infection for non-Aspergillus moulds due to profound immunosuppression and the vast use of anti-Aspergillus prophylaxis. Solid organ transplant recipients also face a high risk, especially those receiving lung transplants, due to direct exposure of the graft to mould spores with altered mechanical and immunological elimination, and intense, associated immunosuppression. Diagnosing non-Aspergillus moulds is challenging due to unspecific symptoms and radiological findings, lack of specific biomarkers, and low sensitivity of cultures. However, the advent of molecular techniques may prove helpful. Mucormycosis, fusariosis and scedosporiosis hold some differences regarding clinical paradigmatic presentations and preferred antifungal therapy. Surgery might be an option, especially in mucormycosis. Finally, various promising strategies to restore or enhance the host immune response are under current evaluation.
Collapse
|
174
|
Gamaletsou MN, Rammaert B, Brause B, Bueno MA, Dadwal SS, Henry MW, Katragkou A, Kontoyiannis DP, McCarthy MW, Miller AO, Moriyama B, Pana ZD, Petraitiene R, Petraitis V, Roilides E, Sarkis JP, Simitsopoulou M, Sipsas NV, Taj-Aldeen SJ, Zeller V, Lortholary O, Walsh TJ. Osteoarticular Mycoses. Clin Microbiol Rev 2022; 35:e0008619. [PMID: 36448782 PMCID: PMC9769674 DOI: 10.1128/cmr.00086-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Osteoarticular mycoses are chronic debilitating infections that require extended courses of antifungal therapy and may warrant expert surgical intervention. As there has been no comprehensive review of these diseases, the International Consortium for Osteoarticular Mycoses prepared a definitive treatise for this important class of infections. Among the etiologies of osteoarticular mycoses are Candida spp., Aspergillus spp., Mucorales, dematiaceous fungi, non-Aspergillus hyaline molds, and endemic mycoses, including those caused by Histoplasma capsulatum, Blastomyces dermatitidis, and Coccidioides species. This review analyzes the history, epidemiology, pathogenesis, clinical manifestations, diagnostic approaches, inflammatory biomarkers, diagnostic imaging modalities, treatments, and outcomes of osteomyelitis and septic arthritis caused by these organisms. Candida osteomyelitis and Candida arthritis are associated with greater events of hematogenous dissemination than those of most other osteoarticular mycoses. Traumatic inoculation is more commonly associated with osteoarticular mycoses caused by Aspergillus and non-Aspergillus molds. Synovial fluid cultures are highly sensitive in the detection of Candida and Aspergillus arthritis. Relapsed infection, particularly in Candida arthritis, may develop in relation to an inadequate duration of therapy. Overall mortality reflects survival from disseminated infection and underlying host factors.
Collapse
Affiliation(s)
- Maria N. Gamaletsou
- Laiko General Hospital of Athens and Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Blandine Rammaert
- Université de Poitiers, Faculté de médecine, CHU de Poitiers, INSERM U1070, Poitiers, France
| | - Barry Brause
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Marimelle A. Bueno
- Far Eastern University-Dr. Nicanor Reyes Medical Foundation, Manilla, Philippines
| | | | - Michael W. Henry
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Aspasia Katragkou
- Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Ohio State University School of Medicine, Columbus, Ohio, USA
| | | | - Matthew W. McCarthy
- Weill Cornell Medicine of Cornell University, New York, New York, USA
- New York Presbyterian Hospital, New York, New York, USA
| | - Andy O. Miller
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
| | | | - Zoi Dorothea Pana
- Hippokration General Hospital, Aristotle University School of Health Sciences, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | - Ruta Petraitiene
- Weill Cornell Medicine of Cornell University, New York, New York, USA
| | | | - Emmanuel Roilides
- Hippokration General Hospital, Aristotle University School of Health Sciences, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | | | - Maria Simitsopoulou
- Hippokration General Hospital, Aristotle University School of Health Sciences, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | - Nikolaos V. Sipsas
- Laiko General Hospital of Athens and Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Valérie Zeller
- Groupe Hospitalier Diaconesses-Croix Saint-Simon, Paris, France
| | - Olivier Lortholary
- Université de Paris, Faculté de Médecine, APHP, Hôpital Necker-Enfants Malades, Paris, France
- Institut Pasteur, Unité de Mycologie Moléculaire, CNRS UMR 2000, Paris, France
| | - Thomas J. Walsh
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
- Weill Cornell Medicine of Cornell University, New York, New York, USA
- New York Presbyterian Hospital, New York, New York, USA
- Center for Innovative Therapeutics and Diagnostics, Richmond, Virginia, USA
| |
Collapse
|
175
|
Abstract
PURPOSE OF REVIEW Invasive fungal diseases (IFDs) such as invasive aspergillosis continue to be associated with high morbidity and mortality while presenting significant diagnostic challenges. Siderophores are high-affinity Fe 3+ chelators produced by Aspergillus spp. and other fungi capable of causing IFD. Previously evaluated as a treatment target in mucormycosis, siderophores have recently emerged as new diagnostic targets for invasive aspergillosis and scedosporiosis. Here, we review the diagnostic potential of siderophores for diagnosing IFD, with a particular focus on invasive aspergillosis. RECENT FINDINGS The major secreted siderophore of A. fumigatus , triacetylfusarinine C (TAFC), has been successfully detected by mass spectrometry in serum, BALF and urine of patients with invasive aspergillosis, with promising sensitivities and specificities in single-centre studies. Intracellular uptake of siderophores has also been utilized for imaging, wherein fungal siderophores have been conjugated with the easy-to-produce radioactive isotope gallium-68 ( 68 Ga) to visualize infected body sites in PET. For the Scedosporium apiospermum complex, another siderophore N(α)-methyl coprogen B has been shown promising as a marker for airway colonization in early studies. SUMMARY Siderophores and particular TAFC have the potential to revolutionize diagnostic pathways for invasive aspergillosis and other mould infections. However, larger multicentre studies are needed to confirm these promising performances. Methods that allow rapid and cost-effective measurements in routine clinical practice need to be developed, particularly when TAFC is used as a biomarker in patient specimens.
Collapse
|
176
|
Hoenigl M, Lewis R, van de Veerdonk FL, Verweij PE, Cornely OA. Liposomal amphotericin B—the future. J Antimicrob Chemother 2022; 77:ii21-ii34. [PMID: 36426674 PMCID: PMC9693803 DOI: 10.1093/jac/dkac353] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Advances in medicine have led to a growing number of people with compromised or suppressed immune systems who are susceptible to invasive fungal infections. In particular, severe fungal infections are becoming increasingly common in ICUs, affecting people within and outside of traditional risk groups alike. This is exemplified by the emergence of severe viral pneumonia as a significant risk factor for invasive pulmonary aspergillosis, and the recognition of influenza-associated pulmonary aspergillosis and, more recently, COVID-19-associated pulmonary aspergillosis. The treatment landscape for haematological malignancies has changed considerably in recent years, and some recently introduced targeted agents, such as ibrutinib, are increasing the risk of invasive fungal infections. Consideration must also be given to the risk of drug–drug interactions between mould-active azoles and small-molecule kinase inhibitors. At the same time, infections caused by rare moulds and yeasts are increasing, and diagnosis continues to be challenging. There is growing concern about azole resistance among both moulds and yeasts, mandating continuous surveillance and personalized treatment strategies. It is anticipated that the epidemiology of fungal infections will continue to change and that new populations will be at risk. Early diagnosis and appropriate treatment remain the most important predictors of survival, and broad-spectrum antifungal agents will become increasingly important. Liposomal amphotericin B will remain an essential therapeutic agent in the armamentarium needed to manage future challenges, given its broad antifungal spectrum, low level of acquired resistance and limited potential for drug–drug interactions.
