151
|
Perteguer MJ, Gómez-Puertas P, Cañavate C, Dagger F, Gárate T, Valdivieso E. Ddi1-like protein from Leishmania major is an active aspartyl proteinase. Cell Stress Chaperones 2013; 18:171-81. [PMID: 22933181 PMCID: PMC3581629 DOI: 10.1007/s12192-012-0368-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/03/2012] [Accepted: 08/06/2012] [Indexed: 10/27/2022] Open
Abstract
Eukaryotic cells respond to DNA damage by activating damage checkpoint pathways, which arrest cell cycle progression and induce gene expression. We isolated a full-length cDNA encoding a 49-kDa protein from Leishmania major, which exhibited significant deduced amino acid sequence homology with the annotated Leishmania sp. DNA damage-inducible (Ddi1-like) protein, as well as with the Ddi1 protein from Saccharomyces cerevisiae. In contrast to the previously described Ddi1 protein, the protein from L. major displays three domains: (1) an NH2-terminal ubiquitin like; (2) a COOH terminal ubiquitin-associated; (3) a retroviral aspartyl proteinase, containing the typical D[S/T]G signature. The function of the L. major Ddi1-like recombinant protein was investigated after expression in baculovirus/insect cells and biochemical analysis, revealing preferential substrate selectivity for aspartyl proteinase A₂ family substrates, with optimal activity in acidic conditions. The proteolytic activity was inhibited by aspartyl proteinase inhibitors. Molecular modeling of the retroviral domain of the Ddi1-like Leishmania protein revealed a dimer structure that contained a double Asp-Ser-Gly-Ala amino acid sequence motif, in an almost identical geometry to the exhibited by the homologous retroviral aspartyl protease domain of yeast Ddi1 protein. Our results indicate that the isolated Ddi1-like protein is a functional aspartyl proteinase in L. major, opening possibility to be considered as a potential target for novel antiparasitic drugs.
Collapse
Affiliation(s)
- María J. Perteguer
- />Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Paulino Gómez-Puertas
- />Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM) Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Carmen Cañavate
- />World Health Organization Collaborating Centre for Leishmaniasis, Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Francehuli Dagger
- />Laboratorio de Biología Celular de Parásitos, Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, 1041-A Venezuela
| | - Teresa Gárate
- />Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Elizabeth Valdivieso
- />Laboratorio de Biología Celular de Parásitos, Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, 1041-A Venezuela
- />Instituto de Biología Experimental, Calle Suapure, Colinas de Bello Monte, Caracas, 1041-A Venezuela
| |
Collapse
|
152
|
Barman A, Prabhakar R. Elucidating the catalytic mechanism of β-secretase (BACE1): a quantum mechanics/molecular mechanics (QM/MM) approach. J Mol Graph Model 2013; 40:1-9. [PMID: 23337572 DOI: 10.1016/j.jmgm.2012.12.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/04/2012] [Accepted: 12/17/2012] [Indexed: 12/18/2022]
Abstract
In this quantum mechanics/molecular mechanics (QM/MM) study, the mechanisms of the hydrolytic cleavage of the Met2-Asp3 and Leu2-Asp3 peptide bonds of the amyloid precursor protein (WT-substrate) and its Swedish mutant (SW) respectively catalyzed by β-secretase (BACE1) have been investigated by explicitly including the electrostatic and steric effects of the protein environment in the calculations. BACE1 catalyzes the rate-determining step in the generation of Alzheimer amyloid beta peptides and is widely acknowledged as a promising therapeutic target. The general acid-base mechanism followed by the enzyme proceeds through the following two steps: (1) formation of the gem-diol intermediate and (2) cleavage of the peptide bond. The formation of the gem-diol intermediate occurs with the barriers of 19.6 and 16.1 kcal/mol for the WT- and SW-substrate respectively. The QM/MM energetics predict that with the barriers of 21.9 and 17.2 kcal/mol for the WT- and SW-substrate respectively the cleavage of the peptide bond occurs in the rate-determining step. The computed barriers are in excellent agreement with the measured barrier of ∼18.0 kcal/mol for the SW-substrate and in line with the experimental observation that the cleavage of this substrate is sixty times more efficient than the WT-substrate.
Collapse
Affiliation(s)
- Arghya Barman
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA
| | | |
Collapse
|
153
|
Furlund C, Ulleberg E, Devold T, Flengsrud R, Jacobsen M, Sekse C, Holm H, Vegarud G. Identification of lactoferrin peptides generated by digestion with human gastrointestinal enzymes. J Dairy Sci 2013; 96:75-88. [DOI: 10.3168/jds.2012-5946] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/23/2012] [Indexed: 12/20/2022]
|
154
|
Reid VJ, Theron LW, du Toit M, Divol B. Identification and partial characterization of extracellular aspartic protease genes from Metschnikowia pulcherrima IWBT Y1123 and Candida apicola IWBT Y1384. Appl Environ Microbiol 2012; 78:6838-49. [PMID: 22820332 PMCID: PMC3457490 DOI: 10.1128/aem.00505-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 07/09/2012] [Indexed: 11/20/2022] Open
Abstract
The extracellular acid proteases of non-Saccharomyces wine yeasts may fulfill a number of roles in winemaking, which include increasing the available nitrogen sources for the growth of fermentative microbes, affecting the aroma profile of the wine, and potentially reducing protein haze formation. These proteases, however, remain poorly characterized, especially at genetic level. In this study, two extracellular aspartic protease-encoding genes were identified and sequenced, from two yeast species of enological origin: one gene from Metschnikowia pulcherrima IWBT Y1123, named MpAPr1, and the other gene from Candida apicola IWBT Y1384, named CaAPr1. In silico analysis of these two genes revealed a number of features peculiar to aspartic protease genes, and both the MpAPr1 and CaAPr1 putative proteins showed homology to proteases of yeast genera. Heterologous expression of MpAPr1 in Saccharomyces cerevisiae YHUM272 confirmed that it encodes an aspartic protease. MpAPr1 production, which was shown to be constitutive, and secretion were confirmed in the presence of bovine serum albumin (BSA), casein, and grape juice proteins. The MpAPr1 gene was found to be present in 12 other M. pulcherrima strains; however, plate assays revealed that the intensity of protease activity was strain dependent and unrelated to the gene sequence.
Collapse
Affiliation(s)
- Vernita J Reid
- Institute for Wine Biotechnology, Stellenbosch University, Matieland, South Africa
| | | | | | | |
Collapse
|
155
|
Lufrano D, Faro R, Castanheira P, Parisi G, Veríssimo P, Vairo-Cavalli S, Simões I, Faro C. Molecular cloning and characterization of procirsin, an active aspartic protease precursor from Cirsium vulgare (Asteraceae). PHYTOCHEMISTRY 2012; 81:7-18. [PMID: 22727116 DOI: 10.1016/j.phytochem.2012.05.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/23/2012] [Accepted: 05/27/2012] [Indexed: 06/01/2023]
Abstract
Typical aspartic proteinases from plants of the Astereaceae family like cardosins and cyprosins are well-known milk-clotting enzymes. Their effectiveness in cheesemaking has encouraged several studies on other Astereaceae plant species for identification of new vegetable rennets. Here we report on the cloning, expression and characterization of a novel aspartic proteinase precursor from the flowers of Cirsium vulgare (Savi) Ten. The isolated cDNA encoded a protein product with 509 amino acids, termed cirsin, with the characteristic primary structure organization of plant typical aspartic proteinases. The pro form of cirsin was expressed in Escherichia coli and shown to be active without autocatalytically cleaving its pro domain. This contrasts with the acid-triggered autoactivation by pro-segment removal described for several recombinant plant typical aspartic proteinases. Recombinant procirsin displayed all typical proteolytic features of aspartic proteinases as optimum acidic pH, inhibition by pepstatin, cleavage between hydrophobic amino acids and strict dependence on two catalytic Asp residues for activity. Procirsin also displayed a high specificity towards κ-casein and milk-clotting activity, suggesting it might be an effective vegetable rennet. The findings herein described provide additional evidences for the existence of different structural arrangements among plant typical aspartic proteinases.
Collapse
Affiliation(s)
- Daniela Lufrano
- Laboratorio de Investigación de Proteínas Vegetales (LIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Singh S, Sieburth SM. Serine protease inhibition by a silanediol peptidomimetic. Org Lett 2012; 14:4422-5. [PMID: 22894760 DOI: 10.1021/ol301933n] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Silanediol peptidomimetics are demonstrated to inhibit a serine protease. Asymmetric synthesis of the inhibitor was accomplished using Brown hydroboration and CBS reduction of an acylsilane intermediate. The silanediol product was found to inhibit the serine protease chymotrypsin with a K(i) of 107 nM. Inhibition of the enzyme may involve exchange of a silane hydroxyl with the active site serine nucleophile, contrasting with previous silanediol protease inhibitors.
