151
|
Gao P, Cheng X, Sun L, Song S, Álvarez M, Luczkowiak J, Pannecouque C, De Clercq E, Menéndez-Arias L, Zhan P, Liu X. Design, synthesis and biological evaluation of 3-hydroxyquinazoline-2,4(1H,3H)-diones as dual inhibitors of HIV-1 reverse transcriptase-associated RNase H and integrase. Bioorg Med Chem 2019; 27:3836-3845. [PMID: 31324562 DOI: 10.1016/j.bmc.2019.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 11/25/2022]
Abstract
A novel series of 3-hydroxyquinazoline-2,4(1H,3H)-diones derivatives has been designed and synthesized. Their biochemical characterization revealed that most of the compounds were effective inhibitors of HIV-1 RNase H activity at sub to low micromolar concentrations. Among them, II-4 was the most potent in enzymatic assays, showing an IC50 value of 0.41 ± 0.13 μM, almost five times lower than the IC50 obtained with β-thujaplicinol. In addition, II-4 was also effective in inhibiting HIV-1 IN strand transfer activity (IC50 = 0.85 ± 0.18 μM) but less potent than raltegravir (IC50 = 71 ± 14 nM). Despite its relatively low cytotoxicity, the efficiency of II-4 in cell culture was limited by its poor membrane permeability. Nevertheless, structure-activity relationships and molecular modeling studies confirmed the importance of tested 3-hydroxyquinazoline-2,4(1H,3H)-diones as useful leads for further optimization.
Collapse
Affiliation(s)
- Ping Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Xiqiang Cheng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Shu Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Mar Álvarez
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain
| | - Joanna Luczkowiak
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain
| | - Christophe Pannecouque
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China.
| |
Collapse
|
152
|
Recent progress in HIV-1 inhibitors targeting the entrance channel of HIV-1 non-nucleoside reverse transcriptase inhibitor binding pocket. Eur J Med Chem 2019; 174:277-291. [DOI: 10.1016/j.ejmech.2019.04.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
|
153
|
Discovery of piperidine-substituted thiazolo[5,4-d]pyrimidine derivatives as potent and orally bioavailable HIV-1 non-nucleoside reverse transcriptase inhibitors. Commun Chem 2019. [DOI: 10.1038/s42004-019-0174-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
154
|
Martínez-Gualda B, Sun L, Martí-Marí O, Mirabelli C, Delang L, Neyts J, Schols D, Camarasa MJ, San-Félix A. Modifications in the branched arms of a class of dual inhibitors of HIV and EV71 replication expand their antiviral spectrum. Antiviral Res 2019; 168:210-214. [PMID: 31228490 PMCID: PMC7114229 DOI: 10.1016/j.antiviral.2019.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 01/02/2023]
Abstract
We have previously reported a new class of dendrimers with tryptophan (Trp) residues on the surface that show dual antiviral activities against HIV and enterovirus EV71. The prototype compound of this family is a derivative of pentaerythritol with 12 peripheral Trp groups and trivalent spacer arms. Here a novel series of dendrimers with divalent and tetravalent branched arms, instead of the trivalent ones present on the prototype, has been synthesized and its activity against HIV, EV71 and a panel of 16 different viruses and other pathogens has been determined. Convergent or divergent approaches have been used for the synthesis of these compounds. Our findings demonstrate that only compounds with tetravalent branched arms showed the same anti-HIV and anti-EV71 activity of the prototype (low micromolar) and even gain significant antiviral activity against new pathogens such as HSV-2, adenovirus-2, human corona virus and respiratory syncytial virus, being the first members of the Trp dendrimer family that showed activity against those viruses. As the prototype, these compounds also showed low-nanomolar activity against a representative EV71 clinical isolate. Experimental work carried on to determine the mode of action of the most potent IIa, containing tetravalent branched arms, demonstrated that it interacts with the viral envelopes of HIV, EV71 and HSV-2 and thus may prevent virus attachment to the host cell. These results support the interest of this new series of Trp dendrimers and qualify them as useful prototypes for the development of novel inhibitors of viral entry with broad antiviral spectrum. Tryptophan (Trp) dendrimers with divalent and tetravalent branched arms have been synthesized. Only dendrimers with tetravalent branched arms (IIa-IId) showed (sub)micromolar inhibitory activity against HIV and EV71. IIa-IId inhibit a representative EV71 clinical isolate in the low-nanomolar range. IIa-IId are the first members of the Trp dendrimer family that showed activity against new viruses such as HSV-2.
Collapse
Affiliation(s)
| | - Liang Sun
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000, Leuven, Belgium
| | - Olaia Martí-Marí
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Carmen Mirabelli
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000, Leuven, Belgium
| | - Leen Delang
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000, Leuven, Belgium
| | - Johan Neyts
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000, Leuven, Belgium
| | - Dominique Schols
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000, Leuven, Belgium
| | - María-José Camarasa
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Ana San-Félix
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain.
| |
Collapse
|
155
|
Worachartcheewan A, Songtawee N, Siriwong S, Prachayasittikul S, Nantasenamat C, Prachayasittikul V. Rational Design of Colchicine Derivatives as anti-HIV Agents via QSAR and Molecular Docking. Med Chem 2019; 15:328-340. [PMID: 30251609 DOI: 10.2174/1573406414666180924163756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Human immunodeficiency virus (HIV) is an infective agent that causes an acquired immunodeficiency syndrome (AIDS). Therefore, the rational design of inhibitors for preventing the progression of the disease is required. OBJECTIVE This study aims to construct quantitative structure-activity relationship (QSAR) models, molecular docking and newly rational design of colchicine and derivatives with anti-HIV activity. METHODS A data set of 24 colchicine and derivatives with anti-HIV activity were employed to develop the QSAR models using machine learning methods (e.g. multiple linear regression (MLR), artificial neural network (ANN) and support vector machine (SVM)), and to study a molecular docking. RESULTS The significant descriptors relating to the anti-HIV activity included JGI2, Mor24u, Gm and R8p+ descriptors. The predictive performance of the models gave acceptable statistical qualities as observed by correlation coefficient (Q2) and root mean square error (RMSE) of leave-one out cross-validation (LOO-CV) and external sets. Particularly, the ANN method outperformed MLR and SVM methods that displayed LOO-CV 2 Q and RMSELOO-CV of 0.7548 and 0.5735 for LOOCV set, and Ext 2 Q of 0.8553 and RMSEExt of 0.6999 for external validation. In addition, the molecular docking of virus-entry molecule (gp120 envelope glycoprotein) revealed the key interacting residues of the protein (cellular receptor, CD4) and the site-moiety preferences of colchicine derivatives as HIV entry inhibitors for binding to HIV structure. Furthermore, newly rational design of colchicine derivatives using informative QSAR and molecular docking was proposed. CONCLUSION These findings serve as a guideline for the rational drug design as well as potential development of novel anti-HIV agents.