Collapse
Affiliation(s)
- M Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz , Graz , Austria
- BioTechMed-Graz , Graz , Austria
- European Confederation of Medical Mycology (ECMM) Excellence Center, Medical University of Graz , Graz , Austria
| | - R Lewis
- Department of Medical and Surgical Sciences, Infectious Diseases Hospital, IRCSS S’Orsola-Malpighi, University of Bologna , Bologna , Italy
| | - F L van de Veerdonk
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center , Nijmegen , The Netherlands
| | - P E Verweij
- Department of Medical Microbiology, Radboud University Medical Center—CWZ Center of Expertise for Mycology , Nijmegen , The Netherlands
- Center for Infectious Disease Research, Diagnostics and Laboratory Surveillance, National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| | - O A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) , Cologne , Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM) , Cologne , Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne , Cologne , Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln) , Cologne , Germany
| |
Collapse
|
177
|
Pagliuca A, Akova M. Foreword. J Antimicrob Chemother 2022; 77:ii1-ii2. [DOI: 10.1093/jac/dkac350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- A Pagliuca
- Department of Haematological Medicine, King’s College Hospital NHS Foundation Trust , London , UK
| | - M Akova
- Department of Infectious Diseases, Hacettepe University School of Medicine , Ankara , Turkey
| |
Collapse
|
178
|
Kai-su P, Hong L, Dong-yan Z, Yan-qing Z, Andrianopoulos A, Latgé JP, Cun-wei C. Study on the mechanisms of action of berberine combined with fluconazole against fluconazole-resistant strains of Talaromyces marneffei. Front Microbiol 2022; 13:1033211. [PMID: 36452929 PMCID: PMC9704026 DOI: 10.3389/fmicb.2022.1033211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 04/05/2024] Open
Abstract
Talaromyces (Penicillium) marneffei (T. marneffei) is a thermally dimorphic fungus that can cause opportunistic systemic mycoses. Our previous study demonstrated that concomitant use of berberine (BBR) and fluconazole (FLC) showed a synergistic action against FLC-resistant T. marneffei (B4) in vitro. In this paper, we tried to figure out the antifungal mechanisms of BBR and FLC in T. marneffei FLC-resistant. In the microdilution test, the minimum inhibitory concentration (MIC) of FLC was 256 μg/ml before FLC and BBR combination, and was 8 μg/ml after combination, the partial inhibitory concentration index (FICI) of B4 was 0.28. After the treatments of BBR and FLC, the studies revealed that (i) increase reactive oxygen species (ROS), (ii) reduce ergosterol content, (iii) destroy the integrity of cell wall and membrane, (iv) decrease the expression of genes AtrF, MDR1, PMFCZ, and Cyp51B however ABC1 and MFS change are not obvious. These results confirmed that BBR has antifungal effect on T. marneffei, and the combination with FLC can restore the susceptibility of FLC-resistant strains to FLC, and the reduction of ergosterol content and the down-regulation of gene expression of AtrF, Mdr1, PMFCZ, and Cyp51B are the mechanisms of the antifungal effect after the combination, which provides a theoretical basis for the application of BBR in the treatment of Talaromycosis and opens up new ideas for treatment of Talaromycosis.
Collapse
Affiliation(s)
- Pan Kai-su
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Mycosis Research and Prevention, Nanning, China
| | - Luo Hong
- Department of Dermatology, Changsha First Hospital, Changsha, China
| | - Zheng Dong-yan
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Mycosis Research and Prevention, Nanning, China
| | - Zheng Yan-qing
- Guangxi Key Laboratory of Mycosis Research and Prevention, Nanning, China
- Fourth People’s Hospital of Nanning, Nanning, China
| | - Alex Andrianopoulos
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Jean-Paul Latgé
- Institute of Molecular Biology and Biotechnology, FORTH and School of Medicine, University of Crete, Crete, Greece
| | - Cao Cun-wei
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Mycosis Research and Prevention, Nanning, China
| |
Collapse
|
179
|
Brent G, Abdul-Wahab A, Borman AM, Ferguson L, Ferreras-Antolin L, Ho B, Johnson EM, Mashhoudi Y, van Rijswijk E, Wijesuriya N, Mansoor N. Disseminated Bisifusarium infection following toxic epidermal necrolysis in a child with B-cell acute lymphoblastic leukemia. Pediatr Dermatol 2022; 40:503-506. [PMID: 36334032 DOI: 10.1111/pde.15179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022]
Abstract
Fusarium is a polyphyletic genus of plant pathogens, members of which can cause opportunistic human infections with varying superficial and systemic presentations, including disseminated infections which typically occur in immunocompromised patients and have a poor prognosis. Treatment is challenging due to intrinsic resistance to many antifungal agents, and antifungal susceptibility testing is therefore essential. Early suspicion, isolation of the organism, and prompt initiation of management are crucial to improving survival. We present a case of disseminated Bisifusarium infection following toxic epidermal necrolysis in a child with B-cell acute lymphoblastic leukemia, successfully treated with liposomal amphotericin B, voriconazole, flucytosine, and terbinafine.
Collapse
Affiliation(s)
- Geoffrey Brent
- Department of Dermatology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Alya Abdul-Wahab
- Department of Dermatology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Andrew M Borman
- UK National Mycology Reference Laboratory, UK Health Security Agency (UKHSA), Bristol, UK.,Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter, UK
| | - Leila Ferguson
- Department of Dermatology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Laura Ferreras-Antolin
- Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter, UK.,Paediatric Infectious Diseases and Immunodeficiencies Unit, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Bernard Ho
- Department of Dermatology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Elizabeth M Johnson
- UK National Mycology Reference Laboratory, UK Health Security Agency (UKHSA), Bristol, UK.,Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter, UK
| | - Yasaman Mashhoudi
- Department of Dermatology, St George's University Hospitals NHS Foundation Trust, London, UK
| | | | - Nilukshi Wijesuriya
- Department of Pathology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Nazish Mansoor
- Department of Dermatology, St George's University Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
180
|
Angulo DA, Alexander B, Rautemaa-Richardson R, Alastruey-Izquierdo A, Hoenigl M, Ibrahim AS, Ghannoum MA, King TR, Azie NE, Walsh TJ. Ibrexafungerp, a Novel Triterpenoid Antifungal in Development for the Treatment of Mold Infections. J Fungi (Basel) 2022; 8:1121. [PMID: 36354888 PMCID: PMC9695964 DOI: 10.3390/jof8111121] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 12/02/2022] Open
Abstract
Molds are ubiquitous in the environment, and immunocompromised patients are at substantial risk of morbidity and mortality due to their underlying disease and the resistance of pathogenic molds to currently recommended antifungal therapies. This combination of weakened-host defense, with limited antifungal treatment options, and the opportunism of environmental molds renders patients at risk and especially vulnerable to invasive mold infections such as Aspergillus and members of the Order Mucorales. Currently, available antifungal drugs such as azoles and echinocandins, as well as combinations of the same, offer some degree of efficacy in the prevention and treatment of invasive mold infections, but their use is often limited by drug resistance mechanisms, toxicity, drug-drug interactions, and the relative paucity of oral treatment options. Clearly, there is a need for agents that are of a new class that provides adequate tissue penetration, can be administered orally, and have broad-spectrum efficacy against fungal infections, including those caused by invasive mold organisms. Ibrexafungerp, an orally bioavailable glucan synthase inhibitor, is the first in a new class of triterpenoid antifungals and shares a similar target to the well-established echinocandins. Ibrexafungerp has a very favorable pharmacokinetic profile for the treatment of fungal infections with excellent tissue penetration in organs targeted by molds, such as the lungs, liver, and skin. Ibrexafungerp has demonstrated in vitro activity against Aspergillus spp. as well as efficacy in animal models of invasive aspergillosis and mucormycosis. Furthermore, ibrexafungerp is approved for use in the USA for the treatment of women with vulvovaginal candidiasis. Ibrexafungerp is currently being evaluated in clinical trials as monotherapy or in combination with other antifungals for treating invasive fungal infections caused by yeasts and molds. Thus, ibrexafungerp offers promise as a new addition to the clinician's armamentarium against these difficult-to-treat infections.
