151
|
Billerbeck S. Small Functional Peptides and Their Application in Superfunctionalizing Proteins. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sonja Billerbeck
- Columbia University; Department of Chemistry; 550 West 120th Street New York NY 10027 USA
| |
Collapse
|
152
|
Köker T, Fernandez A, Pinaud F. Characterization of Split Fluorescent Protein Variants and Quantitative Analyses of Their Self-Assembly Process. Sci Rep 2018; 8:5344. [PMID: 29593344 PMCID: PMC5871787 DOI: 10.1038/s41598-018-23625-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/16/2018] [Indexed: 02/01/2023] Open
Abstract
Many biotechniques use complementary split-fluorescent protein (sFPs) fragments to visualize protein-protein interactions, image cells by ensemble or single molecule fluorescence microscopy, or assemble nanomaterials and protein superstructures. Yet, the reassembly mechanisms of sFPs, including fragment binding rates, folding, chromophore maturation and overall photophysics remain poorly characterized. Here, we evolved asymmetric and self-complementing green, yellow and cyan sFPs together with their full-length equivalents (flFPs) and described their biochemical and photophysical properties in vitro and in cells. While re-assembled sFPs have spectral properties similar to flFPs, they display slightly reduced quantum yields and fluorescence lifetimes due to a less sturdy β-barrel structure. The complementation of recombinant sFPs expressed in vitro follows a conformational selection mechanism whereby the larger sFP fragments exist in a monomer-dimer equilibrium and only monomers are competent for fluorescence complementation. This bimolecular fragment interaction involves a slow and irreversible binding step, followed by chromophore maturation at a rate similar to that of flFPs. When expressed as fusion tags in cells, sFPs behave as monomers directly activated with synthetic complementary fragments. This study resulted in the development of sFP color variants having improved maturation kinetics, brightness, and photophysics for fluorescence microscopy imaging of cellular processes, including single molecule detection.
Collapse
Affiliation(s)
- Tuğba Köker
- Department of Biological Sciences, University of Southern California, 1050 Child Way, Los Angeles, 90089, California, USA
| | - Anthony Fernandez
- Department of Biological Sciences, University of Southern California, 1050 Child Way, Los Angeles, 90089, California, USA
| | - Fabien Pinaud
- Department of Biological Sciences, University of Southern California, 1050 Child Way, Los Angeles, 90089, California, USA. .,Department of Chemistry, University of Southern California, 1050 Child Way, Los Angeles, 90089, California, USA. .,Department of Physics and Astronomy, University of Southern California, 1050 Child Way, Los Angeles, 90089, California, USA.
| |
Collapse
|
153
|
Abstract
Chemically constructed biosensors consisting of a protein scaffold and an artificial small molecule have recently been recognized as attractive analytical tools for the specific detection and real-time monitoring of various biological substances or events in cells. Conventionally, such semisynthetic biosensors have been prepared in test tubes and then introduced into cells using invasive methods. With the impressive advances seen in bioorthogonal protein conjugation methodologies, however, it is now becoming feasible to directly construct semisynthetic biosensors in living cells, providing unprecedented tools for life-science research. We discuss here recent efforts regarding the in situ construction of protein-based semisynthetic biosensors and highlight their uses in the visualization and quantification of biomolecules and events in multimolecular and crowded cellular systems.
Collapse
Affiliation(s)
- Tsuyoshi Ueda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- CREST(Core Research for Evolutional Science and Technology, JST), Sanbancho, Chiyodaku, Tokyo, 102-0075, Japan
| |
Collapse
|
154
|
El Meshri SE, Boutant E, Mouhand A, Thomas A, Larue V, Richert L, Vivet-Boudou V, Mély Y, Tisné C, Muriaux D, de Rocquigny H. The NC domain of HIV-1 Gag contributes to the interaction of Gag with TSG101. Biochim Biophys Acta Gen Subj 2018; 1862:1421-1431. [PMID: 29571744 DOI: 10.1016/j.bbagen.2018.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/20/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND HIV-1 Gag polyprotein orchestrates the assembly of viral particles. Its C-terminus consists of the nucleocapsid (NC) domain that interacts with RNA, and the p6 domain containing the PTAP motif that binds the cellular ESCRT factor TSG101 and ALIX. Deletion of the NC domain of Gag (GagNC) results in defective Gag assembly, a decrease in virus production and, thus probably affects recruitment of the ESCRT machinery. To investigate the role of GagNC in this recruitment, we analysed its impact on TSG101 and ALIX localisations and interactions in cells expressing Gag. METHODS Cells expressing mCherry-Gag or derivatives, alone or together with eGFP-TSG101 or eGFP-ALIX, were analysed by confocal microscopy and FLIM-FRET. Chemical shift mapping between TSG101-UEV motif and Gag C-terminus was performed by NMR. RESULTS We show that deletion of NC or of its two zinc fingers decreases the amount of Gag-TSG101 interacting complexes in cells. These findings are supported by NMR data showing chemical shift perturbations in the NC domain in- and outside - of the zinc finger elements upon TSG101 binding. The NMR data further identify a large stretch of amino acids within the p6 domain directly interacting with TSG101. CONCLUSION The NC zinc fingers and p6 domain of Gag participate in the formation of the Gag-TSG101 complex and in its cellular localisation. GENERAL SIGNIFICANCE This study illustrates that the NC and p6 domains cooperate in the interaction with TSG101 during HIV-1 budding. In addition, details on the Gag-TSG101 complex were obtained by combining two high resolution biophysical techniques.
Collapse
Affiliation(s)
- Salah Edin El Meshri
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch Cedex, France
| | - Emmanuel Boutant
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch Cedex, France
| | - Assia Mouhand
- Laboratoire de Cristallographie et RMN biologiques, UMR 8015, CNRS, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France; Laboratoire d'Expression génétique microbienne, IBPC, UMR 8261, CNRS, Université Paris Diderot, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Audrey Thomas
- Membrane Domains and Viral Assembly, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, UMR9004, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Valéry Larue
- Laboratoire de Cristallographie et RMN biologiques, UMR 8015, CNRS, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Ludovic Richert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch Cedex, France
| | - Valérie Vivet-Boudou
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 Rue R. Descartes, 67084 Strasbourg Cedex, France
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch Cedex, France
| | - Carine Tisné
- Laboratoire de Cristallographie et RMN biologiques, UMR 8015, CNRS, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France; Laboratoire d'Expression génétique microbienne, IBPC, UMR 8261, CNRS, Université Paris Diderot, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Delphine Muriaux
- Membrane Domains and Viral Assembly, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, UMR9004, 1919 route de Mende, 34293 Montpellier cedex 5, France.
| | - Hugues de Rocquigny
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401 Illkirch Cedex, France; Morphogenèse et Antigénicité du VIH et des Virus des Hépatites, Inserm - U1259 MAVIVH, 10 boulevard Tonnellé - BP 3223, 37032 Tours Cedex 1 -, France.
| |
Collapse
|
155
|
A Naturally Encoded Dipeptide Handle for Bioorthogonal Chan–Lam Coupling. Angew Chem Int Ed Engl 2018; 57:4015-4019. [DOI: 10.1002/anie.201800828] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Indexed: 11/07/2022]
|
156
|
Mo CY, Culyba MJ, Selwood T, Kubiak JM, Hostetler ZM, Jurewicz AJ, Keller PM, Pope AJ, Quinn A, Schneck J, Widdowson KL, Kohli RM. Inhibitors of LexA Autoproteolysis and the Bacterial SOS Response Discovered by an Academic-Industry Partnership. ACS Infect Dis 2018; 4:349-359. [PMID: 29275629 DOI: 10.1021/acsinfecdis.7b00122] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The RecA/LexA axis of the bacterial DNA damage (SOS) response is a promising, yet nontraditional, drug target. The SOS response is initiated upon genotoxic stress, when RecA, a DNA damage sensor, induces LexA, the SOS repressor, to undergo autoproteolysis, thereby derepressing downstream genes that can mediate DNA repair and accelerate mutagenesis. As genetic inhibition of the SOS response sensitizes bacteria to DNA damaging antibiotics and decreases acquired resistance, inhibitors of the RecA/LexA axis could potentiate our current antibiotic arsenal. Compounds targeting RecA, which has many mammalian homologues, have been reported; however, small-molecules targeting LexA autoproteolysis, a reaction unique to the prokaryotic SOS response, have remained elusive. Here, we describe the logistics and accomplishments of an academic-industry partnership formed to pursue inhibitors against the RecA/LexA axis. A novel fluorescence polarization assay reporting on RecA-induced self-cleavage of LexA enabled the screening of 1.8 million compounds. Follow-up studies on select leads show distinct activity patterns in orthogonal assays, including several with activity in cell-based assays reporting on SOS activation. Mechanistic assays demonstrate that we have identified first-in-class small molecules that specifically target the LexA autoproteolysis step in SOS activation. Our efforts establish a realistic example for navigating academic-industry partnerships in pursuit of anti-infective drugs and offer starting points for dedicated lead optimization of SOS inhibitors that could act as adjuvants for current antibiotics.