Collapse
Affiliation(s)
- Apilak Worachartcheewan
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.,Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.,Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Napat Songtawee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Suphakit Siriwong
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
156
|
Hao X, Zuo X, Kang D, Zhang J, Song Y, Liu X, Zhan P. Contemporary medicinal-chemistry strategies for discovery of blood coagulation factor Xa inhibitors. Expert Opin Drug Discov 2019; 14:915-931. [DOI: 10.1080/17460441.2019.1626821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xia Hao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Ji’nan, Shandong, PR China
| | - Xiaofang Zuo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Ji’nan, Shandong, PR China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Ji’nan, Shandong, PR China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Ji’nan, Shandong, PR China
| | - Yuning Song
- Department of Clinical Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Ji’nan, Shandong, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Ji’nan, Shandong, PR China
| |
Collapse
|
157
|
Zhu M, Dong B, Zhang GN, Wang JX, Cen S, Wang YC. Synthesis and biological evaluation of new HIV-1 protease inhibitors with purine bases as P2-ligands. Bioorg Med Chem Lett 2019; 29:1541-1545. [DOI: 10.1016/j.bmcl.2019.03.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/20/2019] [Accepted: 03/30/2019] [Indexed: 01/03/2023]
|
158
|
A survey of core replacements in indole-based HIV-1 attachment inhibitors. Bioorg Med Chem Lett 2019; 29:1423-1429. [DOI: 10.1016/j.bmcl.2019.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/31/2019] [Accepted: 03/13/2019] [Indexed: 11/18/2022]
|
159
|
Wu G, Zhao T, Kang D, Zhang J, Song Y, Namasivayam V, Kongsted J, Pannecouque C, De Clercq E, Poongavanam V, Liu X, Zhan P. Overview of Recent Strategic Advances in Medicinal Chemistry. J Med Chem 2019; 62:9375-9414. [PMID: 31050421 DOI: 10.1021/acs.jmedchem.9b00359] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introducing novel strategies, concepts, and technologies that speed up drug discovery and the drug development cycle is of great importance both in the highly competitive pharmaceutical industry as well as in academia. This Perspective aims to present a "big-picture" overview of recent strategic innovations in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Yuning Song
- Department of Clinical Pharmacy , Qilu Hospital of Shandong University , 250012 Ji'nan , China
| | - Vigneshwaran Namasivayam
- Pharmaceutical Institute, Pharmaceutical Chemistry II , University of Bonn , 53121 Bonn , Germany
| | - Jacob Kongsted
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Vasanthanathan Poongavanam
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| |
Collapse
|
160
|
Upadhyay A, Chandrakar P, Gupta S, Parmar N, Singh SK, Rashid M, Kushwaha P, Wahajuddin M, Sashidhara KV, Kar S. Synthesis, Biological Evaluation, Structure-Activity Relationship, and Mechanism of Action Studies of Quinoline-Metronidazole Derivatives Against Experimental Visceral Leishmaniasis. J Med Chem 2019; 62:5655-5671. [PMID: 31124675 DOI: 10.1021/acs.jmedchem.9b00628] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In our efforts to identify novel chemical scaffolds for the development of antileishmanial agents, a series of quinoline-metronidazole hybrid compounds was synthesized and tested against the murine model of visceral leishmaniasis. Among all synthesized derivatives, 15b and 15i showed significant antileishmanial efficacy against both extracellular promastigote (IC50 9.54 and 5.42 μM, respectively) and intracellular amastigote (IC50 9.81 and 3.75 μM, respectively) forms of Leishmania donovani with negligible cytotoxicity toward the host (J774 macrophages, Vero cells). However, compound 15i effectively inhibited the parasite burden in the liver and spleen (>80%) of infected BALB/c mice. Mechanistic studies revealed that 15i triggers oxidative stress which induces bioenergetic collapse and apoptosis of the parasite by decreasing ATP production and mitochondrial membrane potential. Structure-activity analyses and pharmacokinetic studies suggest 15i as a promising antileishmanial lead and emphasize the importance of quinoline-metronidazole series as a suitable platform for the future development of antileishmanial agents.
Collapse
Affiliation(s)
- Akanksha Upadhyay
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Pragya Chandrakar
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Sampa Gupta
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Naveen Parmar
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Sandeep Kumar Singh
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Mamunur Rashid
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Pragati Kushwaha
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Muhammad Wahajuddin
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Koneni V Sashidhara
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| | - Susanta Kar
- Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India
| |
Collapse
|
161
|
Romeo R, Iannazzo D, Veltri L, Gabriele B, Macchi B, Frezza C, Marino-Merlo F, Giofrè SV. Pyrimidine 2,4-Diones in the Design of New HIV RT Inhibitors. Molecules 2019; 24:E1718. [PMID: 31052607 PMCID: PMC6539630 DOI: 10.3390/molecules24091718] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/18/2019] [Accepted: 04/30/2019] [Indexed: 01/01/2023] Open
Abstract
The pyrimidine nucleus is a versatile core in the development of antiretroviral agents. On this basis, a series of pyrimidine-2,4-diones linked to an isoxazolidine nucleus have been synthesized and tested as nucleoside analogs, endowed with potential anti-HIV (human immunodeficiency virus) activity. Compounds 6a-c, characterized by the presence of an ethereal group at C-3, show HIV reverse transcriptase (RT) inhibitor activity in the nanomolar range as well as HIV-infection inhibitor activity in the low micromolar with no toxicity. In the same context, compound 7b shows only a negligible inhibition of RT HIV.
Collapse
Affiliation(s)
- Roberto Romeo
- Dipartimento di Scienze chimiche, biologiche, farmaceutiche ed ambientali, Università di Messina, Via S.S. Annunziata, 98168 Messina, Italy.
| | - Daniela Iannazzo
- Dipartimento di Ingegneria, Università di Messina, Contrada Di Dio, 98166 Messina, Italy.
| | - Lucia Veltri
- Dipartimento di Chimica e tecnologie chimiche, Università della Calabria,Via P. Bucci 12/C, 87036 Arcavacata di Rende, Italy.
| | - Bartolo Gabriele
- Dipartimento di Chimica e tecnologie chimiche, Università della Calabria,Via P. Bucci 12/C, 87036 Arcavacata di Rende, Italy.
| | - Beatrice Macchi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", 00133 Roma, Italy.
| | - Caterina Frezza
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", 00133 Roma, Italy.
| | | | - Salvatore V Giofrè
- Dipartimento di Scienze chimiche, biologiche, farmaceutiche ed ambientali, Università di Messina, Via S.S. Annunziata, 98168 Messina, Italy.
| |
Collapse
|
162
|
Paneth A, Płonka W, Paneth P. Assessment of Nonnucleoside Inhibitors Binding to HIV-1 Reverse Transcriptase Using HYDE Scoring. Pharmaceuticals (Basel) 2019; 12:ph12020064. [PMID: 31022835 PMCID: PMC6631718 DOI: 10.3390/ph12020064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 11/24/2022] Open
Abstract
In this study, 48 inhibitors were docked to 107 allosteric centers of human immunodeficiency virus 1 (HIV-1) reverse transcriptase from the Protein Data Bank (PDB). Based on the average binding scores, quantitative structure-activity relationship (QSAR) equations were constructed in order to elucidate directions of further development in the design of inhibitors. Such developments, informed by structural data, must have a focus on activity against mutated forms of the enzyme, which are the cause of the emergence of multidrug-resistant viral strains. Docking studies employed the HYDE scoring function. Two types of QSARs have been considered: One based on topological descriptors and the other on structural fragments of the inhibitors. Both methods gave similar results, indicating substructures favoring binding to mutated forms of the enzyme.
Collapse
Affiliation(s)
- Agata Paneth
- Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland.
| | | | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland.
| |
Collapse
|
163
|
A. M. Subbaiah M, Mandlekar S, Desikan S, Ramar T, Subramani L, Annadurai M, Desai SD, Sinha S, Jenkins SM, Krystal MR, Subramanian M, Sridhar S, Padmanabhan S, Bhutani P, Arla R, Singh S, Sinha J, Thakur M, Kadow JF, Meanwell NA. Design, Synthesis, and Pharmacokinetic Evaluation of Phosphate and Amino Acid Ester Prodrugs for Improving the Oral Bioavailability of the HIV-1 Protease Inhibitor Atazanavir. J Med Chem 2019; 62:3553-3574. [DOI: 10.1021/acs.jmedchem.9b00002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
164
|
Čechová L, Dejmek M, Baszczyňski O, Šaman D, Gao L, Hu E, Stepan G, Jansa P, Janeba Z, Šimon P. Synthesis and anti-human immunodeficiency virus activity of substituted ( o,o-difluorophenyl)-linked-pyrimidines as potent non-nucleoside reverse transcriptase inhibitors. Antivir Chem Chemother 2019; 27:2040206619826265. [PMID: 30788976 PMCID: PMC6376552 DOI: 10.1177/2040206619826265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
With the worldwide number of human immunodeficiency virus positive patients stagnant and the increasing emergence of viral strains resistant to current treatment, the development of novel anti-human immunodeficiency virus drug candidates is a perpetual quest of medicinal chemists. Herein, we report a novel group of diarylpyrimidines, non-nucleoside reverse transcriptase inhibitors, which represents an important class of current anti-human immunodeficiency virus therapy. Series of diarylpyrimidines containing o,o-difluorophenyl (A-arm), 4-cyanophenylamino (B-arm), and a small substituent (e.g. NH2, OMe) at positions 2, 4, and 6 of the pyrimidine ring were prepared. The A-arm was modified in the para position (F or OMe) and linked to the central pyrimidine core with a variable spacer (CO, O, NH). Antiviral activities of 20 compounds were measured against wild type human immunodeficiency virus-1 and mutant reverse transcriptase strains (K103N, Y181C) using a cytoprotection assay. To the most promising structural motives belong the o,o-difluoro-p-methoxy A-arm in position 4, and the amino group in position 6 of pyrimidine. Single digit nanomolar activities with no significant toxicity (CC50 > 17,000 nM) were found for compounds 35 (EC50 = 2 nM), 37 (EC50 = 3 nM), and 13 (EC50 = 4 nM) having O, NH, and CO linkers, respectively.
