151
|
Zhang C, Zhang XQ, Nie Y, Wang C, Xu T, Zhang J, Bai L, Feng C, Wang Y. Gold-catalyzed formal (3 + 2) and (4 + 2) cycloaddition reactions using propiolates: assembly of 2,3-dihydrofurans and 3,4-dihydropyrans via a multistep cascade process. Org Chem Front 2022. [DOI: 10.1039/d2qo01084d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A gold-catalyzed formal dipolar cycloaddition reaction was developed using polarized alkynes as dipolarophiles and butenediol or pentenediol derivatives as formal dipoles. Silyl groups were used to solve the selectivity issue of unsymmetrical diols.
Collapse
Affiliation(s)
- Congdi Zhang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Xiao-Qian Zhang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Yu Nie
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Chao Wang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Tianyi Xu
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Junjie Zhang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Lu Bai
- Instrumental Analysis Center, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, Shaanxi, 710049, P.R. China
| | - Chao Feng
- Instrumental Analysis Center, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, Shaanxi, 710049, P.R. China
| | - Youliang Wang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| |
Collapse
|
152
|
Hou Y, Cui M, Zhang K, Chen L, Tian R. Annulation of phosphole sulfides via [3 + 2] cycloaddition with nitrones. Org Chem Front 2022. [DOI: 10.1039/d2qo01376b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We developed a facile pathway for the construction of the phospholene fused isoxazolidine skeleton through the [3 + 2] cycloaddition reaction of phosphole sulfides.
Collapse
Affiliation(s)
- Yueshan Hou
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Mingyue Cui
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Keke Zhang
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Lihui Chen
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Rongqiang Tian
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou, 450001, Henan, China
| |
Collapse
|
153
|
Liu H, Shen C, Chang X, Wang C. Recent Advances in Catalytic Asymmetric 1,3-Dipolar Cycloaddition Reactions with Kinetic Resolution. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202205037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
154
|
Xu X, Bao L, Ran L, Yang Z, Yan D, Wang CJ, Teng H. Synthesis of bioactive fluoropyrrolidines via copper(i)-catalysed asymmetric 1,3-dipolar cycloaddition of azomethine ylides. Chem Sci 2022; 13:1398-1407. [PMID: 35222924 PMCID: PMC8809416 DOI: 10.1039/d1sc04595d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
Chiral pyrrolidinyl units are important building blocks in biologically active natural products and drugs, and the development of efficient methods for the synthesis of diverse structured pyrrolidine derivatives is of great importance. Meanwhile, incorporating fluorine containing groups into small molecules often changes their activities to a great extent due to the special physicochemical properties of fluorine atoms. Herein, we report an efficient route to obtain enantioenriched 3,3-difluoro- and 3,3,4-trifluoropyrrolidinyl derivatives by Cu(i)-catalysed enantioselective 1,3-dipolar cycloaddition of azomethine ylides with less active 1,1-difluoro- and 1,1,2-trifluorostyrenes. A series of new fluorinated pyrrolidines have been prepared in high yields (up to 96%) and with excellent stereoselectivities (up to >20 : 1 dr and 97% ee), and these unique structural blocks could be readily introduced into some natural compounds and pharmaceuticals. Additionally, antifungal activity investigation against four common plant fungi showed that some products possess general and high biological activities; comparison with the low antifungal activities of corresponding nonfluorinated compounds revealed that the fluorine atoms at the pyrrolidinyl rings play a crucial role in the antifungal activity. Chiral fluoropyrrolidines were synthesized by Cu(i)-catalyzed enantioselective 1,3-dipolar cycloaddition of azomethine ylides with less active fluorinated styrenes, with broad substrate scope and high yield, stereoselectivity and biological activity.![]()
Collapse
Affiliation(s)
- Xiao Xu
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Longzhu Bao
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Lu Ran
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Zhenyan Yang
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Dingce Yan
- Analytical and Testing Center, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Huailong Teng
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| |
Collapse
|
155
|
Muthusamy S, Prabu A. BF 3·OEt 2 catalyzed chemoselective CC bond cleavage of α,β-enones: an unexpected synthesis of 3-alkylated oxindoles and spiro-indolooxiranes. Org Biomol Chem 2021; 20:558-564. [PMID: 34939633 DOI: 10.1039/d1ob02002a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A BF3·OEt2 catalyzed highly chemoselective formal CC double bond cleavage reaction of α,β-enones with diazoamides for the synthesis of 3-alkylated oxindoles is developed. Boron trifluoride etherate is found to be an effective catalyst for the chemoselective Cα-Cβ cleavage of enones to obtain 3-alkylated oxindoles. The product formation indicates a selective β-carbon elimination pathway of α,β-enones using the inexpensive BF3·OEt2 as a catalyst, transition metal-free conditions, an open-air environment, good functional tolerance and broad substrate scope. The synthetic utility of this protocol is highlighted by synthesizing spiro-indolooxiranes.
Collapse
Affiliation(s)
| | - Ammasi Prabu
- School of Chemistry, Bharathidasan University, Tiruchirappalli-620 024, India.
| |
Collapse
|
156
|
Han T, Wang KH, Yang M, Zhao P, Wang F, Wang J, Huang D, Hu Y. Synthesis of Difluoromethylated Pyrazoles by the [3 + 2] Cycloaddition Reaction of Difluoroacetohydrazonoyl Bromides. J Org Chem 2021; 87:498-511. [PMID: 34913680 DOI: 10.1021/acs.joc.1c02521] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As novel and efficient difluoromethyl building blocks, difluoroacetohydrazonoyl bromides have been synthesized for the first time. The synthetic utility of this reagent for the construction of difluoromethyl organic compounds is demonstrated by their effective regioselective [3 + 2] cycloaddition reactions with ynones, alkynoates, and ynamides. The reactions provide a novel and efficient protocol to access difluoromethyl-substituted pyrazoles in good to excellent yields.