Collapse
Affiliation(s)
- Charlie Y. Mo
- Department of Medicine, Department of Biochemistry and Biophysics, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Matthew J. Culyba
- Department of Medicine, Department of Biochemistry and Biophysics, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Trevor Selwood
- Department of Medicine, Department of Biochemistry and Biophysics, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Jeffrey M. Kubiak
- Department of Medicine, Department of Biochemistry and Biophysics, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Zachary M. Hostetler
- Department of Medicine, Department of Biochemistry and Biophysics, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Anthony J. Jurewicz
- Screening, Profiling, and Mechanistic Biology, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Paul M. Keller
- Screening, Profiling, and Mechanistic Biology, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Andrew J. Pope
- Discovery Partnerships with Academia, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Amy Quinn
- Screening, Profiling, and Mechanistic Biology, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Jessica Schneck
- Screening, Profiling, and Mechanistic Biology, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Katherine L. Widdowson
- Discovery Partnerships with Academia, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Rahul M. Kohli
- Department of Medicine, Department of Biochemistry and Biophysics, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
157
|
Ohata J, Zeng Y, Segatori L, Ball ZT. A Naturally Encoded Dipeptide Handle for Bioorthogonal Chan–Lam Coupling. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun Ohata
- Department of Chemistry Rice University Houston TX 77005 USA
| | - Yimeng Zeng
- Department of Chemical Biomolecular Engineering Rice University Houston TX 77005 USA
| | - Laura Segatori
- Department of Chemical Biomolecular Engineering Rice University Houston TX 77005 USA
| | - Zachary T. Ball
- Department of Chemistry Rice University Houston TX 77005 USA
| |
Collapse
|
158
|
Köker T, Tang N, Tian C, Zhang W, Wang X, Martel R, Pinaud F. Cellular imaging by targeted assembly of hot-spot SERS and photoacoustic nanoprobes using split-fluorescent protein scaffolds. Nat Commun 2018; 9:607. [PMID: 29426856 PMCID: PMC5807522 DOI: 10.1038/s41467-018-03046-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 01/12/2018] [Indexed: 01/28/2023] Open
Abstract
The in cellulo assembly of plasmonic nanomaterials into photo-responsive probes is of great interest for many bioimaging and nanophotonic applications but remains challenging with traditional nucleic acid scaffolds-based bottom-up methods. Here, we address this quandary using split-fluorescent protein (FP) fragments as molecular glue and switchable Raman reporters to assemble gold or silver plasmonic nanoparticles (NPs) into photonic clusters directly in live cells. When targeted to diffusing surface biomarkers in cancer cells, the NPs self-assemble into surface-enhanced Raman-scattering (SERS) nanoclusters having hot spots homogenously seeded by the reconstruction of full-length FPs. Within plasmonic hot spots, autocatalytic activation of the FP chromophore and near-field amplification of its Raman fingerprints enable selective and sensitive SERS imaging of targeted cells. This FP-driven assembly of metal colloids also yields enhanced photoacoustic signals, allowing the hybrid FP/NP nanoclusters to serve as contrast agents for multimodal SERS and photoacoustic microscopy with single-cell sensitivity.
Collapse
Affiliation(s)
- Tuğba Köker
- Department of Biological Sciences, University of Southern California, 1050 Child Way, Los Angeles, CA, 90089, USA
| | - Nathalie Tang
- Department of Chemistry, University of Montréal, C. P. 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Chao Tian
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109, USA
| | - Wei Zhang
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109, USA
| | - Richard Martel
- Department of Chemistry, University of Montréal, C. P. 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Fabien Pinaud
- Department of Biological Sciences, University of Southern California, 1050 Child Way, Los Angeles, CA, 90089, USA.
- Department of Chemistry, University of Southern California, 1050 Child Way, Los Angeles, CA, 90089, USA.
- Department of Physics and Astronomy, University of Southern California, 1050 Child Way, Los Angeles, CA, 90089, USA.
| |
Collapse
|
159
|
Moghaddam-Taaheri P, Karlsson AJ. Protein Labeling in Live Cells for Immunological Applications. Bioconjug Chem 2018; 29:680-685. [DOI: 10.1021/acs.bioconjchem.7b00722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
160
|
Jung SR, Hille B. Optical approaches for visualization of arrestin binding to muscarinic receptor. Methods Cell Biol 2018; 149:1-18. [PMID: 30616813 DOI: 10.1016/bs.mcb.2017.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
G protein-coupled seven-transmembrane receptors (GPCRs) mediate responses to hormones, metabolites, lipids, and neurotransmitters at the cell membrane, and so they are prominent drug targets. Although many structural, biochemical, cell biological, and biophysical studies made remarkable progress to understand mechanisms of GPCR signaling, there still are many unanswered questions about arrestin-dependent GPCR signaling. In this chapter, we focus on optical assays to see muscarinic receptor-arrestin interactions with ensemble FRET and single-molecule TIRF imaging in live cells and finally to integrate the information to simulate hypothesized steps in Virtual Cell.
Collapse
Affiliation(s)
| | - Bertil Hille
- University of Washington, Seattle, WA, United States
| |
Collapse
|
161
|
Xu AJ, Yang Y, Zhang CY. Transpeptidation-directed intramolecular bipartite tetracysteine display for sortase activity assay. Chem Commun (Camb) 2018; 54:8116-8119. [DOI: 10.1039/c8cc04495c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a simple, label-free and homogenous assay to quantitively evaluate SrtA-catalyzed transpeptidation reaction.
Collapse
Affiliation(s)
- Ai-jun Xu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Yong Yang
- Institute of Biomedicine and Biotechnology
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen
- China
| | - Chun-Yang Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
162
|
Hori Y, Hirayama S, Kikuchi K. Development of cyanine probes with dinitrobenzene quencher for rapid fluorogenic protein labelling. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2017.0018. [PMID: 29038376 PMCID: PMC5647265 DOI: 10.1098/rsta.2017.0018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
A multicolour protein labelling technique using a protein tag and fluorogenic probes is a powerful approach for spatio-temporal analyses of proteins in living cells. Since cyanine fluorophores have attractive properties for multicolour imaging of proteins, there is a huge demand to develop fluorogenic cyanine probes for specific protein labelling in living cells. Herein, we develop fluorogenic cyanine probes for labelling a protein tag by using a dinitrobenzene fluorescence quencher. The probes enhanced fluorescence intensity upon labelling reactions and emitted orange or far-red fluorescence. Intramolecular interactions between the cyanine fluorophores and the dinitrobenzene quencher led not only to fluorescence quenching of the probes in the free state but also to promotion of labelling reactions. Furthermore, the probes successfully imaged cell-surface proteins without a washing process. These findings offer valuable information on the design of fluorogenic cyanine probes and indicate that the probes are useful as novel live-cell imaging tools.This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.
Collapse
Affiliation(s)
- Yuichiro Hori
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shinya Hirayama
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
163
|
Bussiere LD, Choudhury P, Bellaire B, Miller CL. Characterization of a Replicating Mammalian Orthoreovirus with Tetracysteine-Tagged μNS for Live-Cell Visualization of Viral Factories. J Virol 2017; 91:e01371-17. [PMID: 28878073 PMCID: PMC5660500 DOI: 10.1128/jvi.01371-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/29/2017] [Indexed: 02/01/2023] Open
Abstract
Within infected host cells, mammalian orthoreovirus (MRV) forms viral factories (VFs), which are sites of viral transcription, translation, assembly, and replication. The MRV nonstructural protein μNS comprises the structural matrix of VFs and is involved in recruiting other viral proteins to VF structures. Previous attempts have been made to visualize VF dynamics in live cells, but due to current limitations in recovery of replicating reoviruses carrying large fluorescent protein tags, researchers have been unable to directly assess VF dynamics from virus-produced μNS. We set out to develop a method to overcome this obstacle by utilizing the 6-amino-acid (CCPGCC) tetracysteine (TC) tag and FlAsH-EDT2 reagent. The TC tag was introduced into eight sites throughout μNS, and the capacity of the TC-μNS fusion proteins to form virus factory-like (VFL) structures and colocalize with virus proteins was characterized. Insertion of the TC tag interfered with recombinant virus rescue in six of the eight mutants, likely as a result of loss of VF formation or important virus protein interactions. However, two recombinant (r)TC-μNS viruses were rescued and VF formation, colocalization with associating virus proteins, and characterization of virus replication were subsequently examined. Furthermore, the rTC-μNS viruses were utilized to infect cells and examine VF dynamics using live-cell microscopy. These experiments demonstrate active VF movement with fusion events as well as transient interactions between individual VFs and demonstrate the importance of microtubule stability for VF fusion during MRV infection. This work provides important groundwork for future in-depth studies of VF dynamics and host cell interactions.IMPORTANCE MRV has historically been used as a model to study the double-stranded RNA (dsRNA) Reoviridae family, the members of which infect and cause disease in humans, animals, and plants. During infection, MRV forms VFs that play a critical role in virus infection but remain to be fully characterized. To study VFs, researchers have focused on visualizing the nonstructural protein μNS, which forms the VF matrix. This work provides the first evidence of recovery of replicating reoviruses in which VFs can be labeled in live cells via introduction of a TC tag into the μNS open reading frame. Characterization of each recombinant reovirus sheds light on μNS interactions with viral proteins. Moreover, utilizing the TC-labeling FlAsH-EDT2 biarsenical reagent to visualize VFs, evidence is provided of dynamic VF movement and interactions at least partially dependent on intact microtubules.
Collapse
Affiliation(s)
- Luke D Bussiere
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- Interdepartmental Microbiology Program, Iowa State University, Ames, Iowa, USA
| | - Promisree Choudhury
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Bryan Bellaire
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- Interdepartmental Microbiology Program, Iowa State University, Ames, Iowa, USA
| | - Cathy L Miller
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- Interdepartmental Microbiology Program, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
164
|
Di Rocco G, Martinelli I, Pacifico S, Guerrini R, Cichero E, Fossa P, Franchini S, Cardarelli S, Giorgi M, Sola M, Ponterini G. Fluorometric detection of protein-ligand engagement: The case of phosphodiesterase5. J Pharm Biomed Anal 2017; 149:335-342. [PMID: 29132113 DOI: 10.1016/j.jpba.2017.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/22/2017] [Accepted: 11/01/2017] [Indexed: 01/01/2023]
Abstract
Phosphodiesterases (PDEs) regulate the intracellular levels of cAMP and cGMP. The great clinical success of the PDE5 inhibitors, Sildenafil (Viagra), Vardenafil (Levitra) and Tadalafil (Cialis) has led to an increasing interest for this class of enzymes. Recent studies have shown a correlation between tumor growth and PDE5 overexpression, making PDE5-selective inhibitors promising candidates for cancer treatment. The search for such inhibitors rests today on radioactive assays. In this work, we exploit the conserved catalytic domain of the enzyme and propose a faster and safer method for detecting the binding of ligands and evaluate their affinities. The new approach takes advantage of Förster Resonance Energy Transfer (FRET) between, as the donor, a fluorescein-like diarsenical probe able to covalently bind a tetracysteine motif fused to the recombinant PDE5 catalytic domain and, as the acceptor, a rhodamine probe covalently bound to the pseudosubstrate cGMPS. The FRET efficiency decreases when a competitive ligand binds the PDE5 catalytic site and displaces the cGMPS-rhodamine conjugate. We have structurally investigated the PDE5/cGMPS-rhodamine complex by molecular modelling and have used the FRET signal to quantitatively characterize its binding equilibrium. Competitive displacement experiments were carried out with tadalafil and cGMPS. An adaptation of the competitive-displacement equilibrium model yielded the affinities for PDE5 of the incoming ligands, nano- and micromolar, respectively.
