151
|
Rauch M, Luo J, Avram L, Ben-David Y, Milstein D. Mechanistic Investigations of Ruthenium Catalyzed Dehydrogenative Thioester Synthesis and Thioester Hydrogenation. ACS Catal 2021; 11:2795-2807. [PMID: 33763290 PMCID: PMC7976608 DOI: 10.1021/acscatal.1c00418] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/03/2021] [Indexed: 12/12/2022]
Abstract
![]()
We have recently reported the previously
unknown synthesis of thioesters
by coupling thiols and alcohols (or aldehydes) with liberation of
H2, as well as the reverse hydrogenation of thioesters,
catalyzed by a well-defined ruthenium acridine-9H based pincer complex.
These reactions are highly selective and are not deactivated by the
strongly coordinating thiols. Herein, the mechanism of this reversible
transformation is investigated in detail by a combined experimental
and computational (DFT) approach. We elucidate the likely pathway
of the reactions, and demonstrate experimentally how hydrogen gas
pressure governs selectivity toward hydrogenation or dehydrogenation.
With respect to the dehydrogenative process, we discuss a competing
mechanism for ester formation, which despite being thermodynamically
preferable, it is kinetically inhibited due to the relatively high
acidity of thiol compared to alcohol and, accordingly, the substantial
difference in the relative stabilities of a ruthenium thiolate intermediate
as opposed to a ruthenium alkoxide intermediate. Accordingly, various
additional reaction pathways were considered and are discussed herein,
including the dehydrogenative coupling of alcohol to ester and the
Tischenko reaction coupling aldehyde to ester. This study should inform
future green, (de)hydrogenative catalysis with thiols and other transformations
catalyzed by related ruthenium pincer complexes.
Collapse
Affiliation(s)
- Michael Rauch
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jie Luo
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Liat Avram
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yehoshoa Ben-David
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Milstein
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
152
|
Balaji S, Balamurugan G, Ramesh R, Semeril D. Palladium(II) N^O Chelating Complexes Catalyzed One-Pot Approach for Synthesis of Quinazolin-4(3H)-ones via Acceptorless Dehydrogenative Coupling of Benzyl Alcohols and 2-Aminobenzamide. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00814] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sundarraman Balaji
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli, 620 024, India
| | - Gunasekaran Balamurugan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli, 620 024, India
| | - Rengan Ramesh
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli, 620 024, India
| | - David Semeril
- Laboratoire de Chimie Inorganique et Catalyse, Institut de Chimie, Universite de Strasbourg, UMR 7177, CNRS, Strasbourg, 67070, France
| |
Collapse
|
153
|
Rana J, Nagarasu P, Subaramanian M, Mondal A, Madhu V, Balaraman E. Manganese-Catalyzed C(α)-Alkylation of Oxindoles with Secondary Alcohols via Borrowing Hydrogen. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jagannath Rana
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Palaniyappan Nagarasu
- Department of Applied Chemistry, Karunya Institute of Technology and Science (Deemed to be University), Coimbatore 641114, Tamil Nadu, India
| | - Murugan Subaramanian
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Akash Mondal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Vedichi Madhu
- Department of Applied Chemistry, Karunya Institute of Technology and Science (Deemed to be University), Coimbatore 641114, Tamil Nadu, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| |
Collapse
|
154
|
Ge R, Huo J, Sun M, Zhu M, Li Y, Chou S, Li W. Surface and Interface Engineering: Molybdenum Carbide-Based Nanomaterials for Electrochemical Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e1903380. [PMID: 31532899 DOI: 10.1002/smll.201903380] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/31/2019] [Indexed: 06/10/2023]
Abstract
Molybdenum carbide (Mox C)-based nanomaterials have shown competitive performances for energy conversion applications based on their unique physicochemical properties. A large surface area and proper surface atomic configuration are essential to explore potentiality of Mox C in electrochemical applications. Although considerable efforts are made on the development of advanced Mox C-based catalysts for energy conversion with high efficiency and stability, some urgent issues, such as low electronic conductivity, low catalytic efficiency, and structural instability, have to be resolved in accordance with their application environments. Surface and interface engineering have shown bright prospects to construct highly efficient Mox C-based electrocatalysts for energy conversion including the hydrogen evolution reaction, oxygen evolution reaction, nitrogen reduction reaction, and carbon dioxide reduction reaction. In this Review, the recent progresses in terms of surface and interface engineering of Mox C-based electrocatalytic materials are summarized, including the increased number of active sites by decreasing the particle size or introducing porous or hierarchical structures and surface modification by introducing heteroatom(s), defects, carbon materials, and others electronic conductive species. Finally, the challenges and prospects for energy conversion on Mox C-based nanomaterials are discussed in terms of key performance parameters for the catalytic performance.
Collapse
Affiliation(s)
- Riyue Ge
- Institute of Materials, School of Materials Science and Engineering/Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Juanjuan Huo
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Mingjie Sun
- Institute of Materials, School of Materials Science and Engineering/Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Mingyuan Zhu
- Institute of Materials, School of Materials Science and Engineering/Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Ying Li
- Institute of Materials, School of Materials Science and Engineering/Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Shulei Chou
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, North Wollongong, New South Wales, 2522, Australia
| | - Wenxian Li
- Institute of Materials, School of Materials Science and Engineering/Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
- Shanghai Key Laboratory of High Temperature Superconductors, Shanghai, 200444, China
| |
Collapse
|
155
|
Zou YQ, von Wolff N, Rauch M, Feller M, Zhou QQ, Anaby A, Diskin-Posner Y, Shimon LJW, Avram L, Ben-David Y, Milstein D. Homogeneous Reforming of Aqueous Ethylene Glycol to Glycolic Acid and Pure Hydrogen Catalyzed by Pincer-Ruthenium Complexes Capable of Metal-Ligand Cooperation. Chemistry 2021; 27:4715-4722. [PMID: 33369774 DOI: 10.1002/chem.202005450] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 12/20/2022]
Abstract
Glycolic acid is a useful and important α-hydroxy acid that has broad applications. Herein, the homogeneous ruthenium catalyzed reforming of aqueous ethylene glycol to generate glycolic acid as well as pure hydrogen gas, without concomitant CO2 emission, is reported. This approach provides a clean and sustainable direction to glycolic acid and hydrogen, based on inexpensive, readily available, and renewable ethylene glycol using 0.5 mol % of catalyst. In-depth mechanistic experimental and computational studies highlight key aspects of the PNNH-ligand framework involved in this transformation.
