151
|
Wei G, Xi W, Nussinov R, Ma B. Protein Ensembles: How Does Nature Harness Thermodynamic Fluctuations for Life? The Diverse Functional Roles of Conformational Ensembles in the Cell. Chem Rev 2016; 116:6516-51. [PMID: 26807783 PMCID: PMC6407618 DOI: 10.1021/acs.chemrev.5b00562] [Citation(s) in RCA: 291] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
All soluble proteins populate conformational ensembles that together constitute the native state. Their fluctuations in water are intrinsic thermodynamic phenomena, and the distributions of the states on the energy landscape are determined by statistical thermodynamics; however, they are optimized to perform their biological functions. In this review we briefly describe advances in free energy landscape studies of protein conformational ensembles. Experimental (nuclear magnetic resonance, small-angle X-ray scattering, single-molecule spectroscopy, and cryo-electron microscopy) and computational (replica-exchange molecular dynamics, metadynamics, and Markov state models) approaches have made great progress in recent years. These address the challenging characterization of the highly flexible and heterogeneous protein ensembles. We focus on structural aspects of protein conformational distributions, from collective motions of single- and multi-domain proteins, intrinsically disordered proteins, to multiprotein complexes. Importantly, we highlight recent studies that illustrate functional adjustment of protein conformational ensembles in the crowded cellular environment. We center on the role of the ensemble in recognition of small- and macro-molecules (protein and RNA/DNA) and emphasize emerging concepts of protein dynamics in enzyme catalysis. Overall, protein ensembles link fundamental physicochemical principles and protein behavior and the cellular network and its regulation.
Collapse
Affiliation(s)
- Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China
| | - Wenhui Xi
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA
- Sackler Inst. of Molecular Medicine Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA
| |
Collapse
|
152
|
Exploring the stability limits of actin and its suprastructures. Biophys J 2016; 107:2982-2992. [PMID: 25517163 DOI: 10.1016/j.bpj.2014.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/28/2014] [Accepted: 11/05/2014] [Indexed: 12/30/2022] Open
Abstract
Actin is the main component of the microfilament system in eukaryotic cells and can be found in distinct morphological states. Global (G)-actin is able to assemble into highly organized, supramolecular cellular structures known as filamentous (F)-actin and bundled (B)-actin. To evaluate the structure and stability of G-, F-, and B-actin over a wide range of temperatures and pressures, we used Fourier transform infrared spectroscopy in combination with differential scanning and pressure perturbation calorimetry, small-angle x-ray scattering, laser confocal scanning microscopy, and transmission electron microscopy. Our analysis was designed to provide new (to our knowledge) insights into the stabilizing forces of actin self-assembly and to reveal the stability of the actin polymorphs, including in conditions encountered in extreme environments. In addition, we sought to explain the limited pressure stability of actin self-assembly observed in vivo. G-actin is not only the least temperature-stable but also the least pressure-stable actin species. Under abyssal conditions, where temperatures as low as 1-4°C and pressures up to 1 kbar are reached, G-actin is hardly stable. However, the supramolecular assemblies of actin are stable enough to withstand the extreme conditions usually encountered on Earth. Beyond ∼3-4 kbar, filamentous structures disassemble, and beyond ∼4 kbar, complete dissociation of F-actin structures is observed. Between ∼1 and 2 kbar, some disordering of actin assemblies commences, in agreement with in vivo observations. The limited pressure stability of the monomeric building block seems to be responsible for the suppression of actin assembly in the kbar pressure range.
Collapse
|
153
|
Savadkoohi S, Kasapis S. High pressure effects on the structural functionality of condensed globular-protein matrices. Int J Biol Macromol 2016; 88:433-42. [PMID: 27060534 DOI: 10.1016/j.ijbiomac.2016.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 11/26/2022]
Abstract
High pressure technology is the outcome of consumer demand for better quality control of processed foods. There is great potential to apply HPP to condensed systems of globular proteins for the generation of industry-relevant biomaterials with advanced techno- and biofunctionality. To this end, research demonstrates that application of high hydrostatic pressure generates a coherent structure and preserves the native conformation in condensed globular proteins, which is an entirely unexpected but interesting outcome on both scientific and technological grounds. In microbiological challenge tests, high pressure at conventional commercial conditions, demonstrated to effectively reduce the concentration of typical Gram negative or Gram positive foodborne pathogens, and proteolytic enzymes in high-solid protein samples. This may have industrial significance in relation to the formulation and stabilisation of "functional food" products as well as in protein ingredients and concentrates by replacing spray dried powders with condensed HPP-treated pastes that maintain structure and bioactivity. Fundamental concepts and structural functionality of condensed matrices of globular proteins are the primary interest in this mini-review, which may lead to opportunities for industrial exploitation, but earlier work on low-solid systems is also summarised presently to put recent developments in context of this rapidly growing field.