Collapse
Affiliation(s)
- Swapnil Singh
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, USA
| | | |
Collapse
|
157
|
Furlund CB, Kristoffersen AB, Devold TG, Vegarud GE, Jonassen CM. Bovine lactoferrin digested with human gastrointestinal enzymes inhibits replication of human echovirus 5 in cell culture. Nutr Res 2012; 32:503-13. [PMID: 22901558 DOI: 10.1016/j.nutres.2012.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/08/2012] [Accepted: 06/08/2012] [Indexed: 12/21/2022]
Abstract
Many infant formulas are enriched with lactoferrin (Lf) because of its claimed beneficial effects on health. Native bovine Lf (bLf) is known to inhibit in vitro replication of human enteroviruses, a group of pathogenic viruses that replicate in the gut as their primary infection site. On the basis of a model digestion and human gastrointestinal enzymes, we hypothesized that bLf could retain its antiviral properties against enterovirus in the gastrointestinal tract, either as an intact protein or through bioactive peptide fragments released by digestive enzymes. To test our hypothesis, bLf was digested with human gastric juice and duodenal juice in a 2-step in vitro digestion model. Two gastric pH levels and reduction conditions were used to simulate physiological conditions in adults and infants. The antiviral activity of native bLf and of the digested fractions was studied on echovirus 5 in vitro, using various assay conditions, addressing several mechanisms for replication inhibition. Both native and digested bLf fractions revealed a significant inhibitory effect, when added before or simultaneously with the virus onto the cells. Furthermore, a significant stronger sustained antiviral effect was observed when bLf was fully digested in the gastric phase with fast pH reduction to 2.5, compared with native bLf, suggesting the release of antiviral peptides from bLf during the human digestion process. In conclusion, this study demonstrates that bLf may have a role in the prevention of human gastrointestinal virus infection under physiological conditions and that food containing bLf may protect against infection in vivo.
Collapse
Affiliation(s)
- Camilla B Furlund
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432 Aas, Norway
| | | | | | | | | |
Collapse
|
158
|
Almeida CM, Pereira C, da Costa DS, Pereira S, Pissarra J, Simões I, Faro C. Chlapsin, a chloroplastidial aspartic proteinase from the green algae Chlamydomonas reinhardtii. PLANTA 2012; 236:283-296. [PMID: 22349731 DOI: 10.1007/s00425-012-1605-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/26/2012] [Indexed: 05/31/2023]
Abstract
Aspartic proteinases have been extensively characterized in land plants but up to now no evidences for their presence in green algae group have yet been reported in literature. Here we report on the identification of the first (and only) typical aspartic proteinase from Chlamydomonas reinhardtii. This enzyme, named chlapsin, was shown to maintain the primary structure organization of typical plant aspartic proteinases but comprising distinct features, such as similar catalytic motifs DTG/DTG resembling those from animal and microbial counterparts, and an unprecedentedly longer plant specific insert domain with an extra segment of 80 amino acids, rich in alanine residues. Our results also demonstrated that chlapsin accumulates in Chlamydomonas chloroplast bringing this new enzyme to a level of uniqueness among typical plant aspartic proteinases. Chlapsin was successfully expressed in Escherichia coli and it displayed the characteristic enzymatic properties of typical aspartic proteinases, like optimum activity at acidic pH and complete inhibition by pepstatin A. Another difference to plant aspartic proteinases emerged as chlapsin was produced in an active form without its putative prosegment domain. Moreover, recombinant chlapsin showed a restricted enzymatic specificity and a proteolytic activity influenced by the presence of redox agents and nucleotides, further differentiating it from typical plant aspartic proteinases and anticipating a more specialized/regulated function for this Chlamydomonas enzyme. Taken together, our results revealed a pattern of complexity for typical plant aspartic proteinases in what concerns sequence features, localization and biochemical properties, raising new questions on the evolution and function of this vast group of plant enzymes.
Collapse
Affiliation(s)
- Carla Malaquias Almeida
- Biocant, Biotechnology Innovation Center, Molecular Biotechnology Unit, Parque Tecnológico de Cantanhede, Núcleo 4 Lote 3, 3060-197, Cantanhede, Portugal
| | | | | | | | | | | | | |
Collapse
|
159
|
Affiliation(s)
- Alexander Dömling
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
| | | | | |
Collapse
|
160
|
Sojka D, Franta Z, Frantová H, Bartosová P, Horn M, Váchová J, O'Donoghue AJ, Eroy-Reveles AA, Craik CS, Knudsen GM, Caffrey CR, McKerrow JH, Mares M, Kopácek P. Characterization of gut-associated cathepsin D hemoglobinase from tick Ixodes ricinus (IrCD1). J Biol Chem 2012; 287:21152-63. [PMID: 22539347 DOI: 10.1074/jbc.m112.347922] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify the gut-associated tick aspartic hemoglobinase, this work focuses on the functional diversity of multiple Ixodes ricinus cathepsin D forms (IrCDs). Out of three encoding genes representing Ixodes scapularis genome paralogs, IrCD1 is the most distinct enzyme with a shortened propeptide region and a unique pattern of predicted post-translational modifications. IrCD1 gene transcription is induced by tick feeding and is restricted to the gut tissue. The hemoglobinolytic role of IrCD1 was further supported by immunolocalization of IrCD1 in the vesicles of tick gut cells. Properties of recombinantly expressed rIrCD1 are consistent with the endo-lysosomal environment because the zymogen is autoactivated and remains optimally active in acidic conditions. Hemoglobin cleavage pattern of rIrCD1 is identical to that produced by the native enzyme. The preference for hydrophobic residues at the P1 and P1' position was confirmed by screening a novel synthetic tetradecapeptidyl substrate library. Outside the S1-S1' regions, rIrCD1 tolerates most amino acids but displays a preference for tyrosine at P3 and alanine at P2'. Further analysis of the cleavage site location within the peptide substrate indicated that IrCD1 is a true endopeptidase. The role in hemoglobinolysis was verified with RNAi knockdown of IrCD1 that decreased gut extract cathepsin D activity by >90%. IrCD1 was newly characterized as a unique hemoglobinolytic cathepsin D contributing to the complex intestinal proteolytic network of mainly cysteine peptidases in ticks.
Collapse
Affiliation(s)
- Daniel Sojka
- From the Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, CZ 370 05, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Osipiuk J, Mulligan R, Bargassa M, Hamilton JE, Cunningham MA, Joachimiak A. Characterization of member of DUF1888 protein family, self-cleaving and self-assembling endopeptidase. J Biol Chem 2012; 287:19452-61. [PMID: 22493430 DOI: 10.1074/jbc.m112.358069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of SO1698 protein from Shewanella oneidensis was determined by a SAD method and refined to 1.57 Å. The structure is a β sandwich that unexpectedly consists of two polypeptides; the N-terminal fragment includes residues 1-116, and the C-terminal one includes residues 117-125. Electron density also displayed the Lys-98 side chain covalently linked to Asp-116. The putative active site residues involved in self-cleavage were identified; point mutants were produced and characterized structurally and in a biochemical assay. Numerical simulations utilizing molecular dynamics and hybrid quantum/classical calculations suggest a mechanism involving activation of a water molecule coordinated by a catalytic aspartic acid.
Collapse
Affiliation(s)
- Jerzy Osipiuk
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | | | | | | | | | | |
Collapse
|
162
|
Balczun C, Siemanowski J, Pausch JK, Helling S, Marcus K, Stephan C, Meyer HE, Schneider T, Cizmowski C, Oldenburg M, Höhn S, Meiser CK, Schuhmann W, Schaub GA. Intestinal aspartate proteases TiCatD and TiCatD2 of the haematophagous bug Triatoma infestans (Reduviidae): sequence characterisation, expression pattern and characterisation of proteolytic activity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:240-250. [PMID: 22210150 DOI: 10.1016/j.ibmb.2011.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 12/09/2011] [Accepted: 12/13/2011] [Indexed: 05/31/2023]
Abstract
Two aspartate protease encoding complementary deoxyribonucleic acids (cDNA) were characterised from the small intestine (posterior midgut) of Triatoma infestans and the corresponding genes were named TiCatD and TiCatD2. The deduced 390 and 393 amino acid sequences of both enzymes contain two regions characteristic for cathepsin D proteases and the conserved catalytic aspartate residues forming the catalytic dyad, but only TiCatD2 possesses an entire C-terminal proline loop. The amino acid sequences of TiCatD and TiCatD2 show 51-58% similarity to other insect cathepsin D-like proteases and, respectively, 88 and 58% similarity to the aspartate protease ASP25 from T. infestans available in the GenBank database. In phylogenetic analysis, TiCatD and ASP25 clearly separate from cathepsin D-like sequences of other insects, TiCatD2 groups with cathepsin D-like proteases with proline loop. The activity of purified TiCatD and TiCatD2 was highest between pH 2 and 4, respectively, and hence, deviate from the pH values of the lumen of the small intestine, which varied in correlation with the time after feeding between pH 5.2 and 6.7 as determined by means of micro pH electrodes. Both cathepsins, TiCatD and TiCatD2, were purified from the lumen of the small intestine using pepstatin affinity chromatography and identified by nanoLC-ESI-MS/MS analysis as those encoded by the cDNAs. The proteolytic activity of the purified enzymes is highest at pH 3 and the respective genes are expressed in the both regions of the midgut, stomach (anterior midgut) and small intestine, not in the rectum, salivary glands, Malpighian tubules or haemocytes. The temporal expression pattern of both genes in the small intestine after feeding revealed a feeding dependent regulation for TiCatD but not for TiCatD2.