Collapse
Affiliation(s)
- Tongyu Han
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Ke-Hu Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Ming Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Pengfei Zhao
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Feng Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Junjiao Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Danfeng Huang
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Yulai Hu
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
157
|
Cu-catalyzed endo-selective asymmetric 1,3-dipolar cycloaddition of azomethine ylides with ethenesulfonyl fluorides: Efficient access to chiral pyrrolidine-3-sulfonyl fluorides. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
158
|
Zhao Z, Ou Z, Kalita SJ, Cheng F, Huang Q, Gu Y, Wang Y, Zhao Y, Huang Y. Stereoconvergent and stepwise 1,3-dipolar cycloadditions of nitrile oxides and nitrile imines. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
159
|
Yang Z, Zhou Y, Li H, Lei J, Bing P, He B, Li Y. A Facile Route to Pyrazolo[1,2‐a]cinnoline via Rhodium(III)‐catalyzed Annulation of Pyrazolidinoes and Iodonium Ylides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zi Yang
- Academician Workstation Changsha Medical University Changsha 410219 P. R. China
| | - Yi Zhou
- Academician Workstation Changsha Medical University Changsha 410219 P. R. China
| | - Haigang Li
- Academician Workstation Changsha Medical University Changsha 410219 P. R. China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations Changsha Medical University Changsha 410219 P. R. China
| | - Jieni Lei
- Academician Workstation Changsha Medical University Changsha 410219 P. R. China
| | - Pingping Bing
- Academician Workstation Changsha Medical University Changsha 410219 P. R. China
| | - Binsheng He
- Academician Workstation Changsha Medical University Changsha 410219 P. R. China
| | - Yaqian Li
- Academician Workstation Changsha Medical University Changsha 410219 P. R. China
| |
Collapse
|
160
|
Huang L, Yao Z, Huang G, Ao Y, Zhu B, Li S, Cui X. One‐Pot Synthesis of Fused Indolin‐3‐Ones via a [3+3] Cycloaddition Reaction. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lang Huang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences Huaqiao University Xiamen 361021 People's Republic of China
| | - Zhenyu Yao
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences Huaqiao University Xiamen 361021 People's Republic of China
| | - Guanghua Huang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences Huaqiao University Xiamen 361021 People's Republic of China
| | - Yaqi Ao
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences Huaqiao University Xiamen 361021 People's Republic of China
| | - Bin Zhu
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences Huaqiao University Xiamen 361021 People's Republic of China
| | - Sanshu Li
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences Huaqiao University Xiamen 361021 People's Republic of China
| | - Xiuling Cui
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences Huaqiao University Xiamen 361021 People's Republic of China
| |
Collapse
|
161
|
Xiao TF, Zhang YF, Hou WT, Yan PJ, Hai J, Xu PF, Xu GQ. Dehydrogenation/(3+2) Cycloaddition of Saturated Aza-Heterocycles via Merging Organic Photoredox and Lewis Acid Catalysis. Org Lett 2021; 23:8942-8946. [PMID: 34757741 DOI: 10.1021/acs.orglett.1c03431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report a photoinduced dehydrogenation/(3+2) cycloaddition reaction by merging organic photoredox and Lewis acid catalysis, providing a straightforward and efficient approach for directly installing a benzofuran skeleton on the saturated aza-heterocycles. In this protocol, we also describe a novel organic photocatalyst (t-Bu-DCQ) with the advantages of a wider redox potential, easy synthesis, and a low price. Furthermore, the stepwise activation mechanism of dual C(sp3)-H bonds was demonstrated by a series of experimental and computational studies.
Collapse
Affiliation(s)
- Teng-Fei Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yi-Fan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wen-Tao Hou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Pen-Ji Yan
- College of Chemistry and Chemical Engineering, Key Laboratory of Hexi Corridor Resources Utilization of Gansu Universities, Hexi University, Zhangye 734000, P. R. China
| | - Jun Hai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.,State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
| | - Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
162
|
Efremova MM, Makarova AA, Novikov AS, Kryukova MA, Kuznetsov MA, Molchanov AP. Regio- and stereoselective (3 + 2)-cycloaddition reactions of nitrones with cyclic allenes. Org Biomol Chem 2021; 19:9773-9784. [PMID: 34730596 DOI: 10.1039/d1ob01584b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An effective approach to access functionalized 2H-cyclonona(deca)[d]isoxazoles and 15-oxo-3,10-methanobenzo[b][1]azacyclododecines has been developed by the reaction of N-aryl-C,C-bis(methoxycarbonyl)nitrones with cyclonona(deca)-1,2-dienes in a one-pot fashion. The reaction of N-aryl-C-(phenylcarbamoyl)nitrones with these allenes proceeds strictly regioselectively giving the mixtures of diastereomeric isoxazolidines containing a double bond at the C4-position of the isoxazolidine ring. The quantum chemical calculations show that the regioselectivity of these reactions is in good agreement with the reactivity indices of the considered compounds.
Collapse
Affiliation(s)
- Mariia M Efremova
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, Saint Petersburg 199034, Russia.
| | - Anastasia A Makarova
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, Saint Petersburg 199034, Russia.
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, Saint Petersburg 199034, Russia.
| | - Mariya A Kryukova
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, Saint Petersburg 199034, Russia.
| | - Mikhail A Kuznetsov
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, Saint Petersburg 199034, Russia.
| | - Alexander P Molchanov
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, Saint Petersburg 199034, Russia.
| |
Collapse
|
163
|
Xiao L, Wei L, Wang CJ. Stereodivergent Synthesis of Enantioenriched γ-Butyrolactones Bearing Two Vicinal Stereocenters Enabled by Synergistic Copper and Iridium Catalysis. Angew Chem Int Ed Engl 2021; 60:24930-24940. [PMID: 34633739 DOI: 10.1002/anie.202107418] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/05/2021] [Indexed: 12/29/2022]
Abstract
By virtue of a fundamentally new reaction model of azomethine ylide serving as a two-atom synthon, we present the first example of stereodivergent preparation of γ-butyrolactones via synergistic Cu/Ir-catalyzed asymmetric cascade allylation/lactonization, and all four stereoisomers of γ-butyrolactones bearing two vicinal stereocenters are accessible with excellent diastereoselective and enantioselective control. The chiral IrIII -π-allyl intermediate was separated and characterized to understand the origin of the regio- and stereoselectivity of the initial C-C bond formation process. Control experiments shed some light on the catalyst/substrate and catalyst/catalyst interactions in this dual catalytic system to rationalize the related kinetic/dynamic kinetic resolution process with different catalyst combinations. The enantioenriched γ-butyrolactone products were converted into an array of structurally complex chiral molecules and organocatalysts that were otherwise inaccessible.
Collapse
Affiliation(s)
- Lu Xiao
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Liang Wei
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, 430072, China.,State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
164
|
Suzuki Y, Kanemoto K, Inoue A, Imae K, Fukuzawa SI. Silver/ThioClickFerrophos-Catalyzed 1,3-Dipolar Cycloaddition and Tandem Addition-Elimination Reaction of Morita-Baylis-Hillman Adducts. J Org Chem 2021; 86:14586-14596. [PMID: 34661412 DOI: 10.1021/acs.joc.1c01440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The asymmetric 1,3-dipolar cycloaddition of glycine imino esters to Morita-Baylis-Hillman (MBH) adducts or acetylated MBH adducts is described. The reaction was efficiently catalyzed by AgOAc/(R,Sp)-ThioClickFerrophos at room temperature to afford pyrrolidine derivatives bearing a quaternary carbon as a single diastereomer with excellent enantioselectivity. When a cyclic pyrroline ester was used as the nucleophile instead of a glycine imino ester, the enantioselective tandem addition-elimination reaction with an acetylated MBH adduct proceeded with an excellent yield and enantioselectivity, resulting in the formation of an exo-olefin. The wide substrate scope of these reactions and the transformability of the products enable expeditious access to divergent multifunctionalized pyrrolidines in an optically pure fashion.