Collapse
Affiliation(s)
- Lucie Čechová
- 1 Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Milan Dejmek
- 1 Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Ondřej Baszczyňski
- 1 Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - David Šaman
- 1 Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Liping Gao
- 2 Gilead Sciences Inc., Foster City, USA
| | - Eric Hu
- 2 Gilead Sciences Inc., Foster City, USA
| | | | - Petr Jansa
- 2 Gilead Sciences Inc., Foster City, USA
| | - Zlatko Janeba
- 1 Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Šimon
- 1 Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
165
|
Kang D, Wang Z, Chen M, Feng D, Wu G, Zhou Z, Jing L, Zuo X, Jiang X, Daelemans D, De Clercq E, Pannecouque C, Zhan P, Liu X. Discovery of potent
HIV
‐1 non‐nucleoside reverse transcriptase inhibitors by exploring the structure–activity relationship of solvent‐exposed regions I. Chem Biol Drug Des 2019; 93:430-437. [DOI: 10.1111/cbdd.13429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/09/2018] [Accepted: 09/30/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Dongwei Kang
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesShandong University Jinan Shandong China
| | - Zhao Wang
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesShandong University Jinan Shandong China
| | - Meng Chen
- Shandong Center for Disease Control and Prevention Jinan Shandong China
| | - Da Feng
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesShandong University Jinan Shandong China
| | - Gaochan Wu
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesShandong University Jinan Shandong China
| | - Zhongxia Zhou
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesShandong University Jinan Shandong China
| | - Lanlan Jing
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesShandong University Jinan Shandong China
| | - Xiaofang Zuo
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesShandong University Jinan Shandong China
| | - Xiangyi Jiang
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesShandong University Jinan Shandong China
| | - Dirk Daelemans
- Rega Institute for Medical ResearchK.U. Leuven Leuven Belgium
| | - Erik De Clercq
- Rega Institute for Medical ResearchK.U. Leuven Leuven Belgium
| | | | - Peng Zhan
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesShandong University Jinan Shandong China
| | - Xinyong Liu
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesShandong University Jinan Shandong China
| |
Collapse
|
166
|
Pribut N, Basson AE, van Otterlo WAL, Liotta DC, Pelly SC. Aryl Substituted Benzimidazolones as Potent HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors. ACS Med Chem Lett 2019; 10:196-202. [PMID: 30783503 DOI: 10.1021/acsmedchemlett.8b00549] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/17/2019] [Indexed: 12/11/2022] Open
Abstract
Since the discovery of HIV as the etiological agent of AIDS, the virus has infected millions of people each year. Fortunately, with the use of HAART, viremia can be suppressed to below detectable levels in the infected individuals, which significantly improves their quality of life and prevents the onset of AIDS. However, HAART is not curative and issues relating to adherence and drug resistance may lead to the re-emergence of viremia, the development of AIDS, and ultimately death. To address a pressing need for the development of new and efficacious antiretroviral agents with activity against viruses bearing prevalent resistant mutations, we have designed two generations of benzimidazolone derivatives as HIV non-nucleoside reverse transcriptase inhibitors. The first generation benzimidazolone inhibitors were found to be potent inhibitors of wild-type HIV reverse transcriptase but were ineffective in the presence of common resistance mutations such as K103N and Y181C. A second generation benzimidazolone inhibitor (compound 42) not only showed inhibitory activity against wild-type HIV but also remained active against HIV containing the K103N, Y181C, and K103N/Y181C drug resistance mutations.
Collapse
Affiliation(s)
- Nicole Pribut
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, 7602 Matieland, Western Cape South Africa
| | - Adriaan E. Basson
- School of Pathology, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, Medical School, Parktown, JHB, Private Bag 3, WITS 2050, South Africa
| | - Willem A. L. van Otterlo
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, 7602 Matieland, Western Cape South Africa
| | - Dennis C. Liotta
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Stephen C. Pelly
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
167
|
Flavonol 7- O-Glucoside Herbacitrin Inhibits HIV-1 Replication through Simultaneous Integrase and Reverse Transcriptase Inhibition. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1064793. [PMID: 30853999 PMCID: PMC6378053 DOI: 10.1155/2019/1064793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 10/31/2018] [Accepted: 01/14/2019] [Indexed: 11/17/2022]
Abstract
Here we report the evaluation of the antiretroviral effect of two flavonoid 7-O-glucosides, herbacitrin (1) and gossypitrin (2), together with quercetin (3), a well-studied flavonol. Antiviral activity of the flavonoids was assessed by analyzing HIV-1 p24 core protein levels in the supernatants of HIV-1 infected MT-4 and MT-2 cell cultures. The compounds showed mild to weak cytotoxic activities on the host cells; herbacitrin was the strongest in this regard (CC50=27.8 and 63.64 μM on MT-4 and MT-2 cells, respectively). In nontoxic concentrations, herbacitrin and quercetin reduced HIV-1 replication, whereas gossypitrin was ineffective. Herbacitrin was found to inhibit reverse transcriptase at 21.5 μM, while it was a more potent integrase inhibitor already active at 2.15 μM. Therefore, our observations suggest that herbacitrin exerts antiretroviral activity through simultaneously acting on these two targets of HIV-1 and that integrase inhibition might play a major role in this activity.
Collapse
|
168
|
Wang Z, Yu Z, Kang D, Zhang J, Tian Y, Daelemans D, De Clercq E, Pannecouque C, Zhan P, Liu X. Design, synthesis and biological evaluation of novel acetamide-substituted doravirine and its prodrugs as potent HIV-1 NNRTIs. Bioorg Med Chem 2019; 27:447-456. [DOI: 10.1016/j.bmc.2018.12.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/15/2018] [Accepted: 12/29/2018] [Indexed: 10/27/2022]
|
169
|
Zhu M, Du XN, Li YG, Zhang GN, Wang JX, Wang YC. Design, synthesis and biological evaluation of novel HIV-1 protease inhibitors with pentacyclic triterpenoids as P2-ligands. Bioorg Med Chem Lett 2019; 29:357-361. [DOI: 10.1016/j.bmcl.2018.12.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 01/15/2023]
|
170
|
Gao P, Wang X, Sun L, Cheng X, Poongavanam V, Kongsted J, Álvarez M, Luczkowiak J, Pannecouque C, De Clercq E, Lee KH, Chen CH, Liu H, Menéndez-Arias L, Liu X, Zhan P. Design, synthesis, and biologic evaluation of novel galloyl derivatives as HIV-1 RNase H inhibitors. Chem Biol Drug Des 2019; 93:582-589. [PMID: 30560566 DOI: 10.1111/cbdd.13455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/13/2018] [Accepted: 11/24/2018] [Indexed: 12/14/2022]
Abstract
Human immunodeficiency virus (HIV) reverse transcriptase (RT)-associated ribonuclease H (RNase H) remains as the only enzyme encoded within the viral genome not targeted by current antiviral drugs. In this work, we report the design, synthesis, and biologic evaluation of a novel series of galloyl derivatives with HIV-1 RNase H inhibitory activity. Most of them showed IC50 s at sub- to low-micromolar concentrations in enzymatic assays. The most potent compound was II-25 that showed an IC50 of 0.72 ± 0.07 μM in RNase H inhibition assays carried out with the HIV-1BH 10 RT. II-25 was 2.8 times more potent than β-thujaplicinol in these assays. Interestingly, II-25 and other galloyl derivatives were also found to inhibit the HIV IN strand transfer activity in vitro. Structure-activity relationships (SAR) studies and molecular modeling analysis predict key interactions with RT residues His539 and Arg557, while providing helpful insight for further optimization of selected compounds.
Collapse
Affiliation(s)
- Ping Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, China
| | - Xueshun Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, China
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, China
| | - Xiqiang Cheng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, China
| | | | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Mar Álvarez
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | - Joanna Luczkowiak
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | | | - Erik De Clercq
- Rega Institute for Medical Research, K.U.Leuven, Leuven, Belgium
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Chin-Ho Chen
- Surgical Science, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Huiqing Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, China
| |
Collapse
|
171
|
Kang D, Zhang H, Wang Z, Zhao T, Ginex T, Luque FJ, Yang Y, Wu G, Feng D, Wei F, Zhang J, De Clercq E, Pannecouque C, Chen CH, Lee KH, Murugan NA, Steitz TA, Zhan P, Liu X. Identification of Dihydrofuro[3,4- d]pyrimidine Derivatives as Novel HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors with Promising Antiviral Activities and Desirable Physicochemical Properties. J Med Chem 2019; 62:1484-1501. [PMID: 30624934 DOI: 10.1021/acs.jmedchem.8b01656] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To address drug resistance to HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs), a series of novel diarylpyrimidine (DAPY) derivatives targeting "tolerant region I" and "tolerant region II" of the NNRTIs binding pocket (NNIBP) were designed utilizing a structure-guided scaffold-hopping strategy. The dihydrofuro[3,4- d]pyrimidine derivatives 13c2 and 13c4 proved to be exceptionally potent against a wide range of HIV-1 strains carrying single NNRTI-resistant mutations (EC50 = 0.9-8.4 nM), which were remarkably superior to that of etravirine (ETV). Meanwhile, both compounds exhibited comparable activities with ETV toward the virus with double mutations F227L+V106A and K103N+Y181C. Furthermore, the most active compound 13c2 showed favorable pharmacokinetic properties with an oral bioavailability of 30.96% and a half-life of 11.1 h, which suggested that 13c2 is worth further investigation as a novel NNRTI to circumvent drug resistance.
