151
|
Han W, Wu YD. Molecular dynamics studies of hexamers of amyloid-beta peptide (16-35) and its mutants: influence of charge states on amyloid formation. Proteins 2007; 66:575-87. [PMID: 17115426 DOI: 10.1002/prot.21232] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To study the early stage of amyloid-beta peptide (Abeta) aggregation, hexamers of the wild-type (WT) Abeta(16-35) and its mutants with amyloid-like conformations have been studied by molecular dynamics simulations in explicit water for a total time of 1.7 micros. We found that the amyloid-like structures in the WT oligomers are destabilized by the solvation of ionic D23/K28 residues, which are buried in the fibrils. This means that the desolvation of D23/K28 residues may contribute to the kinetic barrier of aggregation in the early stage. In the E22Q/D23N, D23N/K28Q, and E22Q/D23N/K28Q mutants, hydration becomes much less significant because the mutated residues have neutral amide side-chains. These amide side-chains can form linear cross-strand hydrogen bond chains, or "polar zippers", if dehydrated. These "polar zippers" increase the stability of the amyloid-like conformation, reducing the barrier for the early-stage oligomerization. This is in accord with experimental observations that both the D23/K28 lactamization and the E22Q/D23N mutation promote aggregation. We also found that the E22Q/D23N mutant prefers an amyloid-like conformation that differs from the one found for WT Abeta. This suggests that different amyloid structures may be formed under different conditions.
Collapse
Affiliation(s)
- Wei Han
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | | |
Collapse
|
152
|
Molina-Holgado F, Hider RC, Gaeta A, Williams R, Francis P. Metals ions and neurodegeneration. Biometals 2007; 20:639-54. [PMID: 17294125 DOI: 10.1007/s10534-006-9033-z] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 07/20/2006] [Indexed: 10/23/2022]
Abstract
Neurodegenerative disorders include a variety of pathological conditions, which share similar critical metabolic processes such as protein aggregation and oxidative stress, both of which are associated with the involvement of metal ions. In this review Alzheimer's disease and Parkinson's disease are mainly discussed, with the aim of identifying common trends underlying these neurological conditions. Chelation therapy could be a valuable therapeutic approach, since metals are considered to be a pharmacological target for the rationale design of new therapeutic agents directed towards the treatment of neurodegeneration.
Collapse
|
153
|
Wickramasinghe NP, Kotecha M, Samoson A, Past J, Ishii Y. Sensitivity enhancement in (13)C solid-state NMR of protein microcrystals by use of paramagnetic metal ions for optimizing (1)H T(1) relaxation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2007; 184:350-6. [PMID: 17126048 PMCID: PMC1839830 DOI: 10.1016/j.jmr.2006.10.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 10/21/2006] [Accepted: 10/24/2006] [Indexed: 05/04/2023]
Abstract
We discuss a simple approach to enhance sensitivity for (13)C high-resolution solid-state NMR for proteins in microcrystals by reducing (1)H T(1) relaxation times with paramagnetic relaxation reagents. It was shown that (1)H T(1) values can be reduced from 0.4-0.8s to 60-70 ms for ubiquitin and lysozyme in D(2)O in the presence of 10 mM Cu(II)Na(2)EDTA without substantial degradation of the resolution in (13)C CPMAS spectra. Faster signal accumulation using the shorter (1)H T(1) attained by paramagnetic doping provided sensitivity enhancements of 1.4-2.9 for these proteins, reducing the experimental time for a given signal-to-noise ratio by a factor of 2.0-8.4. This approach presented here is likely to be applicable to various other proteins in order to enhance sensitivity in (13)C high-resolution solid-state NMR spectroscopy.
Collapse
Affiliation(s)
- Nalinda P Wickramasinghe
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St., Chicago, IL 60607, USA
| | | | | | | | | |
Collapse
|
154
|
Majumdar A, Chung H, Dolios G, Wang R, Asamoah N, Lobel P, Maxfield FR. Degradation of fibrillar forms of Alzheimer's amyloid beta-peptide by macrophages. Neurobiol Aging 2007; 29:707-15. [PMID: 17222479 PMCID: PMC2424018 DOI: 10.1016/j.neurobiolaging.2006.12.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 11/14/2006] [Accepted: 12/03/2006] [Indexed: 11/27/2022]
Abstract
Cultured microglia internalize fibrillar amyloid Abeta (fAbeta) and deliver it to lysosomes. Degradation of fAbeta by microglia is incomplete, but macrophages degrade fAbeta efficiently. When mannose-6 phosphorylated lysosomal enzymes were added to the culture medium of microglia, degradation of fAbeta was increased, and the increased degradation was inhibited by excess mannose-6-phosphate, which competes for binding and endocytic uptake. This suggests that low activity of one or more lysosomal enzymes in the microglia was responsible for the poor degradation of fAbeta. To further characterize the degradation of fAbeta in late endosomes and lysosomes, we analyzed fAbeta-derived intracellular degradation products in macrophages and microglia by mass spectrometry. Fragments with truncations in the first 12 N-terminal residues were observed in extracts from both cell types. We also analyzed material released by the cells. Microglia released mainly intact Abeta1-42, whereas macrophages released a variety of N-terminal truncated fragments. These results indicate that initial proteolysis near the N-terminus is similar in both cell types, but microglia are limited in their ability to make further cuts in the fAbeta.
Collapse
Affiliation(s)
- Amitabha Majumdar
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021
| | - Haeyong Chung
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021
- Department of Pathology, Columbia University-College of Physicians and Surgeons, New York, NY 10032
| | - Georgia Dolios
- Department of Human Genetics, Mt. Sinai School of Medicine, New York, NY 10029
| | - Rong Wang
- Department of Human Genetics, Mt. Sinai School of Medicine, New York, NY 10029
| | - Nikiya Asamoah
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021
| | - Peter Lobel
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Piscataway, N.J. 00854
| | - Frederick R. Maxfield
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021
- To whom correspondence should be addressed: Weill Medical College of Cornell University, Department of Biochemistry, 1300 York Avenue, Room E215, New York, NY 10021, Tel: (212) 746-6405, Fax: (212) 746-8875,
| |
Collapse
|
155
|
Dulin F, Callebaut I, Colloc'h N, Mornon JP. Sequence-based modeling of Aβ42 soluble oligomers. Biopolymers 2007; 85:422-37. [PMID: 17211889 DOI: 10.1002/bip.20675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abeta fibrils, which are central to the pathology of Alzheimer's disease, form a cross-beta-structure that contains likely parallel beta-sheets with a salt bridge between residues Asp23 and Lys28. Recent studies suggest that soluble oligomers of amyloid peptides have neurotoxic effects in cell cultures, raising the interest in studying the structures of these intermediate forms. Here, we present three models of possible soluble Abeta forms based on the sequences similarities, assumed to support local structural similarities, of the Abeta peptide with fragments of three proteins (adhesin, Semliki Forest virus capsid protein, and transthyretin). These three models share a similar structure in the C-terminal region composed of two beta-strands connected by a loop, which contain the Asp23-Lys28 salt bridge. This segment is also structurally well conserved in Abeta fibril forms. Differences between the three monomeric models occur in the N-terminal region and in the C-terminal tail. These three models might sample some of the most stable conformers of the soluble Abeta peptide within oligomeric assemblies, which were modeled here in the form of dimers, trimers, tetramers, and hexamers. The consistency of these models is discussed with respect to available experimental and theoretical data.
Collapse
Affiliation(s)
- Fabienne Dulin
- Département de Biologie Structurale, IMPMC, CNRS UMR7590, Universités Pierre et Marie Curie-Paris 6 et Denis Diderot-Paris 7, F-75005 France
| | | | | | | |
Collapse
|
156
|
Glabe CC. Amyloid accumulation and pathogensis of Alzheimer's disease: significance of monomeric, oligomeric and fibrillar Abeta. Subcell Biochem 2006; 38:167-77. [PMID: 15709478 DOI: 10.1007/0-387-23226-5_8] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This chapter reviews recent findings that indicate that soluble amyloid oligomers may represent the primary pathological species in Alzheimer's and other degenerative diseases. Various amyloids share a number of common properties, including their structures and pathways for fibril formation and accumulation in disease. Recent findings suggest that toxic amyloid oligomers share a common structure, suggesting that they also share a common mechanism of pathogenesis
Collapse
|
157
|
van Gestel J, de Leeuw SW. The formation of fibrils by intertwining of filaments: model and application to amyloid Abeta protein. Biophys J 2006; 92:1157-63. [PMID: 17114229 PMCID: PMC1783885 DOI: 10.1529/biophysj.106.097535] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We outline a model that describes the interaction of rods that form intertwined bundles. In this simple model, we compare the elastic energy penalty that arises due to the deformation of the rods to the gain in binding energy upon intertwining. We find that, for proper values of the bending Young's modulus and the binding energy, a helical pitch may be found for which the energy of intertwining is most favorable. We apply our description to the problem of Alzheimer's Abeta protein fibrillization. If we forbid configurations that exhibit steric overlap between the protofilaments that make up a protein fibril, our model predicts that fibrils consisting of three protofilaments shall form. This agrees well with experimental results. Our model can also provide an estimate for the helical pitch of suitable fibrils.