Collapse
Affiliation(s)
- Yuko Suzuki
- Department of Applied Chemistry, Institute of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kazuya Kanemoto
- Department of Applied Chemistry, Institute of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Ayana Inoue
- Department of Applied Chemistry, Institute of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kazumi Imae
- Department of Applied Chemistry, Institute of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Shin-Ichi Fukuzawa
- Department of Applied Chemistry, Institute of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
165
|
Shen M, Zhao J, Xu Y, Zhang X, Fan X. Synthesis of Dihydroquinolinone Derivatives via the Cascade Reaction of o-Silylaryl Triflates with Pyrazolidinones. J Org Chem 2021; 86:15203-15216. [PMID: 34596411 DOI: 10.1021/acs.joc.1c01814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Presented herein is a novel synthesis of dihydroquinolinone derivatives through an unprecedented cascade reaction of o-silylaryl triflates with pyrazolidinones. Mechanistically, the formation of the title products is believed to involve a cascade procedure including in situ formation of aryne and its addition with pyrazolidinone followed by N-N bond cleavage and intramolecular C-C bond formation/annulation. Compared with literature methods for the synthesis of dihydroquinolinones, this protocol has advantages such as multistep transformations accomplished in one pot, broad substrate scope, mild reaction conditions, and good tolerance of diverse functional groups. In addition, the products thus obtained demonstrated significant in vitro antiproliferative activity in selected human cancer cell lines.
Collapse
Affiliation(s)
- Mengyang Shen
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jie Zhao
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuanshuang Xu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
166
|
Zhao JQ, Zhou S, Yang L, Du HY, You Y, Wang ZH, Zhou MQ, Yuan WC. Catalytic Asymmetric Dearomative 1,3-Dipolar Cycloaddition of 2-Nitrobenzothiophenes and Isatin-Derived Azomethine Ylides. Org Lett 2021; 23:8600-8605. [PMID: 34672632 DOI: 10.1021/acs.orglett.1c03318] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An enantioselective dearomative 1,3-dipolar cycloaddition of 2-nitrobenzothiophenes and isatin-derived azomethine ylides with a bifunctional hydrogen-bonding thiourea catalyst was established, giving polyheterocyclic compounds in excellent results (up to 99% yield, >20:1 dr for all cases and up to 99% ee). The enantioselectivity could be reversed by the bifunctional hydrogen-bonding squaramide catalyst containing the same chiral source as in the thiourea catalyst. DFT calculations revealed the origin of the observed stereochemistry and the reversal of enantioselectivity.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Shun Zhou
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lei Yang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Hong-Yan Du
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
| | - Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wei-Cheng Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
167
|
Xu PW, Cui XY, Chen C, Zhou F, Yu JS, Ao YF, Zhou J. Enantioselective Synthesis of C α-Tetrasubstituted N-Hydroxyl-α-amino Nitriles via Cyanation of Ketonitrones Using Me 2(CH 2Cl)SiCN. Org Lett 2021; 23:8471-8476. [PMID: 34644098 DOI: 10.1021/acs.orglett.1c03176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Here, we report an unprecedented catalytic enantioselective cyanation of ketonitrones enabled by the bifunctional cyanating reagent Me2(CH2Cl)SiCN. This approach allows facile access to optically active N-hydroxyl-α-amino nitriles that are of high synthetic value but difficult to acquire by other methods. The use of bifunctional cyanating reagent Me2(CH2Cl)SiCN not only achieves an enantioselectivity higher than that with TMSCN but also enables various diversification reactions of the resulting silylated adducts. This represents the first enantioselective catalytic nucleophilic addition reaction of unactivated ketone-derived nitrones, exhibiting the potential of such tetrasubstituted C═N bonds for asymmetric synthesis of N-hydroxy α-amino acids and other N-hydroxy tertiary amines.
Collapse
Affiliation(s)
- Peng-Wei Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Process and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Xiao-Yuan Cui
- Shanghai Key Laboratory of Green Chemistry and Chemical Process and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Chen Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Process and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Feng Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Process and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Jin-Sheng Yu
- Shanghai Key Laboratory of Green Chemistry and Chemical Process and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jian Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Process and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
168
|
Regio‐, stereo‐, and site‐selectivities of 1,3‐dipolar Cycloaddition reaction of benzonitrile oxide with unsymmetrically substituted norbornenes and norbornadienes: A computational study. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
169
|
Jyoti Kalita S, Zhao Z, Li Z, Cheng F, Zhao Y, Huang Y. Diastereodivergent 1,3‐Dipolar Cycloaddition of α‐Fluoro‐α,β‐Unsaturated Arylketones and Azomethine Ylides: Experimental and Theoretical DFT Studies. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Subarna Jyoti Kalita
- Department of Chemistry School of Chemistry Chemical Engineering and Life Science Wuhan University of Technology 122 Luoshi Road 430070 Wuhan China
| | - Zhen‐Ni Zhao
- Department of Chemistry School of Chemistry Chemical Engineering and Life Science Wuhan University of Technology 122 Luoshi Road 430070 Wuhan China
| | - Zi‐Han Li
- Department of Chemistry School of Chemistry Chemical Engineering and Life Science Wuhan University of Technology 122 Luoshi Road 430070 Wuhan China
| | - Feng Cheng
- Department of Chemistry School of Chemistry Chemical Engineering and Life Science Wuhan University of Technology 122 Luoshi Road 430070 Wuhan China
| | - Yan Zhao
- State Key Laboratory of Silicate Materials for Architectures Wuhan University of Technology 122 Luoshi Road 430070 Wuhan China
| | - Yi‐Yong Huang
- Department of Chemistry School of Chemistry Chemical Engineering and Life Science Wuhan University of Technology 122 Luoshi Road 430070 Wuhan China
| |
Collapse
|
170
|
Li Z, Xu N, Guo N, Zhou Y, Lin L, Feng X. Asymmetric Catalytic Synthesis of Hexahydropyrrolo-isoquinolines via Three-Component 1,3-Dipolar-Cycloaddition. Chemistry 2021; 27:14841-14845. [PMID: 34398497 DOI: 10.1002/chem.202102476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 11/10/2022]
Abstract
An asymmetric three-component 1,3-dipolar cycloaddition of 3,4-dihydroisoquinolines, bromoacetates and α,β-unsaturated pyrazole amide is realized by using a chiral N,N'-dioxide-Y(OTf)3 complex as the catalyst. The process includes a base-promoted formation of dihydroisoquinolium ylides in situ, and a chiral Lewis acid-catalyzed asymmetric [3+2] cycloaddition with α,β-unsaturated pyrazole amides. A series of hexahydropyrrolo-isoquinolines are obtained in moderate to good yields with excellent diastereo- and enantioselectivities.