Collapse
Affiliation(s)
- You-Quan Zou
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Niklas von Wolff
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel.,Present address: Laboratoire d'Electrochimie Moléculaire, CNRS, Université de Paris, 75006, Paris, France
| | - Michael Rauch
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Moran Feller
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Quan-Quan Zhou
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Aviel Anaby
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yael Diskin-Posner
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Linda J W Shimon
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Liat Avram
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yehoshoa Ben-David
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - David Milstein
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
156
|
Zhuang X, Tao J, Luo Z, Hong C, Liu Z, Li Q, Ren L, Luo Q, Liu T. Silver catalyzed pyridine‐directed acceptorless dehydrogenation of secondary alcohols. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xin Zhuang
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Jing Tao
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Zhen Luo
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Chuan‐Ming Hong
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Zheng‐Qiang Liu
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Qing‐Hua Li
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Li‐Qing Ren
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Qun‐Li Luo
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Tang‐Lin Liu
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| |
Collapse
|
157
|
Quinlivan PJ, Loo A, Shlian DG, Martinez J, Parkin G. N-Heterocyclic Carbene Complexes of Nickel, Palladium, and Iridium Derived from Nitron: Synthesis, Structures, and Catalytic Properties. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00679] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Patrick J. Quinlivan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Aaron Loo
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Daniel G. Shlian
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Joan Martinez
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Gerard Parkin
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
158
|
Bhattacharyya D, Sarmah BK, Nandi S, Srivastava HK, Das A. Selective Catalytic Synthesis of α-Alkylated Ketones and β-Disubstituted Ketones via Acceptorless Dehydrogenative Cross-Coupling of Alcohols. Org Lett 2021; 23:869-875. [DOI: 10.1021/acs.orglett.0c04098] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dipanjan Bhattacharyya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Bikash Kumar Sarmah
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sekhar Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Hemant Kumar Srivastava
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Guwahati, Guwahati 781101, Assam, India
| | - Animesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
159
|
Li RJ, Wang Y, Jin Y, Deng W, Liu ZJ, Yao ZJ. NHC ligand-based half-sandwich iridium complexes: synthesis, structure and catalytic activity in acceptorless dehydrogenation and transfer hydrogenation. NEW J CHEM 2021. [DOI: 10.1039/d1nj03824a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Half-sandwich iridium complexes exhibited high catalytic activity for acceptorless dehydrogenation of alcohols and transfer hydrogenation of ketones.
Collapse
Affiliation(s)
- Rong-Jian Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yang Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Yan Jin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Zhen-Jiang Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Zi-Jian Yao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
- Anhui Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
160
|
Awasthi MK, Rai RK, Behrens S, Singh SK. Low-temperature hydrogen production from methanol over a ruthenium catalyst in water. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01470b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Efficient conversion of methanol to hydrogen gas and formate with an appreciably high TOF and TON is achieved over the in situ generated ruthenium catalyst in water at low temperature.
Collapse
Affiliation(s)
- Mahendra K. Awasthi
- Catalysis Group, Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Rohit K. Rai
- KAUST Catalysis Center and Division of Physical Sciences and Engineering
- King Abdullah University of Science and Technology (KAUST)
- Thuwal
- Kingdom of Saudi Arabia
| | - Silke Behrens
- Institut für Katalyseforschung und – Technologie (IKFT)
- Karlsruher Institut für Technologie (KIT)
- D-76344 Eggenstein-Leopoldshafen
- Germany
| | - Sanjay K. Singh
- Catalysis Group, Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore 453552
- India
| |
Collapse
|
161
|
Recent progress on group 10 metal complexes of pincer ligands: From synthesis to activities and catalysis. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2021. [DOI: 10.1016/bs.adomc.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
162
|
Liu J, Xie Y, Yang Q, Huang N, Wang L. Ugi Four-Component Reaction Based on the in situ Capture of Amines and Subsequent Modification Tandem Cyclization Reaction: "One-Pot" Synthesis of Six- and Seven-Membered Heterocycles. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202012040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
163
|
Arora V, Narjinari H, Nandi PG, Kumar A. Recent advances in pincer-nickel catalyzed reactions. Dalton Trans 2021; 50:3394-3428. [PMID: 33595564 DOI: 10.1039/d0dt03593a] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organometallic catalysts have played a key role in accomplishing numerous synthetically valuable organic transformations that are either otherwise not possible or inefficient. The use of precious, sparse and toxic 4d and 5d metals are an apparent downside of several such catalytic systems despite their immense success over the last several decades. The use of complexes containing Earth-abundant, inexpensive and less hazardous 3d metals, such as nickel, as catalysts for organic transformations has been an emerging field in recent times. In particular, the versatile nature of the corresponding pincer-metal complexes, which offers great control of their reactivity via countless variations, has garnered great interest among organometallic chemists who are looking for greener and cheaper alternatives. In this context, the current review attempts to provide a glimpse of recent developments in the chemistry of pincer-nickel catalyzed reactions. Notably, there have been examples of pincer-nickel catalyzed reactions involving two electron changes via purely organometallic mechanisms that are strikingly similar to those observed with heavier Pd and Pt analogues. On the other hand, there have been distinct differences where the pincer-nickel complexes catalyze single-electron radical reactions. The applicability of pincer-nickel complexes in catalyzing cross-coupling reactions, oxidation reactions, (de)hydrogenation reactions, dehydrogenative coupling, hydrosilylation, hydroboration, C-H activation and carbon dioxide functionalization has been reviewed here from synthesis and mechanistic points of view. The flurry of global pincer-nickel related activities offer promising avenues in catalyzing synthetically valuable organic transformations.