Collapse
Affiliation(s)
- Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Jinan , Shandong , P. R. China
| | - Heng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Jinan , Shandong , P. R. China
| | - Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Jinan , Shandong , P. R. China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Jinan , Shandong , P. R. China
| | - Tiziana Ginex
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy, Campus Torribera, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTCUB) , University of Barcelona , 08921 Santa Coloma de Gramenet , Spain
| | - Francisco Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy, Campus Torribera, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTCUB) , University of Barcelona , 08921 Santa Coloma de Gramenet , Spain
| | - Yang Yang
- Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , Connecticut 06520-8114 , United States
| | - Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Jinan , Shandong , P. R. China
| | - Da Feng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Jinan , Shandong , P. R. China
| | - Fenju Wei
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Jinan , Shandong , P. R. China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Jinan , Shandong , P. R. China
| | - Erik De Clercq
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research , KU Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research , KU Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Chin Ho Chen
- Surgical Oncology Research Facility , Duke University Medical Center , Box 2926, Durham , North Carolina 27710 , United States
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, Eshelman School of Pharmacy , University of North Carolina , Chapel Hill , North Carolina 27599 , United States.,Chinese Medicine Research and Development Center , China Medical University and Hospital , Taichung 40402 , Taiwan
| | - N Arul Murugan
- Department of Theoretical Chemistry and Biology, Royal Institute of Technology (KTH) , AlbaNova University Center , S-106 91 Stockholm , Sweden
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , Connecticut 06520-8114 , United States
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Jinan , Shandong , P. R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Jinan , Shandong , P. R. China
| |
Collapse
|
172
|
Zhou Z, Liu T, Wu G, Kang D, Fu Z, Wang Z, De Clercq E, Pannecouque C, Zhan P, Liu X. Targeting the hydrophobic channel of NNIBP: discovery of novel 1,2,3-triazole-derived diarylpyrimidines as novel HIV-1 NNRTIs with high potency against wild-type and K103N mutant virus. Org Biomol Chem 2019; 17:3202-3217. [DOI: 10.1039/c9ob00032a] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Novel 1,2,3-triazole-derived diarylpyrimidines were discovered as potent HIV-1 NNRTIs.
Collapse
Affiliation(s)
- Zhongxia Zhou
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
| | - Tao Liu
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
| | - Gaochan Wu
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
| | - Dongwei Kang
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
| | - Zhipeng Fu
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
| | - Zhao Wang
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
| | - Erik De Clercq
- Rega Institute for Medical Research
- K.U. Leuven
- B-3000 Leuven
- Belgium
| | | | - Peng Zhan
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
| | - Xinyong Liu
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
| |
Collapse
|
173
|
Abstract
Protein-ligand docking simulation is central in drug design and development. Therefore, the development of web servers intended to docking simulations is of pivotal importance. SwissDock is a web server dedicated to carrying out protein-ligand docking simulation intuitively and elegantly. SwissDock is based on the protein-ligand docking program EADock DSS and has a simple and integrated interface. The SwissDock allows the user to upload structure files for a protein and a ligand, and returns the results by e-mail. To facilitate the upload of the protein and ligand files, we can prepare these input files using the program UCSF Chimera. In this chapter, we describe how to use UCSF Chimera and SwissDock to perform protein-ligand docking simulations. To illustrate the process, we describe the molecular docking of the competitive inhibitor roscovitine against the structure of human cyclin-dependent kinase 2.
Collapse
Affiliation(s)
- Gabriela Bitencourt-Ferreira
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil
| | - Walter Filgueira de Azevedo
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil.
| |
Collapse
|
174
|
Akher FB, Farrokhzadeh A, Honarparvar B. Effect of substituent and π-stacking interaction on the metal chelation ability of 7-subestituted 2-oxyisoquinoline-1,3(2H,4H)-diones as an HIV integrase inhibitor: A DFT study. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.08.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
175
|
Namasivayam V, Vanangamudi M, Kramer VG, Kurup S, Zhan P, Liu X, Kongsted J, Byrareddy SN. The Journey of HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) from Lab to Clinic. J Med Chem 2018; 62:4851-4883. [PMID: 30516990 DOI: 10.1021/acs.jmedchem.8b00843] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human immunodeficiency virus (HIV) infection is now pandemic. Targeting HIV-1 reverse transcriptase (HIV-1 RT) has been considered as one of the most successful targets for the development of anti-HIV treatment. Among the HIV-1 RT inhibitors, non-nucleoside reverse transcriptase inhibitors (NNRTIs) have gained a definitive place due to their unique antiviral potency, high specificity, and low toxicity in antiretroviral combination therapies used to treat HIV. Until now, >50 structurally diverse classes of compounds have been reported as NNRTIs. Among them, six NNRTIs were approved for HIV-1 treatment, namely, nevirapine (NVP), delavirdine (DLV), efavirenz (EFV), etravirine (ETR), rilpivirine (RPV), and doravirine (DOR). In this perspective, we focus on the six NNRTIs and lessons learned from their journey through development to clinical studies. It demonstrates the obligatory need of understanding the physicochemical and biological principles (lead optimization), resistance mutations, synthesis, and clinical requirements for drugs.
Collapse
Affiliation(s)
- Vigneshwaran Namasivayam
- Pharmaceutical Institute, Pharmaceutical Chemistry II , University of Bonn , 53121 Bonn , Germany
| | - Murugesan Vanangamudi
- Department of Medicinal and Pharmaceutical Chemistry , Sree Vidyanikethan College of Pharmacy , Tirupathi , Andhra Pradesh 517102 , India
| | | | - Sonali Kurup
- College of Pharmacy , Roosevelt University , Schaumburg , Illinois 60173 , United States
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , Jinan 250012 , P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , Jinan 250012 , P.R. China
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , DK-5230 , Odense M , Denmark
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha 68198-5880 , United States
| |
Collapse
|
176
|
Feng D, Wei F, Wang Z, Kang D, Zhan P, Liu X. Development of a practical synthesis of etravirine via a microwave-promoted amination. Chem Cent J 2018; 12:144. [PMID: 30569261 PMCID: PMC6768033 DOI: 10.1186/s13065-018-0504-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/27/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Etravirine (ETV) was approved as the second generation drug for use in individuals infected with HIV-1 in 2008 by the U.S. FDA with its unique antiviral activity, high specificity, and low toxicity. However, there are some shortcomings of the existing synthetic routes, such as the long reaction time and poor yield. RESULTS This article describes our efforts to develop an efficient, practical, microwave-promoted synthetic method for one key intermediate of ETV, which is capable of being operated on a scale-up synthesis level. Through this optimized synthetic procedure, the amination reaction time decreased from 12 h to 15 min and the overall yield improved from 30.4 to 38.5%. CONCLUSION Overall, we developed a practical synthesis of ETV via a microwave-promoted method, and the synthetic procedure could be amenable to scale-up, and production costs could be significantly lowered.