Collapse
Affiliation(s)
- Zhaojing Li
- Key Laboratory of Green Chemistry &Technology Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| | - Nian Xu
- Key Laboratory of Green Chemistry &Technology Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| | - Ning Guo
- Key Laboratory of Green Chemistry &Technology Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry &Technology Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| | - Lili Lin
- Key Laboratory of Green Chemistry &Technology Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry &Technology Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| |
Collapse
|
171
|
Kim B, Song Y, Lee SY. Stereodivergent silver-catalyzed synthesis of pyroglutamic acid esters. Chem Commun (Camb) 2021; 57:11052-11055. [PMID: 34608900 DOI: 10.1039/d1cc04875a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here a silver-catalyzed method for the enantio- and diastereodivergent synthesis of chiral pyroglutamic acid esters with multiple stereocenters. This process proceeds through asymmetric conjugate addition of glycine imine esters to a broad range of β-substituted α,β-unsaturated perfluorophenyl esters followed by lactamization. By leveraging catalyst control and stereospecificity of the 1,4-addition process, all four product stereoisomers containing two adjacent stereocenters are accessible with high stereoselectivity.
Collapse
Affiliation(s)
- Byungjun Kim
- Department of Chemistry, Yonsei University, Seoul 03722, South Korea.
| | - Yuna Song
- Department of Chemistry, Yonsei University, Seoul 03722, South Korea.
| | - Sarah Yunmi Lee
- Department of Chemistry, Yonsei University, Seoul 03722, South Korea.
| |
Collapse
|
172
|
Xiao L, Wei L, Wang C. Stereodivergent Synthesis of Enantioenriched γ‐Butyrolactones Bearing Two Vicinal Stereocenters Enabled by Synergistic Copper and Iridium Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107418] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lu Xiao
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education, Wuhan University Wuhan 430072 China
| | - Liang Wei
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education, Wuhan University Wuhan 430072 China
| | - Chun‐Jiang Wang
- College of Chemistry and Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education, Wuhan University Wuhan 430072 China
- State Key Laboratory of Elemento-organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
173
|
Wei L, Wang CJ. Recent advances in catalytic asymmetric aza-Cope rearrangement. Chem Commun (Camb) 2021; 57:10469-10483. [PMID: 34550132 DOI: 10.1039/d1cc04387k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aza-Cope rearrangement, as one of the fundamental reactions for C-C and C-N bond formation, has been extensively utilized for the rapid construction of synthetically challenging organic molecules. Despite significant achievements having been made in the past 80 years, catalytic enantioselective versions still remain a challenge, mainly due to the inherent nature of the reversibility of aza-Cope rearrangement. Recently, owing to the intensive development of asymmetric catalysis strategies, various chiral organocatalysts and transition-metal catalysts have been successfully applied to control the stereoselectivity of aza-Cope rearrangement, and remarkable advances have been achieved. This review highlights recent progress relating to catalytic asymmetric aza-Cope rearrangement and covers important features of these studies, including catalytic system design, mechanistic insights, stereochemistry analysis, and synthetic applications.
Collapse
Affiliation(s)
- Liang Wei
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 230021, China
| |
Collapse
|
174
|
Granato Á, Amarante GW, Adrio J. Metal-Free Solvent Promoted Oxidation of Benzylic Secondary Amines to Nitrones with H 2O 2. J Org Chem 2021; 86:13817-13823. [PMID: 34528787 PMCID: PMC8650016 DOI: 10.1021/acs.joc.1c01888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Indexed: 11/29/2022]
Abstract
An environmentally benign protocol for the generation of nitrones from benzylic secondary amines via catalyst-free oxidation of secondary amines using H2O2 in MeOH or CH3CN is described. This methodology provides a selective access to a variety of C-aryl nitrones in yields of 60 to 93%. Several studies have been performed to shed light on the reaction mechanism and the role of the solvent.
Collapse
Affiliation(s)
- Álisson
Silva Granato
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Chemistry
Department, Federal University of Juiz de
Fora, Sao Pedro, Juiz de Fora 36036-900, Brazil
| | - Giovanni Wilson Amarante
- Chemistry
Department, Federal University of Juiz de
Fora, Sao Pedro, Juiz de Fora 36036-900, Brazil
| | - Javier Adrio
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
175
|
Li Z, Lu Y, Tian YP, Han XX, Liu XW, Zhou Y, Liu XL. Diastereoselective construction of structurally diverse trifluoromethyl bispiro-[oxindole-pyrrolidine-chromanone]s through [3+2] cycloaddition reactions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
176
|
Saeed R, Sakla AP, Shankaraiah N. An update on the progress of cycloaddition reactions of 3-methyleneindolinones in the past decade: versatile approaches to spirooxindoles. Org Biomol Chem 2021; 19:7768-7791. [PMID: 34549231 DOI: 10.1039/d1ob01176f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cycloaddition reactions are of great interest due to their potential and rapid construction of optically enriched spiro-cyclic products. 3-Methyleneindolinones have been proven to be a valuable precursor in cycloaddition reactions for the construction of diverse 3,3'-spirocyclic oxindoles. Their versatile reactivity has provided a new forum for the development of a variety of building blocks and synthetic compounds, including bioactive molecules. Herein, significant accomplishments in the cycloaddition reactions of 3-methyleneindolinones for the synthesis of spirooxindoles have been summarised and elaborated. The review is outlined according to the type of cycloaddition such as [2 + 1], [2 + 2], [3 + 2], [4 + 2] and [5 + 2] cycloaddition reactions.