Collapse
Affiliation(s)
- Vinay Arora
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Himani Narjinari
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Pran Gobinda Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India. and Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
164
|
Liu J, Zhang S, Luan Z, Liu Y, Ke Z. Ruthenium Catalyzed Selective Acceptorless Dehydrogenation of Allylic Alcohols to α, β-Unsaturated Carbonyls. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202107037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
165
|
Zhang MJ, Young DJ, Ma JL, Shao GQ. Copper( i) pyrimidine-2-thiolate cluster-based polymers as bifunctional visible-light-photocatalysts for chemoselective transfer hydrogenation of α,β-unsaturated carbonyls. RSC Adv 2021; 11:14899-14904. [PMID: 35424070 PMCID: PMC8697831 DOI: 10.1039/d1ra01102b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/14/2021] [Indexed: 01/01/2023] Open
Abstract
The photoinduced chemoselective transfer hydrogenation of unsaturated carbonyls to allylic alcohols has been accomplished using cluster-based MOFs as bifunctional visible photocatalysts.
Collapse
Affiliation(s)
- Meng Juan Zhang
- College of Traditional Chinese Medicine
- Bozhou University
- Bozhou 236800
- People's Republic of China
| | - David James Young
- Faculty of Science and Engineering
- University of the Sunshine Coast
- Maroochydore DC
- Australia
| | - Ji Long Ma
- College of Traditional Chinese Medicine
- Bozhou University
- Bozhou 236800
- People's Republic of China
| | - Guo Quan Shao
- College of Traditional Chinese Medicine
- Bozhou University
- Bozhou 236800
- People's Republic of China
| |
Collapse
|
166
|
Anandaraj P, Ramesh R, Kumaradhas P. Palladium( ii) N, N, O-pincer type complex-mediated dehydrogenative coupling of alcohols to quinazolines. NEW J CHEM 2021. [DOI: 10.1039/d1nj03146e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A diverse range of quinazolines were synthesized in moderate to high yields using 0.5 mol% Pd(ii) catalyst loading under aerobic conditions.
Collapse
Affiliation(s)
- Pennamuthiriyan Anandaraj
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli–620 024, India
| | - Rengan Ramesh
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli–620 024, India
| | | |
Collapse
|
167
|
Wang YB, Shi L, Zhang X, Fu LR, Hu W, Zhang W, Zhu X, Hao XQ, Song MP. NaOH-Mediated Direct Synthesis of Quinoxalines from o-Nitroanilines and Alcohols via a Hydrogen-Transfer Strategy. J Org Chem 2021; 86:947-958. [PMID: 33351617 DOI: 10.1021/acs.joc.0c02453] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A NaOH-mediated sustainable synthesis of functionalized quinoxalines is disclosed via redox condensation of o-nitroamines with diols and α-hydroxy ketones. Under optimized conditions, various o-nitroamines and alcohols are well tolerated to generate the desired products in 44-99% yields without transition metals and external redox additives.
Collapse
Affiliation(s)
- Yan-Bing Wang
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xiaojie Zhang
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Lian-Rong Fu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Weinan Hu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Wenjing Zhang
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xinju Zhu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
168
|
Maji M, Panja D, Borthakur I, Kundu S. Recent advances in sustainable synthesis of N-heterocycles following acceptorless dehydrogenative coupling protocol using alcohols. Org Chem Front 2021. [DOI: 10.1039/d0qo01577f] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this review, we have summarized various aspects of homogeneous and heterogeneously catalyzed recent advancements in the synthesis of heterocycles following the ADC approach.
Collapse
Affiliation(s)
- Milan Maji
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Dibyajyoti Panja
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Ishani Borthakur
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Sabuj Kundu
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| |
Collapse
|
169
|
Kumar A, Gao C. Homogeneous (De)hydrogenative Catalysis for Circular Chemistry – Using Waste as a Resource. ChemCatChem 2020. [DOI: 10.1002/cctc.202001404] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Amit Kumar
- School of Chemistry University of St. Andrews North Haugh St. Andrews KY169ST UK
| | - Chang Gao
- School of Chemistry University of St. Andrews North Haugh St. Andrews KY169ST UK
| |
Collapse
|
170
|
Arun V, Roy L, De Sarkar S. Alcohols as Fluoroalkyl Synthons: Ni-catalyzed Dehydrogenative Approach to Access Polyfluoroalkyl Bis-indoles. Chemistry 2020; 26:16649-16654. [PMID: 32914904 DOI: 10.1002/chem.202003912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 01/04/2023]
Abstract
An acceptorless dehydrogenative strategy for the synthesis of polyfluoroalkylated bis-indoles is described by employing an earth-abundant nickel-based catalytic system under air. The notable feature of the present transformation is the use of bench stable and easily affordable polyfluorinated alcohols without any pre-functionalization for the introduction of precious polyfluoroalkyl groups. The developed straightforward protocol accomplished biologically relevant fluoroalkyl bis-indoles in a sustainable fashion. Extensive DFT study predicts the unique role of indole molecules which stabilizes the transition states during the dehydrogenation process of polyfluorinated alcohols, presumably through non-covalent π⋅⋅⋅π and H-bonding interactions.