Collapse
Affiliation(s)
| | - Barbara Alexander
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA
| | - Riina Rautemaa-Richardson
- Mycology Reference Centre Manchester, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK
- Department of Infectious Diseases, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Martin Hoenigl
- Division of Infectious Diseases, Medical University of Graz, 8036 Graz, Austria
| | - Ashraf S. Ibrahim
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Mahmoud A. Ghannoum
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | - Thomas J. Walsh
- Center for Innovative Therapeutics and Diagnostics, Richmond, VA 23223, USA
| |
Collapse
|
181
|
James JE, Santhanam J, Cannon RD, Lamping E. Voriconazole Treatment Induces a Conserved Sterol/Pleiotropic Drug Resistance Regulatory Network, including an Alternative Ergosterol Biosynthesis Pathway, in the Clinically Important FSSC Species, Fusarium keratoplasticum. J Fungi (Basel) 2022; 8:jof8101070. [PMID: 36294635 PMCID: PMC9605146 DOI: 10.3390/jof8101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Fusarium keratoplasticum is the Fusarium species most commonly associated with human infections (fusariosis). Antifungal treatment of fusariosis is often hampered by limited treatment options due to resistance towards azole antifungals. The mechanisms of antifungal resistance and sterol biosynthesis in fusaria are poorly understood. Therefore, in this study we assessed the transcriptional response of F. keratoplasticum when exposed to voriconazole. Our results revealed a group of dramatically upregulated ergosterol biosynthesis gene duplicates, most notably erg6A (912-fold), cyp51A (52-fold) and ebp1 (20-fold), which are likely part of an alternative ergosterol biosynthesis salvage pathway. The presence of human cholesterol biosynthesis gene homologs in F. keratoplasticum (ebp1, dhcr7 and dhcr24_1, dhcr24_2 and dhcr24_3) suggests that additional sterol biosynthesis pathways may be induced in fusaria under other growth conditions or during host invasion. Voriconazole also induced the expression of a number of ABC efflux pumps. Further investigations suggested that the highly conserved master regulator of ergosterol biosynthesis, FkSR, and the pleiotropic drug resistance network that induces zinc-cluster transcription factor FkAtrR coordinate the response of FSSC species to azole antifungal exposure. In-depth genome mining also helped clarify the ergosterol biosynthesis pathways of moulds and provided a better understanding of antifungal drug resistance mechanisms in fusaria.
Collapse
Affiliation(s)
- Jasper E. James
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Jacinta Santhanam
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
- Correspondence: (J.S.); (R.D.C.); (E.L.); Tel.: +60-3-9289-7039 (J.S.); +64-3-479-7081 (R.D.C.); +64-3-479-5290 (E.L.)
| | - Richard D. Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Correspondence: (J.S.); (R.D.C.); (E.L.); Tel.: +60-3-9289-7039 (J.S.); +64-3-479-7081 (R.D.C.); +64-3-479-5290 (E.L.)
| | - Erwin Lamping
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Correspondence: (J.S.); (R.D.C.); (E.L.); Tel.: +60-3-9289-7039 (J.S.); +64-3-479-7081 (R.D.C.); +64-3-479-5290 (E.L.)
| |
Collapse
|
182
|
Langfeldt A, Gold JAW, Chiller T. Emerging Fungal Infections: from the Fields to the Clinic, Resistant Aspergillus fumigatus and Dermatophyte Species: a One Health Perspective on an Urgent Public Health Problem. CURRENT CLINICAL MICROBIOLOGY REPORTS 2022; 9:46-51. [PMID: 36188157 PMCID: PMC9512973 DOI: 10.1007/s40588-022-00181-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 11/27/2022]
Abstract
Purpose of Review For this review, we use a One Health approach to examine two globally emerging public health threats related to antifungal drug resistance: triazole-resistant Aspergillus fumigatus infections, which can cause a life-threatening illness in immunocompromised hosts, and antifungal-resistant dermatophytosis, which is an aggressive skin infection caused by dermatophyte molds. We describe the state of current scientific knowledge and outline necessary public health actions to address each issue. Recent Findings Recent evidence has identified the agricultural use of triazole fungicides as an important driver of triazole-resistant A. fumigatus infections. Antifungal-resistant dermatophyte infections are likely driven by the inappropriate use of antifungal drugs and antibacterial and corticosteroid creams. Summary This review highlights the need for a One Health approach to address emerging antifungal resistant infections, emphasizing judicious antifungal use to preserve available treatments; strengthened laboratory capacity to identify antifungal resistance; and improved human, animal, and environmental surveillance to detect emerging resistance, monitor trends, and evaluate the effectiveness of efforts to decrease spread.
Collapse
Affiliation(s)
- Antonia Langfeldt
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Jeremy A. W. Gold
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Tom Chiller
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA USA
| |
Collapse
|
183
|
Ocansey BK, Dadzie EA, Eduful SK, Agyei M, Osei MM, Puplampu P, Asamoah I, Oladele RO, Osaigbovo II, Afriyie-Mensah J, Opintan JA, Essien-Baidoo S, Chakrabarti A, Hoenigl M, Denning DW, Richardson MD. Improving Awareness, Diagnosis and Management of Invasive Fungal Infections in Ghana: Establishment of the Ghana Medical Mycology Society. Med Mycol 2022; 60:6694000. [PMID: 36073757 PMCID: PMC9521337 DOI: 10.1093/mmy/myac069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Invasive fungal infections (IFIs) and medical mycology receive little attention in Ghana. However, the present evolution of biomarker assays for IFIs, offers an opportunity for an increased access to fungal laboratory testing in resource-limited settings, and probably make a case for availability of essential antifungal agents. Using surveys and personal communications, the state of medical mycology and IFI in Ghana were highlighted. Inadequate awareness and insufficient access to fungal diagnostics and therapeutics were identified as the key challenges, the establishment of the Ghana Medical Mycology Society was discussed, and recommendations were made to improve the status quo.
Collapse
Affiliation(s)
- Bright K Ocansey
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Edmund A Dadzie
- Department of Health and Allied Sciences, Baldwin University College, Accra, Ghana
| | - Stephen K Eduful
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Martin Agyei
- Department of Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Mary-Magdalene Osei
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Peter Puplampu
- Department of Medicine and Therapeutics, University of Ghana Medical School, Accra, Ghana.,Department of Medicine and Therapeutics, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Isabella Asamoah
- Department of Medicine and Therapeutics, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Rita O Oladele
- Department of Medical Microbiology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Iriagbonse I Osaigbovo
- Department of Medical Microbiology, College of Medical Sciences, University of Benin, Benin City, Nigeria
| | - Jane Afriyie-Mensah
- Department of Medicine and Therapeutics, University of Ghana Medical School, Accra, Ghana.,Department of Medicine and Therapeutics, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Japheth A Opintan
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Samuel Essien-Baidoo
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Martin Hoenigl
- Section of Infectious Diseases and Tropical Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria.,Division of Infectious Diseases and Global Public Health, University of California San Diego, San Diego, California, USA
| | - David W Denning
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Malcolm D Richardson
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Mycology Reference Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
184
|
Paecilomyces/Purpureocillium Infection in Children, Case Report, and Review of the Literature. J Fungi (Basel) 2022; 8:jof8090930. [PMID: 36135655 PMCID: PMC9501290 DOI: 10.3390/jof8090930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Paecilomyces/Purpureocillium has recently been recognized as an emerging human pathogen, causing serious infection in immunocompromised and immunocompetent patients. Several predisposing factors have been reported, including foreign body implants, previous surgery, or trauma. Treatment with antifungal drugs often fails as species-specific differences in antifungal susceptibilities are one of the management challenges. Surgical debridement with or without antifungal therapy was sufficient to cure the infection in a few reported cases. Nonetheless, the surgical approach has been found to decrease the chance of dissemination and recurrence. Here, we report the first pediatric patient with chronic osteomyelitis of the femur secondary to Paecilomyces species, with no predisposing risk factors. Our case was successfully treated with a combination of antifungal therapy and surgical debridement. Additionally, we describe the first extensive literature review of previously reported Paecilomyces/Purpureocillium species infections in pediatric age groups.