Collapse
Affiliation(s)
- Carsten Balczun
- Zoology/Parasitology Group, Ruhr-Universität, Universitätsstrasse 150, 44780 Bochum, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Singh N, Frushicheva MP, Warshel A. Validating the vitality strategy for fighting drug resistance. Proteins 2012; 80:1110-22. [PMID: 22275047 DOI: 10.1002/prot.24012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 11/28/2011] [Accepted: 12/06/2011] [Indexed: 11/08/2022]
Abstract
The current challenge in designing effective drugs against HIV-1 is to find novel candidates with high potency, but with a lower susceptibility to mutations associated with drug resistance. Trying to address this challenge, we developed in our previous study (Ishikita and Warshel, Angew Chem Int Ed Engl 2008; 47:697-700) a novel computational strategy for fighting drug resistance by predicting the likely moves of the virus through constraints on binding and catalysis. This has been based on calculating the ratio between the vitality values ((K(i) k(cat)/K(M))(mutant)/(K(i) k(cat)/K(M))(wild-type)) and using it as a guide for predicting the moves of the virus. The corresponding calculations of the binding affinity, K(i), were carried out using the semi-macroscopic version of the protein dipole Langevin dipole (PDLD/S) in its linear response approximation (LRA) in its β version (PDLD/S-LRA/β). We also calculate the proteolytic efficiency, k(cat)/K(M), by evaluating the transition state (TS) binding free energies using the PDLD/S-LRA/β method. Here we provide an extensive validation of our strategy by calculating the vitality of six existing clinical and experimental drug candidates. It is found that the computationally determined vitalities correlate reasonably well with those derived from the corresponding experimental data. This indicates that the calculated vitality may be used to identify mutations that would be most effective for the survival of the virus. Thus, it should be possible to use our approach in screening for mutations that would provide the most effective resistance to any proposed antiviral drug. This ability should be very useful in guiding the design of drug molecules that will lead to the slowest resistance.
Collapse
Affiliation(s)
- Nidhi Singh
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, USA
| | | | | |
Collapse
|
164
|
Bhaumik P, Gustchina A, Wlodawer A. Structural studies of vacuolar plasmepsins. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1824:207-23. [PMID: 21540129 PMCID: PMC3154504 DOI: 10.1016/j.bbapap.2011.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 04/11/2011] [Accepted: 04/12/2011] [Indexed: 10/18/2022]
Abstract
Plasmepsins (PMs) are pepsin-like aspartic proteases present in different species of parasite Plasmodium. Four Plasmodium spp. (P. vivax, P. ovale, P. malariae, and the most lethal P. falciparum) are mainly responsible for causing human malaria that affects millions worldwide. Due to the complexity and rate of parasite mutation coupled with regional variations, and the emergence of P. falciparum strains which are resistant to antimalarial agents such as chloroquine and sulfadoxine/pyrimethamine, there is constant pressure to find new and lasting chemotherapeutic drug therapies. Since many proteases represent therapeutic targets and PMs have been shown to play an important role in the survival of parasite, these enzymes have recently been identified as promising targets for the development of novel antimalarial drugs. The genome of P. falciparum encodes 10 PMs (PMI, PMII, PMIV-X and histo-aspartic protease (HAP)), 4 of which (PMI, PMII, PMIV and HAP) reside within the food vacuole, are directly involved in degradation of human hemoglobin, and share 50-79% amino acid sequence identity. This review focuses on structural studies of only these four enzymes, including their orthologs in other Plasmodium spp.. Almost all original crystallographic studies were performed with PMII, but more recent work on PMIV, PMI, and HAP resulted in a more complete picture of the structure-function relationship of vacuolar PMs. Many structures of inhibitor complexes of vacuolar plasmepsins, as well as their zymogens, have been reported in the last 15 years. Information gained by such studies will be helpful for the development of better inhibitors that could become a new class of potent antimalarial drugs. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- Prasenjit Bhaumik
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Alla Gustchina
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
165
|
Protein conformational dynamics in the mechanism of HIV-1 protease catalysis. Proc Natl Acad Sci U S A 2011; 108:20982-7. [PMID: 22158985 DOI: 10.1073/pnas.1111202108] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have used chemical protein synthesis and advanced physical methods to probe dynamics-function correlations for the HIV-1 protease, an enzyme that has received considerable attention as a target for the treatment of AIDS. Chemical synthesis was used to prepare a series of unique analogues of the HIV-1 protease in which the flexibility of the "flap" structures (residues 37-61 in each monomer of the homodimeric protein molecule) was systematically varied. These analogue enzymes were further studied by X-ray crystallography, NMR relaxation, and pulse-EPR methods, in conjunction with molecular dynamics simulations. We show that conformational isomerization in the flaps is correlated with structural reorganization of residues in the active site, and that it is preorganization of the active site that is a rate-limiting factor in catalysis.
Collapse
|
166
|
Sun X, Bromley-Brits K, Song W. Regulation of β-site APP-cleaving enzyme 1 gene expression and its role in Alzheimer's disease. J Neurochem 2011; 120 Suppl 1:62-70. [PMID: 22122349 DOI: 10.1111/j.1471-4159.2011.07515.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder leading to dementia. Neuritic plaques are the hallmark neuropathology in AD brains. Proteolytic processing of amyloid-β precursor protein at the β site by beta-site amyloid-β precursor protein-cleaving enzyme 1 (BACE1) is essential to generate Aβ, a central component of the neuritic plaques. BACE1 is increased in some sporadic AD brains, and dysregulation of BACE1 gene expression plays an important role in AD pathogenesis. This review will focus on the regulation of BACE1 gene expression at the transcriptional, post-transcriptional, translation initiation, translational and post-translational levels, and its role in AD pathogenesis. Further studies on BACE1 gene expression regulation will greatly contribute to our understanding of AD pathogenesis and reveal potential novel approaches for AD prevention and drug development.
Collapse
Affiliation(s)
- Xiulian Sun
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, BC, Canada.,Qilu Hospital of Shandong University, Jinan, China
| | - Kelley Bromley-Brits
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, BC, Canada
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
167
|
Predicting functional residues of the Solanum lycopersicum aspartic protease inhibitor (SLAPI) by combining sequence and structural analysis with molecular docking. J Mol Model 2011; 18:2673-87. [DOI: 10.1007/s00894-011-1290-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/25/2011] [Indexed: 02/02/2023]
|
168
|
Internally quenched fluorescent peptide libraries with randomized sequences designed to detect endopeptidases. Anal Biochem 2011; 421:299-307. [PMID: 22067978 DOI: 10.1016/j.ab.2011.10.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 09/20/2011] [Accepted: 10/14/2011] [Indexed: 11/23/2022]
Abstract
Identification of synthetic peptide substrates for novel peptidases is an essential step for their study. With this purpose we synthesized fluorescence resonance energy transfer (FRET) peptide libraries Abz (or MCA)-GXXXXXQ-EDDnp and Abz (or MCA)-GXXZXXQ-EDDnp, where X consists of an equimolar mixture of all amino acids, the Z position is fixed with one of the proteinogenic amino acids (cysteine was excluded), Abz (ortho-aminobenzoic acid) or MCA ([7-amino-4-methyl]coumarin) is the fluorescence donor and Q-EDDnp (glutamine-[N-(2,4-dinitrophenyl)-ethylenediamine]) is the fluorescence acceptor. The peptide libraries MCA-GXXX↓XXQ-EDDnp and MCA-GXXZ↓XXQ-EDDnp were cleaved as indicated (↓) by trypsin, chymotrypsin, cathepsin L, pepsin A, and Eqolisin as confirmed by Edman degradation of the products derived from the digestion of these libraries. The best hydrolyzed Abz-GXXZXXQ-EDDnp sublibraries by these proteases, including Dengue 2 virus NS2B-NS3 protease, contained amino acids at the Z position that are reported to be well accepted by their S(1) subsite. The pH profiles of the hydrolytic activities of these canonical proteases on the libraries were similar to those reported for typical substrates. The FRET peptide libraries provide an efficient and simple approach for detecting nanomolar concentrations of endopeptidases and are useful for initial specificity characterization as performed for two proteases secreted by a Bacillus subtilis.