Collapse
Affiliation(s)
- V Arun
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar, 751013, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| |
Collapse
|
171
|
Sevim M, Kavukcu SB, Kınal A, Şahin O, Türkmen H. C-C coupling formation using nitron complexes. Dalton Trans 2020; 49:16903-16915. [PMID: 33185233 DOI: 10.1039/d0dt02937h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A series of RuII (1), RhIII (2), IrIII (3, 4), IrI (5) and PdII (6-9) complexes of the 'instant carbene' nitron were prepared and characterized by 1H- and 13C-NMR, FT-IR and elemental analysis. The molecular structures of complexes 1-4 and 6 were determined by X-ray diffraction studies. The catalytic activity of the complexes (1-9) was evaluated in alpha(α)-alkylation reactions of ketones with alcohol via the borrowing hydrogen strategy under mild conditions. These complexes were able to perform this catalytic transformation in a short time with low catalyst and base amounts under an air atmosphere. Also, the PdII-nitron complexes (6-9) were applied in the Suzuki-Miyaura C-C coupling reaction and these complexes successfully initiated this reaction in a short time (30 minutes) using the H2O/2-propanol (1.5 : 0.5) solvent system. The DFT calculations revealed that the Pd0/II/0 pathway was more preferable for the mechanism.
Collapse
Affiliation(s)
- Mehmet Sevim
- Department of Chemistry, Ege University, 35100 Bornova, Izmir, Turkey.
| | | | | | | | | |
Collapse
|
172
|
Kim J, Kim S, Choi G, Lee GS, Kim D, Choi J, Ihee H, Hong SH. Synthesis of N-aryl amines enabled by photocatalytic dehydrogenation. Chem Sci 2020; 12:1915-1923. [PMID: 34163955 PMCID: PMC8179191 DOI: 10.1039/d0sc04890a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/23/2020] [Indexed: 01/22/2023] Open
Abstract
Catalytic dehydrogenation (CD) via visible-light photoredox catalysis provides an efficient route for the synthesis of aromatic compounds. However, access to N-aryl amines, which are widely utilized synthetic moieties, via visible-light-induced CD remains a significant challenge, because of the difficulty in controlling the reactivity of amines under photocatalytic conditions. Here, the visible-light-induced photocatalytic synthesis of N-aryl amines was achieved by the CD of allylic amines. The unusual strategy using C6F5I as an hydrogen-atom acceptor enables the mild and controlled CD of amines bearing various functional groups and activated C-H bonds, suppressing side-reaction of the reactive N-aryl amine products. Thorough mechanistic studies suggest the involvement of single-electron and hydrogen-atom transfers in a well-defined order to provide a synergistic effect in the control of the reactivity. Notably, the back-electron transfer process prevents the desired product from further reacting under oxidative conditions.
Collapse
Affiliation(s)
- Jungwon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Siin Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science Daejeon 34141 Republic of Korea
| | - Geunho Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Geun Seok Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Donghyeok Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science Daejeon 34141 Republic of Korea
| | - Jungkweon Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science Daejeon 34141 Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science Daejeon 34141 Republic of Korea
| | - Soon Hyeok Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
173
|
Shen Z, Zhao Z, Ren Y, Liu W, Tian X, Zheng X, Zhao B. Nitric‐Acid‐Catalyzed Aerobic Conversion of Benzyl Ethers to Benzaldehydes at Room Temperature. ChemistrySelect 2020. [DOI: 10.1002/slct.202003714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Zhenpeng Shen
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
- School of Chemical Engineering & Pharmaceutics Henan University of Science and Technology Luoyang Henan 471003 P. R. China
| | - Zhe Zhao
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
- School of Chemical Engineering & Pharmaceutics Henan University of Science and Technology Luoyang Henan 471003 P. R. China
| | - Yun‐Lai Ren
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
| | - Wenbo Liu
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
| | - Xinzhe Tian
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
| | - Xin Zheng
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
| | - Bo Zhao
- School of Chemical Engineering & Pharmaceutics Henan University of Science and Technology Luoyang Henan 471003 P. R. China
| |
Collapse
|
174
|
Bains AK, Singh V, Adhikari D. Homogeneous Nickel-Catalyzed Sustainable Synthesis of Quinoline and Quinoxaline under Aerobic Conditions. J Org Chem 2020; 85:14971-14979. [PMID: 33174416 DOI: 10.1021/acs.joc.0c01819] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Dehydrogenative coupling-based reactions have emerged as an efficient route toward the synthesis of a plethora of heterocyclic rings. Herein, we report an efficacious, nickel-catalyzed synthesis of two important heterocycles such as quinoline and quinoxaline. The catalyst is molecularly defined, is phosphine-free, and can operate at a mild reaction temperature of 80 °C. Both the heterocycles can be easily assembled via double dehydrogenative coupling, starting from 2-aminobenzyl alcohol/1-phenylethanol and diamine/diol, respectively, in a shorter span of reaction time. This environmentally benign synthetic protocol employing an inexpensive catalyst can rival many other transition-metal systems that have been developed for the fabrication of two putative heterocycles. Mechanistically, the dehydrogenation of secondary alcohol follows clean pseudo-first-order kinetics and exhibits a sizable kinetic isotope effect. Intriguingly, this catalyst provides an example of storing the trapped hydrogen in the ligand backbone, avoiding metal-hydride formation. Easy regeneration of the oxidized form of the catalyst under aerobic/O2 oxidation makes this protocol eco-friendly and easy to handle.
Collapse
Affiliation(s)
- Amreen K Bains
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306 Mohali, India
| | - Vikramjeet Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306 Mohali, India
| | - Debashis Adhikari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306 Mohali, India
| |
Collapse
|
175
|
Paudel K, Xu S, Ding K. α-Alkylation of Nitriles with Primary Alcohols by a Well-Defined Molecular Cobalt Catalyst. J Org Chem 2020; 85:14980-14988. [PMID: 33136400 DOI: 10.1021/acs.joc.0c01822] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The α-alkylation of nitriles with primary alcohols to selectively synthesize nitriles by a well-defined molecular homogeneous cobalt catalyst is presented. Thirty-two examples with up to 95% yield are reported. Remarkably, this transformation is environmentally friendly and atom economical with water as the only byproduct.