Collapse
Affiliation(s)
- Sobhan Savadkoohi
- School of Science, RMIT University, Bundoora West Campus, Plenty Road, Vic 3083, Australia
| | - Stefan Kasapis
- School of Science, RMIT University, Bundoora West Campus, Plenty Road, Vic 3083, Australia.
| |
Collapse
|
154
|
Lemaire B, Mignolet E, Debier C, Calderon PB, Thomé JP, Rees JF. High hydrostatic pressure influences the in vitro response to xenobiotics in Dicentrarchus labrax liver. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 173:43-52. [PMID: 26836508 DOI: 10.1016/j.aquatox.2016.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 01/04/2016] [Accepted: 01/09/2016] [Indexed: 06/05/2023]
Abstract
Hydrostatic pressure (HP) increases by about 1 atmosphere (0.1MPa) for each ten-meter depth increase in the water column. This thermodynamical parameter could well influence the response to and effects of xenobiotics in the deep-sea biota, but this possibility remains largely overlooked. To grasp the extent of HP adaptation in deep-sea fish, comparative studies with living cells of surface species exposed to chemicals at high HP are required. We initially conducted experiments with precision-cut liver slices of a deep-sea fish (Coryphaenoides rupestris), co-exposed for 15h to the aryl hydrocarbon receptor (AhR) agonist 3-methylcholanthrene at HP levels representative of the surface (0.1MPa) and deep-sea (5-15MPa; i.e., 500-1500m depth) environments. The transcript levels of a suite of stress-responsive genes, such as the AhR battery CYP1A, were subsequently measured (Lemaire et al., 2012; Environ. Sci. Technol. 46, 10310-10316). Strikingly, the AhR agonist-mediated increase of CYP1A mRNA content was pressure-dependently reduced in C. rupestris. Here, the same co-exposure scenario was applied for 6 or 15h to liver slices of a surface fish, Dicentrarchus labrax, a coastal species presumably not adapted to high HP. Precision-cut liver slices of D. labrax were also used in 1h co-exposure studies with the pro-oxidant tert-butylhydroperoxide (tBHP) as to investigate the pressure-dependence of the oxidative stress response (i.e., reactive oxygen production, glutathione and lipid peroxidation status). Liver cells remained viable in all experiments (adenosine triphosphate content). High HP precluded the AhR agonist-mediated increase of CYP1A mRNA expression in D. labrax, as well as that of glutathione peroxidase, and significantly reduced that of heat shock protein 70. High HP (1h) also tended per se to increase the level of oxidative stress in liver cells of the surface fish. Trends to an increased resistance to tBHP were also noted. Whether the latter observation truly reflects a protective response to oxidative stress will be addressed in future co-exposure studies with both surface and deep-sea fish liver cells, using additional pro-oxidant chemicals. Altogether, data on CYP1A inducibility with D. labrax and C. rupestris support the view that high HP represses AhR signaling in marine fishes, and that only species adapted to thrive in the deep-sea have evolved the molecular adaptations necessary to counteract to some extent this inhibition.