Collapse
Affiliation(s)
- Da Feng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Ji'nan, 250012, Shandong, People's Republic of China
| | - Fenju Wei
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Ji'nan, 250012, Shandong, People's Republic of China
| | - Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Ji'nan, 250012, Shandong, People's Republic of China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Ji'nan, 250012, Shandong, People's Republic of China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Ji'nan, 250012, Shandong, People's Republic of China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Ji'nan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
177
|
Nawrozkij MB, Forgione M, Yablokov AS, Lucidi A, Tomaselli D, Patsilinakos A, Panella C, Hailu GS, Kirillov IA, Badia R, Riveira-Muñoz E, Crespan E, Armijos Rivera JI, Cirilli R, Ragno R, Esté JA, Maga G, Mai A, Rotili D. Effect of α-Methoxy Substitution on the Anti-HIV Activity of Dihydropyrimidin-4(3H)-ones. J Med Chem 2018; 62:604-621. [DOI: 10.1021/acs.jmedchem.8b01238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Maxim B. Nawrozkij
- Volgograd State Technical University, Lenina Avenue 28, 400005 Volgograd, Russia
| | - Mariantonietta Forgione
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma “La Sapienza”, P. le A. Moro 5, 00185 Roma, Italy
| | | | - Alessia Lucidi
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma “La Sapienza”, P. le A. Moro 5, 00185 Roma, Italy
| | - Daniela Tomaselli
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma “La Sapienza”, P. le A. Moro 5, 00185 Roma, Italy
| | - Alexandros Patsilinakos
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma “La Sapienza”, P. le A. Moro 5, 00185 Roma, Italy
| | - Cristina Panella
- Centro Nazionale per il Controllo e la Valutazione dei Farmaci, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - Gebremedhin S. Hailu
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma “La Sapienza”, P. le A. Moro 5, 00185 Roma, Italy
| | - Ivan A. Kirillov
- Volgograd State Technical University, Lenina Avenue 28, 400005 Volgograd, Russia
| | - Roger Badia
- IrsiCaixa-AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Eva Riveira-Muñoz
- IrsiCaixa-AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Emmanuele Crespan
- Istituto di Genetica Molecolare IGM-CNR, via Abbiategrasso 207, 27100 Pavia, Italy
| | | | - Roberto Cirilli
- Centro Nazionale per il Controllo e la Valutazione dei Farmaci, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - Rino Ragno
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma “La Sapienza”, P. le A. Moro 5, 00185 Roma, Italy
| | - José A. Esté
- IrsiCaixa-AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Giovanni Maga
- Istituto di Genetica Molecolare IGM-CNR, via Abbiategrasso 207, 27100 Pavia, Italy
| | - Antonello Mai
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma “La Sapienza”, P. le A. Moro 5, 00185 Roma, Italy
- Istituto Pasteur—Fondazione Cenci Bolognetti, Università degli Studi di Roma “La Sapienza”, P. le A. Moro 5, 00185 Roma, Italy
| | - Dante Rotili
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma “La Sapienza”, P. le A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
178
|
Shirvani P, Fassihi A, Saghaie L. Recent Advances in the Design and Development of Non-nucleoside Reverse Transcriptase Inhibitor Scaffolds. ChemMedChem 2018; 14:52-77. [PMID: 30417561 DOI: 10.1002/cmdc.201800577] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/04/2018] [Indexed: 12/31/2022]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) have always been an important part of the anti-HIV-1 combination therapy known as combination antiretroviral therapy (cART) since 1996. The use of NNRTIs for about 22 years has led to some mutations in the residues that compose the reverse transcriptase active site, resulting in the emergence of drug-resistant viruses. Thus, the search for new potent NNRTIs with an improved safety profile and activity against drug-resistant HIV strains is indispensable, and many hit and lead NNRTIs have been discovered in the last decade. This review provides an overview of the development in this field from 2013 to August 2018.
Collapse
Affiliation(s)
- Pouria Shirvani
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib Avenue, 81746-73461, Isfahan, Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib Avenue, 81746-73461, Isfahan, Iran
| | - Lotfollah Saghaie
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib Avenue, 81746-73461, Isfahan, Iran
| |
Collapse
|
179
|
Zhang S, Zhang J, Gao P, Sun L, Song Y, Kang D, Liu X, Zhan P. Efficient drug discovery by rational lead hybridization based on crystallographic overlay. Drug Discov Today 2018; 24:805-813. [PMID: 30529326 DOI: 10.1016/j.drudis.2018.11.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/29/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
Abstract
In this review, we provide an overview of recent applications of crystallographic overlay-based molecular structure hybridization of lead compounds as a rational strategy for efficient drug discovery, with selected examples, and briefly discuss its advantages compared with other ligand-based methodologies.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji'nan, Shandong, PR China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji'nan, Shandong, PR China
| | - Ping Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji'nan, Shandong, PR China
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji'nan, Shandong, PR China
| | - Yuning Song
- Department of Clinical Pharmacy, Qilu Hospital of Shandong University, 250012, Ji'nan, Shandong, PR China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji'nan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji'nan, Shandong, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji'nan, Shandong, PR China.
| |
Collapse
|
180
|
Battini L, Bollini M. Challenges and approaches in the discovery of human immunodeficiency virus type‐1 non‐nucleoside reverse transcriptase inhibitors. Med Res Rev 2018; 39:1235-1273. [DOI: 10.1002/med.21544] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/04/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Leandro Battini
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION), CONICETCiudad de Buenos Aires Argentina
| | - Mariela Bollini
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION), CONICETCiudad de Buenos Aires Argentina
| |
Collapse
|
181
|
Discovery of phenylalanine derivatives as potent HIV-1 capsid inhibitors from click chemistry-based compound library. Eur J Med Chem 2018; 158:478-492. [PMID: 30243152 DOI: 10.1016/j.ejmech.2018.09.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/05/2018] [Accepted: 09/10/2018] [Indexed: 12/15/2022]
Abstract
The HIV-1 capsid (CA) protein plays essential roles in both early and late stages of HIV-1 replication and is considered an important, clinically unexploited therapeutic target. As such, small drug-like molecules that inhibit this critical HIV-1 protein have become a priority for several groups. Therefore, in this study we explore small molecule targeting of the CA protein, and in particular a very attractive inter-protomer pocket. We report the design, parallel synthesis, and anti-HIV-1 activity evaluation of a series of novel phenylalanine derivatives as HIV-1 CA protein inhibitors synthesized via Cu(I)-catalyzed alkyne-azide 1,3-dipolar cycloaddition (CuAAC) reaction. We demonstrate robust inhibitory activity over a range of potencies against the HIV-1 NL4-3 reference strain. In particular, compound 13m exhibited the greatest potency and lowest toxicity within this new series with an EC50 value of 4.33 μM and CC50 value of >57.74 μM (SI > 13.33). These values are very similar to the lead compound PF-74 (EC50 = 5.95 μM, CC50 > 70.50 μM, SI > 11.85) in our assay, despite significant structural difference. Furthermore, we demonstrate via surface plasmon resonance (SPR) binding assays that 13m interacts robustly with recombinant HIV-1 CA and exhibits antiviral activity in both the early and late stages of HIV-1 replication. Overall, the novel parallel synthesis and structure-activity relationships (SARs) identified within this study set the foundation for further rational optimization and discovery of CA-targeting compounds with improved potency.
Collapse
|
182
|
Gu SX, Lu HH, Liu GY, Ju XL, Zhu YY. Advances in diarylpyrimidines and related analogues as HIV-1 nonnucleoside reverse transcriptase inhibitors. Eur J Med Chem 2018; 158:371-392. [PMID: 30223123 DOI: 10.1016/j.ejmech.2018.09.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022]
Abstract
HIV-1 nonnucleoside reverse transcriptase inhibitors (NNRTIs) have been playing an important role in the fight against acquired immunodeficiency syndrome (AIDS). Diarylpyrimidines (DAPYs) as the second generation NNRTIs, represented by etravirine (TMC125) and rilpivirine (TMC278), have attracted extensive attention due to their extraordinary potency, high specificity and low toxicity. However, the rapid emergence of drug-resistant virus strains and dissatisfactory pharmacokinetics of DAPYs present new challenges. In the past two decades, an increasing number of novel DAPY derivatives have emerged, which significantly enriched the structure-activity relationship of DAPYs. Studies of crystallography and molecular modeling have afforded a lot of useful information on structural requirements of NNRTIs, which contributes greatly to the improvement of their resistance profiles. In this review, we reviewed the discovery history and their evolution of DAPYs including their structural modification, derivatization and scaffold hopping in continuous pursuit of excellent anti-HIV drugs. And also, we discussed the prospect of DAPYs and the directions of future efforts.