Collapse
Affiliation(s)
- Keshav Paudel
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States.,Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Shi Xu
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Keying Ding
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States.,Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| |
Collapse
|
176
|
Bains AK, Biswas A, Adhikari D. Nickel-catalysed chemoselective C-3 alkylation of indoles with alcohols through a borrowing hydrogen method. Chem Commun (Camb) 2020; 56:15442-15445. [PMID: 33231589 DOI: 10.1039/d0cc07169b] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An inexpensive, air-stable, isolable nickel catalyst is reported that can perform chemoselective C3-alkylation of indoles with a variety of alcohols following "borrowing hydrogen". A one-pot, cascade C3-alkylation starting from 2-aminophenyl ethyl alcohols, and thus obviating the need for pre-synthesized indoles, further adds to the broad scope of this method. The reaction is radical-mediated, and is significantly different from other examples, often dictated by metal-ligand bifunctionality.
Collapse
Affiliation(s)
- Amreen K Bains
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Sector-81, Knowledge City, Manauli-140306, India.
| | | | | |
Collapse
|
177
|
Sung K, Lee M, Cheong Y, Jang H. Ir(triscarbene)‐catalyzed sustainable transfer hydrogenation of levulinic acid to γ‐valerolactone. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kihyuk Sung
- Department of Energy Systems Research Ajou University Suwon South Korea
| | - Mi‐hyun Lee
- Department of Energy Systems Research Ajou University Suwon South Korea
| | - Yeon‐Joo Cheong
- Department of Energy Systems Research Ajou University Suwon South Korea
| | - Hye‐Young Jang
- Department of Energy Systems Research Ajou University Suwon South Korea
| |
Collapse
|
178
|
Electrochemical alcohols oxidation mediated by N-hydroxyphthalimide on nickel foam surface. Sci Rep 2020; 10:19378. [PMID: 33168852 PMCID: PMC7653038 DOI: 10.1038/s41598-020-75397-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/15/2020] [Indexed: 11/08/2022] Open
Abstract
Alcohol to aldehyde conversion is a critical reaction in the industry. Herein, a new electrochemical method is introduced that converts 1 mmol of alcohols to aldehydes and ketones in the presence of N-hydroxyphthalimide (NHPI, 20 mol%) as a mediator; this conversion is achieved after 8.5 h at room temperature using a piece of Ni foam (1.0 cm2) and without adding an extra-base or a need for high temperature. Using this method, 10 mmol (1.08 g) of benzyl alcohol was also successfully oxidized to benzaldehyde (91%) without any by-products. This method was also used to oxidize other alcohols with high yield and selectivity. In the absence of a mediator, the surface of the nickel foam provided oxidation products at the lower yield. After the reaction was complete, nickel foam (anode) was characterized by a combination of scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and spectroelectrochemistry, which pointed to the formation of nickel oxide on the surface of the electrode. On the other hand, using other electrodes such as Pt, Cu, Fe, and graphite resulted in a low yield for the alcohol to aldehyde conversion.
Collapse
|
179
|
Dawe LN, Karimzadeh-Younjali M, Dai Z, Khaskin E, Gusev DG. The Milstein Bipyridyl PNN Pincer Complex of Ruthenium Becomes a Noyori-Type Catalyst under Reducing Conditions. J Am Chem Soc 2020; 142:19510-19522. [DOI: 10.1021/jacs.0c06518] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Louise N. Dawe
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | | | - Zengjin Dai
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Eugene Khaskin
- Okinawa Institute of Science and Technology, Okinawa 904-0495, Japan
| | - Dmitry G. Gusev
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| |
Collapse
|
180
|
Clerc A, Marelli E, Adet N, Monot J, Martín-Vaca B, Bourissou D. Metal-ligand-Lewis acid multi-cooperative catalysis: a step forward in the Conia-ene reaction. Chem Sci 2020; 12:435-441. [PMID: 34163606 PMCID: PMC8178805 DOI: 10.1039/d0sc05036a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An original multi-cooperative catalytic approach was developed by combining metal–ligand cooperation and Lewis acid activation. The [(SCS)Pd]2 complex featuring a non-innocent indenediide-based ligand was found to be a very efficient and versatile catalyst for the Conia-ene reaction, when associated with Mg(OTf)2. The reaction operates at low catalytic loadings under mild conditions with HFIP as a co-solvent. It works with a variety of substrates, including those bearing internal alkynes. It displays complete 5-exo vs. 6-endo regio-selectivity. In addition, except for the highly congested tBu-substituent, the reaction occurs with high Z vs. E stereo-selectivity, making it synthetically useful and complementary to known catalysts. An original multi-cooperative catalytic approach was developed by combining metal–ligand cooperation and Lewis acid activation.![]()
Collapse
Affiliation(s)
- Arnaud Clerc
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Enrico Marelli
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Nicolas Adet
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Julien Monot
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Blanca Martín-Vaca
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Didier Bourissou
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| |
Collapse
|
181
|
Hofmann N, Homberg L, Hultzsch KC. Synthesis of Tetrahydroquinolines via Borrowing Hydrogen Methodology Using a Manganese PN 3 Pincer Catalyst. Org Lett 2020; 22:7964-7970. [PMID: 32970449 PMCID: PMC7587143 DOI: 10.1021/acs.orglett.0c02905] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
A straightforward and selective synthesis
of 1,2,3,4-tetrahydroquinolines
starting from 2-aminobenzyl alcohols and simple secondary alcohols
is reported. This one-pot cascade reaction is based on the borrowing
hydrogen methodology promoted by a manganese(I) PN3 pincer
complex. The reaction selectively leads to 1,2,3,4-tetrahydroquinolines
thanks to a targeted choice of base. This strategy provides an atom-efficient
pathway with water as the only byproduct. In addition, no further
reducing agents are required.