Collapse
Affiliation(s)
- Benjamin Lemaire
- Institut des Sciences de la Vie, Université Catholique de Louvain, Croix du Sud 2, B-1348 Louvain-la-Neuve, Belgium
| | - Eric Mignolet
- Institut des Sciences de la Vie, Université Catholique de Louvain, Croix du Sud 2, B-1348 Louvain-la-Neuve, Belgium
| | - Cathy Debier
- Institut des Sciences de la Vie, Université Catholique de Louvain, Croix du Sud 2, B-1348 Louvain-la-Neuve, Belgium
| | - Pedro Buc Calderon
- Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B-1200 Woluwé-Saint-Lambert, Belgium
| | - Jean Pierre Thomé
- Laboratoire d'Ecologie Animale et Ecotoxicologie, Université de Liège, Allée du 6 août 15, B-4000 Liège, Belgium
| | - Jean François Rees
- Institut des Sciences de la Vie, Université Catholique de Louvain, Croix du Sud 2, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
155
|
Luong TQ, Kapoor S, Winter R. Pressure-A Gateway to Fundamental Insights into Protein Solvation, Dynamics, and Function. Chemphyschem 2015; 16:3555-71. [DOI: 10.1002/cphc.201500669] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Trung Quan Luong
- Department of Chemistry and Chemical Biology, Physical Chemistry; TU Dortmund University, Dortmund; Otto-Hahn-Str. 6 d-44221 Dortmund Germany
| | - Shobhna Kapoor
- Department of Chemistry and Chemical Biology, Physical Chemistry; TU Dortmund University, Dortmund; Otto-Hahn-Str. 6 d-44221 Dortmund Germany
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Physical Chemistry; TU Dortmund University, Dortmund; Otto-Hahn-Str. 6 d-44221 Dortmund Germany
| |
Collapse
|
156
|
Barroso SPC, Nico D, Nascimento D, Santos ACV, Couceiro JNSS, Bozza FA, Ferreira AMA, Ferreira DF, Palatnik-de-Sousa CB, Souza TML, Gomes AMO, Silva JL, Oliveira AC. Intranasal Immunization with Pressure Inactivated Avian Influenza Elicits Cellular and Humoral Responses in Mice. PLoS One 2015; 10:e0128785. [PMID: 26056825 PMCID: PMC4461174 DOI: 10.1371/journal.pone.0128785] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 04/30/2015] [Indexed: 01/19/2023] Open
Abstract
Influenza viruses pose a serious global health threat, particularly in light of newly emerging strains, such as the avian influenza H5N1 and H7N9 viruses. Vaccination remains the primary method for preventing acquiring influenza or for avoiding developing serious complications related to the disease. Vaccinations based on inactivated split virus vaccines or on chemically inactivated whole virus have some important drawbacks, including changes in the immunogenic properties of the virus. To induce a greater mucosal immune response, intranasally administered vaccines are highly desired as they not only prevent disease but can also block the infection at its primary site. To avoid these drawbacks, hydrostatic pressure has been used as a potential method for viral inactivation and vaccine production. In this study, we show that hydrostatic pressure inactivates the avian influenza A H3N8 virus, while still maintaining hemagglutinin and neuraminidase functionalities. Challenged vaccinated animals showed no disease signs (ruffled fur, lethargy, weight loss, and huddling). Similarly, these animals showed less Evans Blue dye leakage and lower cell counts in their bronchoalveolar lavage fluid compared with the challenged non-vaccinated group. We found that the whole inactivated particles were capable of generating a neutralizing antibody response in serum, and IgA was also found in nasal mucosa and feces. After the vaccination and challenge we observed Th1/Th2 cytokine secretion with a prevalence of IFN-γ. Our data indicate that the animals present a satisfactory immune response after vaccination and are protected against infection. Our results may pave the way for the development of a novel pressure-based vaccine against influenza virus.