Collapse
Affiliation(s)
- Shuang-Xi Gu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| | - Huan-Huan Lu
- Yichang Humanwell Pharmaceutical Co., Ltd, Yichang, 443005, PR China
| | - Gen-Yan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Xiu-Lian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Yuan-Yuan Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| |
Collapse
|
183
|
Wang Z, Kang D, Chen M, Wu G, Feng D, Zhao T, Zhou Z, Huo Z, Jing L, Zuo X, Daelemans D, De Clercq E, Pannecouque C, Zhan P, Liu X. Design, synthesis, and antiviral evaluation of novel hydrazone-substituted thiophene[3,2-d
]pyrimidine derivatives as potent human immunodeficiency virus-1 inhibitors. Chem Biol Drug Des 2018; 92:2009-2021. [DOI: 10.1111/cbdd.13373] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/21/2018] [Accepted: 07/22/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Zhao Wang
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; Jinan Shandong China
| | - Dongwei Kang
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; Jinan Shandong China
| | - Meng Chen
- Shandong Center for Disease Control and Prevention; Jinan Shandong China
| | - Gaochan Wu
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; Jinan Shandong China
| | - Da Feng
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; Jinan Shandong China
| | - Tong Zhao
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; Jinan Shandong China
| | - Zhongxia Zhou
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; Jinan Shandong China
| | - Zhipeng Huo
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; Jinan Shandong China
| | - Lanlan Jing
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; Jinan Shandong China
| | - Xiaofang Zuo
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; Jinan Shandong China
| | - Dirk Daelemans
- Rega Institute for Medical Research; Laboratory of Virology and Chemotherapy; K.U. Leuven; Leuven Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research; Laboratory of Virology and Chemotherapy; K.U. Leuven; Leuven Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research; Laboratory of Virology and Chemotherapy; K.U. Leuven; Leuven Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; Jinan Shandong China
| | - Xinyong Liu
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; Jinan Shandong China
| |
Collapse
|
184
|
Belashov IA, Crawford DW, Cavender CE, Dai P, Beardslee PC, Mathews DH, Pentelute BL, McNaughton BR, Wedekind JE. Structure of HIV TAR in complex with a Lab-Evolved RRM provides insight into duplex RNA recognition and synthesis of a constrained peptide that impairs transcription. Nucleic Acids Res 2018; 46:6401-6415. [PMID: 29961805 PMCID: PMC6061845 DOI: 10.1093/nar/gky529] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 12/22/2022] Open
Abstract
Natural and lab-evolved proteins often recognize their RNA partners with exquisite affinity. Structural analysis of such complexes can offer valuable insight into sequence-selective recognition that can be exploited to alter biological function. Here, we describe the structure of a lab-evolved RNA recognition motif (RRM) bound to the HIV-1 trans-activation response (TAR) RNA element at 1.80 Å-resolution. The complex reveals a trio of arginines in an evolved β2-β3 loop penetrating deeply into the major groove to read conserved guanines while simultaneously forming cation-π and salt-bridge contacts. The observation that the evolved RRM engages TAR within a double-stranded stem is atypical compared to most RRMs. Mutagenesis, thermodynamic analysis and molecular dynamics validate the atypical binding mode and quantify molecular contributions that support the exceptionally tight binding of the TAR-protein complex (KD,App of 2.5 ± 0.1 nM). These findings led to the hypothesis that the β2-β3 loop can function as a standalone TAR-recognition module. Indeed, short constrained peptides comprising the β2-β3 loop still bind TAR (KD,App of 1.8 ± 0.5 μM) and significantly weaken TAR-dependent transcription. Our results provide a detailed understanding of TAR molecular recognition and reveal that a lab-evolved protein can be reduced to a minimal RNA-binding peptide.
Collapse
Affiliation(s)
- Ivan A Belashov
- Department of Biochemistry & Biophysics, Center for RNA Biology, and Center for AIDS Research, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - David W Crawford
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Chapin E Cavender
- Department of Biochemistry & Biophysics, Center for RNA Biology, and Center for AIDS Research, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Peng Dai
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Patrick C Beardslee
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - David H Mathews
- Department of Biochemistry & Biophysics, Center for RNA Biology, and Center for AIDS Research, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA
| | - Brian R McNaughton
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Joseph E Wedekind
- Department of Biochemistry & Biophysics, Center for RNA Biology, and Center for AIDS Research, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
185
|
Wang T, Ueda Y, Zhang Z, Yin Z, Matiskella J, Pearce BC, Yang Z, Zheng M, Parker DD, Yamanaka GA, Gong YF, Ho HT, Colonno RJ, Langley DR, Lin PF, Meanwell NA, Kadow JF. Discovery of the Human Immunodeficiency Virus Type 1 (HIV-1) Attachment Inhibitor Temsavir and Its Phosphonooxymethyl Prodrug Fostemsavir. J Med Chem 2018; 61:6308-6327. [PMID: 29920093 DOI: 10.1021/acs.jmedchem.8b00759] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The optimization of the 4-methoxy-6-azaindole series of HIV-1 attachment inhibitors (AIs) that originated with 1 to deliver temsavir (3, BMS-626529) is described. The most beneficial increases in potency and pharmacokinetic (PK) properties were attained by incorporating N-linked, sp2-hybridized heteroaryl rings at the 7-position of the heterocyclic nucleus. Compounds that adhered to a coplanarity model afforded targeted antiviral potency, leading to the identification of 3 with characteristics that provided for targeted exposure and PK properties in three preclinical species. However, the physical properties of 3 limited plasma exposure at higher doses, both in preclinical studies and in clinical trials as the result of dissolution- and/or solubility-limited absorption, a deficiency addressed by the preparation of the phosphonooxymethyl prodrug 4 (BMS-663068, fostemsavir). An extended-release formulation of 4 is currently in phase III clinical trials where it has shown promise as part of a drug combination therapy in highly treatment-experienced HIV-1 infected patients.
Collapse
|
186
|
Sun L, Gao P, Dong G, Zhang X, Cheng X, Ding X, Wang X, Daelemans D, De Clercq E, Pannecouque C, Menéndez-Arias L, Zhan P, Liu X. 5-Hydroxypyrido[2,3-b]pyrazin-6(5H)-one derivatives as novel dual inhibitors of HIV-1 reverse transcriptase-associated ribonuclease H and integrase. Eur J Med Chem 2018; 155:714-724. [DOI: 10.1016/j.ejmech.2018.06.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 11/26/2022]
|
187
|
Structure and Anti-HIV Activity of Betulinic Acid Analogues. Curr Med Sci 2018; 38:387-397. [PMID: 30074203 DOI: 10.1007/s11596-018-1891-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/13/2017] [Indexed: 10/28/2022]
Abstract
Firstly discovered in 1980s, human immunodeficiency virus (HIV) continues to affect more and more people. However, there is no effective drug available for the therapy of HIV infection. Betulinic acid existing in various medicinal herbs and fruits exhibits multiple biological effects, especially its outstanding anti-HIV activity, which has drawn the attentions of many pharmacists. Among the derivatives of betulinic acid, some compounds exhibited inhibitory activities at the nanomolar concentration, and have entered phase II clinical trials. This paper summarizes the current investigations on the anti-HIV activity of betulinic acid analogues, and provides valuable data for subsequent researches.
Collapse
|
188
|
Obydennov KL, Khamidullina LA, Galushchinskiy AN, Shatunova SA, Kosterina MF, Kalinina TA, Fan Z, Glukhareva TV, Morzherin YY. Discovery of Methyl (5 Z)-[2-(2,4,5-Trioxopyrrolidin-3-ylidene)-4-oxo-1,3-thiazolidin-5-ylidene]acetates as Antifungal Agents against Potato Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6239-6245. [PMID: 29807429 DOI: 10.1021/acs.jafc.8b02151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Synthesis, isomerism, and fungicidal activity against potato diseases of new (5 Z)-[2-(2,4,5-trioxopyrrolidin-3-ylidene)-4-oxo-1,3-thiazolidin-5-ylidene]acetate derivatives with 1,3-thiazolidine-4-one and pyrrolidine-2,3,5-trione moieties linked by an exocyclic C═C bond were described. Their structures were clearly confirmed by spectroscopic and spectrometric data (Fourier transform infrared spectroscopy, 1H and 13C nuclear magnetic resonance, and mass spectrometry), elemental analysis, and X-ray diffraction crystallography. A bioassay for antifungal activity in vitro against Phytophthora infestans, Fusariun solani, Alternaria solani, Rhizoctonia solani, and Colletotrichum coccodes demonstrated that 2,4,5-trioxopyrrolidin-1,3-thiazolidine derivatives exhibited a relatively broad spectrum of antifungal activity. One of the compounds showed considerable activity against all of the strains; in the case of F. solani, P. infestans, and A. solani, it possesses comparable or better fungicidal efficacy than the positive control Consento. Consequently, this compound is a promising fungicidal candidate for plant protection.