Collapse
Affiliation(s)
- Natalie Hofmann
- University of Vienna, Faculty of Chemistry, Institute of Chemical Catalysis, Währinger Straße 38, 1090 Vienna, Austria
| | - Leonard Homberg
- University of Vienna, Faculty of Chemistry, Institute of Chemical Catalysis, Währinger Straße 38, 1090 Vienna, Austria
| | - Kai C Hultzsch
- University of Vienna, Faculty of Chemistry, Institute of Chemical Catalysis, Währinger Straße 38, 1090 Vienna, Austria
| |
Collapse
|
182
|
Allahresani A, Naghdi E, Nasseri MA, Hemmat K. Selective oxidation of alcohols and sulfides via O 2 using a Co(ii) salen complex catalyst immobilized on KCC-1: synthesis and kinetic study. RSC Adv 2020; 10:37974-37981. [PMID: 35515194 PMCID: PMC9057241 DOI: 10.1039/d0ra06863b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/14/2020] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to immobilize a Co(ii) salen complex on KCC-1 as a catalyst that can be recovered (Co(ii) salen complex@KCC-1). Field-emission transmission electron microscopy, FT-IR spectroscopy, thermogravimetric analysis, elemental analysis, atomic absorption spectroscopy, and XRD were used to confirm the structure and chemical nature of Co(ii) salen complex@KCC-1. The oxidation efficiency was obtained for an extensive range of sulfides and alcohols using this sustainable catalyst, alongside O2 as an oxygen source and isobutyraldehyde (IBA) as an oxygen acceptor, with superior selectivity and conversion for the relevant oxidation products (sulfoxides and ketones or aldehydes) under moderate conditions. The μ-oxo and peroxo groups on the ligands of the Co complex appeared to be responsible for the superior activity of the catalyst. Essential factors behind the oxidation of alcohol and sulfoxides were investigated, including the catalyst, solvent, and temperature. In this paper, molecular oxygen (O2) was used as a green oxidant. Furthermore, kinetic studies were conducted, revealing a first-order reaction for the oxidation of both benzyl alcohol and sulfide. The reaction progressed at mild temperature, and the catalyst could be easily recovered and reused for numerous consecutive runs under the reaction conditions, without any substantial reduction in the functionality of the catalytic system.
Collapse
Affiliation(s)
- Ali Allahresani
- Department of Chemistry, College of Sciences, University of Birjand Birjand 97175-615 Iran
| | - Elaheh Naghdi
- Department of Chemistry, College of Sciences, University of Birjand Birjand 97175-615 Iran
| | - Mohammad Ali Nasseri
- Department of Chemistry, College of Sciences, University of Birjand Birjand 97175-615 Iran
| | - Kaveh Hemmat
- Department of Chemistry, College of Sciences, University of Birjand Birjand 97175-615 Iran
| |
Collapse
|
183
|
Fanara PM, MacMillan SN, Lacy DC. Planar-Locked Ru-PNN Catalysts in 1-Phenylethanol Dehydrogenation. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paul M. Fanara
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - David C. Lacy
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| |
Collapse
|
184
|
Dostál L, Jambor R, Aman M, Hejda M. (N),C,N-Coordinated Heavier Group 13-15 Compounds: Synthesis, Structure and Applications. Chempluschem 2020; 85:2320-2340. [PMID: 33073931 DOI: 10.1002/cplu.202000620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/23/2020] [Indexed: 01/07/2023]
Abstract
The aim of this review is to summarize recent achievements in the field of (N),C,N-coordinated group 13-15 compounds not only regarding their synthesis and structure, but mainly focusing on their potential applications. Relevant compounds contain various types of N-coordinating ligands built up on an ortho-(di)substituted phenyl platform. Thus, group 13 and 14 derivatives were used as single-source precursors for the deposition of semiconducting thin films, as building blocks for the preparation of high-molecular polymers with remarkable optical and chemical properties or as compounds with interesting reactivity in hydrometallation processes. Group 15 derivatives function as catalysts in the Mannich reaction, in the allylation of aldehydes or activation of CO2 . They were used as transmetallation reagents in transition metal catalysed coupling reactions. The univalent species serve as ligands for transition metals, activate alkynes or alkenes and are utilized as catalysts in the transfer hydrogenation of azo-compounds.
Collapse
Affiliation(s)
- Libor Dostál
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Roman Jambor
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Michal Aman
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Martin Hejda
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| |
Collapse
|
185
|
|
186
|
Yazdani E, Heydari A. Acceptorless dehydrogenative oxidation of primary alcohols to carboxylic acids and reduction of nitroarenes via hydrogen borrowing catalyzed by a novel nanomagnetic silver catalyst. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
187
|
Xu R, Wang K, Liu H, Tang W, Sun H, Xue D, Xiao J, Wang C. Anti‐Markovnikov Hydroamination of Racemic Allylic Alcohols to Access Chiral γ‐Amino Alcohols. Angew Chem Int Ed Engl 2020; 59:21959-21964. [DOI: 10.1002/anie.202009754] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Ruirui Xu
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Kun Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Haoying Liu
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Weijun Tang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Jianliang Xiao
- Department of Chemistry University of Liverpool Liverpool L69 7ZD UK
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| |
Collapse
|
188
|
Xu R, Wang K, Liu H, Tang W, Sun H, Xue D, Xiao J, Wang C. Anti‐Markovnikov Hydroamination of Racemic Allylic Alcohols to Access Chiral γ‐Amino Alcohols. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009754] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ruirui Xu
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Kun Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Haoying Liu
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Weijun Tang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Jianliang Xiao
- Department of Chemistry University of Liverpool Liverpool L69 7ZD UK
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| |
Collapse
|
189
|
Luo J, Rauch M, Avram L, Diskin-Posner Y, Shmul G, Ben-David Y, Milstein D. Formation of thioesters by dehydrogenative coupling of thiols and alcohols with H2 evolution. Nat Catal 2020. [DOI: 10.1038/s41929-020-00514-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
190
|
Patil RD, Gupta MK. Methods of Nitriles Synthesis from Amines through Oxidative Dehydrogenation. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000635] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Rajendra D. Patil
- School of Chemical Sciences KCES's Moolji Jaitha College, Jalgaon (An Autonomous college affiliated to KBC, North Maharashtra University, Jalgaon) Maharashtra India- 425002
| | - Maneesh Kumar Gupta
- Department of Chemistry Hotilal Ramnath College (A constituent unit of Jai Prakash University), Amnour, Chapra Bihar 841401
| |
Collapse
|
191
|
Thiyagarajan S, Gunanathan C. Direct Catalytic Symmetrical, Unsymmetrical N,N-Dialkylation and Cyclization of Acylhydrazides Using Alcohols. Org Lett 2020; 22:6617-6622. [PMID: 32806177 DOI: 10.1021/acs.orglett.0c02369] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, direct N,N-dialkylation of acylhydrazides using alcohols is reported. This catalytic protocol provides one-pot synthesis of both symmetrical and unsymmetrical N,N-disubstituted acylhydrazides using an assortment of primary and secondary alcohols with remarkable selectivity and excellent yields. Interestingly, the use of diols resulted in intermolecular cyclization of acylhydrazides, and such products are privileged structures in biologically active compounds. Water is the only byproduct, which makes this catalytic protocol sustainable and environmentally benign.