Collapse
Affiliation(s)
- Ruqaiya Saeed
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Akash P Sakla
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| |
Collapse
|
177
|
Liu J, Flegel J, Otte F, Pahl A, Sievers S, Strohmann C, Waldmann H. Combination of Pseudo-Natural Product Design and Formal Natural Product Ring Distortion Yields Stereochemically and Biologically Diverse Pseudo-Sesquiterpenoid Alkaloids. Angew Chem Int Ed Engl 2021; 60:21384-21395. [PMID: 34297473 PMCID: PMC8518946 DOI: 10.1002/anie.202106654] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 12/28/2022]
Abstract
We describe the synthesis and biological evaluation of a new natural product-inspired compound class obtained by combining the conceptually complementary pseudo-natural product (pseudo-NP) design strategy and a formal adaptation of the complexity-to-diversity ring distortion approach. Fragment-sized α-methylene-sesquiterpene lactones, whose scaffolds can formally be viewed as related to each other or are obtained by ring distortion, were combined with alkaloid-derived pyrrolidine fragments by means of highly selective stereocomplementary 1,3-dipolar cycloaddition reactions. The resulting pseudo-sesquiterpenoid alkaloids were found to be both chemically and biologically diverse, and their biological performance distinctly depends on both the structure of the sesquiterpene lactone-derived scaffolds and the stereochemistry of the pyrrolidine fragment. Biological investigation of the compound collection led to the discovery of a novel chemotype inhibiting Hedgehog-dependent osteoblast differentiation.
Collapse
Affiliation(s)
- Jie Liu
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of ChemistryChemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| | - Jana Flegel
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of ChemistryChemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| | - Felix Otte
- Technical University DortmundFaculty of ChemistryInorganic ChemistryOtto-Hahn-Strasse 644221DortmundGermany
| | - Axel Pahl
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Compound Management and Screening CenterDortmundGermany
| | - Sonja Sievers
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Compound Management and Screening CenterDortmundGermany
| | - Carsten Strohmann
- Technical University DortmundFaculty of ChemistryInorganic ChemistryOtto-Hahn-Strasse 644221DortmundGermany
| | - Herbert Waldmann
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of ChemistryChemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| |
Collapse
|
178
|
Liu J, Flegel J, Otte F, Pahl A, Sievers S, Strohmann C, Waldmann H. Combination of Pseudo‐Natural Product Design and Formal Natural Product Ring Distortion Yields Stereochemically and Biologically Diverse Pseudo‐Sesquiterpenoid Alkaloids. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jie Liu
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Jana Flegel
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Felix Otte
- Technical University Dortmund Faculty of Chemistry Inorganic Chemistry Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Axel Pahl
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Compound Management and Screening Center Dortmund Germany
| | - Sonja Sievers
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Compound Management and Screening Center Dortmund Germany
| | - Carsten Strohmann
- Technical University Dortmund Faculty of Chemistry Inorganic Chemistry Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| |
Collapse
|
179
|
A DFT study of the double (3 + 2) cycloaddition of nitrile oxides and allenoates for the formation of spirobiisoxazolines. J Mol Graph Model 2021; 109:108033. [PMID: 34534890 DOI: 10.1016/j.jmgm.2021.108033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/25/2021] [Accepted: 09/05/2021] [Indexed: 11/20/2022]
Abstract
The molecular mechanism of the double (3 + 2) cycloaddition (32CA) reaction between nitrile oxides and allenoates has been studied using density functional theory at the M06-2X/6-311G (d,p) level of theory. In the first 32CA, the nitrile oxide adds chemo- and regio-selectively to the C-C double bond of the allenoate closest to the carboxylate group followed by a subsequent regioselective addition to the olefinic bond of the isoxazoline intermediate. The rate constant for the preferred pathway (formation of 4-methylene-2-isoxazoline intermediate) in the reaction of ethyl substituted allenoate and mesitonitrile oxide is 5.3 × 102 s-1 in THF which is about 13 times faster than the closest competing step (formation of its regioisomer 5-methylene-2-isoxazoline intermediate) which has a rate constant of 4.4 × 101 s-1. Strong electron-donating groups (EDGs) and electron-withdrawing groups (EWGs) decrease activation barriers and hence increase the reaction rate. Also, the dimerization of nitrile oxide to form furaxon is found to be kinetically unfavored.
Collapse
|
180
|
Howard EM, Brewer M. A Lewis Acid-Catalyzed Diastereoselective Synthesis of Functionalized 2-Diazo-1,5-dicarbonyl Compounds. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Evan M. Howard
- Department of Chemistry, The University of Vermont, 82 University Place, Burlington, Vermont 05405, United States
| | - Matthias Brewer
- Department of Chemistry, The University of Vermont, 82 University Place, Burlington, Vermont 05405, United States
| |
Collapse
|
181
|
Fong B. Self-Cognizant Bionic Liquid Sensor for Pathogen Diagnosis. CYBORG AND BIONIC SYSTEMS 2021; 2021:9861513. [PMID: 36285143 PMCID: PMC9494726 DOI: 10.34133/2021/9861513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/26/2021] [Indexed: 01/26/2023] Open
Abstract
As observed in the outbreaks of SARS and swine flu, as well as many other infectious diseases, the huge volume of human traffic across numerous enclosed public venues has posed immense challenges to preventing the spread of communicable diseases. There is an urgent need for effective disease surveillance management in public areas under pandemic outbreaks. The physicochemical properties associated with ionic liquids make them particularly suited for molecular communications in sensing networks where low throughput is quite adequate for pathogen detection. This paper presents a self-cognizant system for rapid diagnosis of infectious disease using a bionic sensor such that testing can be supported without collecting a fluid sample from a subject through any invasive methods. The system is implemented for testing the performance of the proposed bionic liquid sensing network.
Collapse
Affiliation(s)
- B. Fong
- Providence University, Taiwan (Province of China)
| |
Collapse
|
182
|
Manavi B, Tejeneki HZ, Rominger F, Armaghan M, Frank W, Bijanzadeh HR, Balalaie S. Copper(I)‐Catalyzed Intramolecular Cyclization of
o
‐Propargyloxy Diketopiperazines to Access Diverse Diazabicyclic and Spiro‐Diketopiperazinochromanes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Bita Manavi
- Peptide Chemistry Research Institute K. N. Toosi University of Technology P. O. Box 15875-4416 Tehran Iran
| | - Hossein Zahedian Tejeneki
- Peptide Chemistry Research Institute K. N. Toosi University of Technology P. O. Box 15875-4416 Tehran Iran
| | - Frank Rominger
- Organisch-Chemisches Institut der Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Mahsa Armaghan
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Walter Frank
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Hamid Reza Bijanzadeh
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences Tarbiat Modares University Tehran Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Institute K. N. Toosi University of Technology P. O. Box 15875-4416 Tehran Iran
- Medical Biology Research Center Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
183
|
Cai W, Zhou Y, He Y, Huang Y. DABCO catalyzed [4+2] annulations of Morita-Baylis-Hillman carbonates with isocyanates. Chem Commun (Camb) 2021; 57:8985-8988. [PMID: 34486589 DOI: 10.1039/d1cc03502a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly concise method for 1,4-diazabicyclo[2.2.2]octane (DABCO) catalyzed [4+2] annulations of o-amino-acylation of aryl MBH carbonates with isocyanates has been developed. For the first time, MBH carbonates served as 1,4-dipoles, providing functionalized 3,4-dihydroquinazolinones in mild conditions with good to excellent yields. The density functional theory calculations of the mechanism supports our hypothesis.