Collapse
|
169
|
Bhaumik P, Xiao H, Hidaka K, Gustchina A, Kiso Y, Yada RY, Wlodawer A. Structural insights into the activation and inhibition of histo-aspartic protease from Plasmodium falciparum. Biochemistry 2011; 50:8862-79. [PMID: 21928835 PMCID: PMC3501826 DOI: 10.1021/bi201118z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Histo-aspartic protease (HAP) from Plasmodium falciparum is a promising target for the development of novel antimalarial drugs. The sequence of HAP is highly similar to those of pepsin-like aspartic proteases, but one of the two catalytic aspartates, Asp32, is replaced with histidine. Crystal structures of the truncated zymogen of HAP and of the complex of the mature enzyme with inhibitor KNI-10395 have been determined at 2.1 and 2.5 Å resolution, respectively. As in other proplasmepsins, the propeptide of the zymogen interacts with the C-terminal domain of the enzyme, forcing the N- and C-terminal domains apart, thereby separating His32 and Asp215 and preventing formation of the mature active site. In the inhibitor complex, the enzyme forms a tight domain-swapped dimer, not previously seen in any aspartic proteases. The inhibitor is found in an unprecedented conformation resembling the letter U, stabilized by two intramolecular hydrogen bonds. Surprisingly, the location and conformation of the inhibitor are similar to those of the fragment of helix 2 comprising residues 34p-38p in the prosegments of the zymogens of gastric aspartic proteases; a corresponding helix assumes a vastly different orientation in proplasmepsins. Each inhibitor molecule is in contact with two molecules of HAP, interacting with the carboxylate group of the catalytic Asp215 of one HAP protomer through a water molecule, while also making a direct hydrogen bond to Glu278A' of the other protomer. A comparison of the shifts in the positions of the catalytic residues in the inhibitor complex presented here with those published previously gives further hints regarding the enzymatic mechanism of HAP.
Collapse
Affiliation(s)
- Prasenjit Bhaumik
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Huogen Xiao
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Koushi Hidaka
- Department of Medicinal Chemistry and Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607–8412, Japan
- Laboratory of Medicinal Chemistry, Kobe Gakuin University, 1-1–3 Minatojima, Chuo-ku, Kobe 650–8586, Japan
| | - Alla Gustchina
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Yoshiaki Kiso
- Department of Medicinal Chemistry and Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607–8412, Japan
- Laboratory of Medicinal Chemistry, Kobe Gakuin University, 1-1–3 Minatojima, Chuo-ku, Kobe 650–8586, Japan
- Laboratory of Peptide Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526–0829, Japan
| | - Rickey Y. Yada
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
170
|
Mishra S, Caflisch A. Dynamics in the Active Site of β-Secretase: A Network Analysis of Atomistic Simulations. Biochemistry 2011; 50:9328-39. [DOI: 10.1021/bi2011948] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Amedeo Caflisch
- Department
of Biochemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
171
|
Simões I, Faro R, Bur D, Kay J, Faro C. Shewasin A, an active pepsin homolog from the bacterium Shewanella amazonensis. FEBS J 2011; 278:3177-86. [PMID: 21749650 DOI: 10.1111/j.1742-4658.2011.08243.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The view has been widely held that pepsin-like aspartic proteinases are found only in eukaryotes, and not in bacteria. However, a recent bioinformatics search [Rawlings ND & Bateman A (2009) BMC Genomics10, 437] revealed that, in seven of ∼ 1000 completely sequenced bacterial genomes, genes were present encoding polypeptides that displayed the requisite hallmark sequence motifs of pepsin-like aspartic proteinases. The implications of this theoretical observation prompted us to generate biochemical data to validate this finding experimentally. The aspartic proteinase gene from one of the seven identified bacterial species, Shewanella amazonensis, was expressed in Escherichia coli. The recombinant protein, termed shewasin A, was produced in soluble form, purified to homogeneity, and shown to display properties remarkably similar to those of pepsin-like aspartic proteinases. Shewasin A was maximally active at acidic pH values, cleaving a substrate that has been widely used for assessment of the proteolytic activity of other aspartic proteinases, and displayed a clear preference for cleaving peptide bonds between hydrophobic residues in the P1*P1' positions of the substrate. It was completely inhibited by the general inhibitor of aspartic proteinases, pepstatin, and mutation of one of the catalytic Asp residues (in the Asp-Thr-Gly motif of the N-terminal domain) resulted in complete loss of enzymatic activity. It can thus be concluded unequivocally that this Shewanella gene encodes an active pepsin-like aspartic proteinase. It is now beyond doubt that pepsin-like aspartic proteinases are not confined to eukaryotes, but are encoded within some species of bacteria. The distinctions between the bacterial and eukaryotic polypeptides are discussed and their evolutionary relationships are outlined.
Collapse
Affiliation(s)
- Isaura Simões
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | | | | | | | | |
Collapse
|
172
|
Computational perspectives into plasmepsins structure-function relationship: implications to inhibitors design. J Trop Med 2011; 2011:657483. [PMID: 21760810 PMCID: PMC3134243 DOI: 10.1155/2011/657483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 05/01/2011] [Accepted: 05/03/2011] [Indexed: 11/20/2022] Open
Abstract
The development of efficient and selective antimalariais remains a challenge for the pharmaceutical industry. The aspartic proteases plasmepsins, whose inhibition leads to parasite death, are classified as targets for the design of potent drugs. Combinatorial synthesis is currently being used to generate inhibitor libraries for these enzymes, and together with computational methodologies have been demonstrated capable for the selection of lead compounds. The high structural flexibility of plasmepsins, revealed by their X-ray structures and molecular dynamics simulations, made even more complicated the prediction of putative binding modes, and therefore, the use of common computational tools, like docking and free-energy calculations. In this review, we revised the computational strategies utilized so far, for the structure-function relationship studies concerning the plasmepsin family, with special focus on the recent advances in the improvement of the linear interaction estimation (LIE) method, which is one of the most successful methodologies in the evaluation of plasmepsin-inhibitor binding affinity.
Collapse
|
173
|
Garrec J, Sautet P, Fleurat-Lessard P. Understanding the HIV-1 Protease Reactivity with DFT: What Do We Gain from Recent Functionals? J Phys Chem B 2011; 115:8545-58. [DOI: 10.1021/jp200565w] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- J. Garrec
- Université de Lyon,CNRS, École Normale Supérieure de Lyon, Laboratoire de Chimie, 46 alléed’Italie, F-69364 Lyon Cedex 07
| | - P. Sautet
- Université de Lyon,CNRS, École Normale Supérieure de Lyon, Laboratoire de Chimie, 46 alléed’Italie, F-69364 Lyon Cedex 07
| | - P. Fleurat-Lessard
- Université de Lyon,CNRS, École Normale Supérieure de Lyon, Laboratoire de Chimie, 46 alléed’Italie, F-69364 Lyon Cedex 07
| |
Collapse
|
174
|
Kay J, Meijer HJG, ten Have A, van Kan JAL. The aspartic proteinase family of three Phytophthora species. BMC Genomics 2011; 12:254. [PMID: 21599950 PMCID: PMC3116508 DOI: 10.1186/1471-2164-12-254] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 05/20/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Phytophthora species are oomycete plant pathogens with such major social and economic impact that genome sequences have been determined for Phytophthora infestans, P. sojae and P. ramorum. Pepsin-like aspartic proteinases (APs) are produced in a wide variety of species (from bacteria to humans) and contain conserved motifs and landmark residues. APs fulfil critical roles in infectious organisms and their host cells. Annotation of Phytophthora APs would provide invaluable information for studies into their roles in the physiology of Phytophthora species and interactions with their hosts. RESULTS Genomes of Phytophthora infestans, P. sojae and P. ramorum contain 11-12 genes encoding APs. Nine of the original gene models in the P. infestans database and several in P. sojae and P. ramorum (three and four, respectively) were erroneous. Gene models were corrected on the basis of EST data, consistent positioning of introns between orthologues and conservation of hallmark motifs. Phylogenetic analysis resolved the Phytophthora APs into 5 clades. Of the 12 sub-families, several contained an unconventional architecture, as they either lacked a signal peptide or a propart region. Remarkably, almost all APs are predicted to be membrane-bound. CONCLUSIONS One of the twelve Phytophthora APs is an unprecedented fusion protein with a putative G-protein coupled receptor as the C-terminal partner. The others appear to be related to well-documented enzymes from other species, including a vacuolar enzyme that is encoded in every fungal genome sequenced to date. Unexpectedly, however, the oomycetes were found to have both active and probably-inactive forms of an AP similar to vertebrate BACE, the enzyme responsible for initiating the processing cascade that generates the Aβ peptide central to Alzheimer's Disease. The oomycetes also encode enzymes similar to plasmepsin V, a membrane-bound AP that cleaves effector proteins of the malaria parasite Plasmodium falciparum during their translocation into the host red blood cell. Since the translocation of Phytophthora effector proteins is currently a topic of intense research activity, the identification in Phytophthora of potential functional homologues of plasmepsin V would appear worthy of investigation. Indeed, elucidation of the physiological roles of the APs identified here offers areas for future study. The significant revision of gene models and detailed annotation presented here should significantly facilitate experimental design.