Collapse
Affiliation(s)
- Giulia Di Rocco
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy.
| | - Ilaria Martinelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Salvatore Pacifico
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara Via Fossato di Mortara 17-19, Ferrara, 44100, Italy
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara Via Fossato di Mortara 17-19, Ferrara, 44100, Italy
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Paola Fossa
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Silvia Franchini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Silvia Cardarelli
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Mauro Giorgi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Marco Sola
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Glauco Ponterini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy.
| |
Collapse
|
165
|
Site Specific Modification of Adeno-Associated Virus Enables Both Fluorescent Imaging of Viral Particles and Characterization of the Capsid Interactome. Sci Rep 2017; 7:14766. [PMID: 29116194 PMCID: PMC5676692 DOI: 10.1038/s41598-017-15255-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/24/2017] [Indexed: 01/10/2023] Open
Abstract
Adeno-associated viruses (AAVs) are attractive gene therapy vectors due to their low toxicity, high stability, and rare integration into the host genome. Expressing ligands on the viral capsid can re-target AAVs to new cell types, but limited sites have been identified on the capsid that tolerate a peptide insertion. Here, we incorporated a site-specific tetracysteine sequence into the AAV serotype 9 (AAV9) capsid, to permit labelling of viral particles with either a fluorescent dye or biotin. We demonstrate that fluorescently labelled particles are detectable in vitro, and explore the utility of the method in vivo in mice with time-lapse imaging. We exploit the biotinylated viral particles to generate two distinct AAV interactomes, and identify several functional classes of proteins that are highly represented: actin/cytoskeletal protein binding, RNA binding, RNA splicing/processing, chromatin modifying, intracellular trafficking and RNA transport proteins. To examine the biological relevance of the capsid interactome, we modulated the expression of two proteins from the interactomes prior to AAV transduction. Blocking integrin αVβ6 receptor function reduced AAV9 transduction, while reducing histone deacetylase 4 (HDAC4) expression enhanced AAV transduction. Our method demonstrates a strategy for inserting motifs into the AAV capsid without compromising viral titer or infectivity.
Collapse
|
166
|
Tsai CF, Lin HY, Hsu WL, Tsai CH. The novel mitochondria localization of influenza A virus NS1 visualized by FlAsH labeling. FEBS Open Bio 2017; 7:1960-1971. [PMID: 29226082 PMCID: PMC5715299 DOI: 10.1002/2211-5463.12336] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 12/11/2022] Open
Abstract
The nonstructural protein 1 (NS1) of the influenza A virus (IAV) is a multifunctional protein that counteracts host cell antiviral responses and inhibits host cell pre‐mRNA processing. NS1 contains two nuclear localization signals that facilitate NS1 shuttling between cytoplasm and nucleus. In this study, we initially observed the novel mitochondria localization of NS1 in a subset of transfected cells. We then further monitored the localization dynamics of the NS1 protein in live cells infected with IAV expressing NS1 with insertion of a tetracysteine‐tag. The resulting mutant virus showed similar levels of infectivity and expression pattern of NS1 to those of wild‐type IAV. Pulse labeling using a biarsenical compound (fluorescein arsenical hairpin binder) allowed us to visualize the dynamic subcellular distribution of NS1 real time. We detected NS1 in mitochondria at a very early infection time point [1.5 h postinfection (hpi)] and observed the formation of a granular structure pattern in the nucleus at 4 hpi. This is the first identification of the novel mitochondria localization of NS1. The possible role of NS1 at an early infection time point is discussed.
Collapse
Affiliation(s)
- Chuan-Fu Tsai
- Graduate Institute of Biotechnology National Chung Hsing University Taichung Taiwan
| | - Hsin-Yi Lin
- Graduate Institute of Biotechnology National Chung Hsing University Taichung Taiwan
| | - Wei-Li Hsu
- Graduate Institute of Microbiology and Public Health National Chung Hsing University Taichung Taiwan
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology National Chung Hsing University Taichung Taiwan
| |
Collapse
|
167
|
Shi Y, Wang L, Zhang J, Zhai Y, Sun F. Determining the target protein localization in 3D using the combination of FIB-SEM and APEX2. BIOPHYSICS REPORTS 2017; 3:92-99. [PMID: 29238746 PMCID: PMC5719812 DOI: 10.1007/s41048-017-0043-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/24/2017] [Indexed: 11/05/2022] Open
Abstract
Determining the cellular localization of proteins of interest at nanometer resolution is necessary for elucidating their functions. Besides super-resolution fluorescence microscopy, conventional electron microscopy (EM) combined with immunolabeling or clonable EM tags provides a unique approach to correlate protein localization information and cellular ultrastructural information. However, there are still rare cases of such correlation in three-dimensional (3D) spaces. Here, we developed an approach by combining the focus ion beam scanning electron microscopy (FIB-SEM) and a promising clonable EM tag APEX2 (an enhanced ascorbate peroxidase 2) to determine the target protein localization within 3D cellular ultrastructural context. We further utilized this approach to study the 3D localization of mitochondrial dynamics-related proteins (MiD49/51, Mff, Fis1, and Mfn2) in the cells where the target proteins were overexpressed. We found that all the target proteins were located at the surface of the mitochondrial outer membrane accompanying with mitochondrial clusters. Mid49/51, Mff, and hFis1 spread widely around the mitochondrial surface while Mfn2 only exists at the contact sites.
Collapse
Affiliation(s)
- Yang Shi
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100049 China.,Sino-Danish Center for Education and Research, Beijing, 100190 China
| | - Li Wang
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jianguo Zhang
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yujia Zhai
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fei Sun
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100049 China.,Sino-Danish Center for Education and Research, Beijing, 100190 China
| |
Collapse
|
168
|
Oesterle S, Roberts TM, Widmer LA, Mustafa H, Panke S, Billerbeck S. Sequence-based prediction of permissive stretches for internal protein tagging and knockdown. BMC Biol 2017; 15:100. [PMID: 29084520 PMCID: PMC5661948 DOI: 10.1186/s12915-017-0440-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Internal tagging of proteins by inserting small functional peptides into surface accessible permissive sites has proven to be an indispensable tool for basic and applied science. Permissive sites are typically identified by transposon mutagenesis on a case-by-case basis, limiting scalability and their exploitation as a system-wide protein engineering tool. METHODS We developed an apporach for predicting permissive stretches (PSs) in proteins based on the identification of length-variable regions (regions containing indels) in homologous proteins. RESULTS We verify that a protein's primary structure information alone is sufficient to identify PSs. Identified PSs are predicted to be predominantly surface accessible; hence, the position of inserted peptides is likely suitable for diverse applications. We demonstrate the viability of this approach by inserting a Tobacco etch virus protease recognition site (TEV-tag) into several PSs in a wide range of proteins, from small monomeric enzymes (adenylate kinase) to large multi-subunit molecular machines (ATP synthase) and verify their functionality after insertion. We apply this method to engineer conditional protein knockdowns directly in the Escherichia coli chromosome and generate a cell-free platform with enhanced nucleotide stability. CONCLUSIONS Functional internally tagged proteins can be rationally designed and directly chromosomally implemented. Critical for the successful design of protein knockdowns was the incorporation of surface accessibility and secondary structure predictions, as well as the design of an improved TEV-tag that enables efficient hydrolysis when inserted into the middle of a protein. This versatile and portable approach can likely be adapted for other applications, and broadly adopted. We provide guidelines for the design of internally tagged proteins in order to empower scientists with little or no protein engineering expertise to internally tag their target proteins.
Collapse
Affiliation(s)
- Sabine Oesterle
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Tania Michelle Roberts
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Lukas Andreas Widmer
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
- Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058, Basel, Switzerland
- Life Science Zürich Graduate School in Systems Biology, Zürich, Switzerland
| | - Harun Mustafa
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
- Department of Computer Science, ETH Zürich, Zürich, Switzerland
| | - Sven Panke
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Sonja Billerbeck
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland.
- Present address: Chemistry Department, Columbia University, 550 West 120th Street, New York, NY, 10027, USA.
| |
Collapse
|
169
|
Fernandes DD, Bamrah J, Kailasam S, Gomes GNW, Li Y, Wieden HJ, Gradinaru CC. Characterization of Fluorescein Arsenical Hairpin (FlAsH) as a Probe for Single-Molecule Fluorescence Spectroscopy. Sci Rep 2017; 7:13063. [PMID: 29026195 PMCID: PMC5638890 DOI: 10.1038/s41598-017-13427-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/21/2017] [Indexed: 01/27/2023] Open
Abstract
In recent years, new labelling strategies have been developed that involve the genetic insertion of small amino-acid sequences for specific attachment of small organic fluorophores. Here, we focus on the tetracysteine FCM motif (FLNCCPGCCMEP), which binds to fluorescein arsenical hairpin (FlAsH), and the ybbR motif (TVLDSLEFIASKLA) which binds fluorophores conjugated to Coenzyme A (CoA) via a phosphoryl transfer reaction. We designed a peptide containing both motifs for orthogonal labelling with FlAsH and Alexa647 (AF647). Molecular dynamics simulations showed that both motifs remain solvent-accessible for labelling reactions. Fluorescence spectra, correlation spectroscopy and anisotropy decay were used to characterize labelling and to obtain photophysical parameters of free and peptide-bound FlAsH. The data demonstrates that FlAsH is a viable probe for single-molecule studies. Single-molecule imaging confirmed dual labeling of the peptide with FlAsH and AF647. Multiparameter single-molecule Förster Resonance Energy Transfer (smFRET) measurements were performed on freely diffusing peptides in solution. The smFRET histogram showed different peaks corresponding to different backbone and dye orientations, in agreement with the molecular dynamics simulations. The tandem of fluorophores and the labelling strategy described here are a promising alternative to bulky fusion fluorescent proteins for smFRET and single-molecule tracking studies of membrane proteins.