Collapse
Affiliation(s)
- Wei Cai
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yiming Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yanlin He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - You Huang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
184
|
Li YL, Zhang PC, Wu HH, Zhang J. Palladium-Catalyzed Asymmetric Tandem Denitrogenative Heck/Tsuji-Trost of Benzotriazoles with 1,3-Dienes. J Am Chem Soc 2021; 143:13010-13015. [PMID: 34402615 DOI: 10.1021/jacs.1c07212] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The asymmetric denitrogenative cycloaddition has emerged as a powerful tool to build chiral aza-heterocyles. However, only one example of asymmetric denitrogenative cycloaddition of benzotriazole with unsaturated hydrocarbons has been explored so far, because the ring-opening of benzotriazole to generate α-imino metal carbenoid species is a thermodynamically unfavorable process. We herein report an efficient asymmetric denitrogenative cycloaddition of benzotriazoles with cyclic and acyclic 1,3-dienes enabled by Pd and chiral sulfonamide phosphine ligand. A variety of substituted hexahydrocarbazoles and indolines were delivered in good yields with high ee values. Interestingly, a pair of enantiomers could be obtained with the use of Xu1 and PC2 with the same absolute configuration. The synthetic utilities of the optically active hexahydrocarbazoles were also showcased.
Collapse
Affiliation(s)
- Yin-Lin Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Pei-Chao Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Hai-Hong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Junliang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.,Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| |
Collapse
|
185
|
Qi Z, Wang S. Copper-Catalyzed β-Lactam Formation Initiated by 1,3-Azaprotio Transfer of Oximes and Methyl Propiolate. Org Lett 2021; 23:5777-5781. [PMID: 34240879 DOI: 10.1021/acs.orglett.1c01937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A copper(II)-catalyzed protocol to construct trans-configured β-lactams and spirocyclic β-lactams from oximes and methyl propiolate has been developed, which features excellent substrate flexibility and diastereoselectivity (up to >99:1 dr). In situ FT-IR mechanistic experiments support that ketene species might be involved in the formation of β-lactams.
Collapse
Affiliation(s)
- Zhenjie Qi
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shaozhong Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
186
|
Peng C, Gao Y, Wang P, Zhao Y, Chapagain B, Wang Y, Liu W, Yang Y. Theoretical Exploration of Copper-Catalyzed Mechanisms of Cope-Type Hydroamination of Cyclopropene and Oxime. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
187
|
Toda Y, Yoshida T, Arisue K, Fukushima K, Esaki H, Kikuchi A, Suga H. Enantioselective Protonation of Cyclic Carbonyl Ylides by Chiral Lewis Acid Assisted Alcohols. Chemistry 2021; 27:10578-10582. [PMID: 34002420 DOI: 10.1002/chem.202101491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 11/09/2022]
Abstract
Chiral Lewis acid-catalyzed asymmetric alcohol addition reactions to cyclic carbonyl ylides generated from N-(α-diazocarbonyl)-2-oxazolidinones featuring a dual catalytic system are reported. Construction of a chiral quaternary heteroatom-substituted carbon center was accomplished in which the unique heterobicycles were obtained in good yields with high stereoselection. The alcohol adducts were successfully converted to optically active oxazolidine-2,4-diones by hydrolysis. Mechanistic studies by DFT calculations revealed that alcohols could be activated by Lewis acids, enabling enantioselective protonation of the carbonyl ylides.
Collapse
Affiliation(s)
- Yasunori Toda
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano, Japan
| | - Takayuki Yoshida
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano, Japan
| | - Kaoru Arisue
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano, Japan
| | - Kazuaki Fukushima
- Department of Chemistry, Hyogo College of Medicine, 1-1 Mukogawa-Cho, 663-8501, Nishinomiya, Hyogo, Japan
| | - Hiroyoshi Esaki
- Department of Chemistry, Hyogo College of Medicine, 1-1 Mukogawa-Cho, 663-8501, Nishinomiya, Hyogo, Japan
| | - Ayaka Kikuchi
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano, Japan
| | - Hiroyuki Suga
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano, Japan
| |
Collapse
|
188
|
Kalita SJ, Cheng F, Fan QH, Shibata N, Huang YY. Diastereodivergent Synthesis of Chiral 4-Fluoropyrrolidines ( exo and exo') Based on the Cu(II)-Catalyzed Asymmetric 1,3-Dipolar Cycloaddition. J Org Chem 2021; 86:8695-8705. [PMID: 34124915 DOI: 10.1021/acs.joc.1c00509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1,3-Dipolar cycloaddition of azomethine ylides and electron deficient alkenes is widely studied for rapid installation of pyrrolidine frameworks. Despite significant advances, the major limitations of this process are creating chiral pyrrolidines bearing a quaternary stereogenic center and controlling the diastereoselectivity. Herein, we present an exo-selective asymmetric 1,3-dipolar cycloaddition to access chiral pyrrolidines with four contiguous stereogenic centers, including a fluorinated quaternary stereogenic center at C4, wherein a Cu(OAc)2/(S)-tol-BINAP catalyst and α-fluoro-α,β-unsaturated arylketone dipolarophiles are used. Epimerization promoted by 5.0 equiv of DBU at 90 °C results in the formation of chiral 4-fluoropyrrolidines (exo') while maintaining the optical purity.
Collapse
Affiliation(s)
- Subarna Jyoti Kalita
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Feng Cheng
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Qing-Hua Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Yi-Yong Huang
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
189
|
Ezawa T, Sohtome Y, Hashizume D, Adachi M, Akakabe M, Koshino H, Sodeoka M. Dynamics in Catalytic Asymmetric Diastereoconvergent (3 + 2) Cycloadditions with Isomerizable Nitrones and α-Keto Ester Enolates. J Am Chem Soc 2021; 143:9094-9104. [PMID: 34107685 DOI: 10.1021/jacs.1c02833] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reaction design in asymmetric catalysis has traditionally been predicated on a structurally robust scaffold in both substrates and catalysts, to reduce the number of possible diastereomeric transition states. Herein, we present the stereochemical dynamics in the Ni(II)-catalyzed diastereoconvergent (3 + 2) cycloadditions of isomerizable nitrile-conjugated nitrones with α-keto ester enolates. Even in the presence of multiple equilibrating species, the catalytic protocol displays a wide substrate scope to access a range of CN-containing building blocks bearing adjacent stereocenters with high enantio- and diastereoselectivities. Our computational investigations suggest that the enantioselectivity is governed in the deprotonation process to form (Z)-Ni-enolates, while the unique syn addition is mainly controlled by weak noncovalent bonding interactions between the nitrone and ligand.