Collapse
Affiliation(s)
- John Kay
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | | | | | | |
Collapse
|
175
|
Antibacterial peptides derived from caprine whey proteins, by digestion with human gastrointestinal juice. Br J Nutr 2011; 106:896-905. [DOI: 10.1017/s0007114511001085] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Peptides in caprine whey were identified afterin vitrodigestion with human gastrointestinal enzymes in order to determine their antibacterial effect. The digestion was performed in two continuing steps using human gastric juice (pH 2·5) and human duodenal juice (pH 8) at 37°C. After digestion the hydrolysate was fractionated and 106 peptides were identified. From these results, twenty-two peptides, located in the protein molecules, were synthesised and antibacterial activity examined. Strong activity of the hydrolysates was detected againstEscherichia coliK12,Bacillus cereusRT INF01 andListeria monocytogenes, less activity againstStaphylococcus aureusATCC 25 923 and no effect onLactobacillus rhamnosusGG. The pure peptides showed less antibacterial effect than the hydrolysates. When comparing the peptide sequences from human gastrointestinal enzymes with previously identified peptides from non-human enzymes, only two peptides, β-lactoglobulin f(92–100) and β-casein f(191–205) matched. No peptides corresponded to the antibacterial caprine lactoferricin f(14–42) or lactoferrampin C f(268–284). Human gastrointestinal enzymes seem to be more complex and have different cleavage points in their protein chains compared with purified non-human enzymes. Multiple sequence alignment of nineteen peptides showed proline-rich sequences, neighbouring leucines, resulting in a consensus sequence LTPVPELK. In such a way proline and leucine may restrict further proteolytic processing. The present study showed that human gastrointestinal enzymes generated different peptides from caprine whey compared with non-human enzymes and a stronger antibacterial effect of the hydrolysates than the pure peptides was shown. Antimicrobial activity against pathogens but not against probiotics indicate a possible host-protective activity of whey.
Collapse
|
176
|
Barman A, Schürer S, Prabhakar R. Computational modeling of substrate specificity and catalysis of the β-secretase (BACE1) enzyme. Biochemistry 2011; 50:4337-49. [PMID: 21500768 DOI: 10.1021/bi200081h] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this combined MD simulation and DFT study, interactions of the wild-type (WT) amyloid precursor protein (APP) and its Swedish variant (SW), Lys670 → Asn and Met671 → Leu, with the beta-secretase (BACE1) enzyme and their cleavage mechanisms have been investigated. BACE1 catalyzes the rate-limiting step in the generation of 40-42 amino acid long Alzheimer amyloid beta (Aβ) peptides. All key structural parameters such as position of the flap, volume of the active site, electrostatic binding energy, structures, and positions of the inserts A, D, and F and 10s loop obtained from the MD simulations show that, in comparison to the WT-substrate, BACE1 exhibits greater affinity for the SW-substrate and orients it in a more reactive conformation. The enzyme-substrate models derived from the MD simulations were further utilized to investigate the general acid/base mechanism used by BACE1 to hydrolytically cleave these substrates. This mechanism proceeds through the following two steps: (1) formation of the gem-diol intermediate and (2) cleavage of the peptide bond. For the WT-substrate, the overall barrier of 22.4 kcal/mol for formation of the gem-diol intermediate is 3.3 kcal/mol higher than for the SW-substrate (19.1 kcal/mol). This process is found to be the rate-limiting in the entire mechanism. The computed barrier is in agreement with the measured barrier of ca. 18.00 kcal/mol for the WT-substrate and supports the experimental observation that the cleavage of the SW-substrate is 60 times more efficient than the WT-substrate.
Collapse
Affiliation(s)
- Arghya Barman
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA
| | | | | |
Collapse
|
177
|
Bhaumik P, Horimoto Y, Xiao H, Miura T, Hidaka K, Kiso Y, Wlodawer A, Yada RY, Gustchina A. Crystal structures of the free and inhibited forms of plasmepsin I (PMI) from Plasmodium falciparum. J Struct Biol 2011; 175:73-84. [PMID: 21521654 DOI: 10.1016/j.jsb.2011.04.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/08/2011] [Accepted: 04/14/2011] [Indexed: 11/28/2022]
Abstract
Plasmepsin I (PMI) is one of the four vacuolar pepsin-like proteases responsible for hemoglobin degradation by the malarial parasite Plasmodium falciparum, and the only one with no crystal structure reported to date. Due to substantial functional redundancy of these enzymes, lack of inhibition of even a single plasmepsin can defeat efforts in creating effective antiparasitic agents. We have now solved crystal structures of the recombinant PMI as apoenzyme and in complex with the potent peptidic inhibitor, KNI-10006, at the resolution of 2.4 and 3.1Å, respectively. The apoenzyme crystallized in the orthorhombic space group P2(1)2(1)2(1) with two molecules in the asymmetric unit and the structure has been refined to the final R-factor of 20.7%. The KNI-10006 bound enzyme crystallized in the tetragonal space group P4(3) with four molecules in the asymmetric unit and the structure has been refined to the final R-factor of 21.1%. In the PMI-KNI-10006 complex, the inhibitors were bound identically to all four enzyme molecules, with the opposite directionality of the main chain of KNI-10006 relative to the direction of the enzyme substrates. Such a mode of binding of inhibitors containing an allophenylnorstatine-dimethylthioproline insert in the P1-P1' positions, previously reported in a complex with PMIV, demonstrates the importance of satisfying the requirements for the proper positioning of the functional groups in the mechanism-based inhibitors towards the catalytic machinery of aspartic proteases, as opposed to binding driven solely by the specificity of the individual enzymes. A comparison of the structure of the PMI-KNI-10006 complex with the structures of other vacuolar plasmepsins identified the important differences between them and may help in the design of specific inhibitors targeting the individual enzymes.
Collapse
Affiliation(s)
- Prasenjit Bhaumik
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Madala PK, Tyndall JDA, Nall T, Fairlie DP. Update 1 of: Proteases Universally Recognize Beta Strands In Their Active Sites. Chem Rev 2011; 110:PR1-31. [DOI: 10.1021/cr900368a] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Praveen K. Madala
- Centre for Drug Design and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2005, 105 (3), 973−1000; Published (Web) Feb. 16, 2005. Updates to the text appear in red type
| | - Joel D. A. Tyndall
- Centre for Drug Design and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2005, 105 (3), 973−1000; Published (Web) Feb. 16, 2005. Updates to the text appear in red type
| | - Tessa Nall
- Centre for Drug Design and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2005, 105 (3), 973−1000; Published (Web) Feb. 16, 2005. Updates to the text appear in red type
| | - David P. Fairlie
- Centre for Drug Design and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2005, 105 (3), 973−1000; Published (Web) Feb. 16, 2005. Updates to the text appear in red type
| |
Collapse
|
179
|
Alfonso Y, Monzote L. HIV Protease Inhibitors: Effect on the Opportunistic Protozoan Parasites. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2011; 5:40-50. [PMID: 21629510 PMCID: PMC3103880 DOI: 10.2174/1874104501105010040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 05/22/2010] [Accepted: 06/28/2010] [Indexed: 11/22/2022]
Abstract
The impact of highly active antiretroviral therapy (HAART) in the natural history of AIDS disease has been allowed to prolong the survival of people with HIV infection, particularly whose with increased HIV viral load. Additionally, the antiretroviral therapy could exert a certain degree of protection against parasitic diseases. A number of studies have been evidenced a decrease in the incidence of opportunistic parasitic infections in the era of HAART. Although these changes have been attributed to the restoration of cell-mediated immunity, induced by either non-nucleoside reverse transcriptase inhibitors or HIV protease inhibitors, in combination with at least two nucleoside reverse transcriptase inhibitors included in HAART, there are evidence that the control of these parasitic infections in HIV-positive persons under HAART, is also induced by the inhibition of the proteases of the parasites. This review focuses on the principal available data related with therapeutic HIV-protease inhibitors and their in vitro and in vivo effects on the opportunistic protozoan parasites.