Collapse
Affiliation(s)
- Dennis D Fernandes
- Department of Physics, University of Toronto, Toronto, Ontario, M5S 1A7, Canada.
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, L5L 1C6, Canada.
| | - Jasbir Bamrah
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, L5L 1C6, Canada
| | - Senthilkumar Kailasam
- Alberta RNA Research & Training Institute, Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | - Gregory-Neal W Gomes
- Department of Physics, University of Toronto, Toronto, Ontario, M5S 1A7, Canada
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, L5L 1C6, Canada
| | - Yuchong Li
- Department of Physics, University of Toronto, Toronto, Ontario, M5S 1A7, Canada
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, L5L 1C6, Canada
| | - Hans-Joachim Wieden
- Alberta RNA Research & Training Institute, Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | - Claudiu C Gradinaru
- Department of Physics, University of Toronto, Toronto, Ontario, M5S 1A7, Canada.
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, L5L 1C6, Canada.
| |
Collapse
|
170
|
Chan WC, Knowlton GS, Bishop AC. Activation of Engineered Protein Tyrosine Phosphatases with the Biarsenical Compound AsCy3-EDT 2. Chembiochem 2017; 18:1950-1958. [PMID: 28745017 PMCID: PMC5923034 DOI: 10.1002/cbic.201700253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Indexed: 12/22/2022]
Abstract
Methods for activating signaling enzymes hold significant potential for the study of cellular signal transduction. Here we present a strategy for engineering chemically activatable protein tyrosine phosphatases (actPTPs). To generate actPTP1B, we introduced three cysteine point mutations in the enzyme's WPD loop. Biarsenical compounds were screened for the capability to bind actPTP1B's WPD loop and increase its phosphatase activity. We identified AsCy3-EDT2 as a robust activator that selectively targets actPTP1B in proteomic mixtures and intact cells. Introduction of the corresponding mutations in T-cell PTP also generates an enzyme (actTCPTP) that is strongly activated by AsCy3-EDT2 . Given the conservation of WPD-loop structure among the classical PTPs, our results potentially provide the groundwork of a widely generalizable approach for generating actPTPs as tools for elucidating PTP signaling roles as well as connections between dysregulated PTP activity and human disease.
Collapse
Affiliation(s)
- Wai Cheung Chan
- Amherst College, Department of Chemistry, Amherst, Massachusetts 01002
| | | | - Anthony C. Bishop
- Amherst College, Department of Chemistry, Amherst, Massachusetts 01002
| |
Collapse
|
171
|
Emmanouilidi A, Lattanzio R, Sala G, Piantelli M, Falasca M. The role of phospholipase Cγ1 in breast cancer and its clinical significance. Future Oncol 2017; 13:1991-1997. [DOI: 10.2217/fon-2017-0125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Breast cancer, the most common malignancy among women, is usually detected at an early stage and has a low risk of relapse. Nevertheless, a significant number of patients cannot be cured solely by local treatment. Distinguishing between patients who are of low risk of relapse from those who are of high risk may have important implications to improve treatment outcomes. The PLC-γ1 signaling pathway promotes many physiological processes, including cell migration and invasion. Increasing evidence shows aberrant PLC-γ1 signaling implication in carcinogenesis including breast cancer. In this review, the role of PLC-γ1 in breast cancer and its clinical implications will be discussed, as well as its potential as a prognostic factor and a therapeutic target.
Collapse
Affiliation(s)
- Aikaterini Emmanouilidi
- Curtin Health Innovation Research Institute, School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
| | - Rossano Lattanzio
- Department of Medical, Oral & Biotechnological Sciences, G. d'Annunzio University, Chieti, Italy
| | - Gianluca Sala
- Department of Medical, Oral & Biotechnological Sciences, G. d'Annunzio University, Chieti, Italy
| | - Mauro Piantelli
- Department of Medical, Oral & Biotechnological Sciences, G. d'Annunzio University, Chieti, Italy
| | - Marco Falasca
- Curtin Health Innovation Research Institute, School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
172
|
Bohl C, Pomorski A, Seemann S, Knospe AM, Zheng C, Krężel A, Rolfs A, Lukas J. Fluorescent probes for selective protein labeling in lysosomes: a case of α-galactosidase A. FASEB J 2017; 31:5258-5267. [PMID: 28821638 DOI: 10.1096/fj.201700058rrrr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
Abstract
Fluorescence-based live-cell imaging (LCI) of lysosomal glycosidases is often hampered by unfavorable pH and redox conditions that reduce fluorescence output. Moreover, most lysosomal glycosidases are low-mass soluble proteins that do not allow for bulky fluorescent protein fusions. We selected α-galactosidase A (GALA) as a model lysosomal glycosidase involved in Anderson-Fabry disease (AFD) for the current LCI approach. Examination of the subcellular localization of AFD-causing mutants can reveal the mechanism underlying cellular trafficking deficits. To minimize genetic GALA modification, we employed a biarsenical labeling protocol with tetracysteine (TC-tag) detection. We tested the efficiency of halogen-substituted biarsenical probes to interact with C-terminally TC-tagged GALA peptide at pH 4.5 in vitro and identified F2FlAsH-EDT2 as a superior detection reagent for GALA. This probe provides improved signal/noise ratio in labeled COS-7 cells transiently expressing TC-tagged GALA. The investigated fluorescence-based LCI technology of TC-tagged lysosomal protein using an improved biarsenical probe can be used to identify novel compounds that promote proper trafficking of mutant GALA to lysosomal compartments and rescue the mutant phenotype.-Bohl, C., Pomorski, A., Seemann, S., Knospe, A.-M., Zheng, C., Krężel, A., Rolfs, A., Lukas, J. Fluorescent probes for selective protein labeling in lysosomes: a case of α-galactosidase A.
Collapse
Affiliation(s)
- Cornelius Bohl
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Rostock, Mecklenburg-Vorpommern, Germany; and
| | - Adam Pomorski
- Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, Wrocław, Poland
| | - Susanne Seemann
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Rostock, Mecklenburg-Vorpommern, Germany; and
| | - Anne-Marie Knospe
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Rostock, Mecklenburg-Vorpommern, Germany; and
| | - Chaonan Zheng
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Rostock, Mecklenburg-Vorpommern, Germany; and
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, Wrocław, Poland
| | - Arndt Rolfs
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Rostock, Mecklenburg-Vorpommern, Germany; and
| | - Jan Lukas
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Rostock, Mecklenburg-Vorpommern, Germany; and
| |
Collapse
|
173
|
Mohl BP, Roy P. Elucidating virus entry using a tetracysteine-tagged virus. Methods 2017; 127:23-29. [PMID: 28802715 DOI: 10.1016/j.ymeth.2017.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/20/2017] [Accepted: 08/05/2017] [Indexed: 01/30/2023] Open
Abstract
Fluorescent tags constitute an invaluable tool in facilitating a deeper understanding of the mechanistic processes governing virus-host interactions. However, when selecting a fluorescent tag for in vivo imaging of cells, a number of parameters and aspects must be considered. These include whether the tag may affect and interfere with protein conformation or localization, cell toxicity, spectral overlap, photo-stability and background. Cumulatively, these constitute challenges to be overcome. Bluetongue virus (BTV), a member of the Orbivirus genus in the Reoviridae family, is a non-enveloped virus that is comprised of two architecturally complex capsids. The outer capsid, composed of two proteins, VP2 and VP5, together facilitate BTV attachment, entry and the delivery of the transcriptionally active core in the cell cytoplasm. Previously, the significance of the endocytic pathway for BTV entry was reported, although a detailed analysis of the role of each protein during virus trafficking remained elusive due to the unavailability of a tagged virus. Described here is the successful modification, and validation, of a segmented genome belonging to a complex and large capsid virus to introduce tags for fluorescence visualization. The data generated from this approach highlighted the sequential dissociation of VP2 and VP5, driven by decreasing pH during the transition from early to late endosomes, and their retention therein as the virus particles progress along the endocytic pathway. Furthermore, the described tagging technology and methodology may prove transferable and allow for the labeling of other non-enveloped complex viruses.
Collapse
Affiliation(s)
- Bjorn-Patrick Mohl
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Polly Roy
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| |
Collapse
|
174
|
Development of an ON/OFF switchable fluorescent probe targeting His tag fused proteins in living cells. Bioorg Med Chem Lett 2017. [DOI: 10.1016/j.bmcl.2017.05.087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
175
|
Abstract
In this issue of Cell Chemical Biology, Sakin et al. (2017) investigate the nanoscale behavior of the HIV-1 envelope (Env) glycoprotein complex by using genetic code expansion, bioorthogonal amino acids, synthetic dyes, and click chemistry. This minimally invasive approach allows the measurement of native Env cellular distribution and dynamics.
Collapse
Affiliation(s)
- Melissa V Fernandez
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA.
| |
Collapse
|
176
|
Tan X, Constantin TP, Sloane KL, Waggoner AS, Bruchez MP, Armitage BA. Fluoromodules Consisting of a Promiscuous RNA Aptamer and Red or Blue Fluorogenic Cyanine Dyes: Selection, Characterization, and Bioimaging. J Am Chem Soc 2017. [PMID: 28644615 DOI: 10.1021/jacs.7b04211] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An RNA aptamer selected for binding to the fluorogenic cyanine dye, dimethylindole red (DIR), also binds and activates another cyanine, oxazole thiazole blue (OTB), giving two well-resolved emission colors. The aptamer binds to each dye with submicromolar KD values, and the resulting fluoromodules exhibit fluorescence quantum yields ranging from 0.17 to 0.51 and excellent photostability. The aptamer was fused to a second aptamer previously selected for binding to the epidermal growth factor receptor (EGFR) to create a bifunctional aptamer that labels cell-surface EGFR on mammalian cells. The fluorescent color of the aptamer-labeled EGFR can be switched between blue and red in situ simply by exchanging the dye in the medium. The promiscuity of the aptamer can also be used to distinguish between cell-surface and internalized EGFR on the basis of the addition of red or blue fluorogen at different times.