Collapse
Affiliation(s)
- Jeroen van Gestel
- Physical Chemistry and Molecular Thermodynamics Group, Technische Universiteit Delft, Delft, The Netherlands.
| | | |
Collapse
|
158
|
Bu Z, Shi Y, Callaway DJE, Tycko R. Molecular alignment within beta-sheets in Abeta(14-23) fibrils: solid-state NMR experiments and theoretical predictions. Biophys J 2006; 92:594-602. [PMID: 17056725 PMCID: PMC1751388 DOI: 10.1529/biophysj.106.091017] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report investigations of the molecular structure of amyloid fibrils formed by residues 14-23 of the beta-amyloid peptide associated with Alzheimer's disease (Abeta(14-23)), using solid-state nuclear magnetic resonance (NMR) techniques in conjunction with electron microscopy and atomic force microscopy. The NMR measurements, which include two-dimensional proton-mediated (13)C-(13)C exchange and two-dimensional relayed proton-mediated (13)C-(13)C exchange spectra, show that Abeta(14-23) fibrils contain antiparallel beta-sheets with a registry of backbone hydrogen bonds that aligns residue 17+k of each peptide molecule with residue 22-k of neighboring molecules in the same beta-sheet. We compare these results, as well as previously reported experimental results for fibrils formed by other beta-amyloid fragments, with theoretical predictions of molecular alignment based on databases of residue-specific alignments in antiparallel beta-sheets in known protein structures. While the theoretical predictions are not in exact agreement with the experimental results, they facilitate the design of experiments by suggesting a small number of plausible alignments that are readily distinguished by solid-state NMR.
Collapse
Affiliation(s)
- Zimei Bu
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
159
|
Kinghorn KJ, Crowther DC, Sharp LK, Nerelius C, Davis RL, Chang HT, Green C, Gubb DC, Johansson J, Lomas DA. Neuroserpin binds Abeta and is a neuroprotective component of amyloid plaques in Alzheimer disease. J Biol Chem 2006; 281:29268-77. [PMID: 16849336 DOI: 10.1074/jbc.m600690200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Alzheimer disease is characterized by extracellular plaques composed of Abeta peptides. We show here that these plaques also contain the serine protease inhibitor neuroserpin and that neuroserpin forms a 1:1 binary complex with the N-terminal or middle parts of the Abeta(1-42) peptide. This complex inactivates neuroserpin as an inhibitor of tissue plasminogen activator and blocks the loop-sheet polymerization process that is characteristic of members of the serpin superfamily. In contrast neuroserpin accelerates the aggregation of Abeta(1-42) with the resulting species having an appearance that is distinct from the mature amyloid fibril. Neuroserpin reduces the cytotoxicity of Abeta(1-42) when assessed using standard cell assays, and the interaction has been confirmed in vivo in novel Drosophila models of disease. Taken together, these data show that neuroserpin interacts with Abeta(1-42) to form off-pathway non-toxic oligomers and so protects neurons in Alzheimer disease.
Collapse
Affiliation(s)
- Kerri J Kinghorn
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Baumketner A, Bernstein SL, Wyttenbach T, Lazo ND, Teplow DB, Bowers MT, Shea JE. Structure of the 21-30 fragment of amyloid beta-protein. Protein Sci 2006; 15:1239-47. [PMID: 16731963 PMCID: PMC2265091 DOI: 10.1110/ps.062076806] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Folding and self-assembly of the 42-residue amyloid beta-protein (Abeta) are linked to Alzheimer's disease (AD). The 21-30 region of Abeta, Abeta(21-30), is resistant to proteolysis and is believed to nucleate the folding of full-length Abeta. The conformational space accessible to the Abeta(21-30) peptide is investigated by using replica exchange molecular dynamics simulations in explicit solvent. Conformations belonging to the global free energy minimum (the "native" state) from simulation are in good agreement with reported NMR structures. These conformations possess a bend motif spanning the central residues V24-K28. This bend is stabilized by a network of hydrogen bonds involving the side chain of residue D23 and the amide hydrogens of adjacent residues G25, S26, N27, and K28, as well as by a salt bridge formed between side chains of K28 and E22. The non-native states of this peptide are compact and retain a native-like bend topology. The persistence of structure in the denatured state may account for the resistance of this peptide to protease degradation and aggregation, even at elevated temperatures.
Collapse
Affiliation(s)
- Andrij Baumketner
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, California 93106, USA
| | | | | | | | | | | | | |
Collapse
|
161
|
Makarava N, Bocharova OV, Salnikov VV, Breydo L, Anderson M, Baskakov IV. Dichotomous versus palm-type mechanisms of lateral assembly of amyloid fibrils. Protein Sci 2006; 15:1334-41. [PMID: 16731968 PMCID: PMC2265092 DOI: 10.1110/ps.052013106] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Despite possessing a common cross-beta core, amyloid fibrils are known to exhibit great variations in their morphologies. To date, the mechanism responsible for the polymorphism in amyloid fibrils is poorly understood. Here we report that two variants of mammalian full-length prion protein (PrP), hamster (Ha) and mouse (Mo) PrPs, produced morphologically distinguishable subsets of mature fibrils under identical solvent conditions. To gain insight into the origin of this morphological diversity we analyzed the early stages of polymerization. Unexpectedly, we found that despite a highly conserved amyloidogenic region (94% identity within the residues 90-230), Ha and Mo PrPs followed two distinct pathways for lateral assembly of protofibrils into mature, higher order fibrils. The protofibrils of Ha PrP first formed irregular bundles characterized by a peculiar palm-type shape, which ultimately condensed into mature fibrils. The protofibrils of Mo PrP, on the other hand, associated in pairs in a pattern resembling dichotomous coalescence. These pathways are referred to here as the palm-type and dichotomous mechanisms. Two distinct mechanisms for lateral assembly explain striking differences in morphology of mature fibrils produced from closely related Mo and Ha PrPs. Remarkable similarities between subtypes of amyloid fibrils generated from different proteins and peptides suggest that the two mechanisms of lateral assembly may not be limited to prion proteins but may be a common characteristic of polymerization of amyloidogenic proteins and peptides in general.
Collapse
Affiliation(s)
- Natallia Makarava
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
162
|
Patki AU, Hausrath AC, Cordes MHJ. High polar content of long buried blocks of sequence in protein domains suggests selection against amyloidogenic non-polar sequences. J Mol Biol 2006; 362:800-9. [PMID: 16935301 DOI: 10.1016/j.jmb.2006.07.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 07/07/2006] [Accepted: 07/21/2006] [Indexed: 10/24/2022]
Abstract
Native protein structures achieve stability in part by burying hydrophobic side-chains. About 75% of all amino acid residues buried in protein interiors are non-polar. Buried residues are not uniformly distributed in protein sequences, but sometimes cluster as contiguous polypeptide stretches that run through the interior of protein domain structures. Such regions have an intrinsically high local sequence density of non-polar residues, creating a potential problem: local non-polar sequences also promote protein misfolding and aggregation into non-native structures such as the amyloid fibrils in Alzheimer's disease. Here we show that long buried blocks of sequence in protein domains of known structure have, on average, a lower content of non-polar amino acids (about 70%) than do isolated buried residues (about 80%). This trend is observed both in small and in large protein domains and is independent of secondary structure. Long, completely non-polar buried stretches containing many large side-chains are particularly avoided. Aspartate residues that are incorporated in long buried stretches were found to make fewer polar interactions than those in short stretches, hinting that they may be destabilizing to the native state. We suggest that evolutionary pressure is acting on non-native properties, causing buried polar residues to be placed at positions where they would break up aggregation-prone non-polar sequences, perhaps even at some cost to native state stability.
Collapse
Affiliation(s)
- Aniruddha U Patki
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
163
|
Danielsson J, Andersson A, Jarvet J, Gräslund A. 15N relaxation study of the amyloid beta-peptide: structural propensities and persistence length. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2006; 44 Spec No:S114-21. [PMID: 16826550 DOI: 10.1002/mrc.1814] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The dynamics of monomeric Alzheimer Abeta1-40 in aqueous solution was studied using heteronuclear NMR experiments. 15N NMR relaxation rates of amide groups report on the dynamics in the peptide chain and make it possible to estimate structural propensities from temperature-dependent relaxation data and chemical shifts change analysis. The persistence length of the polypeptide chain was determined using a model in which the influence of neighboring residue relaxation is assumed to decay exponentially as a function of distance. The persistence length of the Abeta1-40 monomer was found to decrease from eight to three residues when temperature was increased from 3 to 18 degrees C. At 3 degrees C the peptide shows structural propensities that correlate well with the suggested secondary structure regions of the peptide to be present in the fibrils, and with the alpha-helical structure in membrane-mimicking systems. Our data leads to a structural model for the monomeric soluble beta-peptide with six different regions of secondary structure propensities. The peptide has two regions with beta-strand propensity (residues 16-24 and 31-40), two regions with high PII-helix propensity (residues 1-4 and 11-15) and two unstructured regions with higher mobility (residues 5-10 and 25-30) connecting the structural elements.