Collapse
|
185
|
Dellière S, Guitard J, Sabou M, Angebault C, Moniot M, Cornu M, Hamane S, Bougnoux ME, Imbert S, Pasquier G, Botterel F, Garcia-Hermoso D, Alanio A. Detection of circulating DNA for the diagnosis of invasive fusariosis: retrospective analysis of 15 proven cases. Med Mycol 2022; 60:6679565. [PMID: 36044994 DOI: 10.1093/mmy/myac049] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/23/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022] Open
Abstract
Fusarium spp. are plant pathogens and opportunistic pathogens in severely immunocompromised (hematological malignancy, neutropenia, solid organ transplantation, …) and severely burned patients. Invasive fusariosis often disseminates and mortality remains high partly due to delayed diagnosis in the absence of a positive culture. The aim of our study is to design a qPCR assay and evaluate the detection of Fusarium spp. DNA for early diagnosis of invasive infection. A qPCR assay was designed and optimized to identify all Fusarium species complex and secondarily evaluated on patient samples. A total of 81 blood samples from 15 patients diagnosed with proven invasive fusariosis from 9 centers in France were retrospectively tested. Circulating DNA was detected in 14 patients out of 15 (sensitivity of 93% [IC95, 70.1-99.7]). Detection was possible up to 18 days (median 6 days) before the diagnosis was confirmed by positive blood culture or biopsy. By comparison serum galactomannan and ß-D-glucan were positive in 7.1 and 58.3% of patients respectively. qPCR was negative for all patients with other invasive fungal diseases (IFD) tested (n = 12) and IFD-free control patients (n = 40). No cross-reactions were detected using DNA extracted from 81 other opportunistic fungi. We developed and validated a pan-Fusarium qPCR assay in serum/plasma with high sensitivity, specificity and reproducibility that could facilitates early diagnosis and treatment monitoring of invasive fusariosis.
Collapse
Affiliation(s)
- Sarah Dellière
- Laboratoire de parasitologie-mycologie, AP-HP, Hôpital Saint-Louis, F-75010 Paris, France.,Institut Pasteur, Université de Paris Cité, CNRS, Unité de Mycologie Moléculaire, UMR2000, F-75015 Paris, France
| | - Juliette Guitard
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Parasitologie-Mycologie, F-75012 Paris, France
| | - Marcela Sabou
- Laboratoire de Parasitologie et de Mycologie Médicale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Parasitologie et de Pathologie Tropicale, UR7292 Dynamique des interactions hôte pathogène, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
| | - Cécile Angebault
- Laboratoire de parasitologie-mycologie, AP-HP, Hôpitaux Universitaires Henri Mondor, UR Dynamyc UPEC, EnVA, ANSES, F-94010 Créteil, France
| | - Maxime Moniot
- Service de parasitologie-mycologie, CHU Clermont-Ferrand, 3IHP, France
| | - Marjorie Cornu
- Inserm U1285, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, F-59000, Lille, France ; CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France
| | - Samia Hamane
- Laboratoire de parasitologie-mycologie, AP-HP, Hôpital Saint-Louis, F-75010 Paris, France
| | | | - Sébastien Imbert
- Laboratoire de parasitologie-mycologie, Bordeaux University Hospital, F-33000 Bordeaux, France
| | - Grégoire Pasquier
- University of Montpellier, CNRS, IRD, Academic Hospital (CHU) of Montpellier, MiVEGEC, Montpellier, France
| | - Françoise Botterel
- Laboratoire de parasitologie-mycologie, AP-HP, Hôpitaux Universitaires Henri Mondor, UR Dynamyc UPEC, EnVA, ANSES, F-94010 Créteil, France
| | - Dea Garcia-Hermoso
- Institut Pasteur, Université de Paris Cité, CNRS, Unité de Mycologie Moléculaire, UMR2000, F-75015 Paris, France.,Institut Pasteur, Centre National de Référence Mycologie et Antifongiques, F-75015 Paris, France
| | - Alexandre Alanio
- Laboratoire de parasitologie-mycologie, AP-HP, Hôpital Saint-Louis, F-75010 Paris, France.,Institut Pasteur, Université de Paris Cité, CNRS, Unité de Mycologie Moléculaire, UMR2000, F-75015 Paris, France.,Institut Pasteur, Centre National de Référence Mycologie et Antifongiques, F-75015 Paris, France
| |
Collapse
|
186
|
Sookto P, Kanjanabuch T, Chamroensakchai T, Thongbor N, Eiam-Ong S. Peritonitis after exposure to biocontrol-agent fumes containing Talaromyces flavus: a case report in peritoneal dialysis patient. BMC Nephrol 2022; 23:279. [PMID: 35945494 PMCID: PMC9364596 DOI: 10.1186/s12882-022-02898-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background The first case of Taralomyces flavus infection in human and peritoneal dialysis (PD) patient after exposure to biocontrol agent fumes is reported here. Case presentation A 77-year-old Thai female farmer with kidney failure presented with peritonitis and PD catheter obstruction from fungal biofilms. The potential root cause of infection was associated with exposure to biocontrol-agent fumes containing pathogen during agricultural work in her garden. This source of infection has not been mentioned previously. Showering and changing clothes right after outdoor activity with a high density of fungal matters or dust should be added to the routine aseptic technique before performing PD bag exchange to prevent the system contamination. Although the patient received early treatment with liposomal amphotericin B, itraconazole, and catheter removal, according to the ISPD Guideline 2016 and the Global Guideline 2021, the outcome was unfavorable. Antifungal susceptibility testing later revealed that the pathogen was only susceptible to voriconazole. Thus, antifungal susceptibility should be tested if the patient fails or slowly responds to the primary antifungal regimen. Conclusions T. flavus peritonitis is reported here after exposure to biocontrol-agent fumes containing the pathogen. This work also alerts and reiterates nephrology peers to be aware of this overlooked source of peritonitis, the exposure to dusty environments, specifically containing biocontrol-agent fumes.
Collapse
Affiliation(s)
- Phanit Sookto
- Department of Medicine, Sunpasitthiprasong Hospital, Ubon Ratchathani, Thailand
| | - Talerngsak Kanjanabuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand. .,Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand. .,Dialysis Policy and Practices Program, School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand. .,CAPD Excellent Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
| | - Tamonwan Chamroensakchai
- Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nisa Thongbor
- Department of Medicine, Sunpasitthiprasong Hospital, Ubon Ratchathani, Thailand
| | - Somchai Eiam-Ong
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
187
|
Sal E, Stemler J, Salmanton-García J, Falces-Romero I, Kredics L, Meyer E, Würstl B, Lass-Flörl C, Racil Z, Klimko N, Cesaro S, Kindo AJ, Wisplinghoff H, Koehler P, Cornely OA, Seidel D. Invasive Trichoderma spp. infections: clinical presentation and outcome of cases from the literature and the FungiScope® registry. J Antimicrob Chemother 2022; 77:2850-2858. [PMID: 35929089 PMCID: PMC9525085 DOI: 10.1093/jac/dkac235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/18/2022] [Indexed: 12/03/2022] Open
Abstract
Background Trichoderma spp. are filamentous fungi causing invasive fungal diseases in patients with haematological malignancies and in peritoneal dialysis patients. Objectives To analyse clinical presentation, predisposing factors, treatment and outcome of Trichoderma infections. Methods A systematic literature review was conducted for published cases of invasive Trichoderma infection in PubMed until December 2021 and by reviewing the included studies’ references. Cases from the FungiScope® registry were added to a combined analysis. Results We identified 50 invasive infections due to Trichoderma species, including 11 in the FungiScope® registry. The main underlying conditions were haematological malignancies in 19 and continuous ambulatory peritoneal dialysis (CAPD) in 10 cases. The most prevalent infection sites were lung (42%) and peritoneum (22%). Systemic antifungal therapy was administered in 42 cases (84%), mostly amphotericin B (n = 27, lipid-based formulation 13/27) and voriconazole in 15 cases (30%). Surgical interventions were performed in 13 cases (26%). Overall mortality was 48% (n = 24) and highest for allogeneic HSCT and solid organ transplantation (SOT) recipients [80% (4/5) and 77% (7/9), respectively]. In patients treated with amphotericin B, voriconazole and caspofungin, mortality was 55% (15/27), 46% (7/15) and 28% (2/7), respectively. Three out of four patients treated with a combination therapy of voriconazole and caspofungin survived. Conclusions Despite treatment with antifungal therapies and surgery, invasive Trichoderma infections are life-threatening complications in immunocompromised patients, especially after HSCT and SOT. In addition, Trichoderma spp. mainly affect the lungs in patients with haematological malignancies and the peritoneum in CAPD patients.