Collapse
Affiliation(s)
- Tetsuya Ezawa
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshihiro Sohtome
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masaya Adachi
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mai Akakabe
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Koshino
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
190
|
Yamazaki K, Gabriel P, Di Carmine G, Pedroni J, Farizyan M, Hamlin TA, Dixon DJ. General Pyrrolidine Synthesis via Iridium-Catalyzed Reductive Azomethine Ylide Generation from Tertiary Amides and Lactams. ACS Catal 2021; 11:7489-7497. [PMID: 34306810 PMCID: PMC8291578 DOI: 10.1021/acscatal.1c01589] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/19/2021] [Indexed: 02/06/2023]
Abstract
![]()
An
iridium-catalyzed reductive generation of both stabilized and
unstabilized azomethine ylides and their application to functionalized
pyrrolidine synthesis via [3 + 2] dipolar cycloaddition reactions
is described. Proceeding under mild reaction conditions from both
amide and lactam precursors possessing a suitably positioned electron-withdrawing
or a trimethylsilyl group, using 1 mol% Vaska’s complex [IrCl(CO)(PPh3)2] and tetramethyldisiloxane (TMDS) as a terminal
reductant, a broad range of (un)stabilized azomethine ylides were
accessible. Subsequent regio- and diastereoselective, inter- and intramolecular
dipolar cycloaddition reactions with variously substituted electron-deficient
alkenes enabled ready and efficient access to structurally complex
pyrrolidine architectures. Density functional theory (DFT) calculations
of the dipolar cycloaddition reactions uncovered an intimate balance
between asynchronicity and interaction energies of transition structures,
which ultimately control the unusual selectivities observed in certain
cases.
Collapse
Affiliation(s)
- Ken Yamazaki
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Pablo Gabriel
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Graziano Di Carmine
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Julia Pedroni
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Mirxan Farizyan
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Trevor A. Hamlin
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Darren J. Dixon
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
191
|
Pascual-Escudero A, Ortiz-Rojano L, Simón-Fuente S, Adrio J, Ribagorda M. Aldehydes as Photoremovable Directing Groups: Synthesis of Pyrazoles by a Photocatalyzed [3+2] Cycloaddition/Norrish Type Fragmentation Sequence. Org Lett 2021; 23:4903-4908. [PMID: 34097415 DOI: 10.1021/acs.orglett.1c01665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A straightforward methodology for the regioselective synthesis of pyrazoles has been developed by a domino sequence based on a photoclick cycloaddition followed by a photocatalyzed oxidative deformylation reaction. Distinguishing features of this protocol include an unprecedented photoredox-catalyzed Norrish type fragmentation under green-light irradiation and the use of α,β-unsaturated aldehydes as synthetic equivalents of alkynes, where the aldehyde is acting as a novel photoremovable directing group.
Collapse
Affiliation(s)
- Ana Pascual-Escudero
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Laura Ortiz-Rojano
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Silvia Simón-Fuente
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Javier Adrio
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María Ribagorda
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
192
|
Campeau D, Pommainville A, Gagosz F. Ynamides as Three-Atom Components in Cycloadditions: An Unexplored Chemical Reaction Space. J Am Chem Soc 2021; 143:9601-9611. [PMID: 34132536 DOI: 10.1021/jacs.1c04051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
While 1,3-dipolar cycloadditions have appeared to be a fertile area for research, as attested by the numerous synthetic transformations and resulting applications that have been developed during the past 60 years, the use of neutral three-atom components (TACs) in (3+2) cycloadditions remains comparatively sparse. Neutral TACs, however, have great synthetic potential given that their reaction with a π system can produce zwitterionic cycloadducts that may be manipulated for further chemistry. We report herein that ynamides, a class of carbon π systems that has seen wide interest over the last two decades, can be used as neutral TACs in thermally induced intramolecular (3+2) cycloaddition reactions with alkynes to yield a variety of functionalized pyrroles. The transformation is proposed to occur in a stepwise manner via the intermediacy of a pyrrolium ylide, from which the electron-withdrawing group on the nitrogen atom undergoes an intramolecular 1,2-shift to produce the neutral pyrrole. This work demonstrates a yet unexplored facet of ynamide reactivity with great potential in heterocyclic chemistry.
Collapse
Affiliation(s)
- Dominic Campeau
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5, Ottawa, Canada
| | - Alice Pommainville
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5, Ottawa, Canada
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5, Ottawa, Canada
| |
Collapse
|
193
|
Cai BG, Li L, Xu GY, Xiao WJ, Xuan J. Visible-light-promoted nitrone synthesis from nitrosoarenes under catalyst- and additive-free conditions. Photochem Photobiol Sci 2021; 20:823-829. [PMID: 34115366 DOI: 10.1007/s43630-021-00062-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/27/2021] [Indexed: 11/27/2022]
Abstract
A green and sustainable nitrone formation reaction via visible-light-promoted reaction of aryl diazoacetates with nitrosoarenes is described. This protocol exhibits good functional group tolerance and broad substrate scope for both aryl diazoacetates with nitrosoarenes. Comparing the reported methods for the synthesis of nitrones from nitrosoarenes, the reaction described herein occurs under sole visible-light irradiation without the need of any catalysts and additives.
Collapse
Affiliation(s)
- Bao-Gui Cai
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui, 230601, People's Republic of China
| | - Lin Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui, 230601, People's Republic of China
| | - Guo-Yong Xu
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, People's Republic of China.
| | - Wen-Jing Xiao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, People's Republic of China.
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui, 230601, People's Republic of China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, People's Republic of China.
| |
Collapse
|
194
|
Biswas RG, Ray SK, Kannaujiya VK, Unhale RA, Singh VK. Cu(I)-Catalyzed asymmetric exo-selective synthesis of substituted pyrrolidines via a 1,3-dipolar cycloaddition reaction. Org Biomol Chem 2021; 19:4685-4690. [PMID: 33982725 DOI: 10.1039/d1ob00494h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An (R)-DM-BINAP/Cu(CH3CN)4BF4 complex catalyzed exo-selective asymmetric 1,3-dipolar cycloaddition (1,3-DCA) reaction of imino esters with α,β-unsaturated pyrazoleamides has been developed. A series of highly functionalized pyrrolidines with multiple stereogenic centers were obtained with good yields and diastereoselectivities and excellent enantioselectivities (up to 99% ee).