Collapse
Affiliation(s)
- Shana P. C. Barroso
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, 21941–902, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
- Laboratório de Vírus Respiratórios, WHO/NIC, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dirlei Nico
- Instituto de Microbiologia Paulo Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941–590, Brazil
| | - Danielle Nascimento
- Fundação de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Clara V. Santos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, 21941–902, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - José Nelson S. S. Couceiro
- Instituto de Microbiologia Paulo Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941–590, Brazil
| | - Fernando A. Bozza
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
- Fundação de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana M. A. Ferreira
- Instituto de Microbiologia Paulo Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941–590, Brazil
| | - Davis F. Ferreira
- Instituto de Microbiologia Paulo Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941–590, Brazil
| | - Clarisa B. Palatnik-de-Sousa
- Instituto de Microbiologia Paulo Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941–590, Brazil
| | - Thiago Moreno L. Souza
- Laboratório de Vírus Respiratórios, WHO/NIC, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andre M. O. Gomes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, 21941–902, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Jerson L. Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, 21941–902, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Andréa C. Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, 21941–902, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
157
|
A hypothesis to reconcile the physical and chemical unfolding of proteins. Proc Natl Acad Sci U S A 2015; 112:E2775-84. [PMID: 25964355 DOI: 10.1073/pnas.1500352112] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
High pressure (HP) or urea is commonly used to disturb folding species. Pressure favors the reversible unfolding of proteins by causing changes in the volumetric properties of the protein-solvent system. However, no mechanistic model has fully elucidated the effects of urea on structure unfolding, even though protein-urea interactions are considered to be crucial. Here, we provide NMR spectroscopy and 3D reconstructions from X-ray scattering to develop the "push-and-pull" hypothesis, which helps to explain the initial mechanism of chemical unfolding in light of the physical events triggered by HP. In studying MpNep2 from Moniliophthora perniciosa, we tracked two cooperative units using HP-NMR as MpNep2 moved uphill in the energy landscape; this process contrasts with the overall structural unfolding that occurs upon reaching a threshold concentration of urea. At subdenaturing concentrations of urea, we were able to trap a state in which urea is preferentially bound to the protein (as determined by NMR intensities and chemical shifts); this state is still folded and not additionally exposed to solvent [fluorescence and small-angle X-ray scattering (SAXS)]. This state has a higher susceptibility to pressure denaturation (lower p1/2 and larger ΔVu); thus, urea and HP share concomitant effects of urea binding and pulling and water-inducing pushing, respectively. These observations explain the differences between the molecular mechanisms that control the physical and chemical unfolding of proteins, thus opening up new possibilities for the study of protein folding and providing an interpretation of the nature of cooperativity in the folding and unfolding processes.
Collapse
|
158
|
Cortines JR, Lima LMT, Mohana-Borges R, Millen TDA, Gaspar LP, Lanman JK, Prevelige PE, Silva JL. Structural insights into the stabilization of the human immunodeficiency virus type 1 capsid protein by the cyclophilin-binding domain and implications on the virus cycle. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:341-8. [DOI: 10.1016/j.bbapap.2014.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 11/24/2014] [Accepted: 12/10/2014] [Indexed: 01/01/2023]
|
159
|
de Oliveira GAP, Rangel LP, Costa DC, Silva JL. Misfolding, Aggregation, and Disordered Segments in c-Abl and p53 in Human Cancer. Front Oncol 2015; 5:97. [PMID: 25973395 PMCID: PMC4413674 DOI: 10.3389/fonc.2015.00097] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/10/2015] [Indexed: 01/31/2023] Open
Abstract
The current understanding of the molecular mechanisms that lead to cancer is not sufficient to explain the loss or gain of function in proteins related to tumorigenic processes. Among them, more than 100 oncogenes, 20-30 tumor-suppressor genes, and hundreds of genes participating in DNA repair and replication have been found to play a role in the origins of cancer over the last 25 years. The phosphorylation of serine, threonine, or tyrosine residues is a critical step in cellular growth and development and is achieved through the tight regulation of protein kinases. Phosphorylation plays a major role in eukaryotic signaling as kinase domains are found in 2% of our genes. The deregulation of kinase control mechanisms has disastrous consequences, often leading to gains of function, cell transformation, and cancer. The c-Abl kinase protein is one of the most studied targets in the fight against cancer and is a hotspot for drug development because it participates in several solid tumors and is the hallmark of chronic myelogenous leukemia. Tumor suppressors have the opposite effects. Their fundamental role in the maintenance of genomic integrity has awarded them a role as the guardians of DNA. Among the tumor suppressors, p53 is the most studied. The p53 protein has been shown to be a transcription factor that recognizes and binds to specific DNA response elements and activates gene transcription. Stress triggered by ionizing radiation or other mutagenic events leads to p53 phosphorylation and cell-cycle arrest, senescence, or programed cell death. The p53 gene is the most frequently mutated gene in cancer. Mutations in the DNA-binding domain are classified as class I or class II depending on whether substitutions occur in the DNA contact sites or in the protein core, respectively. Tumor-associated p53 mutations often lead to the loss of protein function, but recent investigations have also indicated gain-of-function mutations. The prion-like aggregation of mutant p53 is associated with loss-of-function, dominant-negative, and gain-of-function effects. In the current review, we focused on the most recent insights into the protein structure and function of the c-Abl and p53 proteins that will provide us guidance to understand the loss and gain of function of these misfolded tumor-associated proteins.