Collapse
Affiliation(s)
- Xiaohong Tan
- Departments of Chemistry and Biological Sciences, Molecular Biosensor and Imaging Center, and Center for Nucleic Acids Science and Technology, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| | - Tudor P Constantin
- Departments of Chemistry and Biological Sciences, Molecular Biosensor and Imaging Center, and Center for Nucleic Acids Science and Technology, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| | - Kelly L Sloane
- Departments of Chemistry and Biological Sciences, Molecular Biosensor and Imaging Center, and Center for Nucleic Acids Science and Technology, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| | - Alan S Waggoner
- Departments of Chemistry and Biological Sciences, Molecular Biosensor and Imaging Center, and Center for Nucleic Acids Science and Technology, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| | - Marcel P Bruchez
- Departments of Chemistry and Biological Sciences, Molecular Biosensor and Imaging Center, and Center for Nucleic Acids Science and Technology, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| | - Bruce A Armitage
- Departments of Chemistry and Biological Sciences, Molecular Biosensor and Imaging Center, and Center for Nucleic Acids Science and Technology, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| |
Collapse
|
177
|
Probing amylin fibrillation at an early stage via a tetracysteine-recognising fluorophore. Talanta 2017; 173:44-50. [PMID: 28602190 DOI: 10.1016/j.talanta.2017.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 11/23/2022]
Abstract
Amyloid fibrillation is a nucleation-dependent process known be involved in the development of more than 20 progressive and chronic diseases. The detection of amyloid formation at the nucleation stage can greatly advance early diagnoses and treatment of diseases. In this work, we developed a new assay for the early detection of amylin fibrillation using the biarsenical dye 4,5-bis(1,3,2-dithiarsolan-2-yl)fluorescein (FlAsH), which could recognise tetracysteine motifs and transform from non-fluorescent form into strongly fluorescent complexes. Due to the close proximity of two cysteine residues within the hydrophilic domain of amylin, a non-contiguous tetracysteine motif can form upon amylin dimerisation or oligomerisation, which can be recognised by FlAsH and emit strong fluorescence. This enables us to report the nucleation-growth process of amylin without modification of the protein sequence. We showed that the use of this assay not only allowed the tracking of initial nucleation events, but also enabled imaging of amyloid fibrils and investigation of the effects of amyloid inhibitor/modulator toward amylin fibrillation.
Collapse
|
178
|
Kühn S, Lopez-Montero N, Chang YY, Sartori-Rupp A, Enninga J. Imaging macropinosomes during Shigella infections. Methods 2017; 127:12-22. [PMID: 28522322 DOI: 10.1016/j.ymeth.2017.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/11/2017] [Accepted: 05/10/2017] [Indexed: 12/21/2022] Open
Abstract
Macropinocytosis is the uptake of extracellular fluid within vesicles of varying size that takes place during numerous cellular processes in a large variety of cells. A growing number of pathogens, including viruses, parasites, and bacteria are known to induce macropinocytosis during their entry into targeted host cells. We have recently discovered that the human enteroinvasive, bacterial pathogen Shigella causes in situ macropinosome formation during its entry into epithelial cells. These infection-associated macropinosomes are not generated to ingest the bacteria, but are instead involved in Shigella's intracellular niche formation. They make contacts with the phagocytosed shigellae to promote vacuolar membrane rupture and their cytosolic release. Here, we provide an overview of the different imaging approaches that are currently used to analyze macropinocytosis during infectious processes with a focus on Shigella entry. We detail the advantages and disadvantages of genetically encoded reporters as well as chemical probes to trace fluid phase uptake. In addition, we report how such reporters can be combined with ultrastructural approaches for correlative light electron microscopy either in thin sections or within large volumes. The combined imaging techniques introduced here provide a detailed characterization of macropinosomes during bacterial entry, which, apart from Shigella, are relevant for numerous other ones, including Salmonella, Brucella or Mycobacteria.
Collapse
Affiliation(s)
- Sonja Kühn
- Department of Cell Biology and Infection, Institut Pasteur, Paris, France
| | | | - Yuen-Yan Chang
- Department of Cell Biology and Infection, Institut Pasteur, Paris, France
| | - Anna Sartori-Rupp
- Department of Cell Biology and Infection, Institut Pasteur, Paris, France
| | - Jost Enninga
- Department of Cell Biology and Infection, Institut Pasteur, Paris, France.
| |
Collapse
|
179
|
Yaakov N, Barak Y, Pereman I, Christie PJ, Elbaum M. Direct fluorescence detection of VirE2 secretion by Agrobacterium tumefaciens. PLoS One 2017; 12:e0175273. [PMID: 28403156 PMCID: PMC5389803 DOI: 10.1371/journal.pone.0175273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 03/23/2017] [Indexed: 11/18/2022] Open
Abstract
VirE2 is a ssDNA binding protein essential for virulence in Agrobacterium tumefaciens. A tetracysteine mutant (VirE2-TC) was prepared for in vitro and in vivo fluorescence imaging based on the ReAsH reagent. VirE2-TC was found to be biochemically active as it binds both ssDNA and the acidic secretion chaperone VirE1. It was also biologically functional in complementing virE2 null strains transforming Arabidopsis thaliana roots and Nicotiana tabacum leaves. In vitro experiments demonstrated a two-color fluorescent complex using VirE2-TC/ReAsH and Alexa Fluor 488 labeled ssDNA. In vivo, fluorescent VirE2-TC/ReAsH was detected in bacteria and in plant cells at time frames relevant to transformation.
Collapse
Affiliation(s)
- Noga Yaakov
- Dept of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Barak
- Chemical Research Support Dept, Weizmann Institute of Science, Rehovot, Israel
| | - Idan Pereman
- Dept of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, UT-Houston Medical School, Houston, Texas, United States of America
| | - Michael Elbaum
- Dept of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
180
|
Chen D, Disotuar MM, Xiong X, Wang Y, Chou DHC. Selective N-terminal functionalization of native peptides and proteins. Chem Sci 2017; 8:2717-2722. [PMID: 28553506 PMCID: PMC5426342 DOI: 10.1039/c6sc04744k] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/06/2017] [Indexed: 12/12/2022] Open
Abstract
We report an efficient, highly selective modification on the N-terminal amines of peptides and proteins using aldehyde derivatives via reductive alkylation. After modification of a library of unprotected peptides XYSKEASAL (X varies over 20 natural amino acids) by benzaldehyde at room temperature, pH 6.1 resulted in excellent N-terminal selectivity (α-amino/ε-amino: >99 : 1) and high reaction conversion for 19 out of the 20 peptides. Under similar conditions, highly selective N-terminal modifications were achieved with a variety of aldehydes. Furthermore, N-termini of native peptides and proteins could be selectively modified under the same conditions to introduce bioorthogonal functional groups. Using human insulin as an example, we further demonstrated that preserving the positive charge in the N-terminus using reductive alkylation instead of acylation leads to a 5-fold increase in bioactivity. In summary, our reported method provides a universal strategy for site-selective N-terminal functionalization in native peptides and proteins.
Collapse
Affiliation(s)
- Diao Chen
- Department of Biochemistry , University of Utah , 15 N. Medical Drive East 4100 , Salt Lake City , UT 84112 , USA .
| | - Maria M Disotuar
- Department of Biochemistry , University of Utah , 15 N. Medical Drive East 4100 , Salt Lake City , UT 84112 , USA .
| | - Xiaochun Xiong
- Department of Biochemistry , University of Utah , 15 N. Medical Drive East 4100 , Salt Lake City , UT 84112 , USA .
| | - Yuanxiang Wang
- Department of Biochemistry , University of Utah , 15 N. Medical Drive East 4100 , Salt Lake City , UT 84112 , USA .
| | - Danny Hung-Chieh Chou
- Department of Biochemistry , University of Utah , 15 N. Medical Drive East 4100 , Salt Lake City , UT 84112 , USA .
| |
Collapse
|
181
|
Yang Y, Liang Y, Zhang CY. Label-Free and Homogenous Detection of Caspase-3-Like Proteases by Disrupting Homodimerization-Directed Bipartite Tetracysteine Display. Anal Chem 2017; 89:4055-4061. [DOI: 10.1021/acs.analchem.6b04771] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yong Yang
- Laboratory
for Food Safety and Environmental Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yan Liang
- Laboratory
for Food Safety and Environmental Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chun-yang Zhang
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical
Imaging in Universities of Shandong, Key Laboratory of Molecular and
Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory
of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
182
|
Liu Y, Miao K, Dunham NP, Liu H, Fares M, Boal AK, Li X, Zhang X. The Cation-π Interaction Enables a Halo-Tag Fluorogenic Probe for Fast No-Wash Live Cell Imaging and Gel-Free Protein Quantification. Biochemistry 2017; 56:1585-1595. [PMID: 28221782 PMCID: PMC5362743 DOI: 10.1021/acs.biochem.7b00056] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
The design of fluorogenic
probes for a Halo tag is highly desirable
but challenging. Previous work achieved this goal by controlling the
chemical switch of spirolactones upon the covalent conjugation between
the Halo tag and probes or by incorporating a “channel dye”
into the substrate binding tunnel of the Halo tag. In this work, we
have developed a novel class of Halo-tag fluorogenic probes that are
derived from solvatochromic fluorophores. The optimal probe, harboring
a benzothiadiazole scaffold, exhibits a 1000-fold fluorescence enhancement
upon reaction with the Halo tag. Structural, computational, and biochemical
studies reveal that the benzene ring of a tryptophan residue engages
in a cation−π interaction with the dimethylamino electron-donating
group of the benzothiadiazole fluorophore in its excited state. We
further demonstrate using noncanonical fluorinated tryptophan that
the cation−π interaction directly contributes to the
fluorogenicity of the benzothiadiazole fluorophore. Mechanistically,
this interaction could contribute to the fluorogenicity by promoting
the excited-state charge separation and inhibiting the twisting motion
of the dimethylamino group, both leading to an enhanced fluorogenicity.