Collapse
Affiliation(s)
- Ertan Sal
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Jannik Stemler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Jon Salmanton-García
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Iker Falces-Romero
- Clinical Microbiology and Parasitology Department, University Hospital La Paz, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Elisabeth Meyer
- Stabsstelle Krankenhaushygiene und Infektionsprävention, München Klinik, München, Germany
| | - Benjamin Würstl
- Stabsstelle Krankenhaushygiene und Infektionsprävention, München Klinik, München, Germany
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Excellence Center for Medical Mycology (ECMM-EC), Medical University of Innsbruck, Innsbruck, Austria
| | - Zdenek Racil
- Institute of Haematology and Blood Transfusion, Prague, Czech Republic.,Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Nikolay Klimko
- Department of Clinical Mycology, Allergology and Immunology, North Western State Medical University, St Petersburg, Russia
| | - Simone Cesaro
- Pediatric Haematology-Oncology, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Anupma Jyoti Kindo
- Department of Microbiology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra University, Porur, Chennai, India
| | - Hilmar Wisplinghoff
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, Cologne, Germany
| | - Philipp Koehler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany
| | - Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), Cologne, Germany
| | - Danila Seidel
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Cologne, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| |
Collapse
|
188
|
Chen YC, Chayakulkeeree M, Chakrabarti A, Gan GG, Kwong YL, Liu WL, Tan BH, Todi S. Unmet needs and practical solutions in the management of invasive mould infections in Asia. J Antimicrob Chemother 2022; 77:2579-2585. [PMID: 35904002 DOI: 10.1093/jac/dkac251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Management of invasive mould infections (IMIs) is challenging in Asia, as awareness among medical practitioners can be low and resources are limited. Timely diagnosis and appropriate treatment of IMIs can mitigate the impact on morbidity and mortality, but diagnostic methods, as well as access to preferred antifungal medications, may vary throughout the region. Knowledge of local epidemiology and accurate diagnosis and identification of causal pathogens would facilitate optimal treatment but data in Asia are lacking. To address these unmet needs in the management of IMIs, this paper is a call for urgent action in the following areas: improving awareness of the threat of IMIs; providing education to frontline clinicians across a broad range of specialties on 'red flags' for suspicion of IMIs; prioritizing cost-effective rapid diagnostic testing; improving access to preferred antifungal medications; and closing the gaps in local epidemiological data on IMIs to inform local treatment guidelines.
Collapse
Affiliation(s)
- Yee-Chun Chen
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Methee Chayakulkeeree
- Division of Infectious Diseases and Tropical Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India.,Doodhadhari Burfani Hospital and Research Institute, Haridwar, India
| | - Gin Gin Gan
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yok Lam Kwong
- Division of Haematology, Oncology and Bone Marrow Transplantation, University of Hong Kong, Pokfulam, Hong Kong
| | - Wei-Lun Liu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan.,Division of Critical Care Medicine, Department of Emergency and Critical Care Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei, Taiwan
| | - Ban Hock Tan
- Department of Infectious Diseases, Singapore General Hospital Singapore 169608, Singapore
| | - Subhash Todi
- Critical Care and Emergency Medicine, AMRI Hospitals, Kolkata, India
| |
Collapse
|
189
|
Chen M, Zhu X, Cong Y, Chen H, Hou Q, Hong N, Chen X, Lei W, Cai J, Lu X, Shuai L, Li X, Deng S, Xu J, Liao W, Pan W, Xu H, de Hoog S. Genotypic diversity and antifungal susceptibility of Scedosporium species from clinical settings in China. Mycoses 2022; 65:1159-1169. [PMID: 35899426 DOI: 10.1111/myc.13507] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Scedosporium species have drawn significant interest as inhabitants of polluted soil and water and as cause of high mortality in near-drowning patients. So far, most cases have been reported from Europe and Australia, while knowledge on their prevalence and genotypic diversity from Asia is scant. OBJECTIVES To increase knowledge of the genetic diversity and in vitro antifungal susceptibility of Scedosporium species involved in human infections from China. METHODS Here we applied the ISHAM-MLST consensus scheme for molecular typing of Scedosporium species and revealed both high species diversity and high genotypic diversity among 45 Chinese clinical Scedosporium isolates. RESULTS Among the five species, Scedosporium boydii (n=22) was the most common, followed by S. apiospermum (n=18), S. aurantiacum (n=4) and S. dehoogii (n=1). S. aurantiacum was reported for the first time from clinical samples in China. The predominant sequence types (STs) were ST17 in S. apiospermum, ST4 in S. boydii and ST92 in S. aurantiacum, including four novel STs (ST40, ST41, ST42 and ST43) in S. apiospermum. Based on the CLSI-M38 A2 criterion, voriconazole was the only antifungal compound with low MIC values (MIC90 ≤ 1 μg/mL) for all Scedosporium isolates in our study. CONCLUSIONS The genetic diversity of clinical isolates of Scedosporium species from China is extremely high, with S. boydii being predominant and S. aurantiacum being firstly reported here. VOR was the only antifungal compound with low MIC values for all Scedosporium isolates in our study, which should be recommended as the first-line antifungal treatment against scedosporiosis in China.
Collapse
Affiliation(s)
- Min Chen
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Shanghai, China.,Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Xinlin Zhu
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Shanghai, China
| | - Yang Cong
- Department of Ultrasound Diagnostic, Shanghai Pulmonary Hospital, Shanghai, China
| | - Hulin Chen
- Department of Dermatology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Qing Hou
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Shanghai, China
| | - Nan Hong
- Department of Dermatology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xinchun Chen
- Department of Laboratory Medicine, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Wenzhi Lei
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Shanghai, China
| | - Jie Cai
- Xiamen Eye Center affiliated to Xiamen University, Xiamen, China
| | - Xiuhai Lu
- Shandong Eye Hospital, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Lihua Shuai
- Department of Laboratory Medicine, The Affiliated Hospital of Jiujiang College, Jiujiang, China
| | - Xinhua Li
- Department of Dermatology, Taiyuan Central Hospital, Taiyuan, China
| | - Shuwen Deng
- Department of Medical Microbiology, People's Hospital of Suzhou National New & Hi-Tech Industrial Development Zone, Suzhou, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, Canada
| | - Wanqing Liao
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Shanghai, China
| | - Weihua Pan
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Shanghai, China
| | - Heping Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Sybren de Hoog
- Center of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| |
Collapse
|
190
|
Nosratabadi M, Akhtari J, Faeli L, Haghani I, Aghili SR, Shokohi T, Hedayati MT, Zarrinfar H, Mohammadi R, Najafzadeh MJ, Khodavaisy S, Al-Harrasi A, Javan-Nikkhah M, Kachuei R, Salimi M, Fattahi M, Badali H, Al Hatmi AMS, Abastabar M. In Vitro Antifungal Susceptibility Profile of Miltefosine against a Collection of Azole and Echinocandins Resistant Fusarium Strains. J Fungi (Basel) 2022; 8:jof8070709. [PMID: 35887464 PMCID: PMC9315751 DOI: 10.3390/jof8070709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Fusarium species are filamentous fungi that cause a variety of infections in humans. Because they are commonly resistant to many antifungal drugs currently available in clinical settings, research into alternative targets in fungal cells and therapeutic approaches is required. The antifungal activity of miltefosine and four comparators, amphotericin B, voriconazole, itraconazole, and caspofungin, were tested in vitro against a collection of susceptible and resistant clinical (n = 68) and environmental (n = 42) Fusarium isolates. Amphotericin B (0.8 μg/mL) had the lowest geometric mean (GM) MICs/MECs values followed by miltefosine (1.44 μg/mL), voriconazole (2.15 μg/mL), caspofungin (7.23 μg/mL), and itraconazole (14.19 μg/mL). Miltefosine was the most effective agent against Fusarium isolates after amphotericin B indicating that miltefosine has the potential to be studied as a novel treatment for Fusarium infections.