Collapse
Affiliation(s)
- Guilherme A. P. de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana P. Rangel
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielly C. Costa
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jerson L. Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
160
|
Erlkamp M, Marion J, Martinez N, Czeslik C, Peters J, Winter R. Influence of Pressure and Crowding on the Sub-Nanosecond Dynamics of Globular Proteins. J Phys Chem B 2015; 119:4842-8. [DOI: 10.1021/acs.jpcb.5b01017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- M. Erlkamp
- Physical
Chemistry I − Biophysical Chemistry, Department of Chemistry and Chemical
Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - J. Marion
- Université
Grenoble Alpes, IBS, 71 avenue des
Martyrs, CS 10090, 38044 Grenoble, France
- Institut Laue-Langevin, 71 avenue
des Martyrs, CS 20156, 38042 CEDEX 9 Grenoble, France
| | - N. Martinez
- Université
Grenoble Alpes, IBS, 71 avenue des
Martyrs, CS 10090, 38044 Grenoble, France
- Institut Laue-Langevin, 71 avenue
des Martyrs, CS 20156, 38042 CEDEX 9 Grenoble, France
| | - C. Czeslik
- Physical
Chemistry I − Biophysical Chemistry, Department of Chemistry and Chemical
Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - J. Peters
- Université
Grenoble Alpes, IBS, 71 avenue des
Martyrs, CS 10090, 38044 Grenoble, France
- Institut Laue-Langevin, 71 avenue
des Martyrs, CS 20156, 38042 CEDEX 9 Grenoble, France
| | - R. Winter
- Physical
Chemistry I − Biophysical Chemistry, Department of Chemistry and Chemical
Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
161
|
Rosin C, Estel K, Hälker J, Winter R. Combined effects of temperature, pressure, and co-solvents on the polymerization kinetics of actin. Chemphyschem 2015; 16:1379-85. [PMID: 25704394 DOI: 10.1002/cphc.201500083] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Indexed: 11/11/2022]
Abstract
In vivo studies have shown that the cytoskeleton of cells is very sensitive to changes in temperature and pressure. In particular, actin filaments get depolymerized when pressure is increased up to several hundred bars, conditions that are easily encountered in the deep sea. We quantitatively evaluate the effects of temperature, pressure, and osmolytes on the kinetics of the polymerization reaction of actin by high-pressure stopped-flow experiments in combination with fluorescence detection and an integrative stochastic simulation of the polymerization process. We show that the compatible osmolyte trimethylamine-N-oxide is not only able to compensate for the strongly retarding effect of chaotropic agents, such as urea, on actin polymerization, it is also able to largely offset the deteriorating effect of pressure on actin polymerization, thereby allowing biological cells to better cope with extreme environmental conditions.
Collapse
Affiliation(s)
- Christopher Rosin
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund (Germany)
| | - Kathrin Estel
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund (Germany)
| | - Jessica Hälker
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund (Germany)
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund (Germany).