Finally, we demonstrate the utility of the probe in no-wash direct
imaging of Halo-tagged proteins in live cells. In addition, the fluorogenic
nature of the probe enables a gel-free quantification of fusion proteins
expressed in mammalian cells, an application that was not possible
with previously nonfluorogenic Halo-tag probes. The unique mechanism
revealed by this work suggests that incorporation of an excited-state
cation−π interaction could be a feasible strategy for
enhancing the optical performance of fluorophores and fluorogenic
sensors.
Collapse
Affiliation(s)
| | | | | | - Hongbin Liu
- Department of Chemistry, University of Washington , Seattle, Washington 98105, United States
| | | | | | - Xiaosong Li
- Department of Chemistry, University of Washington , Seattle, Washington 98105, United States
| | | |
Collapse
|
183
|
Souslova EA, Mironova KE, Deyev SM. Applications of genetically encoded photosensitizer miniSOG: from correlative light electron microscopy to immunophotosensitizing. JOURNAL OF BIOPHOTONICS 2017; 10:338-352. [PMID: 27435584 DOI: 10.1002/jbio.201600120] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 06/06/2023]
Abstract
Genetically encoded photosensitizers (PSs), e.g. ROS generating proteins, correspond to a novel class of PSs that are highly desirable for biological and medical applications since they can be used in combination with a variety of genetic engineering manipulations allowing for precise spatio-temporal control of ROS production within living cells and organisms. In contrast to the commonly used chemical PSs, they can be modified using genetic engineering approaches and targeted to particular cellular compartments and cell types. Mini Singlet Oxygen Generator (miniSOG), a small flavoprotein capable of singlet oxygen production upon blue light irradiation, was initially reported as a high contrast probe for correlative light electron microscopy (CLEM) without the need of exogenous ligands, probes or destructive permeabilizing detergents. Further miniSOG was successfully applied for chromophore-assisted light inactivation (CALI) of proteins, as well as for photo-induced cell ablation in tissue cultures and in Caenorhabditis elegans. Finally, a novel approach of immunophotosensitizing has been developed, exploiting the specificity of mini-antibodies or selective scaffold proteins and photo-induced cytotoxicity of miniSOG, which is particularly promising for selective non-invasive photodynamic therapy of cancer (PDT) due to the spatial selectivity and locality of destructive action compared to other methods of oncotherapy.
Collapse
Affiliation(s)
- Ekaterina A Souslova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences (IBCH RAS), Miklukho-Maklaya str. 16/10, Moscow, 117997, Russia
| | - Kristina E Mironova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences (IBCH RAS), Miklukho-Maklaya str. 16/10, Moscow, 117997, Russia
| | - Sergey M Deyev
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences (IBCH RAS), Miklukho-Maklaya str. 16/10, Moscow, 117997, Russia
| |
Collapse
|
184
|
Probing the Molecular Mechanism of Human Soluble Guanylate Cyclase Activation by NO in vitro and in vivo. Sci Rep 2017; 7:43112. [PMID: 28230071 PMCID: PMC5322342 DOI: 10.1038/srep43112] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/19/2017] [Indexed: 11/12/2022] Open
Abstract
Soluble guanylate cyclase (sGC) is a heme-containing metalloprotein in NO-sGC-cGMP signaling. NO binds to the heme of sGC to catalyze the synthesis of the second messenger cGMP, which plays a critical role in several physiological processes. However, the molecular mechanism for sGC to mediate the NO signaling remains unclear. Here fluorophore FlAsH-EDT2 and fluorescent proteins were employed to study the NO-induced sGC activation. FlAsH-EDT2 labeling study revealed that NO binding to the H-NOX domain of sGC increased the distance between H-NOX and PAS domain and the separation between H-NOX and coiled-coil domain. The heme pocket conformation changed from “closed” to “open” upon NO binding. In addition, the NO-induced conformational change of sGC was firstly investigated in vivo through fluorescence lifetime imaging microscopy. The results both in vitro and in vivo indicated the conformational change of the catalytic domain of sGC from “open” to “closed” upon NO binding. NO binding to the heme of H-NOX domain caused breaking of Fe-N coordination bond, initiated the domain moving and conformational change, induced the allosteric effect of sGC to trigger the NO-signaling from H-NOX via PAS & coiled-coil to the catalytic domain, and ultimately stimulates the cyclase activity of sGC.
Collapse
|
185
|
Kipper K, Lundius EG, Ćurić V, Nikić I, Wiessler M, Lemke EA, Elf J. Application of Noncanonical Amino Acids for Protein Labeling in a Genomically Recoded Escherichia coli. ACS Synth Biol 2017; 6:233-255. [PMID: 27775882 DOI: 10.1021/acssynbio.6b00138] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Small synthetic fluorophores are in many ways superior to fluorescent proteins as labels for imaging. A major challenge is to use them for a protein-specific labeling in living cells. Here, we report on our use of noncanonical amino acids that are genetically encoded via the pyrrolysyl-tRNA/pyrrolysyl-RNA synthetase pair at artificially introduced TAG codons in a recoded E. coli strain. The strain is lacking endogenous TAG codons and the TAG-specific release factor RF1. The amino acids contain bioorthogonal groups that can be clicked to externally supplied dyes, thus enabling protein-specific labeling in live cells. We find that the noncanonical amino acid incorporation into the target protein is robust for diverse amino acids and that the usefulness of the recoded E. coli strain mainly derives from the absence of release factor RF1. However, the membrane permeable dyes display high nonspecific binding in intracellular environment and the electroporation of hydrophilic nonmembrane permeable dyes severely impairs growth of the recoded strain. In contrast, proteins exposed on the outer membrane of E. coli can be labeled with hydrophilic dyes with a high specificity as demonstrated by labeling of the osmoporin OmpC. Here, labeling can be made sufficiently specific to enable single molecule studies as exemplified by OmpC single particle tracking.
Collapse
Affiliation(s)
- Kalle Kipper
- Department
of Molecular and Cell Biology, Science for Life Laboratory, Uppsala University, Se-751 24 Uppsala, Sweden
| | - Ebba G. Lundius
- Department
of Molecular and Cell Biology, Science for Life Laboratory, Uppsala University, Se-751 24 Uppsala, Sweden
| | - Vladimir Ćurić
- Department
of Molecular and Cell Biology, Science for Life Laboratory, Uppsala University, Se-751 24 Uppsala, Sweden
| | - Ivana Nikić
- Structural
and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, 69117, Germany
| | - Manfred Wiessler
- Biological
Chemistry, Deutsche Krebsforschungszentrum, Heidelberg, 69120, Germany
| | - Edward A. Lemke
- Structural
and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, 69117, Germany
| | - Johan Elf
- Department
of Molecular and Cell Biology, Science for Life Laboratory, Uppsala University, Se-751 24 Uppsala, Sweden
| |
Collapse
|
186
|
Perdios L, Lowe AR, Saladino G, Bunney TD, Thiyagarajan N, Alexandrov Y, Dunsby C, French PMW, Chin JW, Gervasio FL, Tate EW, Katan M. Conformational transition of FGFR kinase activation revealed by site-specific unnatural amino acid reporter and single molecule FRET. Sci Rep 2017; 7:39841. [PMID: 28045057 PMCID: PMC5206623 DOI: 10.1038/srep39841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/29/2016] [Indexed: 02/06/2023] Open
Abstract
Protein kinases share significant structural similarity; however, structural features alone are insufficient to explain their diverse functions. Thus, bridging the gap between static structure and function requires a more detailed understanding of their dynamic properties. For example, kinase activation may occur via a switch-like mechanism or by shifting a dynamic equilibrium between inactive and active states. Here, we utilize a combination of FRET and molecular dynamics (MD) simulations to probe the activation mechanism of the kinase domain of Fibroblast Growth Factor Receptor (FGFR). Using genetically-encoded, site-specific incorporation of unnatural amino acids in regions essential for activation, followed by specific labeling with fluorescent moieties, we generated a novel class of FRET-based reporter to monitor conformational differences corresponding to states sampled by non phosphorylated/inactive and phosphorylated/active forms of the kinase. Single molecule FRET analysis in vitro, combined with MD simulations, shows that for FGFR kinase, there are populations of inactive and active states separated by a high free energy barrier resulting in switch-like activation. Compared to recent studies, these findings support diversity in features of kinases that impact on their activation mechanisms. The properties of these FRET-based constructs will also allow further studies of kinase dynamics as well as applications in vivo.
Collapse
Affiliation(s)
- Louis Perdios
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London WC1E 6BT, UK
- Department of Chemistry, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Alan R. Lowe
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London WC1E 6BT, UK
- London Centre for Nanotechnology, 17-19 Gower St, London, WC1H 0AH, UK
- Division of Biosciences, Birkbeck College, Malet St, London, WC1E 7HX, UK
| | - Giorgio Saladino
- Institute of Structural and Molecular Biology, Department of Chemistry, University College London, Gower St, London WC1E 6BT, UK
| | - Tom D. Bunney
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London WC1E 6BT, UK
| | - Nethaji Thiyagarajan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London WC1E 6BT, UK
| | - Yuriy Alexandrov
- Department of Physics, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Christopher Dunsby
- Department of Physics, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Paul M. W. French
- Department of Physics, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Jason W. Chin
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Francesco Luigi Gervasio
- Institute of Structural and Molecular Biology, Department of Chemistry, University College London, Gower St, London WC1E 6BT, UK
| | - Edward W. Tate
- Department of Chemistry, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London WC1E 6BT, UK
| |
Collapse
|
187
|
Nitsche C, Mahawaththa MC, Becker W, Huber T, Otting G. Site-selective tagging of proteins by pnictogen-mediated self-assembly. Chem Commun (Camb) 2017; 53:10894-10897. [DOI: 10.1039/c7cc06155b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Trivalent pnictogens (Pn) enable the selective self-assembly between an engineered di-cysteine motif in a protein and a thiol-containing lanthanide (Ln) probe.
Collapse
Affiliation(s)
- Christoph Nitsche
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | | | - Walter Becker
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | - Thomas Huber
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | - Gottfried Otting
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| |
Collapse
|
188
|
Braner M, Wieneke R, Tampé R. Nanomolar affinity protein trans-splicing monitored in real-time by fluorophore–quencher pairs. Chem Commun (Camb) 2017; 53:545-548. [DOI: 10.1039/c6cc08862g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We combined high-affinity protein trans-splicing with fluorophore/quencher pairs for online detection of covalent N-terminal ‘traceless’ protein labeling at nanomolar concentrations under physiological conditions in cellular environment.