Collapse
Affiliation(s)
- Mohsen Nosratabadi
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 4816983663, Iran; (M.N.); (L.F.); (I.H.); (S.R.A.); (T.S.); (M.T.H.); (M.S.)
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 4816983663, Iran
| | - Javad Akhtari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari 4816983663, Iran;
| | - Leila Faeli
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 4816983663, Iran; (M.N.); (L.F.); (I.H.); (S.R.A.); (T.S.); (M.T.H.); (M.S.)
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 4816983663, Iran
| | - Iman Haghani
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 4816983663, Iran; (M.N.); (L.F.); (I.H.); (S.R.A.); (T.S.); (M.T.H.); (M.S.)
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 4816983663, Iran
| | - Seyed Reza Aghili
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 4816983663, Iran; (M.N.); (L.F.); (I.H.); (S.R.A.); (T.S.); (M.T.H.); (M.S.)
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 4816983663, Iran
| | - Tahereh Shokohi
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 4816983663, Iran; (M.N.); (L.F.); (I.H.); (S.R.A.); (T.S.); (M.T.H.); (M.S.)
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 4816983663, Iran
| | - Mohammad Taghi Hedayati
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 4816983663, Iran; (M.N.); (L.F.); (I.H.); (S.R.A.); (T.S.); (M.T.H.); (M.S.)
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 4816983663, Iran
| | - Hossein Zarrinfar
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad 9176699199, Iran;
| | - Rasoul Mohammadi
- Department of Medical Parasitology and Mycology, Infectious Diseases and Tropical Medicine Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Mohammad Javad Najafzadeh
- Department of Parasitology and Mycology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9176699199, Iran;
| | - Sadegh Khodavaisy
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran 1717613151, Iran;
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman;
| | - Mohammad Javan-Nikkhah
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj 3158777871, Iran;
| | - Reza Kachuei
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran;
| | - Maryam Salimi
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 4816983663, Iran; (M.N.); (L.F.); (I.H.); (S.R.A.); (T.S.); (M.T.H.); (M.S.)
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 4816983663, Iran
| | - Mahsa Fattahi
- Centre for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran 1416613675, Iran;
| | - Hamid Badali
- South Texas Center for Emerging Infectious Diseases, Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA;
| | - Abdullah M. S. Al Hatmi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman;
- Center of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Correspondence: (A.M.S.A.H.); (M.A.); Tel.: +968-25446654 (A.M.S.A.H.); +98-9112111347 (M.A.); Fax: +968-25446612 (A.M.S.A.H.); +98-33543248 (M.A.)
| | - Mahdi Abastabar
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari 4816983663, Iran; (M.N.); (L.F.); (I.H.); (S.R.A.); (T.S.); (M.T.H.); (M.S.)
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari 4816983663, Iran
- Correspondence: (A.M.S.A.H.); (M.A.); Tel.: +968-25446654 (A.M.S.A.H.); +98-9112111347 (M.A.); Fax: +968-25446612 (A.M.S.A.H.); +98-33543248 (M.A.)
| |
Collapse
|
191
|
Evaluation of a custom Sensititre YeastOne plate for susceptibility testing of isavuconazole and other antifungals against clinically relevant yeast and mould species in three Australian diagnostic mycology laboratories. Pathology 2022; 54:922-927. [DOI: 10.1016/j.pathol.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/02/2022] [Accepted: 05/08/2022] [Indexed: 11/21/2022]
|
192
|
Hoenigl M, Seidel D, Carvalho A, Rudramurthy SM, Arastehfar A, Gangneux JP, Nasir N, Bonifaz A, Araiza J, Klimko N, Serris A, Lagrou K, Meis JF, Cornely OA, Perfect JR, White PL, Chakrabarti A. The emergence of COVID-19 associated mucormycosis: a review of cases from 18 countries. THE LANCET. MICROBE 2022; 3:e543-e552. [PMID: 35098179 PMCID: PMC8789240 DOI: 10.1016/s2666-5247(21)00237-8] [Citation(s) in RCA: 259] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Reports of COVID-19-associated mucormycosis have been increasing in frequency since early 2021, particularly among patients with uncontrolled diabetes. Patients with diabetes and hyperglycaemia often have an inflammatory state that could be potentiated by the activation of antiviral immunity to SARS-CoV2, which might favour secondary infections. In this Review, we analysed 80 published and unpublished cases of COVID-19-associated mucormycosis. Uncontrolled diabetes, as well as systemic corticosteroid treatment, were present in most patients with COVID-19-associated mucormycosis, and rhino-orbital cerebral mucormycosis was the most frequent disease. Mortality was high at 49%, which was particularly due to patients with pulmonary or disseminated mucormycosis or cerebral involvement. Furthermore, a substantial proportion of patients who survived had life-changing morbidities (eg, loss of vision in 46% of survivors). Our Review indicates that COVID-19-associated mucormycosis is associated with high morbidity and mortality. Diagnosis of pulmonary mucormycosis is particularly challenging, and might be frequently missed in India.
Collapse
Affiliation(s)
- Martin Hoenigl
- Division of Infectious Diseases, ECMM Center of Excellence for Medical Mycology, Medical University of Graz, Graz, Austria
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Clinical and Translational Fungal Working Group, University of California San Diego, La Jolla, CA, USA
| | - Danila Seidel
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Department of Internal Medicine, ECMM Center of Excellence for Medical Mycology, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- PT Government Associate Laboratory, Guimarães, Portugal
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Jean-Pierre Gangneux
- Environnement et Travail, Univ Rennes, CHU Rennes, Inserm, Institut de Recherche en Santé, Rennes, France
| | - Nosheen Nasir
- Section of Adult Infectious Diseases, Department of Medicine, Aga Khan University Karachi, Karachi, Pakistan
| | - Alexandro Bonifaz
- Dermatology Service, Hospital General De México Dr Eduardo Liceaga, Mexico City, Mexico
| | - Javier Araiza
- Dermatology Service, Hospital General De México Dr Eduardo Liceaga, Mexico City, Mexico
| | - Nikolai Klimko
- Department of Clinical Mycology, Allergy and Immunology, North Western State Medical University named after II Mechnikov, St Petersburg, Russia
| | - Alexandra Serris
- Department of Infectious Diseases, Necker-Enfants Malades University Hospital, Paris, France
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Centre for Mycosis, ECMM Center of Excellence for Medical Mycology, University Hospitals Leuven, Leuven, Belgium
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, ECMM Center of Excellence for Medical Mycology, Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, Netherlands
- Center of Expertise in Mycology, Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, Netherlands
- Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná, Curitiba, Brazil
| | - Oliver A Cornely
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Department of Internal Medicine, ECMM Center of Excellence for Medical Mycology, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Clinical Trials Centre Cologne, ZKS Köln, University of Cologne, Cologne, Germany
| | - John R Perfect
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC, USA
| | - P Lewis White
- Public Health Wales Mycology Reference Laboratory, UHW, Cardiff, UK
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
193
|
Species Identification and In Vitro Antifungal Susceptibility of Paecilomyces/Purpureocillium Species Isolated from Clinical Respiratory Samples: A Multicenter Study. J Fungi (Basel) 2022; 8:jof8070684. [PMID: 35887446 PMCID: PMC9321559 DOI: 10.3390/jof8070684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/01/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Paecilomyces spp. are emerging fungal pathogens, where Paecilomyces lilacinus and Paecilomyces variotii are the most reported species. Taxonomic and phylogenetic revisions in this genus have shown that P. variotii represents a species complex, whereas P. lilacinus is related to another genus called Purpureocillium. The aims of this study were to identify clinical isolates of Paecilomyces spp. at the species level, and to determine their antifungal susceptibility profiles. 70 clinical Paecilomyces spp. isolates were identified by MALDI-TOF Mass Spectrometry (MS) and by multilocus rDNA genes sequencing including ITS and the D1/D2 genes. Among the 70 Paecilomyces spp. isolates, 28 were identified as P. lilacinum, 26 as P. variotii stricto sensu, and 16 as P. maximus. For antifungal susceptibility testing, Minimal Inhibitory Concentrations (MICs) or Minimal Effective Concentrations (MECs) were determined for 8 antifungals. All P. lilacinum isolates had high MICs and MECs of amphotericin B and echinocandins, respectively, unlike P. variotii and P. maximus. For azole drugs, MICs were molecule- and species- dependent. The differences in in vitro susceptibility to antifungals underline the importance of accurate species identification. The MALDI–TOF MS can be a good alternative in routine laboratory to ensure fast identification of Paecilomyces spp. and P. lilacinum.