Collapse
Affiliation(s)
- Jens Danielsson
- Department of Biochemistry and Biophysics, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
164
|
Sato T, Kienlen-Campard P, Ahmed M, Liu W, Li H, Elliott JI, Aimoto S, Constantinescu SN, Octave JN, Smith SO. Inhibitors of amyloid toxicity based on beta-sheet packing of Abeta40 and Abeta42. Biochemistry 2006; 45:5503-16. [PMID: 16634632 PMCID: PMC2593882 DOI: 10.1021/bi052485f] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Amyloid fibrils associated with Alzheimer's disease and a wide range of other neurodegenerative diseases have a cross beta-sheet structure, where main chain hydrogen bonding occurs between beta-strands in the direction of the fibril axis. The surface of the beta-sheet has pronounced ridges and grooves when the individual beta-strands have a parallel orientation and the amino acids are in-register with one another. Here we show that in Abeta amyloid fibrils, Met35 packs against Gly33 in the C-terminus of Abeta40 and against Gly37 in the C-terminus of Abeta42. These packing interactions suggest that the protofilament subunits are displaced relative to one another in the Abeta40 and Abeta42 fibril structures. We take advantage of this corrugated structure to design a new class of inhibitors that prevent fibril formation by placing alternating glycine and aromatic residues on one face of a beta-strand. We show that peptide inhibitors based on a GxFxGxF framework disrupt sheet-to-sheet packing and inhibit the formation of mature Abeta fibrils as assayed by thioflavin T fluorescence, electron microscopy, and solid-state NMR spectroscopy. The alternating large and small amino acids in the GxFxGxF sequence are complementary to the corresponding amino acids in the IxGxMxG motif found in the C-terminal sequence of Abeta40 and Abeta42. Importantly, the designed peptide inhibitors significantly reduce the toxicity induced by Abeta42 on cultured rat cortical neurons.
Collapse
Affiliation(s)
- Takeshi Sato
- Department of Biochemistry and Cell Biology, Center for Structural Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Pascal Kienlen-Campard
- Experimental Pharmacology Unit, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Mahiuddin Ahmed
- Department of Biochemistry and Cell Biology, Center for Structural Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Wei Liu
- Department of Biochemistry and Cell Biology, Center for Structural Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Huilin Li
- Department of Biology, Brookhaven National Laboratory, Upton, NY
| | - James I. Elliott
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Saburo Aimoto
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Stefan N. Constantinescu
- Ludwig Institute for Cancer Research, Bruxelles 1200, Belgium. Christian de Duve Institute of Cellular Pathology, MEXP Unit, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Jean-Noel Octave
- Experimental Pharmacology Unit, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Steven O. Smith
- Department of Biochemistry and Cell Biology, Center for Structural Biology, Stony Brook University, Stony Brook, NY 11794-5215
- Address correspondence to: Steven O. Smith, Department of Biochemistry and Cell Biology, Center for Structural Biology, Stony Brook University, Stony Brook, NY 11794-5215, Tel. 631 632-1210; Fax. 631-632-8575.
| |
Collapse
|
165
|
Zhou DH, Kloepper KD, Winter KA, Rienstra CM. Band-selective 13C homonuclear 3D spectroscopy for solid proteins at high field with rotor-synchronized soft pulses. JOURNAL OF BIOMOLECULAR NMR 2006; 34:245-57. [PMID: 16645815 DOI: 10.1007/s10858-006-0026-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 02/20/2006] [Indexed: 05/08/2023]
Abstract
We demonstrate improved 3D 13C-13C-13C chemical shift correlation experiments for solid proteins, utilizing band-selective coherence transfer, scalar decoupling and homonuclear zero-quantum polarization transfer. Judicious use of selective pulses and a z-filter period suppress artifacts with a two-step phase cycle, allowing higher digital resolution in a fixed measurement time. The novel correlation of C(ali)-C(ali)-CX (C(ali) for aliphatic carbons, CX for any carbon) reduces measurement time by an order of magnitude without sacrificing digital resolution. The experiment retains intensity from side-chain carbon resonances whose chemical shift dispersion is critical to minimize spectral degeneracy for large proteins with a predominance of secondary structure, such as beta-sheet rich fibrillar proteins and alpha-helical membrane proteins. We demonstrate the experiment for the beta1 immunoglobulin binding domain of protein G (GB1) and fibrils of the A30P mutant of alpha-synuclein, which is implicated in Parkinson's disease. Selective pulses of duration comparable the rotor period give optimal performance, but must be synchronized with the spinning in non-trivial ways to minimize chemical shift anisotropy recoupling effects. Soft pulses with a small bandwidth-duration product are best for exciting the approximately 70 ppm bandwidth required for aliphatic-only dimensions.
Collapse
Affiliation(s)
- Donghua H Zhou
- Department of Chemistry, Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
166
|
Mastrangelo IA, Ahmed M, Sato T, Liu W, Wang C, Hough P, Smith SO. High-resolution Atomic Force Microscopy of Soluble Aβ42 Oligomers. J Mol Biol 2006; 358:106-19. [PMID: 16499926 DOI: 10.1016/j.jmb.2006.01.042] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 12/12/2005] [Accepted: 01/09/2006] [Indexed: 11/25/2022]
Abstract
Soluble oligomers and protofibrils are widely thought to be the toxic forms of the Abeta42 peptide associated with Alzheimer's disease. We have investigated the structure and formation of these assemblies using a new approach in atomic force microscopy (AFM) that yields high-resolution images of hydrated proteins and allows the structure of the smallest molecular weight (MW) oligomers to be observed and characterized. AFM images of monomers, dimers and other low MW oligomers at early incubation times (< 1h) are consistent with a hairpin structure for the monomeric Abeta42 peptide. The low MW oligomers are relatively compact and have significant order. The most constant dimension of these oligomers is their height (approximately 1-3 nm) above the mica surface; their lateral dimensions (width and length) vary between 5 nm and 10nm. Flat nascent protofibrils with lengths of over 40 nm are observed at short incubation times (< or = 3h); their lateral dimensions of 6-8 nm are consistent with a mass-per-length of 9 kDa/nm previously predicted for the elementary fibril subunit. High MW oligomers with lateral dimensions of 15-25 nm and heights ranging from 2-8 nm are common at high concentrations of Abeta. We show that an inhibitor designed to block the sheet-to-sheet packing in Abeta fibrils is able to cap the heights of these oligomers at approximately 4 nm. The observation of fine structure in the high MW oligomers suggests that they are able to nucleate fibril formation. AFM images obtained as a function of incubation time reveal a sequence of assembly from monomers to soluble oligomers and protofibrils.
Collapse
|
167
|
Flöck D, Colacino S, Colombo G, Di Nola A. Misfolding of the amyloid beta-protein: a molecular dynamics study. Proteins 2006; 62:183-92. [PMID: 16294338 DOI: 10.1002/prot.20683] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Amyloid beta-proteins spontaneously aggregate and build plaques in the brains of Alzheimer's disease patients. The polypeptide has been the subject of extensive in vitro and computational research. Still, the pathway to aggregational forms and their exact conformations remain largely unclear. Here we present an extensive molecular dynamics approach simulating the protein in various temperatures, pH conditions, and with different charge states of the N- and C-termini, thus exploring the conformational space of the protein at large. Our results show that the protein is able to sample different conformations, many of which are rich in beta structure content, and all characterized by a rapid loss of helix 1 that converts into a pi-helix, while helix 2 samples random and beta-rich structures. Moreover, a hydrophobic cluster is observed involving Val18, Phe19, Ala21, and Gly25. The results are carefully compared with recent NMR and spectroscopic data, and are in global agreement with the experimental findings.
Collapse
Affiliation(s)
- Dagmar Flöck
- Department of Chemistry, University of Rome La Sapienza, P.le Aldo Moro 5, Rome, Italy
| | | | | | | |
Collapse
|
168
|
Nelson R, Eisenberg D. Recent atomic models of amyloid fibril structure. Curr Opin Struct Biol 2006; 16:260-5. [PMID: 16563741 DOI: 10.1016/j.sbi.2006.03.007] [Citation(s) in RCA: 290] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 02/24/2006] [Accepted: 03/14/2006] [Indexed: 11/22/2022]
Abstract
Despite the difficulties associated with determining atomic-level structures for materials that are fibrous, structural biologists are making headway in understanding the architecture of amyloid-like fibrils. It has long been recognized that these fibrils contain a cross-beta spine, with beta-strands perpendicular to the fibril axis. Recently, atomic structures have been determined for some of these cross-beta spines, revealing a pair of beta-sheets mated closely together by intermeshing sidechains in what has been termed a steric zipper. To explain the conversion of proteins from soluble to fibrous forms, several types of models have been proposed: refolding, natively disordered and gain of interaction. The gain-of-interaction models may additionally be subdivided into direct stacking, cross-beta spine, three-dimensional domain swapping and three-dimensional domain swapping with a cross-beta spine.