Collapse
Affiliation(s)
- M. Braner
- Institute of Biochemistry, Biocenter
- Goethe University Frankfurt
- 60438 Frankfurt a.M
- Germany
| | - R. Wieneke
- Institute of Biochemistry, Biocenter
- Goethe University Frankfurt
- 60438 Frankfurt a.M
- Germany
| | - R. Tampé
- Institute of Biochemistry, Biocenter
- Goethe University Frankfurt
- 60438 Frankfurt a.M
- Germany
| |
Collapse
|
189
|
Bourque K, Pétrin D, Sleno R, Devost D, Zhang A, Hébert TE. Distinct Conformational Dynamics of Three G Protein-Coupled Receptors Measured Using FlAsH-BRET Biosensors. Front Endocrinol (Lausanne) 2017; 8:61. [PMID: 28439254 PMCID: PMC5383666 DOI: 10.3389/fendo.2017.00061] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/21/2017] [Indexed: 12/30/2022] Open
Abstract
A number of studies have profiled G protein-coupled receptor (GPCR) conformation using fluorescent biaresenical hairpin binders (FlAsH) as acceptors for BRET or FRET. These conformation-sensitive biosensors allow reporting of movements occurring on the intracellular surface of a receptor to investigate mechanisms of receptor activation and function. Here, we generated eight FlAsH-BRET-based biosensors within the sequence of the β2-adrenergic receptor (β2AR) and compared agonist-induced responses to the angiotensin II receptor type I (AT1R) and the prostaglandin F2α receptor (FP). Although all three receptors had FlAsH-binding sequences engineered into the third intracellular loops and carboxyl-terminal domain, both the magnitude and kinetics of the BRET responses to ligand were receptor-specific. Biosensors in ICL3 of both the AT1R and FP responded robustly when stimulated with their respective full agonists as opposed to the β2AR where responses in the third intracellular loop were weak and transient when engaged by isoproterenol. C-tail sensors responses were more robust in the β2AR and AT1R but not in FP. Even though GPCRs share the heptahelical topology and are expressed in the same cellular background, different receptors have unique conformational fingerprints.
Collapse
Affiliation(s)
- Kyla Bourque
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Darlaine Pétrin
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Rory Sleno
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Dominic Devost
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Alice Zhang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Terence E. Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- *Correspondence: Terence E. Hébert,
| |
Collapse
|
190
|
Fang GM, Seitz O. Bivalent Display of Dicysteine on Peptide Nucleic Acids for Homogenous DNA/RNA Detection through in Situ Fluorescence Labelling. Chembiochem 2016; 18:189-194. [PMID: 27883258 DOI: 10.1002/cbic.201600623] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Indexed: 01/06/2023]
Abstract
Fluorogenic probes that signal the presence of specific DNA or RNA sequences are key enabling tools for molecular disease diagnosis and imaging studies. Usually, at least one fluorophore is attached through covalent bonding to an oligonucleotide probe. However, the additional conjugation step increases costs. Here we introduce a method that avoids the requirement for the preparation of fluorescence-labelled oligonucleotides and provides the opportunity to alter the fluorogenic reporter dye without resynthesis. The method is based on adjacent hybridization of two dicysteine-containing peptide nucleic acid (PNA) probes to form a bipartite tetracysteine motif that binds profluorescent bisarsenical dyes such as FIAsH, ReAsH or CrAsH. Binding is accompanied by strong increases in fluorescence emission (with response factors of up to 80-fold and high brightness up to 50 mL mol-1 cm-1 ). The detection system provides sub-nanomolar limits of detection and allows discrimination of single nucleotide variations through more than 20-fold changes in fluorescence intensity. To demonstrate its usefulness, the FIAsH-based readout of the bivalent CysCys-PNA display was interfaced with a rolling-circle amplification (RCA) assay used to detect disease-associated microRNA let-7a.
Collapse
Affiliation(s)
- Ge-Min Fang
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| |
Collapse
|
191
|
Kathayat RS, Yang L, Sattasathuchana T, Zoppi L, Baldridge KK, Linden A, Finney NS. On the Origins of Nonradiative Excited State Relaxation in Aryl Sulfoxides Relevant to Fluorescent Chemosensing. J Am Chem Soc 2016; 138:15889-15895. [PMID: 27809511 DOI: 10.1021/jacs.6b00572] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We provide herein a mechanistic analysis of aryl sulfoxide excited state processes, inspired by our recent report of aryl sulfoxide based fluorescent chemosensors. The use of aryl sulfoxides as reporting elements in chemosensor development is a significant deviation from previous approaches, and thus warrants closer examination. We demonstrate that metal ion binding suppresses nonradiative excited state decay by blocking formation of a previously unrecognized charge transfer excited state, leading to fluorescence enhancement. This charge transfer state derives from the initially formed locally excited state followed by intramolecular charge transfer to form a sulfoxide radical cation/aryl radical anion pair. With the aid of computational studies, we map out ground and excited state potential energy surface details for aryl sulfoxides, and conclude that fluorescence enhancement is almost entirely the result of excited state effects. This work expands previous proposals that excited state pyramidal inversion is the major nonradiative decay pathway for aryl sulfoxides. We show that pyramidal inversion is indeed relevant, but that an additional and dominant nonradiative pathway must also exist. These conclusions have implications for the design of next generation sulfoxide based fluorescent chemosensors.
Collapse
Affiliation(s)
- Rahul S Kathayat
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Lijun Yang
- School of Pharmaceutical Science and Technology, Tianjin University , 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Tosaporn Sattasathuchana
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Laura Zoppi
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Kim K Baldridge
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.,School of Pharmaceutical Science and Technology, Tianjin University , 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Anthony Linden
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Nathaniel S Finney
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.,School of Pharmaceutical Science and Technology, Tianjin University , 92 Weijin Road, Nankai District, Tianjin, 300072, China
| |
Collapse
|
192
|
Specht EA, Braselmann E, Palmer AE. A Critical and Comparative Review of Fluorescent Tools for Live-Cell Imaging. Annu Rev Physiol 2016; 79:93-117. [PMID: 27860833 DOI: 10.1146/annurev-physiol-022516-034055] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fluorescent tools have revolutionized our ability to probe biological dynamics, particularly at the cellular level. Fluorescent sensors have been developed on several platforms, utilizing either small-molecule dyes or fluorescent proteins, to monitor proteins, RNA, DNA, small molecules, and even cellular properties, such as pH and membrane potential. We briefly summarize the impressive history of tool development for these various applications and then discuss the most recent noteworthy developments in more detail. Particular emphasis is placed on tools suitable for single-cell analysis and especially live-cell imaging applications. Finally, we discuss prominent areas of need in future fluorescent tool development-specifically, advancing our capability to analyze and integrate the plethora of high-content data generated by fluorescence imaging.
Collapse
Affiliation(s)
- Elizabeth A Specht
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303; .,BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303
| | - Esther Braselmann
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303; .,BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303
| | - Amy E Palmer
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303; .,BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303
| |
Collapse
|
193
|
Cullen WR, Liu Q, Lu X, McKnight-Whitford A, Peng H, Popowich A, Yan X, Zhang Q, Fricke M, Sun H, Le XC. Methylated and thiolated arsenic species for environmental and health research - A review on synthesis and characterization. J Environ Sci (China) 2016; 49:7-27. [PMID: 28007181 DOI: 10.1016/j.jes.2016.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 06/06/2023]
Abstract
Hundreds of millions of people around the world are exposed to elevated concentrations of inorganic and organic arsenic compounds, increasing the risk of a wide range of health effects. Studies of the environmental fate and human health effects of arsenic require authentic arsenic compounds. We summarize here the synthesis and characterization of more than a dozen methylated and thiolated arsenic compounds that are not commercially available. We discuss the methods of synthesis for the following 14 trivalent (III) and pentavalent (V) arsenic compounds: monomethylarsonous acid (MMAIII), dicysteinylmethyldithioarsenite (MMAIII(Cys)2), monomethylarsonic acid (MMAV), monomethylmonothioarsonic acid (MMMTAV) or monothio-MMAV, monomethyldithioarsonic acid (MMDTAV) or dithio-MMAV, monomethyltrithioarsonate (MMTTAV) or trithio-MMAV, dimethylarsinous acid (DMAIII), dimethylarsino-glutathione (DMAIII(SG)), dimethylarsinic acid (DMAV), dimethylmonothioarsinic acid (DMMTAV) or monothio-DMAV, dimethyldithioarsinic acid (DMDTAV) or dithio-DMAV, trimethylarsine oxide (TMAOV), arsenobetaine (AsB), and an arsenicin-A model compound. We have reviewed and compared the available methods, synthesized the arsenic compounds in our laboratories, and provided characterization information. On the basis of reaction yield, ease of synthesis and purification of product, safety considerations, and our experience, we recommend a method for the synthesis of each of these arsenic compounds.
Collapse
Affiliation(s)
- William R Cullen
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Qingqing Liu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Xiufen Lu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | | | - Hanyong Peng
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Aleksandra Popowich
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Xiaowen Yan
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Qi Zhang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Michael Fricke
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Hongsui Sun
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada; Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada.
| |
Collapse
|
194
|
Gijsbers A, Nishigaki T, Sánchez-Puig N. Fluorescence Anisotropy as a Tool to Study Protein-protein Interactions. J Vis Exp 2016. [PMID: 27805607 DOI: 10.3791/54640] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Protein-protein interactions play an essential role in the function of a living organism. Once an interaction has been identified and validated it is necessary to characterize it at the structural and mechanistic level. Several biochemical and biophysical methods exist for such purpose. Among them, fluorescence anisotropy is a powerful technique particularly used when the fluorescence intensity of a fluorophore-labeled protein remains constant upon protein-protein interaction. In this technique, a fluorophore-labeled protein is excited with vertically polarized light of an appropriate wavelength that selectively excites a subset of the fluorophores according to their relative orientation with the incoming beam. The resulting emission also has a directionality whose relationship in the vertical and horizontal planes defines anisotropy (r) as follows: r=(IVV-IVH)/(IVV+2IVH), where IVV and IVH are the fluorescence intensities of the vertical and horizontal components, respectively. Fluorescence anisotropy is sensitive to the rotational diffusion of a fluorophore, namely the apparent molecular size of a fluorophore attached to a protein, which is altered upon protein-protein interaction. In the present text, the use of fluorescence anisotropy as a tool to study protein-protein interactions was exemplified to address the binding between the protein mutated in the Shwachman-Diamond Syndrome (SBDS) and the Elongation factor like-1 GTPase (EFL1). Conventionally, labeling of a protein with a fluorophore is carried out on the thiol groups (cysteine) or in the amino groups (the N-terminal amine or lysine) of the protein. However, SBDS possesses several cysteines and lysines that did not allow site directed labeling of it. As an alternative technique, the dye 4',5'-bis(1,3,2 dithioarsolan-2-yl) fluorescein was used to specifically label a tetracysteine motif, Cys-Cys-Pro-Gly-Cys-Cys, genetically engineered in the C-terminus of the recombinant SBDS protein. Fitting of the experimental data provided quantitative and mechanistic information on the binding mode between these proteins.