Collapse
|
194
|
Konsoula A, Tsioutis C, Markaki I, Papadakis M, Agouridis AP, Spernovasilis N. Lomentospora prolificans: An Emerging Opportunistic Fungal Pathogen. Microorganisms 2022; 10:1317. [PMID: 35889036 PMCID: PMC9316904 DOI: 10.3390/microorganisms10071317] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 01/27/2023] Open
Abstract
Lomentospora prolificans is an emerging opportunistic pathogen that primarily affects immunocompromised individuals leading to disseminated disease with high mortality rates while also causing infections in healthy populations. Successful recovery from infection is difficult due to high rates of intrinsic resistance to antifungals. Rapid and readily available diagnostic methods, aggressive surgical debridement wherever appropriate, and effective and timely antifungal treatment are the pillars for successful management. Future research will need to clarify the environmental niche of the fungus, further investigate the pathophysiology of infection and define species-specific therapeutic targets.
Collapse
Affiliation(s)
- Afroditi Konsoula
- Department of Pediatrics, General Hospital of Sitia, 72300 Sitia, Greece;
| | | | - Ioulia Markaki
- 3rd Department of Internal Medicine, “Sotiria” General Hospital, 11527 Athens, Greece;
| | - Michail Papadakis
- Department of Internal Medicine, “Agios Panteleimon” General Hospital of Nikaia, 18454 Piraeus, Greece;
| | - Aris P. Agouridis
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus;
- Department of Internal Medicine, German Oncology Center, Limassol 4108, Cyprus
| | - Nikolaos Spernovasilis
- Department of Infectious Diseases, German Oncology Center, Limassol 4108, Cyprus;
- School of Medicine, University of Crete, 71303 Heraklion, Greece
| |
Collapse
|
195
|
He Y, Zheng HL, Mei H, Lv GX, Liu WD, Li XF. Phaeohyphomycosis in China. Front Cell Infect Microbiol 2022; 12:895329. [PMID: 35770068 PMCID: PMC9235401 DOI: 10.3389/fcimb.2022.895329] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundDue to more attentions paid to melanized fungi over the past few decades and under the background of the global coronavirus disease 2019 pandemic (COVID-19) the fact that the virus itself and the immunosuppressive agents such as glucocorticoids can further increase the risk of infections of deep mycoses, the number of patients with phaeohyphomycosis (PHM) has a substantial increase. Their spectrum is broad and the early diagnosis and treatments are extremely sticky. This study aims to more comprehensively understand the clinical features of phaeohyphomycosis in China over 35 years and to establish a more applicable systematical classification and severity grades of lesions to guide treatments and prognosis.MethodsWe reviewed 174 cases of proven phaeohyphomycosis reported in Chinese and English language literature from 1987 to 2021 and we also made the accurate classification definitions and detailed information about the epidemiology, species of clinical dematiaceous fungi, minimum inhibitory concentration values, clinical features, treatments, and prognosis.ResultsThe mortality of cerebral, disseminated and pulmonary phaeohyphomycosis are 55%, 36%, and 25%. Nearly 19% of patients had poor quality of life caused by the complications such as disability, disfigurements, and blindness. The overall misdiagnosis rate of phaeohyphomycosis was 74%. Moderate to severe rashes are accounting for 82% of subcutaneous phaeohyphomycosis. The areas of the head and face are mostly affected accounting for 16% of severe rashes. Nearly 30% of invasive infections of phaeohyphomycosis are triggered by recurrent lesions. Voriconazole, itraconazole, amphotericin B deoxycholate (AmB-DOC), and terbinafine were most commonly used but diagnosis and treatments of phaeohyphomycosis remain challenging in reality.ConclusionsOur classifications are likely to be more practical and easier to popularize, and there are still also plenty of characteristics in these non-specific lesions. There’re no significant variations in cure rates, or death rates between three grades of lesions. But patients with severe rashes have longer courses and lower effective rates.
Collapse
Affiliation(s)
- Yun He
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
- Institute of Dermatology, Chinese Academy of Medical Science, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- Skin Disease Prevention and Treatment Institute of Yixing, Yixing, China
| | - Hai-lin Zheng
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
- Institute of Dermatology, Chinese Academy of Medical Science, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Huan Mei
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
- Institute of Dermatology, Chinese Academy of Medical Science, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Gui-xia Lv
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
- Institute of Dermatology, Chinese Academy of Medical Science, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Wei-da Liu
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
- Institute of Dermatology, Chinese Academy of Medical Science, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- *Correspondence: Wei-da Liu, ; Xiao-fang Li,
| | - Xiao-fang Li
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
- Institute of Dermatology, Chinese Academy of Medical Science, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- *Correspondence: Wei-da Liu, ; Xiao-fang Li,
| |
Collapse
|
196
|
Disseminated fusariosis with cerebral involvement in a patient with acute myeloid leukemia: Successful outcome with intrathecal –and systemic antifungal treatment. J Infect Chemother 2022; 28:1324-1328. [DOI: 10.1016/j.jiac.2022.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 04/14/2022] [Indexed: 12/31/2022]
|
197
|
K S, B P, M P, M A, V L. A case of bilateral injection abscesses caused by Graphium type of Scedosporium apiospermum. Med Mycol Case Rep 2022; 37:8-12. [PMID: 35676922 PMCID: PMC9168045 DOI: 10.1016/j.mmcr.2022.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/11/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022] Open
Abstract
Fungal infections with non-Aspergillus species are increasingly reported even among immunocompetent individuals. We report a case of bilateral injection abscesses by Scedosporium apiospermum in an immunocompetent patient. This rare fungus was isolated and identified by culture from the surgical tissue and was confirmed by Vitek MS and sequencing of the internal transcribed spaces region of rDNA. The patient is being treated with Voriconazole for the past 3 months with no recurrence of the abscesses.