Collapse
Affiliation(s)
- Rayhan G Biswas
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462 066, India
| | - Sumit K Ray
- Department of Chemistry, Kharagpur College, Paschim Medinipur, West Bengal 721305, India
| | - Vinod K Kannaujiya
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462 066, India
| | - Rajshekhar A Unhale
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462 066, India
| | - Vinod K Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India.
| |
Collapse
|
195
|
Beksultanova N, Gözükara Z, Araz M, Bulut M, Polat-Çakır S, Aygün M, Dogan Ö. FAM-Ag-catalyzed asymmetric synthesis of heteroaryl-substituted pyrrolidines. Chirality 2021; 33:465-478. [PMID: 34038573 DOI: 10.1002/chir.23320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 11/08/2022]
Abstract
New derivatives of FAM (ferrocenyl aziridinyl methanol) ligands NFAM1-4 (naphthyl ferrocenyl aziridinyl methanol) and CFAM1-4 (cyclohexyl ferrocenyl aziridinyl methanol) were synthesized to form a small ligand library and used as chiral catalysts with AgOAc for the asymmetric synthesis of heteroaryl-substituted pyrrolidines by the 1,3-dipolar cycloaddition (1,3-DC) reaction of azomethine ylides. 2-Thienyl, 2-furyl, 2-, 3-, and 4-pyridyl aldimines were prepared and used with N-methylmaleimide, dimethyl maleate, tert-butyl acrylate, methyl acrylate, and acrylonitrile to form the corresponding heteroaryl-substituted pyrrolidines. 1,3-DC reactions yielded the expected cycloadducts in up to 89% yield and up to 76% ee that could be increased up to 95% ee upon crystallization. New chiral ligands NFAM1-4 and CFAM1-4 were fully characterized, and their absolute stereochemistry was determined by single-crystal X-ray analysis.
Collapse
Affiliation(s)
| | - Zeynep Gözükara
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| | - Mihrimah Araz
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| | - Merve Bulut
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| | - Sıdıka Polat-Çakır
- Department of Chemical Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Muhittin Aygün
- Department of Physics, Dokuz Eylül University, Izmir, Turkey
| | - Özdemir Dogan
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
196
|
Wang KK, Li YL, Guo DG, Pan PT, Sun A, Chen R. Synthesis of spiro[4.4]thiadiazole derivatives via double 1,3-dipolar cycloaddition of hydrazonyl chlorides with carbon disulfide. RSC Adv 2021; 11:18404-18407. [PMID: 35480901 PMCID: PMC9033500 DOI: 10.1039/d1ra03229a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
An operationally simple and convenient synthesis method toward a series of diverse spiro[4.4]thiadiazole derivatives via double [3 + 2] 1,3-dipolar cycloaddition of nitrilimines generated in situ from hydrazonyl chlorides with carbon disulfide has been achieved under mild reaction conditions.
Collapse
Affiliation(s)
- Kai-Kai Wang
- School of Pharmacy, Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province Xinxiang 453000 P. R. China +86-373-3682674
| | - Yan-Li Li
- Medical College, Xinxiang University Xinxiang 453000 P. R. China
| | - Dong-Guang Guo
- School of Life Sciences and Basic Medicine, Xinxiang University Xinxiang 453000 P. R. China
| | - Peng-Tao Pan
- Medical College, Xinxiang University Xinxiang 453000 P. R. China
| | - Aili Sun
- School of Pharmacy, Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province Xinxiang 453000 P. R. China +86-373-3682674
| | - Rongxiang Chen
- School of Pharmacy, Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province Xinxiang 453000 P. R. China +86-373-3682674
| |
Collapse
|
197
|
Wu X, Ren J, Shao Z, Yang X, Qian D. Transition-Metal-Catalyzed Asymmetric Couplings of α-Aminoalkyl Fragments to Access Chiral Alkylamines. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaomei Wu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, People’s Republic of China
| | - Jiangtao Ren
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, People’s Republic of China
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, People’s Republic of China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, People’s Republic of China
| | - Deyun Qian
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, People’s Republic of China
| |
Collapse
|
198
|
Asymmetric Synthesis of Tetrahydroisoquinoline Derivatives through 1,3-Dipolar Cycloaddition of C, N-Cyclic Azomethine Imines with Allyl Alkyl Ketones. Molecules 2021; 26:molecules26102969. [PMID: 34067645 PMCID: PMC8156229 DOI: 10.3390/molecules26102969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
A [3 + 2] 1,3-Dipolar cycloaddition of C,N-cyclic azomethine imines with allyl alkyl ketones has been achieved. The reaction proceeds under mild conditions and tolerates a wide range of functional groups. An array of tetrahydroisoquinoline derivatives is generally constructed with good diastereoselectivities and enantioselectivities (up to >25:1 dr, >95% ee). Moreover, the absolute configuration of the product was previously determined by using the quantum electronic circular dichroism calculation and ECD spectrum method.
Collapse
|
199
|
Deivasigamani G, Adukamparai Rajukrishnan SB. A sequential multicomponent reaction (SMCR) strategy: Synthesis of novel pyrazolo-1,4-dioxaspiro[4,5]decane grafted spiro-indenoquinoxaline pyrrolidine heterocycles. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1919901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
200
|
Ghosh AK, Hsu CS. Enantioselective Total Synthesis of (+)-EBC-23, a Potent Anticancer Agent from the Australian Rainforest. J Org Chem 2021; 86:6351-6360. [PMID: 33872504 DOI: 10.1021/acs.joc.1c00172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe here an enantioselective synthesis of (+)-EBC-23, a potent anticancer agent from the Australian rainforest. Our convergent synthesis features a [3+2] dipolar cycloaddition of an olefin-bearing 1,3-syn diol unit and an oxime segment containing 1,2-syn diol functionality as the key step. The segments were synthesized in a highly enantioselective manner using Noyori asymmetric hydrogenation of a β-keto ester and Sharpless asymmetric dihydroxylation of an α,β-unsaturated ester. Cycloaddition provided isoxazoline derivative which upon hydrogenolysis furnished the β-hydroxy ketone expediently. A one-pot, acid-catalyzed reaction removed the isopropylidene group, promoted spirocyclization, constructed the complex spiroketal lactone core, and furnished EBC-23 and its C11 epimer. The C11 epimer was also converted to EBC-23 by chemoselective oxidation and reduction sequence. The present synthesis provides convenient access to this family of natural products in an efficient manner.
Collapse
|