| |
Collapse
|
162
|
Kumar PS, Mukherjee A, Hazra A. Theoretical Study of Structural Changes in DNA under High External Hydrostatic Pressure. J Phys Chem B 2015; 119:3348-55. [DOI: 10.1021/jp5107185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- P. Sudheer Kumar
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra 411
008, India
| | - Arnab Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra 411
008, India
| | - Anirban Hazra
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra 411
008, India
| |
Collapse
|
163
|
Kuroi K, Okajima K, Ikeuchi M, Tokutomi S, Kamiyama T, Terazima M. Pressure-Sensitive Reaction Yield of the TePixD Blue-Light Sensor Protein. J Phys Chem B 2015; 119:2897-907. [DOI: 10.1021/jp511946u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kunisato Kuroi
- Department of Chemistry, Graduate School
of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Koji Okajima
- Department of Life Sciences (Biology),
Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Department
of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai,
Osaka 599-8531, Japan
| | - Masahiko Ikeuchi
- Department of Life Sciences (Biology),
Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| | - Satoru Tokutomi
- Department
of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai,
Osaka 599-8531, Japan
| | - Tadashi Kamiyama
- Department of Chemistry, School of Science and Engineering, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School
of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
164
|
Tachibana H. Basic Equations in Statics and Kinetics of Protein Polymerization and the Mechanism of the Formation and Dissociation of Amyloid Fibrils Revealed by Pressure Perturbation. Subcell Biochem 2015; 72:279-299. [PMID: 26174387 DOI: 10.1007/978-94-017-9918-8_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Studies of the pressure-dissociation of several amyloid or amyloid-like fibrils have shown that the fibril state is considerably voluminous. Quantitative characterization of the protein fibrillation reaction with respect to volumetric parameters is necessary to elucidate mechanisms of amyloid fibrillation in molecular terms such as protein cavity and hydration. Here we discuss, firstly, basic equations in statics and kinetics of protein polymerization as employed to obtain thermodynamic, volumetric, and kinetic parameters. Equilibrium treatment of the reactions with the scheme such as one-step polymerization, linear-association polymerization, or nucleation-dependent polymerization, and kinetic treatment of seeded linear-polymerization or spontaneous nucleation-elongation polymerization are described. In particular we will detail kinetics of the dissociation of fibrils which have been produced under the linear-association mechanism and therefore the length-distribution of which conforms to a geometric sequence in the degree of polymerization with a common ratio r, which is less than, and usually very close to, unity. In this case, an observed macroscopic rate of dissociation is shown to be a product of the microscopic elementary dissociation rate constant and a factor (1-r), extremely reduced compared with the intrinsic elementary rate. Secondly, we discuss protein conformational states in fibrillogenesis with molecular and volumetric observations reported, such as the unfolded state responsible for the association with seeds and the extension of amyloid fibrils, the transition state in which protein cavity formation and dehydration occur to intermediate levels, and the fibril state in which they occur to final respective levels which, in some cases, depend on the maturity of the fibril.
Collapse
Affiliation(s)
- Hideki Tachibana
- Department of Biotechnological Science, School of Biology-Oriented Science and Technology, and High Pressure Protein Research Center, Institute of Advanced Technology, Kinki University, 930 Nishimitani, Kinokawa, 649-6493, Japan,
| |
Collapse
|
165
|
Winter R. Pressure Effects on the Intermolecular Interaction Potential of Condensed Protein Solutions. Subcell Biochem 2015; 72:151-176. [PMID: 26174381 DOI: 10.1007/978-94-017-9918-8_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Knowledge of the intermolecular interaction potential of proteins as a function of their solution conditions is essential for understanding protein aggregation, crystallization, and the phase behavior of proteins in general. Here, we report on a combined small-angle X-ray scattering and liquid-state theoretical approach to study dense lysozyme solutions as a function of temperature and pressure, but also in the presence of salts and osmolytes of different nature. We show that the pressure-dependent interaction potential of lysozyme changes in a nonlinear fashion over a wide range of temperatures, salt and protein concentrations, indicating that changes of the bulk water structure mediate the pressure dependence of the intermolecular forces. We present also results on the effect of high hydrostatic pressure on the phase behavior of dense lysozyme solutions in the liquid-liquid phase-coexistence region. As also shown in this study, the application of pressure can be used to fine-tune the second virial coefficient of protein solutions, which can be used to control nucleation rates and hence protein crystallization, or to prevent protein aggregation. Moreover, these results are also important for understanding the hydration behavior of biological matter under extreme environmental conditions, and the high stability of dense protein solutions (as they occur intracellularly) in organisms thriving under hydrostatic pressure conditions such as in the deep sea, where pressures up to the 100 MPa-level are reached.
Collapse
Affiliation(s)
- Roland Winter
- Physical Chemistry I - Biophysical Chemistry, TU Dortmund University, Otto-Hahn Str. 6, D-44227, Dortmund, Germany,
| |
Collapse
|
166
|
Imoto S, Forbert H, Marx D. Water structure and solvation of osmolytes at high hydrostatic pressure: pure water and TMAO solutions at 10 kbar versus 1 bar. Phys Chem Chem Phys 2015; 17:24224-37. [DOI: 10.1039/c5cp03069b] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Solvation structures of trimethylamine N-oxide change drastically due to the increase in the hydrostatic pressure.
Collapse
Affiliation(s)
- Sho Imoto
- Ruhr-Universität Bochum
- D-44780 Bochum
- Germany
| | | | | |
Collapse
|