Collapse
Affiliation(s)
- Subramanian Thiyagarajan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar 752050, India
| | - Chidambaram Gunanathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar 752050, India
| |
Collapse
|
192
|
Landge VG, Babu R, Yadav V, Subaramanian M, Gupta V, Balaraman E. Iron-Catalyzed Direct Julia-Type Olefination of Alcohols. J Org Chem 2020; 85:9876-9886. [PMID: 32600041 DOI: 10.1021/acs.joc.0c01173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we report an iron-catalyzed, convenient, and expedient strategy for the synthesis of styrene and naphthalene derivatives with the liberation of dihydrogen. The use of a catalyst derived from an earth-abundant metal provides a sustainable strategy to olefins. This method exhibits wide substrate scope (primary and secondary alcohols) functional group tolerance (amino, nitro, halo, alkoxy, thiomethoxy, and S- and N-heterocyclic compounds) that can be scaled up. The unprecedented synthesis of 1-methyl naphthalenes proceeds via tandem methenylation/double dehydrogenation. Mechanistic study shows that the cleavage of the C-H bond of alcohol is the rate-determining step.
Collapse
Affiliation(s)
- Vinod G Landge
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Reshma Babu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Vinita Yadav
- Organic Chemistry Division, Dr. Homi Bhabha Road, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India
| | - Murugan Subaramanian
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Virendrakumar Gupta
- Polymer Synthesis & Catalysis, Reliance Research & Development Centre, Reliance Industries Limited, Ghansoli, Navi Mumbai 400701, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| |
Collapse
|
193
|
Viola A, Peron J, Giraud M, Sicard L, Chevillot-Biraud A, Decorse P, Nowak S, Beaunier P, Lang P, Piquemal JY. On the importance of the crystalline surface structure on the catalytic activity and stability of tailored unsupported cobalt nanoparticles for the solvent-free acceptor-less alcohol dehydrogenation. J Colloid Interface Sci 2020; 573:165-175. [PMID: 32278948 DOI: 10.1016/j.jcis.2020.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 11/28/2022]
Abstract
Unsupported nanoparticles are now recognized as model catalysts to evaluate the intrinsic activity of metal particles, irrespectively of that of the support. Co nanoparticles with different morphologies, rods, diabolos and cubes have been prepared by the polyol process and tested for the acceptorless catalytic dehydrogenation of alcohols under solvent-free conditions. Rods crystallize with the pure hcp structure, diabolos with a mixture of hcp and fcc phases, while the cubes crystallize in a complex mixture of hcp, fcc and ε-Co phases. All the cobalt particles are found to be highly selective towards the oxidation of a model secondary alcohol, octan-2-ol, into the corresponding ketone while no significant activity is found with octan-1-ol. Our results show the strong influence of particle shape on the activity and catalytic stability of the catalysts: Co nanorods display the highest conversion (85%), selectivity (95%) and recyclability compared to Co diabolos and Co cubes. We correlate the nanorods excellent stability with a strong binding of carboxylate ligands on their {1 1 2¯ 0} facets, preserving their crystalline superficial structure, as evidenced by phase modulation infrared reflection absorption spectroscopy.
Collapse
Affiliation(s)
- Arnaud Viola
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J.-A. de Baïf, F-75013 Paris, France
| | - Jennifer Peron
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J.-A. de Baïf, F-75013 Paris, France
| | - Marion Giraud
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J.-A. de Baïf, F-75013 Paris, France
| | - Lorette Sicard
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J.-A. de Baïf, F-75013 Paris, France
| | | | - Philippe Decorse
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J.-A. de Baïf, F-75013 Paris, France
| | - Sophie Nowak
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J.-A. de Baïf, F-75013 Paris, France
| | - Patricia Beaunier
- Sorbonne Université, CNRS, UMR 7197, Laboratoire de Réactivité de Surface, 75005 Paris, France
| | - Philippe Lang
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J.-A. de Baïf, F-75013 Paris, France
| | - Jean-Yves Piquemal
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J.-A. de Baïf, F-75013 Paris, France.
| |
Collapse
|
194
|
Sklyaruk J, Zubar V, Borghs JC, Rueping M. Methanol as the Hydrogen Source in the Selective Transfer Hydrogenation of Alkynes Enabled by a Manganese Pincer Complex. Org Lett 2020; 22:6067-6071. [DOI: 10.1021/acs.orglett.0c02151] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jan Sklyaruk
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Viktoriia Zubar
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jannik C. Borghs
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
195
|
Sánchez P, Hernández-Juárez M, Rendón N, López-Serrano J, Santos LL, Álvarez E, Paneque M, Suárez A. Hydrogenation/dehydrogenation of N-heterocycles catalyzed by ruthenium complexes based on multimodal proton-responsive CNN(H) pincer ligands. Dalton Trans 2020; 49:9583-9587. [PMID: 32648879 DOI: 10.1039/d0dt02326d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ru complexes based on lutidine-derived pincer CNN(H) ligands having secondary amine side donors are efficient precatalysts in the hydrogenation and dehydrogenation of N-heterocycles. Reaction of a Ru-CNN(H) complex with an excess of base produces the formation of a Ru(0) derivative, which is observed under catalytic conditions.