Collapse
Affiliation(s)
- Rebecca Nelson
- Howard Hughes Medical Institute, UCLA-DOE Institute for Genomics and Proteomics, Box 951570, UCLA, Los Angeles, CA 90095-1570, USA
| | | |
Collapse
|
169
|
|
170
|
Murakami K, Irie K, Ohigashi H, Hara H, Nagao M, Shimizu T, Shirasawa T. Formation and stabilization model of the 42-mer Abeta radical: implications for the long-lasting oxidative stress in Alzheimer's disease. J Am Chem Soc 2006; 127:15168-74. [PMID: 16248658 DOI: 10.1021/ja054041c] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amyloid fibrils mainly consist of 40-mer and 42-mer peptides (Abeta40, Abeta42). Abeta42 is believed to play a crucial role in the pathogenesis of Alzheimer's disease because its aggregative ability and neurotoxicity are considerably greater than those of Abeta40. The neurotoxicity of Abeta peptides involving the generation of free radicals is closely related to the S-oxidized radical cation of Met-35. However, the cation's origin and mechanism of stabilization remain unclear. Recently, structural models of fibrillar Abeta42 and Abeta40 based on systematic proline replacement have been proposed by our group [Morimoto, A.; et al. J. Biol. Chem. 2004, 279, 52781] and Wetzel's group [Williams, A. D.; et al. J. Mol. Biol. 2004, 335, 833], respectively. A major difference between these models is that our model of Abeta42 has a C-terminal beta-sheet region. Our biophysical study on Abeta42 using electron spin resonance (ESR) suggests that the S-oxidized radical cation of Met-35 could be generated by the reduction of the tyrosyl radical at Tyr-10 through a turn structure at positions 22 and 23, and stabilized by a C-terminal carboxylate anion through an intramolecular beta-sheet at positions 35-37 and 40-42 to form a C-terminal core that would lead to aggregation. A time-course analysis of the generation of radicals using ESR suggests that stabilization of the radicals by aggregation might be a main reason for the long-lasting oxidative stress of Abeta42. In contrast, the S-oxidized radical cation of Abeta40 is too short-lived to induce potent neurotoxicity because no such stabilization of radicals occurs in Abeta40.
Collapse
Affiliation(s)
- Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
171
|
Abstract
Mammalian and most fungal infectious proteins (also known as prions) are self-propagating amyloid, a filamentous beta-sheet structure. A prion domain determines the infectious properties of a protein by forming the core of the amyloid. We compare the properties of known prion domains and their interactions with the remainder of the protein and with chaperones. Ure2p and Sup35p, two yeast prion proteins, can still form prions when the prion domains are shuffled, indicating a parallel in-register beta-sheet structure.
Collapse
Affiliation(s)
- Eric D Ross
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA.
| | | | | |
Collapse
|
172
|
Cecchini M, Curcio R, Pappalardo M, Melki R, Caflisch A. A molecular dynamics approach to the structural characterization of amyloid aggregation. J Mol Biol 2006; 357:1306-21. [PMID: 16483608 DOI: 10.1016/j.jmb.2006.01.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 11/21/2005] [Accepted: 01/04/2006] [Indexed: 10/25/2022]
Abstract
A novel computational approach to the structural analysis of ordered beta-aggregation is presented and validated on three known amyloidogenic polypeptides. The strategy is based on the decomposition of the sequence into overlapping stretches and equilibrium implicit solvent molecular dynamics (MD) simulations of an oligomeric system for each stretch. The structural stability of the in-register parallel aggregates sampled in the implicit solvent runs is further evaluated using explicit water simulations for a subset of the stretches. The beta-aggregation propensity along the sequence of the Alzheimer's amyloid-beta peptide (Abeta(42)) is found to be highly heterogeneous with a maximum in the segment V(12)HHQKLVFFAE(22) and minima at S(8)G(9), G(25)S(26), G(29)A(30), and G(38)V(39), which are turn-like segments. The simulation results suggest that these sites may play a crucial role in determining the aggregation tendency and the fibrillar structure of Abeta(42). Similar findings are obtained for the human amylin, a 37-residue peptide that displays a maximal beta-aggregation propensity at Q(10)RLANFLVHSSNN(22) and two turn-like sites at G(24)A(25) and G(33)S(34). In the third application, the MD approach is used to identify beta-aggregation "hot-spots" within the N-terminal domain of the yeast prion Ure2p (Ure2p(1-94)) and to design a double-point mutant (Ure2p-N4748S(1-94)) with lower beta-aggregation propensity. The change in the aggregation propensity of Ure2p-N4748S(1-94) is verified in vitro using the thioflavin T binding assay.
Collapse
Affiliation(s)
- M Cecchini
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
173
|
Abstract
Soluble oligomers of Alzheimer's amyloid beta protein (Abeta) may act as effectors of neurotoxicity in early stages of Alzheimer's disease. Detailed information about the structure of Abeta in atomistic level and the dynamics of assembly of monomeric Abeta into oligomeric structures is rather elusive. We have performed replica exchange molecular dynamics (REMD) simulations on the formation of the dimer and trimer of Abeta10-35 peptide. We have observed spontaneous formation of several basic structural units that may act as a template or an intermediate for further aggregation of Alzheimer's Abeta protein. Various conformers, including interlocking structures of experimentally known bend double beta strands, are identified.
Collapse
Affiliation(s)
- Soonmin Jang
- School of Chemistry, Seoul National University, Seoul 151-747, Korea
| | | |
Collapse
|
174
|
Petkova AT, Yau WM, Tycko R. Experimental constraints on quaternary structure in Alzheimer's beta-amyloid fibrils. Biochemistry 2006; 45:498-512. [PMID: 16401079 PMCID: PMC1435828 DOI: 10.1021/bi051952q] [Citation(s) in RCA: 898] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We describe solid-state nuclear magnetic resonance (NMR) measurements on fibrils formed by the 40-residue beta-amyloid peptide associated with Alzheimer's disease (Abeta(1-40)) that place constraints on the identity and symmetry of contacts between in-register, parallel beta-sheets in the fibrils. We refer to these contacts as internal and external quaternary contacts, depending on whether they are within a single molecular layer or between molecular layers. The data include (1) two-dimensional 13C-13C NMR spectra that indicate internal quaternary contacts between side chains of L17 and F19 and side chains of I32, L34, and V36, as well as external quaternary contacts between side chains of I31 and G37; (2) two-dimensional 15N-13C NMR spectra that indicate external quaternary contacts between the side chain of M35 and the peptide backbone at G33; (3) measurements of magnetic dipole-dipole couplings between the side chain carboxylate group of D23 and the side chain amine group of K28 that indicate salt bridge interactions. Isotopic dilution experiments allow us to make distinctions between intramolecular and intermolecular contacts. On the basis of these data and previously determined structural constraints from solid-state NMR and electron microscopy, we construct full molecular models using restrained molecular dynamics simulations and restrained energy minimization. These models apply to Abeta(1-40) fibrils grown with gentle agitation. We also present evidence for different internal quaternary contacts in Abeta(1-40) fibrils grown without agitation, which are morphologically distinct.
Collapse
Affiliation(s)
- Aneta T Petkova
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | | | | |
Collapse
|
175
|
Abstract
Alzheimer's disease and Creutzfeldt-Jakob disease are the best-known examples of a group of diseases known as the amyloidoses. They are characterized by the extracellular deposition of toxic, insoluble amyloid fibrils. Knowledge of the structure of these fibrils is essential for understanding the process of pathology of the amyloidoses and for the rational design of drugs to inhibit or reverse amyloid formation. Structural models have been built using information from a wide variety of techniques, including X-ray diffraction, electron microscopy, solid state NMR and EPR. Recent advances have been made in understanding the architecture of the amyloid fibril. Here, we describe and compare postulated structural models for the mature amyloid fibril and discuss how the ordered structure of amyloid contributes to its stability.
Collapse
Affiliation(s)
- O Sumner Makin
- Department of Biochemistry, John Maynard Smith Building, School of Life Sciences, University of Sussex, Falmer, East Sussex, UK
| | | |
Collapse
|
176
|
Tycko R. Characterization of amyloid structures at the molecular level by solid state nuclear magnetic resonance spectroscopy. Methods Enzymol 2006; 413:103-22. [PMID: 17046393 PMCID: PMC1633711 DOI: 10.1016/s0076-6879(06)13006-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Solid state nuclear magnetic resonance (NMR) spectroscopy is particularly useful in structural studies of amyloid fibrils because solid state NMR techniques have unique capabilities as site-specific, molecular-level structural probes of noncrystalline materials. These techniques provide experimental data that strongly constrain the secondary, tertiary, and quaternary structures of amyloid fibrils, permitting the development of experimentally based structural models. Examples of techniques that are applicable to amyloid samples prepared with isotopic labeling of specific sites and to samples prepared with uniform isotopic labeling of selected residues are presented, illustrating the utility of the various techniques and labeling schemes. Information regarding the preparation of amyloid samples for solid state NMR measurements is also included.
Collapse
Affiliation(s)
- Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 5, Room 112, Bethesda, Maryland 20892-0520, e-mail: , phone: 301-402-8272, fax: 301-496-0825
| |
Collapse
|
177
|
Kreplak L, Aebi U. From the Polymorphism of Amyloid Fibrils to their Assembly Mechanism and Cytotoxicity. ADVANCES IN PROTEIN CHEMISTRY 2006; 73:217-33. [PMID: 17190615 DOI: 10.1016/s0065-3233(06)73007-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Extracellular amyloid deposits are present in a variety of diseases. They contain amyloid fibrils that arise from the association of proteins or peptides. At the molecular level, all these fibrils share a common assembly principle based on a conformational change of the protein precursor leading to the formation of a cross-beta sheet structure. The smallest observed fibrils in vitro, often called protofibrils, are 4-5 nm in diameter. An amyloid fibril is generally composed of several of these protofibrils and may adopt different morphologies such as ribbons, sheets, or multistranded cables. This polymorphism was observed with many different amyloid-forming peptides and proteins using electron microscopy. The need to understand the molecular origin of this effect as well as the desire to find inhibitors of fibril formation has driven researchers toward the dissection of amyloid fibril assembly pathways. We review the current knowledge on amyloid polymorphism and discuss recent findings in the field concerning amyloid fibril assembly pathways and cytotoxicity mechanisms.