Collapse
Affiliation(s)
- Yenisey Alfonso
- Parasitology Department, Institute of Tropical Medicine “Pedro Kourí”, Cuba
| | | |
Collapse
|
180
|
Molecular mechanisms of substrate recognition and specificity of botulinum neurotoxin serotype F. Biochem J 2011; 433:277-84. [PMID: 21029044 DOI: 10.1042/bj20101310] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BoNTs (botulinum neurotoxins) are both deadly neurotoxins and natural toxins that are widely used in protein therapies to treat numerous neurological disorders of dystonia and spinal spasticity. Understanding the mechanism of action and substrate specificity of BoNTs is a prerequisite to develop antitoxin and novel BoNT-derived protein therapy. To date, there is a lack of detailed information with regard to how BoNTs recognize and hydrolyse the substrate VAMP-2 (vesicle-associated membrane protein 2), even though it is known to be cleaved by four of the seven BoNT serotypes, B, D, F, G and TeNT (tetanus neurotoxin). In the present study we dissected the molecular mechanisms of VAMP-2 recognition by BoNT serotype F for the first time. The initial substrate recognition was mediated through sequential binding of VAMP-2 to the B1, B2 and B3 pockets in LC/F (light chain of BoNT serotype F), which directed VAMP-2 to the active site of LC/F and stabilized the active site substrate recognition, where the P2, P1' and P2' sites of VAMP-2 were specifically recognized by the S2, S1' and S2' pockets of LC/F to promote substrate hydrolysis. The understanding of the molecular mechanisms of LC/F substrate recognition provides insights into the development of antitoxins and engineering novel BoNTs to optimize current therapy and extend therapeutic interventions.
Collapse
|
181
|
Grabowsky S, Schirmeister T, Paulmann C, Pfeuffer T, Luger P. Effect of electron-withdrawing substituents on the epoxide ring: an experimental and theoretical electron density analysis of a series of epoxide derivatives. J Org Chem 2011; 76:1305-18. [PMID: 21250719 DOI: 10.1021/jo102125n] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of acceptor-substituted epoxide derivatives is scrutinized by means of experimental and theoretical electron-density investigations. Due to the possibility of nucleophilic ring-opening, the epoxide ring is not only a very useful functional group in organic synthesis, but acceptor-substituted epoxides are valuable building blocks for the design of protease inhibitors. Therefore, the electron-density analysis in this work focuses on two main aspects that can contribute to rational drug design: (i) the quantification of the electron-withdrawing substituent effects on the epoxide ring and (ii) the intermolecular interactions involving the epoxide ring in combination with different substituents. It can be shown that the electron-withdrawing properties of the substituents cause an elongation of the C-C bonds in the epoxide rings and the loss of electron density can be measured by an analysis of critical points, atomic charges, and the source function. The different strengths of the substituents are reflected in these properties. Covalent and electrostatic contributions to the intermolecular interactions and thus the lattice energies are depicted on different molecular surfaces.
Collapse
Affiliation(s)
- Simon Grabowsky
- Freie Universität Berlin, Institut für Chemie und Biochemie/Anorganische Chemie, Fabeckstr. 36a, 14195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
182
|
Stratton MM, Cutler TA, Ha JH, Loh SN. Probing local structural fluctuations in myoglobin by size-dependent thiol-disulfide exchange. Protein Sci 2010; 19:1587-94. [PMID: 20572017 DOI: 10.1002/pro.440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
All proteins undergo local structural fluctuations (LSFs) or breathing motions. These motions are likely to be important for function but are poorly understood. LSFs were initially defined by amide hydrogen exchange (HX) experiments as opening events, which expose a small number of backbone amides to (1)H/(2)H exchange, but whose exchange rates are independent of denaturant concentration. Here, we use size-dependent thiol-disulfide exchange (SX) to characterize LSFs in single cysteine-containing variants of myoglobin (Mb). SX complements HX by providing information on motions that disrupt side chain packing interactions. Most importantly, probe reagents of different sizes and chemical properties can be used to characterize the size of structural opening events and the properties of the open state. We use thiosulfonate reagents (126-274 Da) to survey access to Cys residues, which are buried at specific helical packing interfaces in Mb. In each case, the free energy of opening increases linearly with the radius of gyration of the probe reagent. The slope and the intercept are interpreted to yield information on the size of the opening events that expose the buried thiol groups. The slope parameter varies by over 10-fold among Cys positions tested, suggesting that the sizes of breathing motions vary substantially throughout the protein. Our results provide insight to the longstanding question: how rigid or flexible are proteins in their native states?
Collapse
Affiliation(s)
- Margaret M Stratton
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
183
|
Development of accurate binding affinity predictions of novel renin inhibitors through molecular docking studies. J Mol Graph Model 2010; 29:425-35. [DOI: 10.1016/j.jmgm.2010.08.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 08/09/2010] [Accepted: 08/17/2010] [Indexed: 11/21/2022]
|
184
|
Webb RL, Schiering N, Sedrani R, Maibaum J. Direct Renin Inhibitors as a New Therapy for Hypertension. J Med Chem 2010; 53:7490-520. [DOI: 10.1021/jm901885s] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Randy L. Webb
- Novartis Pharmaceuticals Corp., Institutes for BioMedical Research, East Hanover, New Jersey
| | - Nikolaus Schiering
- Novartis Pharma AG, Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Richard Sedrani
- Novartis Pharma AG, Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Jürgen Maibaum
- Novartis Pharma AG, Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| |
Collapse
|
185
|
Telugu BPVL, Palmier MO, Van Doren SR, Green JA. An examination of the proteolytic activity for bovine pregnancy-associated glycoproteins 2 and 12. Biol Chem 2010; 391:259-270. [PMID: 20030586 DOI: 10.1515/bc.2010.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The pregnancy-associated glycoproteins (PAGs) represent a complex group of putative aspartic peptidases expressed exclusively in the placentas of species in the Artiodactyla order. The ruminant PAGs segregate into two classes: the 'ancient' and 'modern' PAGs. Some of the modern PAGs possess alterations in the catalytic center that are predicted to preclude their ability to act as peptidases. The ancient ruminant PAGs in contrast are thought to be peptidases, although no proteolytic activity has been described for these members. The aim of the present study was to investigate (1) if the ancient bovine PAGs (PAG-2 and PAG-12) have proteolytic activity, and (2) if there are any differences in activity between these two closely related members. Recombinant bovine PAG-2 and PAG-12 were expressed in a baculovirus expression system and the purified proteins were analyzed for proteolytic activity against a synthetic fluorescent cathepsin D/E substrate. Both proteins exhibited proteolytic activity with acidic pH optima. The k(cat)/K(m) for bovine PAG-2 was 2.7x10(5) m(-1) s(-1) and for boPAG-12 it was 6.8x10(4) m(-1) s(-1). The enzymes were inhibited by pepstatin A with a K(i) of 0.56 and 7.5 nm for boPAG-2 and boPAG-12, respectively. This is the first report describing proteolytic activity in PAGs from ruminant ungulates.