Collapse
|
198
|
Egger M, Hoenigl M, Thompson GR, Carvalho A, Jenks JD. Let's talk about Sex Characteristics - as a Risk Factor for Invasive Fungal Diseases. Mycoses 2022; 65:599-612. [PMID: 35484713 DOI: 10.1111/myc.13449] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/01/2022]
Abstract
Biological sex, which comprises differences in host sex hormone homeostasis and immune responses, can have a substantial impact on the epidemiology of infectious diseases. Comprehensive data on sex distributions in invasive fungal diseases (IFDs) is lacking. In this review we performed a literature search of in vitro/animal studies, clinical studies, systematic reviews, and meta-analyses of invasive fungal infections. Females represented 51.2% of invasive candidiasis cases, mostly matching the proportions of females among the general population in the United States and Europe (>51%). In contrast, other IFDs were overrepresented in males, including invasive aspergillosis (51% males), mucormycosis (60%), cryptococcosis (74%), coccidioidomycosis (70%), histoplasmosis (61%), and blastomycosis (66%). Behavioral variations, as well as differences related to biological sex, may only in part explain these findings. Further investigations concerning the association between biological sex/gender and the pathogenesis of IFDs is warranted.
Collapse
Affiliation(s)
- Matthias Egger
- Division of Infectious Diseases, Medical University of Graz, Austria
| | - Martin Hoenigl
- Division of Infectious Diseases, Medical University of Graz, Austria.,Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA, USA.,Clinical and Translational Fungal - Working Group, University of California San Diego, La Jolla, CA, USA
| | - George R Thompson
- University of California Davis Center for Valley Fever, California, USA.,Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, California, USA.,Department of Medical Microbiology and Immunology, University of California Davis, California, USA
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | |
Collapse
|
199
|
Gold JAW, Revis A, Thomas S, Perry L, Blakney RA, Chambers T, Bentz ML, Berkow EL, Lockhart SR, Lysen C, Nunnally NS, Jordan A, Kelly HC, Montero AJ, Farley MM, Oliver NT, Pouch SM, Webster AS, Jackson BR, Beer KD. Clinical Characteristics, Healthcare Utilization, and Outcomes among Patients in a Pilot Surveillance System for Invasive Mold Disease—Georgia, United States, 2017–2019. Open Forum Infect Dis 2022; 9:ofac215. [DOI: 10.1093/ofid/ofac215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/19/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
Invasive mold diseases (IMD) cause severe illness, but public health surveillance data are lacking. We describe data collected from a laboratory-based, pilot IMD surveillance system.
Methods
During 2017–2019, the Emerging Infections Program conducted active IMD surveillance at three Atlanta-area hospitals. We ascertained potential cases by reviewing histopathology, culture, and Aspergillus galactomannan results and classified patients as having an IMD case (based on European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group [MSG] criteria) or a non-MSG IMD case (based on the treating clinician’s diagnosis and use of mold-active antifungal therapy). We described patient features and compared patients with MSG versus non-MSG IMD cases.
Results
Among 304 patients with potential IMD, 104 (34.2%) met an IMD case definition (41 MSG, 63 non-MSG). The most common IMD types were invasive aspergillosis (n = 66, 63.5%), mucormycosis (n = 8, 7.7%), and fusariosis (n = 4, 3.8%); the most frequently affected body sites were pulmonary (n = 66, 63.5%), otorhinolaryngologic (n = 17, 16.3%), and cutaneous/deep tissue (n = 9, 8.7%). Forty-five (43.3%) IMD patients received intensive care unit-level care, and 90-day all-cause mortality was 32.7%; these outcomes did not differ significantly between MSG and non-MSG IMD patients.
Conclusions
IMD patients had high mortality rates and a variety of clinical presentations. Comprehensive IMD surveillance is needed to assess emerging trends, and strict application of MSG criteria for surveillance might exclude > one-half of clinically significant IMD cases.
Collapse
Affiliation(s)
| | - Andrew Revis
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
- Georgia Emerging Infections, Atlanta, GA, USA
| | - Stepy Thomas
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
- Georgia Emerging Infections, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lewis Perry
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
- Georgia Emerging Infections, Atlanta, GA, USA
| | - Rebekah A. Blakney
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
- Georgia Emerging Infections, Atlanta, GA, USA
| | - Taylor Chambers
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
- Georgia Emerging Infections, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | | - Monica M. Farley
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
- Georgia Emerging Infections, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nora T. Oliver
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
- Georgia Emerging Infections, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stephanie M. Pouch
- Georgia Emerging Infections, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Andrew S. Webster
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
- Georgia Emerging Infections, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | |
Collapse
|
200
|
Egger M, Penziner S, Dichtl K, Gornicec M, Kriegl L, Krause R, Khong E, Mehta S, Vargas M, Gianella S, Porrachia M, Jenks JD, Venkataraman I, Hoenigl M. Performance of the Euroimmun Aspergillus Antigen ELISA for the Diagnosis of Invasive Pulmonary Aspergillosis in Bronchoalveolar Lavage Fluid. J Clin Microbiol 2022; 60:e0021522. [PMID: 35350844 PMCID: PMC9020356 DOI: 10.1128/jcm.00215-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Invasive pulmonary aspergillosis (IPA) is a life-threatening disease that affects mainly immunocompromised hosts. Galactomannan testing from serum and bronchoalveolar lavage fluid (BALF) represents a cornerstone in diagnosing the disease. Here, we evaluated the diagnostic performance of the novel Aspergillus-specific galactomannoprotein (GP) enzyme-linked immunosorbent assay (ELISA; Euroimmun Medizinische Labordiagnostika) compared with the established Platelia Aspergillus GM ELISA (GM; Bio-Rad Laboratories) for the detection of Aspergillus antigen in BALF. Using the GP ELISA, we retrospectively tested 115 BALF samples from 115 patients with clinical suspicion of IPA and GM analysis ordered in clinical routine. Spearman's correlation statistics and receiver operating characteristics (ROC) curve analysis were performed. Optimal cutoff values were determined using Youden's index. Of 115 patients, 1 patient fulfilled criteria for proven IPA, 42 for probable IPA, 15 for putative IPA, 10 for possible IPA, and 47 did not meet criteria for IPA. Sensitivities and specificities for differentiating proven/probable/putative versus no IPA (possible excluded) were 74% and 96% for BALF GP and 90% and 96% for BALF GM at the manufacturer-recommended cutoffs. Using the calculated optimal cutoff value of 12 pg/mL, sensitivity and specificity of the BALF GP were 90% and 96%, respectively. ROC curve analysis showed an area under the curve (AUC) of 0.959 (95% confidence interval [CI] of 0.923 to 0.995) for the GP ELISA and an AUC of 0.960 (95% CI of 0.921 to 0.999) for the GM ELISA for differentiating proven/probable/putative IPA versus no IPA. Spearman's correlation analysis showed a strong correlation between the ELISAs (rho = 0.809, P < 0.0001). The GP ELISA demonstrated strong correlation and test performance similar to that of the GM ELISA and could serve as an alternative test for BALF from patients at risk for IPA.
Collapse
Affiliation(s)
- Matthias Egger
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Samuel Penziner
- Division of Infectious Diseases and Global Public Health, University of California San Diego, San Diego, California, USA
| | - Karl Dichtl
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Max Gornicec
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Lisa Kriegl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Robert Krause
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Ethan Khong
- Division of Infectious Diseases and Global Public Health, University of California San Diego, San Diego, California, USA
| | - Sanjay Mehta
- Division of Infectious Diseases and Global Public Health, University of California San Diego, San Diego, California, USA
| | - Milenka Vargas
- Division of Infectious Diseases and Global Public Health, University of California San Diego, San Diego, California, USA
| | - Sara Gianella
- Division of Infectious Diseases and Global Public Health, University of California San Diego, San Diego, California, USA
| | - Magali Porrachia
- Division of Infectious Diseases and Global Public Health, University of California San Diego, San Diego, California, USA
| | - Jeffrey D. Jenks
- Durham County Department of Public Health, Durham, North Carolina, USA
| | | | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Division of Infectious Diseases and Global Public Health, University of California San Diego, San Diego, California, USA
- Clinical and Translational Fungal-Working Group, University of California San Diego, San Diego, California, USA
| |
Collapse
|