Collapse
Affiliation(s)
- Laurent Kreplak
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | | |
Collapse
|
178
|
Abstract
Amyloid fibrils are elongated, insoluble protein aggregates deposited in vivo in amyloid diseases, and amyloid-like fibrils are formed in vitro from soluble proteins. Both of these groups of fibrils, despite differences in the sequence and native structure of their component proteins, share common properties, including their core structure. Multiple models have been proposed for the common core structure, but in most cases, atomic-level structural details have yet to be determined. Here we review several structural models proposed for amyloid and amyloid-like fibrils and relate features of these models to the common fibril properties. We divide models into three classes: Refolding, Gain-of-Interaction, and Natively Disordered. The Refolding models propose structurally distinct native and fibrillar states and suggest that backbone interactions drive fibril formation. In contrast, the Gain-of-Interaction models propose a largely native-like structure for the protein in the fibril and highlight the importance of specific sequences in fibril formation. The Natively Disordered models have aspects in common with both Refolding and Gain-of-Interaction models. While each class of model suggests explanations for some of the common fibril properties, and some models, such as Gain-of-Interaction models with a cross-beta spine, fit a wider range of properties than others, no one class provides a complete explanation for all amyloid fibril behavior.
Collapse
Affiliation(s)
- Rebecca Nelson
- Howard Hughes Medical Institute, UCLA-DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095, USA
| | | |
Collapse
|
179
|
Tartaglia GG, Cavalli A, Pellarin R, Caflisch A. Prediction of aggregation rate and aggregation-prone segments in polypeptide sequences. Protein Sci 2005; 14:2723-34. [PMID: 16195556 PMCID: PMC2253302 DOI: 10.1110/ps.051471205] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The reliable identification of beta-aggregating stretches in protein sequences is essential for the development of therapeutic agents for Alzheimer's and Parkinson's diseases, as well as other pathological conditions associated with protein deposition. Here, a model based on physicochemical properties and computational design of beta-aggregating peptide sequences is shown to be able to predict the aggregation rate over a large set of natural polypeptide sequences. Furthermore, the model identifies aggregation-prone fragments within proteins and predicts the parallel or anti-parallel beta-sheet organization in fibrils. The model recognizes different beta-aggregating segments in mammalian and nonmammalian prion proteins, providing insights into the species barrier for the transmission of the prion disease.
Collapse
Affiliation(s)
- Gian Gaetano Tartaglia
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
180
|
Chen Z, Krause G, Reif B. Structure and Orientation of Peptide Inhibitors Bound to Beta-amyloid Fibrils. J Mol Biol 2005; 354:760-76. [PMID: 16271725 DOI: 10.1016/j.jmb.2005.09.055] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 08/30/2005] [Accepted: 09/16/2005] [Indexed: 11/30/2022]
Abstract
Polymerization of the soluble beta-amyloid peptide into highly ordered fibrils is hypothesized to be a causative event in the development of Alzheimer's disease. Understanding the interactions of Abeta with inhibitors on an atomic level is fundamental for the development of diagnostics and therapeutic approaches, and can provide, in addition, important indirect information of the amyloid fibril structure. We have shown recently that trRDCs can be measured in solution state NMR for peptide ligands binding weakly to amyloid fibrils. We present here the structures for two inhibitor peptides, LPFFD and DPFFL, and their structural models bound to fibrillar Abeta(14-23) and Abeta(1-40) based on transferred nuclear Overhauser effect (trNOE) and transferred residual dipolar coupling (trRDC) data. In a first step, the inhibitor peptide structure is calculated on the basis of trNOE data; the trRDC data are then validated on the basis of the trNOE-derived structure using the program PALES. The orientation of the peptide inhibitors with respect to Abeta fibrils is obtained from trRDC data, assuming that Abeta fibrils orient such that the fibril axis is aligned in parallel with the magnetic field. The trRDC-derived alignment tensor of the peptide ligand is then used as a restraint for molecular dynamics docking studies. We find that the structure with the lowest rmsd value is in agreement with a model in which the inhibitor peptide binds to the long side of an amyloid fibril. Especially, we detect interactions involving the hydrophobic core, residues K16 and E22/D23 of the Abeta sequence. Structural differences are observed for binding of the inhibitor peptide to Abeta14-23 and Abeta1-40 fibrils, respectively, indicating different fibril structure. We expect this approach to be useful in the rational design of amyloid ligands with improved binding characteristics.
Collapse
Affiliation(s)
- Zhongjing Chen
- Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, D-13125 Berlin, Germany
| | | | | |
Collapse
|
181
|
Carmona P, Monzón M, Monleón E, Badiola JJ, Monreal J. In vivo detection of scrapie cases from blood by infrared spectroscopy. J Gen Virol 2005; 86:3425-3431. [PMID: 16298990 DOI: 10.1099/vir.0.81097-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In the present study, infrared spectroscopy was shown to be able to distinguish healthy and scrapie-infected animals by analysis of the white-cell membranous fraction from blood. Infrared spectroscopy was able to detect not only clinical cases, but also animals at a preclinical stage of the disease. These findings suggest this technique as an accurate in vivo diagnostic tool that could be applied to animal as well as human samples. In addition to possibly avoiding the slaughter of a huge number of animals with the socio-economic consequences that this poses, the test could be expected to become useful in the prevention of human transmission by blood transfusion.
Collapse
Affiliation(s)
- Pedro Carmona
- Instituto de Estructura de la Materia (CSIC), Serrano 121, 28006 Madrid, Spain
| | - Marta Monzón
- Centro Nacional de Referencia de EET (University of Zaragoza), Miguel Servet 177, 50013 Zaragoza, Spain
| | - Eva Monleón
- Centro Nacional de Referencia de EET (University of Zaragoza), Miguel Servet 177, 50013 Zaragoza, Spain
| | - Juan José Badiola
- Centro Nacional de Referencia de EET (University of Zaragoza), Miguel Servet 177, 50013 Zaragoza, Spain
| | - Jaime Monreal
- Instituto de Neurobiología Santiago Ramón y Cajal (CSIC), Doctor Arce 37, 28006 Madrid, Spain
| |
Collapse
|
182
|
Gaeta A, Hider RC. The crucial role of metal ions in neurodegeneration: the basis for a promising therapeutic strategy. Br J Pharmacol 2005; 146:1041-59. [PMID: 16205720 PMCID: PMC1751240 DOI: 10.1038/sj.bjp.0706416] [Citation(s) in RCA: 278] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 07/28/2005] [Accepted: 07/30/2005] [Indexed: 11/09/2022] Open
Abstract
The variety of factors and events involved in neurodegeneration renders the subject a major challenge. Neurodegenerative disorders include a number of different pathological conditions, which share similar critical metabolic processes, such as protein aggregation and oxidative stress, both of which are associated with the involvement of metal ions. In this review, Alzheimer's disease, Parkinson's disease and prion disease are discussed, with the aim of identifying common trends underlying these devastating neurological conditions. Chelation therapy could be a valuable therapeutic approach, since metals are considered to be a pharmacological target for the rationale design of new therapeutic agents directed towards the treatment of neurodegeneration.
Collapse
Affiliation(s)
- Alessandra Gaeta
- Department of Pharmacy, King's College, Franklin-Wilkins Building, London.
| | | |
Collapse
|
183
|
Goldsbury C, Frey P, Olivieri V, Aebi U, Müller SA. Multiple assembly pathways underlie amyloid-beta fibril polymorphisms. J Mol Biol 2005; 352:282-98. [PMID: 16095615 DOI: 10.1016/j.jmb.2005.07.029] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 05/17/2005] [Accepted: 07/11/2005] [Indexed: 12/21/2022]
Abstract
The amyloid beta-protein transiently forms low and high molecular mass oligomers and protofibrils in vitro, and after longer incubation times assembles into polymorphic mature fibrils. The precursor-to-product relationship of these species remains to be understood. Protofibrils are up to approximately 600 nm in length and have mass-per-lengths of 19(+/-2) kDa/nm measured by scanning transmission electron microscopy. Two predominant mature fibril types, several microns in length and with mass-per-lengths of 18(+/-3) and 27(+/-3) kDa/nm, are identified after longer incubation times. The difference of approximately 9 kDa/nm between the two fibril types indicates a bona fide elementary protofilament subunit of this mass-per-length. Fibrils in the 18(+/-3) kDa/nm group often exhibited distinct coiling with axial cross-over spacings of approximately 25 nm. Although strikingly different in morphology, the mass-per-length (MPL) of these coiled fibrils is equivalent to that measured for protofibrils. They could therefore arise from a conformational change in the protofibril concurrent with coiling and rapid elongation. Alternatively, we cannot rule out an assembly pathway not directly related to protofibrils. In contrast, the 27(+/-3) kDa/nm fibrils correspond to a MPL of approximately 1.5 x the protofibril and thus can neither arise from a simple conformational transition nor from lateral association of 19 kDa/nm protofibril precursors. Twisted ribbons with axial periodicities ranging from approximately 80 nm to 130 nm were prominent in the 27(+/-3) kDa/nm group as well as more tightly coiled fibrils. Individual fibril ribbons had elongation rates of 20(+/-12) nm/min when imaged by time-lapse atomic force microscopy. Protofibrils exhibited growth rates approximately 15 x slower at 1.3(+/-0.5) nm/min. The data support a model where concurrent multiple assembly pathways give rise to the various polymorphic fibril types.