Collapse
Affiliation(s)
- Abril Gijsbers
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México
| | - Nuria Sánchez-Puig
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México;
| |
Collapse
|
195
|
Peng T, Hang HC. Site-Specific Bioorthogonal Labeling for Fluorescence Imaging of Intracellular Proteins in Living Cells. J Am Chem Soc 2016; 138:14423-14433. [PMID: 27768298 DOI: 10.1021/jacs.6b08733] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Over the past years, fluorescent proteins (e.g., green fluorescent proteins) have been widely utilized to visualize recombinant protein expression and localization in live cells. Although powerful, fluorescent protein tags are limited by their relatively large sizes and potential perturbation to protein function. Alternatively, site-specific labeling of proteins with small-molecule organic fluorophores using bioorthogonal chemistry may provide a more precise and less perturbing method. This approach involves site-specific incorporation of unnatural amino acids (UAAs) into proteins via genetic code expansion, followed by bioorthogonal chemical labeling with small organic fluorophores in living cells. While this approach has been used to label extracellular proteins for live cell imaging studies, site-specific bioorthogonal labeling and fluorescence imaging of intracellular proteins in live cells is still challenging. Herein, we systematically evaluate site-specific incorporation of diastereomerically pure bioorthogonal UAAs bearing stained alkynes or alkenes into intracellular proteins for inverse-electron-demand Diels-Alder cycloaddition reactions with tetrazine-functionalized fluorophores for live cell labeling and imaging in mammalian cells. Our studies show that site-specific incorporation of axial diastereomer of trans-cyclooct-2-ene-lysine robustly affords highly efficient and specific bioorthogonal labeling with monosubstituted tetrazine fluorophores in live mammalian cells, which enabled us to image the intracellular localization and real-time dynamic trafficking of IFITM3, a small membrane-associated protein with only 137 amino acids, for the first time. Our optimized UAA incorporation and bioorthogonal labeling conditions also enabled efficient site-specific fluorescence labeling of other intracellular proteins for live cell imaging studies in mammalian cells.
Collapse
Affiliation(s)
- Tao Peng
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School , Shenzhen 518055, China.,Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University , New York, New York 10065, United States
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University , New York, New York 10065, United States
| |
Collapse
|
196
|
Bolbat A, Schultz C. Recent developments of genetically encoded optical sensors for cell biology. Biol Cell 2016; 109:1-23. [PMID: 27628952 DOI: 10.1111/boc.201600040] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022]
Abstract
Optical sensors are powerful tools for live cell research as they permit to follow the location, concentration changes or activities of key cellular players such as lipids, ions and enzymes. Most of the current sensor probes are based on fluorescence which provides great spatial and temporal precision provided that high-end microscopy is used and that the timescale of the event of interest fits the response time of the sensor. Many of the sensors developed in the past 20 years are genetically encoded. There is a diversity of designs leading to simple or sometimes complicated applications for the use in live cells. Genetically encoded sensors began to emerge after the discovery of fluorescent proteins, engineering of their improved optical properties and the manipulation of their structure through application of circular permutation. In this review, we will describe a variety of genetically encoded biosensor concepts, including those for intensiometric and ratiometric sensors based on single fluorescent proteins, Forster resonance energy transfer-based sensors, sensors utilising bioluminescence, sensors using self-labelling SNAP- and CLIP-tags, and finally tetracysteine-based sensors. We focus on the newer developments and discuss the current approaches and techniques for design and application. This will demonstrate the power of using optical sensors in cell biology and will help opening the field to more systematic applications in the future.
Collapse
Affiliation(s)
- Andrey Bolbat
- European Molecular Biology Laboratory (EMBL), Cell Biology & Biophysics Unit, Heidelberg, 69117, Germany
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL), Cell Biology & Biophysics Unit, Heidelberg, 69117, Germany
| |
Collapse
|
197
|
Gao F, Gao T, Zhou K, Zeng W. Small Molecule-Photoactive Yellow Protein Labeling Technology in Live Cell Imaging. Molecules 2016; 21:molecules21091163. [PMID: 27589715 PMCID: PMC6273459 DOI: 10.3390/molecules21091163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/09/2016] [Accepted: 08/16/2016] [Indexed: 12/18/2022] Open
Abstract
Characterization of the chemical environment, movement, trafficking and interactions of proteins in live cells is essential to understanding their functions. Labeling protein with functional molecules is a widely used approach in protein research to elucidate the protein location and functions both in vitro and in live cells or in vivo. A peptide or a protein tag fused to the protein of interest and provides the opportunities for an attachment of small molecule probes or other fluorophore to image the dynamics of protein localization. Here we reviewed the recent development of no-wash small molecular probes for photoactive yellow protein (PYP-tag), by the means of utilizing a quenching mechanism based on the intramolecular interactions, or an environmental-sensitive fluorophore. Several fluorogenic probes have been developed, with fast labeling kinetics and cell permeability. This technology allows quick live-cell imaging of cell-surface and intracellular proteins without a wash-out procedure.
Collapse
Affiliation(s)
- Feng Gao
- Powder Metallurgy Research Institute of Central South University, Changsha 410013, China.
- The Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Tang Gao
- School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| | - Kechao Zhou
- Powder Metallurgy Research Institute of Central South University, Changsha 410013, China.
| | - Wenbin Zeng
- School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
198
|
DIVERSE System: De Novo Creation of Peptide Tags for Non-enzymatic Covalent Labeling by In Vitro Evolution for Protein Imaging Inside Living Cells. ACTA ACUST UNITED AC 2016; 22:1671-9. [PMID: 26687484 DOI: 10.1016/j.chembiol.2015.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/10/2015] [Accepted: 10/15/2015] [Indexed: 10/22/2022]
Abstract
Polypeptide-tag/small-molecule pairs for specific cellular protein labeling are useful for visualizing cellular proteins and controlling their activity. Here, we report the development of an in vitro evolution-based (poly)peptide tag identification system named the DIVERSE (Directed In Vitro Evolution of Reactive peptide tags via Sequential Enrichment) system. In this system, an extremely diverse (10(14)) library of peptide tags, displayed by covalent attachment to their encoding cDNAs, is continuously prepared from the DNA library in a one-pot approach. Using this system, we demonstrated de novo creation of non-enzymatically covalent-labeling peptide tags for a synthetic small-molecule target from a random peptide library. Protein labeling with these tags was applicable to N- and C-terminal fusions, multiple different proteins and fluorophores, and intracellular labeling. The DIVERSE system can be used not only for the de novo creation of polypeptide tags but also sequence optimization of existing polypeptide tags from extremely diverse libraries.
Collapse
|
199
|
Ooi A, Wong A, Esau L, Lemtiri-Chlieh F, Gehring C. A Guide to Transient Expression of Membrane Proteins in HEK-293 Cells for Functional Characterization. Front Physiol 2016; 7:300. [PMID: 27486406 PMCID: PMC4949579 DOI: 10.3389/fphys.2016.00300] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/28/2016] [Indexed: 01/17/2023] Open
Abstract
The human embryonic kidney 293 (HEK-293) cells are commonly used as host for the heterologous expression of membrane proteins not least because they have a high transfection efficiency and faithfully translate and process proteins. In addition, their cell size, morphology and division rate, and low expression of native channels are traits that are particularly attractive for current-voltage measurements. Nevertheless, the heterologous expression of complex membrane proteins such as receptors and ion channels for biological characterization and in particular for single-cell applications such as electrophysiology remains a challenge. Expression of functional proteins depends largely on careful step-by-step optimization that includes the design of expression vectors with suitable identification tags, as well as the selection of transfection methods and detection parameters appropriate for the application. Here, we use the heterologous expression of a plant potassium channel, the Arabidopsis thaliana guard cell outward-rectifying K(+) channel, AtGORK (At5G37500) in HEK-293 cells as an example, to evaluate commonly used transfection reagents and fluorescent detection methods, and provide a detailed methodology for optimized transient transfection and expression of membrane proteins for in vivo studies in general and for single-cell applications in particular. This optimized protocol will facilitate the physiological and cellular characterization of complex membrane proteins.
Collapse
Affiliation(s)
- Amanda Ooi
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology Thuwal, Saudi Arabia
| | - Aloysius Wong
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia; Institute of Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Le Commissariat à l'Energie Atomique et aux Energies Alternatives, Paris-Sud UniversityGif-Sur-Yvette, France
| | - Luke Esau
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology Thuwal, Saudi Arabia
| | - Fouad Lemtiri-Chlieh
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology Thuwal, Saudi Arabia
| | - Chris Gehring
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology Thuwal, Saudi Arabia
| |
Collapse
|
200
|
Martinez V, Henary M. Nile Red and Nile Blue: Applications and Syntheses of Structural Analogues. Chemistry 2016; 22:13764-13782. [DOI: 10.1002/chem.201601570] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Vincent Martinez
- Department of Chemistry; Georgia State University; Atlanta GA 30302 USA
| | - Maged Henary
- Department of Chemistry; Georgia State University; Atlanta GA 30302 USA
| |
Collapse
|