Collapse
Affiliation(s)
- Bhanu Prakash V L Telugu
- Division of Animal Sciences, University of Missouri, 163 ASRC, Columbia, MO 65211, USA.,Current address: Christopher S. Bond Life Sciences Center, University of Missouri, 245 LSC, Columbia, MO 65211, USA
| | - Mark O Palmier
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA
| | - Steven R Van Doren
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA
| | - Jonathan A Green
- Division of Animal Sciences, University of Missouri, 163 ASRC, Columbia, MO 65211, USA
| |
Collapse
|
186
|
Das A, Mahale S, Prashar V, Bihani S, Ferrer JL, Hosur MV. X-ray Snapshot of HIV-1 Protease in Action: Observation of Tetrahedral Intermediate and Short Ionic Hydrogen Bond SIHB with Catalytic Aspartate. J Am Chem Soc 2010; 132:6366-73. [DOI: 10.1021/ja100002b] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Amit Das
- Protein Crystallography Section, Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India, National Institute for Research in Reproductive Health, Parel, Mumbai-400074, India, and LCCP/GSY, Institute de Biologie Structurale, J.-P. Ebel CEA-CNRS-UJF, 41, rue Jules Horowitz, F-38027 Grenoble Cedex 1, France
| | - Smita Mahale
- Protein Crystallography Section, Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India, National Institute for Research in Reproductive Health, Parel, Mumbai-400074, India, and LCCP/GSY, Institute de Biologie Structurale, J.-P. Ebel CEA-CNRS-UJF, 41, rue Jules Horowitz, F-38027 Grenoble Cedex 1, France
| | - Vishal Prashar
- Protein Crystallography Section, Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India, National Institute for Research in Reproductive Health, Parel, Mumbai-400074, India, and LCCP/GSY, Institute de Biologie Structurale, J.-P. Ebel CEA-CNRS-UJF, 41, rue Jules Horowitz, F-38027 Grenoble Cedex 1, France
| | - Subhash Bihani
- Protein Crystallography Section, Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India, National Institute for Research in Reproductive Health, Parel, Mumbai-400074, India, and LCCP/GSY, Institute de Biologie Structurale, J.-P. Ebel CEA-CNRS-UJF, 41, rue Jules Horowitz, F-38027 Grenoble Cedex 1, France
| | - J.-L. Ferrer
- Protein Crystallography Section, Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India, National Institute for Research in Reproductive Health, Parel, Mumbai-400074, India, and LCCP/GSY, Institute de Biologie Structurale, J.-P. Ebel CEA-CNRS-UJF, 41, rue Jules Horowitz, F-38027 Grenoble Cedex 1, France
| | - M. V. Hosur
- Protein Crystallography Section, Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India, National Institute for Research in Reproductive Health, Parel, Mumbai-400074, India, and LCCP/GSY, Institute de Biologie Structurale, J.-P. Ebel CEA-CNRS-UJF, 41, rue Jules Horowitz, F-38027 Grenoble Cedex 1, France
| |
Collapse
|
187
|
Palmer DS, Christensen AU, Sørensen J, Celik L, Qvist KB, Schiøtt B. Bovine chymosin: a computational study of recognition and binding of bovine kappa-casein. Biochemistry 2010; 49:2563-73. [PMID: 20155951 DOI: 10.1021/bi902193u] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bovine chymosin is an aspartic protease that selectively cleaves the milk protein kappa-casein. The enzyme is widely used to promote milk clotting in cheese manufacturing. We have developed models of residues 97-112 of bovine kappa-casein complexed with bovine chymosin, using ligand docking, conformational search algorithms, and molecular dynamics simulations. In agreement with limited experimental evidence, the model suggests that the substrate binds in an extended conformation with charged residues on either side of the scissile bond playing an important role in stabilizing the binding pose. Lys111 and Lys112 are observed to bind to the N-terminal domain of chymosin displacing a conserved water molecule. A cluster of histidine and proline residues (His98-Pro99-His100-Pro101-His102) in kappa-casein binds to the C-terminal domain of the protein, where a neighboring conserved arginine residue (Arg97) is found to be important for stabilizing the binding pose. The catalytic site (including the catalytic water molecule) is stable in the starting conformation of the previously proposed general acid/base catalytic mechanism for 18 ns of molecular dynamics simulations.
Collapse
Affiliation(s)
- David S Palmer
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
188
|
Mello LV, O'Meara H, Rigden DJ, Paterson S. Identification of novel aspartic proteases from Strongyloides ratti and characterisation of their evolutionary relationships, stage-specific expression and molecular structure. BMC Genomics 2009; 10:611. [PMID: 20015380 PMCID: PMC2805697 DOI: 10.1186/1471-2164-10-611] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 12/16/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aspartic proteases are known to play an important role in the biology of nematode parasitism. This role is best characterised in blood-feeding nematodes, where they digest haemoglobin, but they are also likely to play important roles in the biology of nematode parasites that do not feed on blood. In the present work, we investigate the evolution and expression of aspartic proteases in Strongyloides ratti, which permits a unique comparison between parasitic and free-living adult forms within its life-cycle. RESULTS We identified eight transcribed aspartic protease sequences and a further two genomic sequences and compared these to homologues in Caenorhabditis elegans and other nematode species. Phylogenetic analysis demonstrated a complex pattern of gene evolution, such that some S. ratti sequences had a one-to-one correspondence with orthologues of C. elegans but that lineage-specific expansions have occurred for other aspartic proteases in these two nematodes. These gene duplication events may have contributed to the adaptation of the two species to their different lifestyles. Among the set of S. ratti aspartic proteases were two closely-related isoforms that showed differential expression during different life stages: ASP-2A is highly expressed in parasitic females while ASP-2B is predominantly found in free-living adults. Molecular modelling of the ASP-2 isoforms reveals that their substrate specificities are likely to be very similar, but that ASP-2B is more electrostatically negative over its entire molecular surface than ASP-2A. This characteristic may be related to different pH values of the environments in which these two isoforms operate. CONCLUSIONS We have demonstrated that S. ratti provides a powerful model to explore the genetic adaptations associated with parasitic versus free-living life-styles. We have discovered gene duplication of aspartic protease genes in Strongyloides and identified a pair of paralogues differentially expressed in either the parasitic or the free-living phase of the nematode life-cycle, consistent with an adaptive role for aspartic proteases in the evolution of nematode parasitism.
Collapse
Affiliation(s)
- Luciane V Mello
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Helen O'Meara
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
- Department of Pharmacology and Therapeutics, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Daniel J Rigden
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Steve Paterson
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
189
|
Prashar V, Bihani S, Das A, Ferrer JL, Hosur M. Catalytic water co-existing with a product peptide in the active site of HIV-1 protease revealed by X-ray structure analysis. PLoS One 2009; 4:e7860. [PMID: 19924250 PMCID: PMC2775671 DOI: 10.1371/journal.pone.0007860] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 10/15/2009] [Indexed: 11/18/2022] Open
Abstract
Background It is known that HIV-1 protease is an important target for design of antiviral compounds in the treatment of Acquired Immuno Deficiency Syndrome (AIDS). In this context, understanding the catalytic mechanism of the enzyme is of crucial importance as transition state structure directs inhibitor design. Most mechanistic proposals invoke nucleophilic attack on the scissile peptide bond by a water molecule. But such a water molecule coexisting with any ligand in the active site has not been found so far in the crystal structures. Principal Findings We report here the first observation of the coexistence in the active site, of a water molecule WAT1, along with the carboxyl terminal product (Q product) peptide. The product peptide has been generated in situ through cleavage of the full-length substrate. The N-terminal product (P product) has diffused out and is replaced by a set of water molecules while the Q product is still held in the active site through hydrogen bonds. The position of WAT1, which hydrogen bonds to both the catalytic aspartates, is different from when there is no substrate bound in the active site. We propose WAT1 to be the position from where catalytic water attacks the scissile peptide bond. Comparison of structures of HIV-1 protease complexed with the same oligopeptide substrate, but at pH 2.0 and at pH 7.0 shows interesting changes in the conformation and hydrogen bonding interactions from the catalytic aspartates. Conclusions/Significance The structure is suggestive of the repositioning, during substrate binding, of the catalytic water for activation and subsequent nucleophilic attack. The structure could be a snap shot of the enzyme active site primed for the next round of catalysis. This structure further suggests that to achieve the goal of designing inhibitors mimicking the transition-state, the hydrogen-bonding pattern between WAT1 and the enzyme should be replicated.
Collapse
Affiliation(s)
- Vishal Prashar
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Subhash Bihani
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Amit Das
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Jean-Luc Ferrer
- Laboratoire de Cristallographie et Cristallogenèse des Protéines/Le Groupe Synchrotron, Institut de Biologie Structurale, Grenoble, France
| | - Madhusoodan Hosur
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- * E-mail:
| |
Collapse
|
190
|
Parr-Vasquez CL, Yada RY. Functional chimera of porcine pepsin prosegment and Plasmodium falciparum plasmepsin II. Protein Eng Des Sel 2009; 23:19-26. [DOI: 10.1093/protein/gzp066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
191
|
Kageyama H, Ueda H, Tezuka T, Ogasawara A, Narita Y, Kageyama T, Ichinose M. Differences in the P1' substrate specificities of pepsin A and chymosin. J Biochem 2009; 147:167-74. [DOI: 10.1093/jb/mvp158] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
192
|
Recombinant prosegment peptide acts as a folding catalyst and inhibitor of native pepsin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1795-801. [PMID: 19715777 DOI: 10.1016/j.bbapap.2009.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 08/16/2009] [Accepted: 08/18/2009] [Indexed: 11/23/2022]
Abstract
Porcine pepsin A, a gastric aspartic peptidase, is initially produced as the zymogen pepsinogen that contains an N-terminal, 44 residue prosegment (PS) domain. In the absence of the PS, native pepsin (Np) is irreversibly denatured and when placed under refolding conditions, folds to a thermodynamically stable denatured state. This denatured, refolded pepsin (Rp) state can be converted to Np by the exogenous addition of the PS, which catalyzes the folding of Rp to Np. In order to thoroughly study the mechanism by which the PS catalyzes pepsin folding, a soluble protein expression system was developed to produce recombinant PS peptide in a highly pure form. Using this system, the wild-type and three-mutant PS forms, in which single residue substitutions were made (V4A, R8A and K36A), were expressed and purified. These PS peptides were characterized for their ability to inhibit Np enzymatic activity and to catalyze the folding of Rp to Np. The V4A, R8A and K36A mutant PS peptides were found to have nanomolar inhibition constants, Ki, of 82.4, 58.3 and 95.6 nM, respectively, approximately a two-fold increase from that of the wild-type PS (36.2 nM). All three-mutant PS peptides were found to catalyze Np folding with a rate constant of 0.06 min(-1), five-fold lower than that of the wild-type. The observation that the mutant PS peptides retained their inhibition and folding-catalyst functionality suggests a high level of resilience to mutations of the pepsin PS.