Collapse
Affiliation(s)
- Claire Goldsbury
- M.E. Müller-Institute for Structural Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
184
|
Shoghi-Jadid K, Barrio JR, Kepe V, Wu HM, Small GW, Phelps ME, Huang SC. Imaging beta-amyloid fibrils in Alzheimer's disease: a critical analysis through simulation of amyloid fibril polymerization. Nucl Med Biol 2005; 32:337-51. [PMID: 15878503 DOI: 10.1016/j.nucmedbio.2005.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Revised: 02/04/2005] [Accepted: 02/13/2005] [Indexed: 11/17/2022]
Abstract
The polymerization of beta-amyloid (A beta) peptides into fibrillary plaques is implicated, in part, in the pathogenesis of Alzheimer's disease. A beta molecular imaging probes (A beta-MIPs) have been introduced in an effort to quantify amyloid burden or load, in subjects afflicted with AD by invoking the classic PET receptor model for the quantitation of neuronal receptor density. In this communication, we explore conceptual differences between imaging the density of amyloid fibril polymers and neuronal receptors. We formulate a mathematical model for the polymerization of A beta with parameters that are mapped to biological modulators of fibrillogenesis and introduce a universal measure for amyloid load to accommodate various interactions of A beta-MIPs with fibrils. Subsequently, we hypothesize four A beta-MIPs and utilize the fibrillogenesis model to simulate PET tissue time activity curves (TACs). Given the unique nature of polymer growth and resulting PET TAC, the four probes report differing amyloid burdens for a given brain pathology, thus complicating the interpretation of PET images. In addition, we introduce the notion of an MIP's resolution, apparent maximal binding site concentration, optimal kinetic topology and its resolving power in characterizing the pathological progression of AD and the effectiveness of drug therapy. The concepts introduced in this work call for a new paradigm that goes beyond the classic parameters B(max) and K(D) to include binding characteristics to polymeric peptide aggregates such as amyloid fibrils, neurofibrillary tangles and prions.
Collapse
Affiliation(s)
- Kooresh Shoghi-Jadid
- Department of Biomathematics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1766, USA.
| | | | | | | | | | | | | |
Collapse
|
185
|
Olofsson A, Sauer-Eriksson AE, Ohman A. The solvent protection of alzheimer amyloid-beta-(1-42) fibrils as determined by solution NMR spectroscopy. J Biol Chem 2005; 281:477-83. [PMID: 16215229 DOI: 10.1074/jbc.m508962200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alzheimer disease is a neurodegenerative disorder that is tightly linked to the self-assembly and amyloid formation of the 39-43-residue-long amyloid-beta (Abeta) peptide. Considerable evidence suggests a correlation between Alzheimer disease development and the longer variants of the peptide, Abeta-(1-42/43). Currently, a molecular understanding for this behavior is lacking. In the present study, we have investigated the hydrogen/deuterium exchange of Abeta-(1-42) fibrils under physiological conditions, using solution NMR spectroscopy. The obtained residue-specific and quantitative map of the solvent protection within the Abeta-(1-42) fibril shows that there are two protected core regions, Glu11-Gly25 and Lys28-Ala42, and that the residues in between, Ser26 and Asn27, as well as those in the N terminus, Asp1-Tyr10, are solvent-accessible. This result reveals considerable discrepancies when compared with a previous investigation on Abeta-(1-40) fibrils and suggests that the additional residues in Abeta-(1-42), Ile41 and Ala42, significantly increase the solvent protection and stability of the C-terminal region Lys28-Ala42. Consequently, our findings provide a molecular explanation for the increased amyloidogenicity and toxicity of Abeta-(1-42) compared with shorter Abeta variants found in vivo.
Collapse
Affiliation(s)
- Anders Olofsson
- Umeå Centre for Molecular Pathogenesis, Umeå University, SE-901 87 Umeå, Sweden
| | | | | |
Collapse
|
186
|
Masuda Y, Irie K, Murakami K, Ohigashi H, Ohashi R, Takegoshi K, Shimizu T, Shirasawa T. Verification of the turn at positions 22 and 23 of the beta-amyloid fibrils with Italian mutation using solid-state NMR. Bioorg Med Chem 2005; 13:6803-9. [PMID: 16182533 DOI: 10.1016/j.bmc.2005.07.071] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 07/21/2005] [Accepted: 07/22/2005] [Indexed: 10/25/2022]
Abstract
The aggregation of 42-mer amyloid beta (Abeta42) plays a central role in the pathogenesis of Alzheimer's disease. Our recent research on proline mutagenesis of Abeta42 suggested that the formation of a turn structure at positions 22 and 23 could play a crucial role in its aggregative ability and neurotoxicity. Since E22K-Abeta42 (Italian mutation) aggregated more rapidly and with more potent neurotoxicity than wild-type Abeta42, the tertiary structure at positions 21-24 of E22K-Abeta42 fibrils was analyzed by solid-state NMR using dipolar-assisted rotational resonance (DARR) to identify the 'malignant' conformation of Abeta42. Two sets of chemical shifts for Asp-23 were observed in a ratio of about 2.6:1. The 2D DARR spectra at the mixing time of 500 ms suggested that the side chains of Asp-23 and Val-24 in the major conformer, and those of Lys-22 and Asp-23 in the minor conformer could be located on the same side, respectively. These data support the presence of a turn structure at positions 22 and 23 in E22K-Abeta42 fibrils. The formation of a salt bridge between Lys-22 and Asp-23 in the minor conformer might be a reason why E22K-Abeta42 is more pathogenic than wild-type Abeta42.
Collapse
Affiliation(s)
- Yuichi Masuda
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Danielsson J, Jarvet J, Damberg P, Gräslund A. The Alzheimer beta-peptide shows temperature-dependent transitions between left-handed 3-helix, beta-strand and random coil secondary structures. FEBS J 2005; 272:3938-49. [PMID: 16045764 DOI: 10.1111/j.1742-4658.2005.04812.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The temperature-induced structural transitions of the full length Alzheimer amyloid beta-peptide [A(beta)(1-40) peptide] and fragments of it were studied using CD and 1H NMR spectroscopy. The full length peptide undergoes an overall transition from a state with a prominent population of left-handed 3(1) (polyproline II; PII)-helix at 0 degrees C to a random coil state at 60 degrees C, with an average DeltaH of 6.8 +/- 1.4 kJ.mol(-1) per residue, obtained by fitting a Zimm-Bragg model to the CD data. The transition is noncooperative for the shortest N-terminal fragment A(beta)(1-9) and weakly cooperative for A(beta)(1-40) and the longer fragments. By analysing the temperature-dependent 3J(HNH(alpha)) couplings and hydrodynamic radii obtained by NMR for A(beta)(1-9) and A(beta)(12-28), we found that the structure transition includes more than two states. The N-terminal hydrophilic A(beta)(1-9) populates PII-like conformations at 0 degrees C, then when the temperature increases, conformations with dihedral angles moving towards beta-strand at 20 degrees C, and approaches random coil at 60 degrees C. The residues in the central hydrophobic (18-28) segment show varying behaviour, but there is a significant contribution of beta-strand-like conformations at all temperatures below 20 degrees C. The C-terminal (29-40) segment was not studied by NMR, but from CD difference spectra we concluded that it is mainly in a random coil conformation at all studied temperatures. These results on structural preferences and transitions of the segments in the monomeric form of A(beta) may be related to the processes leading to the aggregation and formation of fibrils in the Alzheimer plaques.
Collapse
Affiliation(s)
- Jens Danielsson
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | | | | | | |
Collapse
|
188
|
Buchete NV, Tycko R, Hummer G. Molecular dynamics simulations of Alzheimer's beta-amyloid protofilaments. J Mol Biol 2005; 353:804-21. [PMID: 16213524 DOI: 10.1016/j.jmb.2005.08.066] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 08/25/2005] [Accepted: 08/26/2005] [Indexed: 01/09/2023]
Abstract
Filamentous amyloid aggregates are central to the pathology of Alzheimer's disease. We use all-atom molecular dynamics (MD) simulations with explicit solvent and multiple force fields to probe the structural stability and the conformational dynamics of several models of Alzheimer's beta-amyloid fibril structures, for both wild-type and mutated amino acid sequences. The structural models are based on recent solid state NMR data. In these models, the peptides form in-register parallel beta-sheets along the fibril axis, with dimers of two U-shaped peptides located in layers normal to the fibril axis. Four different topologies are explored for stacking the beta-strand regions against each other to form a hydrophobic core. Our MD results suggest that all four NMR-based models are structurally stable, and we find good agreement with dihedral angles estimated from solid-state NMR experiments. Asp23 and Lys28 form buried salt-bridges, resulting in an alternating arrangement of the negatively and positively charged residues along the fibril axis that is reminiscent of a one-dimensional ionic crystal. Interior water molecules are solvating the buried salt-bridges. Based on data from NMR measurements and MD simulations of short amyloid fibrils, we constructed structural models of long fibrils. Calculated X-ray fiber diffraction patterns show the characteristics of packed beta-sheets seen in experiments, and suggest new experiments that could discriminate between various fibril topologies.