Collapse
Affiliation(s)
- Práxedes Sánchez
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA). CSIC and Universidad de Sevilla. Avda. Américo Vespucio 49, 41092, Sevilla, Spain.
| | - Martín Hernández-Juárez
- Centro de Investigaciones Químicas. Universidad Autónoma del Estado de Hidalgo. Km. 14.5 Carretera Pachuca-Tulancingo. C.P. 42184, Mineral de la Reforma, Hidalgo, Mexico
| | - Nuria Rendón
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA). CSIC and Universidad de Sevilla. Avda. Américo Vespucio 49, 41092, Sevilla, Spain.
| | - Joaquín López-Serrano
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA). CSIC and Universidad de Sevilla. Avda. Américo Vespucio 49, 41092, Sevilla, Spain.
| | - Laura L Santos
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA). CSIC and Universidad de Sevilla. Avda. Américo Vespucio 49, 41092, Sevilla, Spain.
| | - Eleuterio Álvarez
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA). CSIC and Universidad de Sevilla. Avda. Américo Vespucio 49, 41092, Sevilla, Spain.
| | - Margarita Paneque
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA). CSIC and Universidad de Sevilla. Avda. Américo Vespucio 49, 41092, Sevilla, Spain.
| | - Andrés Suárez
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA). CSIC and Universidad de Sevilla. Avda. Américo Vespucio 49, 41092, Sevilla, Spain.
| |
Collapse
|
196
|
Wang Q, Tuinhof J, Mgimpatsang KC, Kurpiewska K, Kalinowska-Tluscik J, Dömling A. Copper-Catalyzed Modular Assembly of Polyheterocycles. J Org Chem 2020; 85:9915-9927. [PMID: 32615764 PMCID: PMC7418108 DOI: 10.1021/acs.joc.0c01238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
Easy operation, readily
accessible starting materials, and short
syntheses of the privileged scaffold indeno[1,2-c]isoquinolinone were achieved by an multicomponent reaction (MCR)-based
protocol via an ammonia–Ugi-four component reaction (4CR)/copper-catalyzed
annulation sequence. The optimization and scope and limitations of
this short and general sequence are described. The methodology allows
an efficient construction of a wide variety of indenoisoquinolinones
in just two steps.
Collapse
Affiliation(s)
- Qian Wang
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Jesse Tuinhof
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Kumchok C Mgimpatsang
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Katarzyna Kurpiewska
- Faculty of Chemistry, Jagiellonian University, 3 Ingardena Street, 30-060 Krakow, Poland
| | | | - Alexander Dömling
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
197
|
Abstract
Our planet urgently needs sustainable solutions to alleviate the anthropogenic global warming and climate change. Homogeneous catalysis has the potential to play a fundamental role in this process, providing novel, efficient, and at the same time eco-friendly routes for both chemicals and energy production. In particular, pincer-type ligation shows promising properties in terms of long-term stability and selectivity, as well as allowing for mild reaction conditions and low catalyst loading. Indeed, pincer complexes have been applied to a plethora of sustainable chemical processes, such as hydrogen release, CO2 capture and conversion, N2 fixation, and biomass valorization for the synthesis of high-value chemicals and fuels. In this work, we show the main advances of the last five years in the use of pincer transition metal complexes in key catalytic processes aiming for a more sustainable chemical and energy production.
Collapse
|
198
|
Buil ML, Esteruelas MA, Izquierdo S, Nicasio AI, Oñate E. N–H and C–H Bond Activations of an Isoindoline Promoted by Iridium- and Osmium-Polyhydride Complexes: A Noninnocent Bridge Ligand for Acceptorless and Base-Free Dehydrogenation of Secondary Alcohols. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- María L. Buil
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Miguel A. Esteruelas
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Susana Izquierdo
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Antonio I. Nicasio
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
199
|
Selective Photocatalytic Oxidation of Benzyl Alcohol at Ambient Conditions using Spray-Dried g-C3N4/TiO2 Granules. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110927] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
200
|
Cui X, Huang Z, van Muyden AP, Fei Z, Wang T, Dyson PJ. Acceptorless dehydrogenation and hydrogenation of N- and O-containing compounds on Pd 3Au 1(111) facets. SCIENCE ADVANCES 2020; 6:eabb3831. [PMID: 32937440 PMCID: PMC7458463 DOI: 10.1126/sciadv.abb3831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/15/2020] [Indexed: 05/05/2023]
Abstract
Catalytic dehydrogenation and hydrogenation of amines and alcohols are important in the synthesis of fine chemicals. Despite several efficient homogeneous catalysts having been identified, highly active heterogeneous catalysts remain elusive, although they would meet an unmet need. Here, we show that bimetallic Pd-Au nanoparticles with Pd-to-Au molar ratios of 3:1 immobilized on multiwall carbon nanotubes (Pd3Au1/CNT) display high catalytic activity in the oxidant-free and acceptorless dehydrogenation and hydrogenation of N- and O-containing heterocyclic compounds, amines/imines, and alcohols/ketones. Transmission electron microscopy analysis demonstrates the preferential exposure of Pd3Au1(111) facets on the Pd3Au1/CNT catalyst. Mechanistic insights combining experimental data with density functional theory calculations reveal that the Pd3Au1(111) surface enhances both dehydrogenation and hydrogenation reactions and provides a rationale for the observed enhancements.
Collapse
Affiliation(s)
- Xinjiang Cui
- Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Zhangjun Huang
- Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Antoine P van Muyden
- Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Zhaofu Fei
- Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Tao Wang
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Paul J Dyson
- Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|