Collapse
|
193
|
Ahn JE, Zhu-Salzman K. CmCatD, a cathepsin D-like protease has a potential role in insect defense against a phytocystatin. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:678-685. [PMID: 19446566 DOI: 10.1016/j.jinsphys.2009.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 04/26/2009] [Accepted: 04/29/2009] [Indexed: 05/27/2023]
Abstract
When fed on a diet containing a proteinaceous cysteine protease inhibitor from soybean (scN), cowpea bruchid larvae enhance their overall digestive capacity to counter the inhibitory effect. Elevated proteolytic activity is attributed not only to the major digestive cysteine proteases (CmCPs), but also to aspartic proteases, a minor midgut protease component. In this study, we isolated a CmCatD cDNA from cowpea bruchid midgut that shares substantial sequence similarity with cathepsin D-like aspartic proteases of other organisms. Its transcript profile was developmentally regulated and subject to alteration by dietary scN. CmCatD transcripts were more abundant in scN-fed 3rd and 4th instar midguts than in control. The bacterially expressed recombinant CmCatD proprotein was capable of autoprocessing under acidic conditions, and mature CmCatD also exhibited pH-dependent proteolytic activity which was inhibited specifically by pepstatin A, indicative of its aspartic protease nature. CmCatD trans-activated CmCPs and vice versa, suggesting a cooperation between the minor midgut CmCatD and major digestive CmCPs. Further, CmCatD was able to degrade scN after extensive incubation. This activity partially restored CmCP proteolytic activity otherwise inhibited by scN. Thus CmCatD could facilitate insects' coping with the challenge of dietary scN by exerting its scN-insensitive and scN-degrading activity, freeing cysteine proteases for food degradation. Taken together, cowpea bruchids coordinate the functionality of the two classes of digestive proteases to fend off the negative effect of scN, and fulfill their nutrient requirements.
Collapse
Affiliation(s)
- Ji-Eun Ahn
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
194
|
Sarmento AC, Lopes H, Oliveira CS, Vitorino R, Samyn B, Sergeant K, Debyser G, Van Beeumen J, Domingues P, Amado F, Pires E, Domingues MRM, Barros MT. Multiplicity of aspartic proteinases from Cynara cardunculus L. PLANTA 2009; 230:429-439. [PMID: 19488781 DOI: 10.1007/s00425-009-0948-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 05/04/2009] [Indexed: 05/27/2023]
Abstract
Aspartic proteinases (AP) play major roles in physiologic and pathologic scenarios in a wide range of organisms from vertebrates to plants or viruses. The present work deals with the purification and characterisation of four new APs from the cardoon Cynara cardunculus L., bringing the number of APs that have been isolated, purified and biochemically characterised from this organism to nine. This is, to our knowledge, one of the highest number of APs purified from a single organism, consistent with a specific and important biological function of these protein within C. cardunculus. These enzymes, cardosins E, F, G and H, are dimeric, glycosylated, pepstatin-sensitive APs, active at acidic pH, with a maximum activity around pH 4.3. Their primary structures were partially determined by N- and C-terminal sequence analysis, peptide mass fingerprint analysis on a MALDI-TOF/TOF instrument and by LC-MS/MS analysis on a Q-TRAP instrument. All four enzymes are present on C. cardunculus L. pistils, along with cyprosins and cardosins A and B. Their micro-heterogeneity was detected by 2D-electrophoresis and mass spectrometry. The enzymes resemble cardosin A more than they resemble cardosin B or cyprosin, with cardosin E and cardosin G being more active than cardosin A, towards the synthetic peptide KPAEFF(NO(2))AL. The specificity of these enzymes was investigated and it is shown that cardosin E, although closely related to cardosin A, exhibits different specificity.
Collapse
|
195
|
Padrón-García JA, Alonso-Tarajano M, Alonso-Becerra E, Winterburn TJ, Ruiz Y, Kay J, Berry C. Quantitative structure activity relationship of IA3-like peptides as aspartic proteinase inhibitors. Proteins 2009; 75:859-69. [DOI: 10.1002/prot.22295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
196
|
Waibel M, Pitrat D, Hasserodt J. On the inhibition of HIV-1 protease by hydrazino-ureas displaying the N→CO interaction. Bioorg Med Chem 2009; 17:3671-9. [DOI: 10.1016/j.bmc.2009.03.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 03/23/2009] [Accepted: 03/29/2009] [Indexed: 01/23/2023]
|
197
|
Abstract
The structure-function relationships of aspartic peptidases (APs) (EC 3.4.23.X) have been extensively investigated, yet much remains to be elucidated regarding the various molecular mechanisms of these enzymes. Over the past years, APs have received considerable interest for food applications (e.g. cheese, fermented foods) and as potential targets for pharmaceutical intervention in human diseases including hypertension, cancer, Alzheimer's disease, AIDS (acquired immune deficiency syndrome), and malaria. A deeper understanding of the structure and function of APs, therefore, will have a direct impact on the design of peptidase inhibitors developed to treat such diseases. Most APs are synthesized as zymogens which contain an N-terminal prosegment (PS) domain that is removed at acidic pH by proteolytic cleavage resulting in the active enzyme. While the nature of the AP PS function is not entirely understood, the PS can be important in processes such as the initiation of correct folding, protein stability, blockage of the active site, pH-dependence of activation, and intracellular sorting of the zymogen. This review summarizes the current knowledge of AP PS function (especially within the A1 family), with particular emphasis on protein folding, cellular sorting, and inhibition.
Collapse
|
198
|
Laras Y, Garino C, Dessolin J, Weck C, Moret V, Rolland A, Kraus JL. New N(4)-substituted piperazine naphthamide derivatives as BACE-1 inhibitors. J Enzyme Inhib Med Chem 2009; 24:181-7. [PMID: 18770069 DOI: 10.1080/14756360802048939] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Synthesis and enzymatic evaluation of new series of N(4)-substituted piperazine naphthamide derivatives as BACE-1 inhibitors for the treatment of Alzheimer's disease are reported.
Collapse
Affiliation(s)
- Y Laras
- Laboratoire de Chimie Biomoleculaire, Faculte des Sciences Luminy, IBDML-UMR-6216-CNRS, Universite de la Mediterranee, Marseille Cedex, France
| | | | | | | | | | | | | |
Collapse
|
199
|
Bhaumik P, Xiao H, Parr CL, Kiso Y, Gustchina A, Yada RY, Wlodawer A. Crystal structures of the histo-aspartic protease (HAP) from Plasmodium falciparum. J Mol Biol 2009; 388:520-40. [PMID: 19285084 DOI: 10.1016/j.jmb.2009.03.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/25/2009] [Accepted: 03/05/2009] [Indexed: 02/07/2023]
Abstract
The structures of recombinant histo-aspartic protease (HAP) from malaria-causing parasite Plasmodium falciparum as apoenzyme and in complex with two inhibitors, pepstatin A and KNI-10006, were solved at 2.5-, 3.3-, and 3.05-A resolutions, respectively. In the apoenzyme crystals, HAP forms a tight dimer not seen previously in any aspartic protease. The interactions between the monomers affect the conformation of two flexible loops, the functionally important "flap" (residues 70-83) and its structural equivalent in the C-terminal domain (residues 238-245), as well as the orientation of helix 225-235. The flap is found in an open conformation in the apoenzyme. Unexpectedly, the active site of the apoenzyme contains a zinc ion tightly bound to His32 and Asp215 from one monomer and to Glu278A from the other monomer, with the coordination of Zn resembling that seen in metalloproteases. The flap is closed in the structure of the pepstatin A complex, whereas it is open in the complex with KNI-10006. Although the binding mode of pepstatin A is significantly different from that in other pepsin-like aspartic proteases, its location in the active site makes unlikely the previously proposed hypothesis that HAP is a serine protease. The binding mode of KNI-10006 is unusual compared with the binding of other inhibitors from the KNI series to aspartic proteases. The novel features of the HAP active site could facilitate design of specific inhibitors used in the development of antimalarial drugs.
Collapse
Affiliation(s)
- Prasenjit Bhaumik
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | | | |
Collapse
|
200
|
Bihani S, Das A, Prashar V, Ferrer JL, Hosur MV. X-ray structure of HIV-1 protease in situ product complex. Proteins 2009; 74:594-602. [DOI: 10.1002/prot.22174] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|