Collapse
Affiliation(s)
- Nicolae-Viorel Buchete
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | | | | |
Collapse
|
189
|
Chan JC, Oyler NA, Yau WM, Tycko R. Parallel beta-sheets and polar zippers in amyloid fibrils formed by residues 10-39 of the yeast prion protein Ure2p. Biochemistry 2005; 44:10669-80. [PMID: 16060675 PMCID: PMC1380259 DOI: 10.1021/bi050724t] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the results of solid-state nuclear magnetic resonance (NMR) and atomic force microscopy measurements on amyloid fibrils formed by residues 10-39 of the yeast prion protein Ure2p (Ure2p(10)(-)(39)). Measurements of intermolecular (13)C-(13)C nuclear magnetic dipole-dipole couplings indicate that Ure2p(10)(-)(39) fibrils contain in-register parallel beta-sheets. Measurements of intermolecular (15)N-(13)C dipole-dipole couplings, using a new solid-state NMR technique called DSQ-REDOR, are consistent with hydrogen bonds between side chain amide groups of Gln18 residues. Such side chain hydrogen bonding interactions have been called "polar zippers" by M. F. Perutz and have been proposed to stabilize amyloid fibrils formed by peptides with glutamine- and asparagine-rich sequences, such as Ure2p(10)(-)(39). We propose that polar zipper interactions account for the in-register parallel beta-sheet structure in Ure2p(10)(-)(39) fibrils and that similar peptides will also exhibit parallel beta-sheet structures in amyloid fibrils. We present molecular models for Ure2p(10)(-)(39) fibrils that are consistent with available experimental data. Finally, we show that solid-state (13)C NMR chemical shifts for (13)C-labeled Ure2p(10)(-)(39) fibrils are insensitive to hydration level, indicating that the fibril structure is not affected by the presence or absence of bulk water.
Collapse
Key Words
- nmr, nuclear magnetic resonance
- aβ, β-amyloid peptide
- ure2p10–39, residues 10-39 of the ure2p yeast prion protein
- em, electron microscopy
- fmoc, 9-fluorenylmethoxycarbonyl
- tfa, trifluoroacetic acid
- afm, atomic force microscopy
- mas, magic-angle spinning
- fprfdr-ct, constant-time finite-pulse radiofrequency-driven recoupling
- redor, rotational echo double resonance
- dsq, double single-quantum
- tppm, two-pulse phase modulation
- csa, chemical shift anisotropy
- md, molecular dynamics
Collapse
Affiliation(s)
| | - Nathan A. Oyler
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520
| |
Collapse
|
190
|
Croixmarie V, Briki F, David G, Coïc YM, Ovtracht L, Doucet J, Jamin N, Sanson A. A cylinder-shaped double ribbon structure formed by an amyloid hairpin peptide derived from the β-sheet of murine PrP: An X-ray and molecular dynamics simulation study. J Struct Biol 2005; 150:284-99. [PMID: 15890277 DOI: 10.1016/j.jsb.2005.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 02/25/2005] [Accepted: 03/01/2005] [Indexed: 11/15/2022]
Abstract
A structural model of the murine PrP small beta-sheet was obtained by synthesizing the RGYMLGSADPNGNQVYYRG peptide comprising the two beta-strands 127-133 and 159-164 linked by a four-residue sequence of high turn propensity. The DPNG turn sequence is a "short circuit" replacing the original protein sequence between the two strands. This 19-residue peptide spontaneously forms very long single fibrils as observed by electron microscopy. The X-ray diffraction patterns of a partially oriented sample reveals an average arrangement of the hairpin peptides into a structure which can be geometrically approximated by an empty-core cylinder. The hairpins are oriented perpendicular to the cylinder axis and a 130 A helix period is observed. Based on X-ray diffraction constraints and on more indirect general protein structure considerations, a precise and consistent fibril model was built. The structure consists of two beta-sheet ribbons wound around a cylinder and assembled into a single fibril with a hairpin orientation perpendicular to the fibril axis. Subsequent implicit and explicit solvent molecular dynamics simulations provided the final structure at atomic resolution and further insights into the stabilizing interactions. Particularly important are the zipper-like network of polar interactions between the edges of the two ribbons, including the partially buried water molecules. The hydrophobic core is not optimally compact explaining the low density of this region seen by X-ray diffraction. The present findings provide also a simple model for further investigating the sequence-stability relationship using a mutational approach with a quasi-independent consideration of the polar and apolar interactions.
Collapse
|
191
|
Arimon M, Díez-Pérez I, Kogan MJ, Durany N, Giralt E, Sanz F, Fernàndez-Busquets X. Fine structure study of Abeta1-42 fibrillogenesis with atomic force microscopy. FASEB J 2005; 19:1344-6. [PMID: 15919759 DOI: 10.1096/fj.04-3137fje] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
One of the hallmarks of Alzheimer's disease is the self-aggregation of the amyloid beta peptide (Abeta) in extracellular amyloid fibrils. Among the different forms of Abeta, the 42-residue fragment (Abeta1-42) readily self-associates and forms nucleation centers from where fibrils can quickly grow. The strong tendency of Abeta1-42 to aggregate is one of the reasons for the scarcity of data on its fibril formation process. We have used atomic force microscopy (AFM) to visualize in liquid environment the fibrillogenesis of synthetic Abeta1-42 on hydrophilic and hydrophobic surfaces. The results presented provide nanometric resolution of the main structures characteristic of the several steps from monomeric Abeta1-42 to mature fibrils in vitro. Oligomeric globular aggregates of Abeta1-42 precede the appearance of protofibrils, the first fibrillar species, although we have not obtained direct evidence of oligomer-protofibril interconversion. The protofibril dimensions deduced from our AFM images are consistent with a model that postulates the stacking of the peptide in a hairpin conformation perpendicular to the long axis of the protofibril, forming single beta-sheets ribbon-shaped. The most abundant form of Abeta1-42 fibril exhibits a nodular structure with a ~100-nm periodicity. This length is very similar 1) to the length of protofibril bundles that are the dominant feature at earlier stages in the aggregation process, 2) to the period of helical structures that have been observed in the core of fibrils, and 3) to the distance between regularly spaced, structurally weak fibril points. Taken together, these data are consistent with the existence of a ~100-nm long basic protofibril unit that is a key fibril building block.
Collapse
Affiliation(s)
- Muriel Arimon
- Laboratori de Recerca en Nanobioenginyeria, Parc Científic de Barcelona (PCB), Universitat de Barcelona (UB), Spain
| | | | | | | | | | | | | |
Collapse
|
192
|
Saiki M, Honda S, Kawasaki K, Zhou D, Kaito A, Konakahara T, Morii H. Higher-order Molecular Packing in Amyloid-like Fibrils Constructed with Linear Arrangements of Hydrophobic and Hydrogen-bonding Side-chains. J Mol Biol 2005; 348:983-98. [PMID: 15843028 DOI: 10.1016/j.jmb.2005.03.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 12/24/2004] [Accepted: 03/07/2005] [Indexed: 11/21/2022]
Abstract
Various mutants of the protein fragment, barnase module-1 (1-24) were investigated in order to reveal the structural principle of amyloid-like fibrils. By means of circular dichroism spectroscopy, X-ray diffraction, electron microscopy, and thioflavin T binding assay, we found that the molecules containing two beta-strands and an intervening turn structure are assembled to form a cross-beta structure. Stabilization by both the hydrophobic interactions and hydrogen bonding between the respective paired side-chains on the coupled beta-strands was essential for fibril formation. These two types of interaction can also arrange the corresponding residues in lines on both sheet surfaces of protofilaments with a cross-beta structure. This leads to the most probable fibril structure constructed with the line-matching interactions between protofilaments. Consideration of the geometrical symmetry resulted in our finding that a limited number of essential models for molecular packing in fibril structure are stable, which would rationally explain the occurrence of two or three morphologies from an identical molecular species. The ribbon-like fibrils exhibited striped texture along the axis, which was assigned to a stacked two-sheet repeat as a structural unit. The comprehensively proposed structural model, that is, the sheet-sheet interaction between left-handed cross-beta structures, results in a slightly right-handed twist of beta-sheet stacking, which reasonably elucidates the intrinsic sizes of the fibril width and its helical period along the fibril axis, as the bias in the orientation of the hydrogen-bonded beta-strand pair at the lateral edge is larger than that at the central protofilament.
Collapse
Affiliation(s)
- Masatoshi Saiki
- Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
193
|
Sharpe S, Yau WM, Tycko R. Expression and purification of a recombinant peptide from the Alzheimer's beta-amyloid protein for solid-state NMR. Protein Expr Purif 2005; 42:200-10. [PMID: 15939307 DOI: 10.1016/j.pep.2005.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 03/03/2005] [Accepted: 03/04/2005] [Indexed: 10/25/2022]
Abstract
Fibrillar protein aggregates contribute to the pathology of a number of disease states. To facilitate structural studies of these amyloid fibrils by solid-state NMR, efficient methods for the production of milligram quantities of isotopically labeled peptide are necessary. Bacterial expression of recombinant amyloid proteins and peptides allows uniform isotopic labeling, as well as other patterns of isotope incorporation. However, large-scale production of recombinant amyloidogenic peptides has proven particularly difficult, due to their inherent propensity for aggregation and the associated toxicity of fibrillar material. Yields of recombinant protein are further reduced by the small molecular weights of short amyloidogenic fragments. Here, we report high-yield expression and purification of a peptide comprising residues 11-26 of the Alzheimer's beta-amyloid protein (Abeta(11-26)), with homoserine lactone replacing serine at residue 26. Expression in inclusion bodies as a ketosteroid isomerase fusion protein and subsequent purification under denaturing conditions allows production of milligram quantities of uniformly labeled (13)C- and (15)N-labeled peptide, which forms amyloid fibrils suitable for solid-state NMR spectroscopy. Initial structural data obtained by atomic force microscopy, electron microscopy, and solid-state NMR measurements of Abeta(11-26) fibrils are also presented.