Collapse
Affiliation(s)
| | - Liliya A Khamidullina
- Ural Federal University , 19 Mira Street , Ekaterinburg 620002 , Russia
- Postovsky Institute of Organic Synthesis , Ural Branch of the Russian Academy of Sciences (UB RAS) , 22 Sofia Kovalevskaya Street , Ekaterinburg 620990 , Russia
| | | | | | | | | | | | | | - Yuri Yu Morzherin
- Ural Federal University , 19 Mira Street , Ekaterinburg 620002 , Russia
| |
Collapse
|
189
|
|
190
|
Huang B, Liu X, Tian Y, Kang D, Zhou Z, Daelemans D, De Clercq E, Pannecouque C, Zhan P, Liu X. First discovery of a potential carbonate prodrug of NNRTI drug candidate RDEA427 with submicromolar inhibitory activity against HIV-1 K103N/Y181C double mutant strain. Bioorg Med Chem Lett 2018. [DOI: 10.1016/j.bmcl.2018.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
191
|
Amin SA, Adhikari N, Bhargava S, Jha T, Gayen S. Structural exploration of hydroxyethylamines as HIV-1 protease inhibitors: new features identified. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2018; 29:385-408. [PMID: 29566580 DOI: 10.1080/1062936x.2018.1447511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The current study deals with chemometric modelling strategies (Naïve Bayes classification, hologram-based quantitative structure-activity relationship (HQSAR), comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA)) to explore the important features of hydroxylamine derivatives for exerting potent human immunodeficiency virus-1 (HIV-1) protease inhibition. Depending on the statistically validated reliable and robust quantitative structure-activity relationship (QSAR) models, important and crucial structural features have been identified that may be responsible for enhancing the activity profile of these hydroxylamine compounds. Arylsulfonamide function along with methoxy or fluoro substitution is important for enhancing activity. Bulky steric substitution at the sulfonamide nitrogen disfavours activity whereas smaller hydrophobic substitution at the same position is found to be favourable. Apart from the crucial oxazolidinone moiety, pyrrolidine, cyclic urea and methyl ester functions are also responsible for increasing the HIV-1 protease inhibitory profile. Observations derived from these modelling studies may be utilized further in designing promising HIV-1 protease inhibitors of this class.
Collapse
Affiliation(s)
- S A Amin
- a Natural science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P.O. Box 17020 , Jadavpur University , Kolkata 700032 , West Bengal , India
| | - N Adhikari
- a Natural science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P.O. Box 17020 , Jadavpur University , Kolkata 700032 , West Bengal , India
| | - S Bhargava
- b Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences , Dr Hari Singh Gour University , Sagar 470003 , Madhya Pradesh , India
| | - T Jha
- a Natural science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P.O. Box 17020 , Jadavpur University , Kolkata 700032 , West Bengal , India
| | - S Gayen
- b Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences , Dr Hari Singh Gour University , Sagar 470003 , Madhya Pradesh , India
| |
Collapse
|
192
|
Subbaiah MAM, Meanwell NA, Kadow JF, Subramani L, Annadurai M, Ramar T, Desai SD, Sinha S, Subramanian M, Mandlekar S, Sridhar S, Padmanabhan S, Bhutani P, Arla R, Jenkins SM, Krystal MR, Wang C, Sarabu R. Coupling of an Acyl Migration Prodrug Strategy with Bio-activation To Improve Oral Delivery of the HIV-1 Protease Inhibitor Atazanavir. J Med Chem 2018; 61:4176-4188. [PMID: 29693401 DOI: 10.1021/acs.jmedchem.8b00277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
HIV-1 protease inhibitors (PIs), which include atazanavir (ATV, 1), remain important medicines to treat HIV-1 infection. However, they are characterized by poor oral bioavailability and a need for boosting with a pharmacokinetic enhancer, which results in additional drug-drug interactions that are sometimes difficult to manage. We investigated a chemo-activated, acyl migration-based prodrug design approach to improve the pharmacokinetic profile of 1 but failed to obtain improved oral bioavailability over dosing the parent drug in rats. This strategy was refined by conjugating the amine with a promoiety designed to undergo bio-activation, as a means of modulating the subsequent chemo-activation. This culminated in a lead prodrug that (1) yielded substantially better oral drug delivery of 1 when compared to the parent itself, the simple acyl migration-based prodrug, and the corresponding simple l-Val prodrug, (2) acted as a depot which resulted in a sustained release of the parent drug in vivo, and (3) offered the benefit of mitigating the pH-dependent absorption associated with 1, thereby potentially reducing the risk of decreased bioavailability with concurrent use of stomach-acid-reducing drugs.
Collapse
|
193
|
Kang D, Wang Z, Zhang H, Wu G, Zhao T, Zhou Z, Huo Z, Huang B, Feng D, Ding X, Zhang J, Zuo X, Jing L, Luo W, Guma S, Daelemans D, Clercq ED, Pannecouque C, Zhan P, Liu X. Further Exploring Solvent-Exposed Tolerant Regions of Allosteric Binding Pocket for Novel HIV-1 NNRTIs Discovery. ACS Med Chem Lett 2018; 9:370-375. [PMID: 29670703 DOI: 10.1021/acsmedchemlett.8b00054] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/01/2018] [Indexed: 12/18/2022] Open
Abstract
Based on the detailed analysis of the binding mode of diarylpyrimidines (DAPYs) with HIV-1 RT, we designed several subseries of novel NNRTIs, with the aim to probe biologically relevant chemical space of solvent-exposed tolerant regions in NNRTIs binding pocket (NNIBP). The most potent compound 21a exhibited significant activity against the whole viral panel, being about 1.5-2.6-fold (WT, EC50 = 2.44 nM; L100I, EC50 = 4.24 nM; Y181C, EC50 = 4.80 nM; F227L + V106A, EC50 = 17.8 nM) and 4-5-fold (K103N, EC50 = 1.03 nM; Y188L, EC50 = 7.16 nM; E138K, EC50 = 3.95 nM) more potent than the reference drug ETV. Furthermore, molecular simulation was conducted to understand the binding mode of interactions of these novel NNRTIs and to provide insights for the next optimization studies.
Collapse
Affiliation(s)
- Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Heng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Zhongxia Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Zhipeng Huo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Da Feng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Xiao Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Xiaofang Zuo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Wei Luo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Samuel Guma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Dirk Daelemans
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| |
Collapse
|
194
|
Huo Z, Zhang H, Kang D, Zhou Z, Wu G, Desta S, Zuo X, Wang Z, Jing L, Ding X, Daelemans D, De Clercq E, Pannecouque C, Zhan P, Liu X. Discovery of Novel Diarylpyrimidine Derivatives as Potent HIV-1 NNRTIs Targeting the "NNRTI Adjacent" Binding Site. ACS Med Chem Lett 2018; 9:334-338. [PMID: 29670696 DOI: 10.1021/acsmedchemlett.7b00524] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/27/2018] [Indexed: 12/18/2022] Open
Abstract
A novel series of diarylpyrimidine derivatives, which could simultaneously occupy the classical NNRTIs binding pocket (NNIBP) and the newly reported "NNRTI Adjacent" binding site, were designed, synthesized, and evaluated for their antiviral activities in MT-4 cell cultures. The results demonstrated that six compounds (20, 27 and 31-34) showed excellent activities against wild-type (WT) HIV-1 strain (EC50 = 2.4-3.8 nM), which were more potent than that of ETV (EC50 = 4.0 nM). Furthermore, 20, 27, 33, and 34 showed more potent or equipotent activity against single mutant HIV-1 strains compared to that of ETV. Especially, 20 showed marked antiviral activity, which was 1.5-fold greater against WT and 1.5- to 3-fold greater against L100I, K103N, Y181C, Y188L, and E138K when compared with ETV. In addition, all compounds showed lower toxicity (CC50 = 5.1-149.2 μM) than ETV (CC50 = 2.2 μM). The HIV-1 RT inhibitory assay was further conducted to confirm their binding target. Preliminary structure-activity relationships (SARs), molecular modeling, and calculated physicochemical properties of selected compounds were also discussed comprehensively.
Collapse
Affiliation(s)
- Zhipeng Huo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji’nan, Shandong, P. R. China
| | - Heng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji’nan, Shandong, P. R. China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji’nan, Shandong, P. R. China
| | - Zhongxia Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji’nan, Shandong, P. R. China
| | - Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji’nan, Shandong, P. R. China
| | - Samuel Desta
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji’nan, Shandong, P. R. China
| | - Xiaofang Zuo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji’nan, Shandong, P. R. China
| | - Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji’nan, Shandong, P. R. China
| | - Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji’nan, Shandong, P. R. China
| | - Xiao Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji’nan, Shandong, P. R. China
| | - Dirk Daelemans
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, K. U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Erik De Clercq
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, K. U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, K. U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji’nan, Shandong, P. R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji’nan, Shandong, P. R. China
| |
Collapse
|
195
|
Sanna C, Scognamiglio M, Fiorentino A, Corona A, Graziani V, Caredda A, Cortis P, Montisci M, Ceresola ER, Canducci F, Poli F, Tramontano E, Esposito F. Prenylated phloroglucinols from Hypericum scruglii, an endemic species of Sardinia (Italy), as new dual HIV-1 inhibitors effective on HIV-1 replication. PLoS One 2018; 13:e0195168. [PMID: 29601601 PMCID: PMC5877874 DOI: 10.1371/journal.pone.0195168] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/16/2018] [Indexed: 12/20/2022] Open
Abstract
In a search for new potential multitarget anti-HIV compounds from natural products, we have identified in Hypericum scruglii, an endemic and exclusive species of Sardinia (Italy), a potent plant lead. The phytochemical study of the hydroalcoholic extract obtained from its leaves led to the isolation of its most abundant secondary metabolites, belonging to different chemical classes. In particular, three phloroglucinols derivatives were identified, confirming their significance as chemotaxonomic markers of the Hypericum genus. Among them, the 3-(13-hydroxygeranyl)-1-(2'-methylbutanoyl)phloroglucinol was reported here for the first time. All six isolated compounds have been evaluated firstly for the inhibition of both Human Immunodeficiency Virus type 1 (HIV-1) Reverse Transcriptase (RT)-associated DNA Polymerase (RDDP) and Ribonuclease H (RNase H) activities, for the inhibition of HIV-1 integrase (IN) in biochemical assays, and also for their effect on viral replication. Among the isolated metabolites, three phloroglucinol derivatives and quercitrin were effective on both RT-associated RDDP and RNase H activities in biochemical assays. The same active compounds affected also HIV-1 IN strand transfer function, suggesting the involvement of the RNase H active site. Furthermore, phloroglucinols compounds, included the newly identified compound, were able to inhibit the HIV-1 replication in cell based assays.