Collapse
Affiliation(s)
- Simon Sharpe
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
| | | | | |
Collapse
|
194
|
Urbanc B, Cruz L, Ding F, Sammond D, Khare S, Buldyrev SV, Stanley HE, Dokholyan NV. Molecular dynamics simulation of amyloid beta dimer formation. Biophys J 2005; 87:2310-21. [PMID: 15454432 PMCID: PMC1304655 DOI: 10.1529/biophysj.104.040980] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent experiments with amyloid beta (Abeta) peptide indicate that formation of toxic oligomers may be an important contribution to the onset of Alzheimer's disease. The toxicity of Abeta oligomers depends on their structure, which is governed by assembly dynamics. Due to limitations of current experimental techniques, a detailed knowledge of oligomer structure at the atomic level is missing. We introduce a molecular dynamics approach to study Abeta dimer formation. 1), We use discrete molecular dynamics simulations of a coarse-grained model to identify a variety of dimer conformations; and 2), we employ all-atom molecular mechanics simulations to estimate thermodynamic stability of all dimer conformations. Our simulations of a coarse-grained Abeta peptide model predicts 10 different planar beta-strand dimer conformations. We then estimate the free energies of all dimer conformations in all-atom molecular mechanics simulations with explicit water. We compare the free energies of Abeta(1-42) and Abeta(1-40) dimers. We find that 1), dimer conformations have higher free energies compared to their corresponding monomeric states; and 2), the free-energy difference between the Abeta(1-42) and the corresponding Abeta(1-40) dimer conformation is not significant. Our results suggest that Abeta oligomerization is not accompanied by the formation of thermodynamically stable planar beta-strand dimers.
Collapse
Affiliation(s)
- B Urbanc
- Center for Polymer Studies, Department of Physics, Boston University, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Abstract
Although the structures of Thioflavin T and another benzothiazole, BTA-1, are similar, they bind to A beta non-competitively, probably to different sites on the A beta(1-40) fibrils. The amyloid fibril-induced fluorescence of ThT that corresponds to a fraction of total ThT binding is not displaced by high concentrations of (S)-naproxen or (R)-ibuprofen, which are reported to potently block high affinity binding of the radiolabeled malononitrile FDDNP and derivatives. The binding of the benzothiazole ligands is significantly substoichiometric with respect to A beta(1-40) monomer peptide, unlike Congo Red, which binds to A beta(1-40) fibrils on a 1:1 basis with monomer peptide. These results indicate that there are multiple domains for ligand binding to amyloid fibrils and suggest that it may be possible to design ligands that bind selectively to particular forms of fibrils that are connected with the pathogenesis of Alzheimer's disease and potentially other protein misfolding diseases.
Collapse
Affiliation(s)
- Harry LeVine
- Department of Molecular and Cellular Biochemistry, Chandler School of Medicine and the Center on Aging, University of Kentucky, USA.
| |
Collapse
|
196
|
Harris JR. The contribution of microscopy to the study of Alzheimer's disease, amyloid plaques and Abeta fibrillogenesis. Subcell Biochem 2005; 38:1-44. [PMID: 15709471 DOI: 10.1007/0-387-23226-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
A broad survey is presented in this chapter, dealing with the impact that microscopy has made to the study of Alzheimer's disease, amyloid plaques and amyloid-beta fibrillogenesis. This includes classical light microscopy and the modem immunolabelling and confocal microscopies, together with the contribution of transmission electron microscopy and atomic force microscopy. Whilst usefully standing alone, the individual microscopies often contribute most effectively when they are integrated with cellular, biophysical and molecular approaches.
Collapse
Affiliation(s)
- J Robin Harris
- Institute of Zoology, University of Mainz, D-55099 Mainz, Germany
| |
Collapse
|
197
|
Petkova AT, Leapman RD, Guo Z, Yau WM, Mattson MP, Tycko R. Self-propagating, molecular-level polymorphism in Alzheimer's beta-amyloid fibrils. Science 2005; 307:262-5. [PMID: 15653506 DOI: 10.1126/science.1105850] [Citation(s) in RCA: 1377] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amyloid fibrils commonly exhibit multiple distinct morphologies in electron microscope and atomic force microscope images, often within a single image field. By using electron microscopy and solid-state nuclear magnetic resonance measurements on fibrils formed by the 40-residue beta-amyloid peptide of Alzheimer's disease (Abeta(1-40)), we show that different fibril morphologies have different underlying molecular structures, that the predominant structure can be controlled by subtle variations in fibril growth conditions, and that both morphology and molecular structure are self-propagating when fibrils grow from preformed seeds. Different Abeta(1-40) fibril morphologies also have significantly different toxicities in neuronal cell cultures. These results have implications for the mechanism of amyloid formation, the phenomenon of strains in prion diseases, the role of amyloid fibrils in amyloid diseases, and the development of amyloid-based nano-materials.
Collapse
Affiliation(s)
- Aneta T Petkova
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD 20892-0520, USA
| | | | | | | | | | | |
Collapse
|
198
|
Carmona P, Monleón E, Monzón M, Badiola JJ, Monreal J. Raman analysis of prion protein in blood cell membranes from naturally affected scrapie sheep. ACTA ACUST UNITED AC 2005; 11:759-64. [PMID: 15217609 DOI: 10.1016/j.chembiol.2004.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 04/27/2004] [Accepted: 04/27/2004] [Indexed: 11/23/2022]
Abstract
At present, there are no efficient antemortem diagnostic tests for transmissible spongiform encephalopathys (TSEs), particularly in blood. New strains of prion PrPSc, which causes TSEs, are currently appearing, and researchers remain concerned that if prion variants continue to emerge, some of them may escape detection by existing immunoassay tests. Because a common structural feature of PrPSc strains is their high content of beta sheets, Raman spectroscopy has proven to be a suitable technique to analyze a key membranous fraction of blood containing PrPSc. In this fraction, a significant increase in beta sheets has been correlated with the worsening of this TSE in naturally scrapie-infected animals in comparison with healthy controls. Since sensitivity and specificity were found to be 100% for each, this test may lead to a new and alternative diagnosis for prion diseases.
Collapse
Affiliation(s)
- Pedro Carmona
- Instituto de Estructura de la Materia (CSIC), Serrano 121, 28006 Madrid, Spain.
| | | | | | | | | |
Collapse
|
199
|
Abstract
Amyloid fibrils are deposited in a number of diseases, including Alzheimer's disease, Type 2 diabetes, and the transmissible spongiform encephalopathies (TSE). These insoluble deposits are formed from normally soluble proteins that assemble to form fibrous aggregates that accumulate in the tissues. Electron microscopy has been used as a tool to examine the structure and morphology of these aggregates from ex vivo materials, but predominantly from synthetic amyloid fibrils assembled from proteins or peptides in vitro. Electron microscopy has shown that the fibrils are straight, unbranching, and are of a similar diameter (60-100 A) irrespective of the precursor protein. Image processing has enhanced electron micrographs to show that amyloid fibrils appear to be composed of protofilaments wound around one another. In combination with other techniques, including X-ray fiber diffraction and solid state NMR, electron microscopy has revealed that the internal structure of the amyloid fibril is a ladder of beta-sheet structure arranged in a cross-beta conformation.
Collapse
Affiliation(s)
- Thusnelda Stromer
- Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, BN1 9QG, UK
| | | |
Collapse
|
200
|
Morgan C, Colombres M, Nuñez MT, Inestrosa NC. Structure and function of amyloid in Alzheimer's disease. Prog Neurobiol 2004; 74:323-49. [PMID: 15649580 DOI: 10.1016/j.pneurobio.2004.10.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Accepted: 10/26/2004] [Indexed: 12/21/2022]
Abstract
This review is focused on the structure and function of Alzheimer's amyloid deposits. Amyloid formation is a process in which normal well-folded cellular proteins undergo a self-assembly process that leads to the formation of large and ordered protein structures. Amyloid deposition, oligomerization, and higher order polymerization, and the structure adopted by these assemblies, as well as their functional relationship with cell biology are underscored. Numerous efforts have been directed to elucidate these issues and their relation with senile dementia. Significant advances made in the last decade in amyloid structure, dynamics and cell biology are summarized and discussed. The mechanism of amyloid neurotoxicity is discussed with emphasis on the Wnt signaling pathway. This review is focused on Alzheimer's amyloid fibrils in general and has been divided into two parts dealing with the structure and function of amyloid.
Collapse
Affiliation(s)
- Carlos Morgan
- Centro FONDAP de Regulación Celular y Patología Joaquín V. Luco, MIFAB, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, P.O. Box 114-D, Santiago, Chile
| | | | | | | |
Collapse
|