Collapse
Affiliation(s)
- Cinzia Sanna
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
- * E-mail:
| | | | - Antonio Fiorentino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania, Caserta, Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Vittoria Graziani
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania, Caserta, Italy
| | - Alessia Caredda
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Pierluigi Cortis
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Mariofilippo Montisci
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Elisa Rita Ceresola
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Filippo Canducci
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Laboratory of Microbiology, San Raffaele Hospital, IRCCS, Milan, Italy
| | - Ferruccio Poli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
196
|
Tian Y, Liu Z, Liu J, Huang B, Kang D, Zhang H, De Clercq E, Daelemans D, Pannecouque C, Lee KH, Chen CH, Zhan P, Liu X. Targeting the entrance channel of NNIBP: Discovery of diarylnicotinamide 1,4-disubstituted 1,2,3-triazoles as novel HIV-1 NNRTIs with high potency against wild-type and E138K mutant virus. Eur J Med Chem 2018; 151:339-350. [PMID: 29635166 DOI: 10.1016/j.ejmech.2018.03.059] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022]
Abstract
Inspired by our previous efforts on the modifications of diarylpyrimidines as HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTI) and reported crystallography study, novel diarylnicotinamide derivatives were designed with a "triazole tail" occupying the entrance channel in the NNRTI binding pocket of the reverse transcriptase to afford additional interactions. The newly designed compounds were then synthesized and evaluated for their anti-HIV activities in MT-4 cells. All the compounds showed excellent to good activity against wild-type HIV-1 strain with EC50 of 0.02-1.77 μM. Evaluations of selected compounds against more drug-resistant strains showed these compounds had advantage of inhibiting E138K mutant virus which is a key drug-resistant mutant to the new generation of NNRTIs. Among this series, propionitrile (3b2, EC50(IIIB) = 0.020 μM, EC50(E138K) = 0.015 μM, CC50 = 40.15 μM), pyrrolidin-1-ylmethanone (3b8, EC50(IIIB) = 0.020 μM, EC50(E138K) = 0.014 μM, CC50 = 58.09 μM) and morpholinomethanone (3b9, EC50(IIIB) = 0.020 μM, EC50(E138K) = 0.027 μM, CC50 = 180.90 μM) derivatives are the three most promising compounds which are equally potent to the marketed drug Etravirine against E138K mutant strain but with much lower cytotoxicity. Furthermore, detailed SAR, inhibitory activity against RT and docking study of the representative compounds are also discussed.
Collapse
Affiliation(s)
- Ye Tian
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Zhaoqiang Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Jinghan Liu
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, 210009, Nanjing, PR China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Heng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Dirk Daelemans
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599-7568, United States; Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| | - Chin-Ho Chen
- Surgical Science, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, United States
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
197
|
Zuo X, Huo Z, Kang D, Wu G, Zhou Z, Liu X, Zhan P. Current insights into anti-HIV drug discovery and development: a review of recent patent literature (2014-2017). Expert Opin Ther Pat 2018; 28:299-316. [PMID: 29411697 DOI: 10.1080/13543776.2018.1438410] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION To deal with the rapid emergence of drug resistance challenges, together with the difficulty to eradicate the virus, off-target effects and significant cumulative drug toxicities, it is still imperative to develop next-generation anti-HIV agents with novel chemical classes or new mechanisms of action. AREAS COVERED We primarily focused on current strategies to discover novel anti-HIV agents. Moreover, examples of anti-HIV lead compounds were mainly selected from recently patented publications (reported between 2014 and 2017). In particular, 'privileged structure'-focused substituents decorating approach, scaffold hopping, natural-product diversification and prodrug are focused on. Furthermore, exploitation of new compounds with unexplored mechanisms of action and medicinal chemistry strategies to deplete the HIV reservoir were also described. Perspectives that could inspire future anti-HIV drug discovery are delineated. EXPERT OPINION Even if a large number of patents have been disclosed recently, additional HIV inhibitors are still required, especially novel chemical skeletons displaying a unexploited mechanism of action. Current medicinal chemistry strategies are inadequate, and appropriate and new methodologies and technologies should be exploited to identify novel anti-HIV drug candidates in a time- and cost- effective manner.
Collapse
Affiliation(s)
- Xiaofang Zuo
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Zhipeng Huo
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Dongwei Kang
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Gaochan Wu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Zhongxia Zhou
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Xinyong Liu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Peng Zhan
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| |
Collapse
|
198
|
Peddi SR, Mohammed NA, Hussein AA, Sivan SK, Manga V. Multiple-receptor conformation docking, dock pose clustering, and 3D QSAR-driven approaches exploring new HIV-1 RT inhibitors. Struct Chem 2018. [DOI: 10.1007/s11224-018-1082-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
199
|
Zhou Z, Liu T, Kang D, Huo Z, Wu G, Daelemans D, De Clercq E, Pannecouque C, Zhan P, Liu X. Discovery of novel diarylpyrimidines as potent HIV-1 NNRTIs by investigating the chemical space of a less explored “hydrophobic channel”. Org Biomol Chem 2018; 16:1014-1028. [DOI: 10.1039/c7ob02828h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We described the identification of novel HIV-1 NNRTIs via exploration of the chemical space of a seldom explored “hydrophobic channel”.
Collapse
Affiliation(s)
- Zhongxia Zhou
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
| | - Tao Liu
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
| | - Dongwei Kang
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
| | - Zhipeng Huo
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
| | - Gaochan Wu
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
| | - Dirk Daelemans
- Rega Institute for Medical Research
- K.U.Leuven
- B-3000 Leuven
- Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research
- K.U.Leuven
- B-3000 Leuven
- Belgium
| | | | - Peng Zhan
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
| | - Xinyong Liu
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
| |
Collapse
|
200
|
Meanwell NA, Krystal MR, Nowicka-Sans B, Langley DR, Conlon DA, Eastgate MD, Grasela DM, Timmins P, Wang T, Kadow JF. Inhibitors of HIV-1 Attachment: The Discovery and Development of Temsavir and its Prodrug Fostemsavir. J Med Chem 2017; 61:62-80. [PMID: 29271653 DOI: 10.1021/acs.jmedchem.7b01337] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) infection currently requires lifelong therapy with drugs that are used in combination to control viremia. The indole-3-glyoxamide 6 was discovered as an inhibitor of HIV-1 infectivity using a phenotypic screen and derivatives of this compound were found to interfere with the HIV-1 entry process by stabilizing a conformation of the virus gp120 protein not recognized by the host cell CD4 receptor. An extensive optimization program led to the identification of temsavir (31), which exhibited an improved antiviral and pharmacokinetic profile compared to 6 and was explored in phase 3 clinical trials as the phosphonooxymethyl derivative fostemsavir (35), a prodrug designed to address dissolution- and solubility-limited absorption issues. In this drug annotation, we summarize the structure-activity and structure-liability studies leading to the discovery of 31 and the clinical studies conducted with 35 that entailed the development of an extended release formulation suitable for phase 3 clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - David A Conlon
- Chemical and Synthetic Development, Bristol-Myers Squibb Research and Development , 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Martin D Eastgate
- Chemical and Synthetic Development, Bristol-Myers Squibb Research and Development , 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Dennis M Grasela
- Innovative Medicines Development, Bristol-Myers Squibb Research and Development , PO Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Peter Timmins
- Drug Product Science and Technology, Bristol-Myers Squibb , Reeds Lane, Moreton, Merseyside CH46 1QW, United Kingdom
| | | | | |
Collapse
|